JP5074683B2 - 液体の粘度測定装置および測定方法 - Google Patents

液体の粘度測定装置および測定方法 Download PDF

Info

Publication number
JP5074683B2
JP5074683B2 JP2005299993A JP2005299993A JP5074683B2 JP 5074683 B2 JP5074683 B2 JP 5074683B2 JP 2005299993 A JP2005299993 A JP 2005299993A JP 2005299993 A JP2005299993 A JP 2005299993A JP 5074683 B2 JP5074683 B2 JP 5074683B2
Authority
JP
Japan
Prior art keywords
liquid
container
capillary viscometer
viscosity
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005299993A
Other languages
English (en)
Other versions
JP2007108045A (ja
Inventor
正人 金子
健生 時合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005299993A priority Critical patent/JP5074683B2/ja
Publication of JP2007108045A publication Critical patent/JP2007108045A/ja
Application granted granted Critical
Publication of JP5074683B2 publication Critical patent/JP5074683B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、液体の粘度測定装置、さらに詳しくは、炭酸ガスのような高圧冷媒と潤滑油との混合液体の粘度を毛細管粘度計で直接測定するのに最適な液体の粘度測定装置および測定方法に関するものである。
液体の物性には、その粘性を表す粘度がある。粘度は、潤滑油にとっては、物性のなかで最も大切なものの一つであり、機械要素の潤滑における重要な因子となっている。ここで、液体の粘度を測定する装置としては、従来より、毛細管粘度計、高圧落球式粘度計および電磁振動式粘度計等の多様な形式のものが知られており、目的に応じて適宜な形式の粘度計が使用されている。毛細管粘度計は、毛細管中を流れる被測定液体の流量等に基づいて粘度を求めるものであり、被測定液体を溜める所定容量の液溜め部と、この液溜め部からの液体を流通させる毛細管とを有していれば、精度よく粘度(動粘度)を測定することができるようになっている。
高圧落球式粘度計は、高圧密閉容器内に、被測定液体および球を入れ、等速で自由落下する球の速度等に基づいて粘度(絶対粘度)を求めるものである。電磁振動式粘度計は、鉄片等の物体を被測定液体中に浸漬するとともに、電磁波で振動させ、被測定液体の粘性による物体の振動の減衰に基づいて粘度(絶対粘度)を求めるものである。
これらのうち、毛細管粘度計は、開放された空間において、簡単な操作で動粘度を精度よく測定することができる。このため、毛細管粘度計は、石油製品の粘度測定に広く利用されている。一方、高圧落球式粘度計および電磁振動式粘度計は、粘度計本体を密閉容器状に形成することが可能なため、高圧ガスの雰囲気下における液体の絶対粘度の測定にも使用することができる。
従来の毛細管粘度計では、その粘度計本体を密閉容器に入れると、その操作が著しく困難となることから、高圧ガスの雰囲気下における液体の粘度測定には、適さないという問題がある。
また、高圧落球式粘度計では、絶対粘度の直接測定は行えるが、動粘度を直接測定することができないうえ、低粘度の液体については、測定精度が良くないという問題がある。
さらに、電磁振動式粘度計では、高圧落球式粘度計と同様に、絶対粘度の直接測定は行えるが、動粘度を直接測定することができないうえ、物体の振動による摩擦熱により、温度が変化するため、測定精度が良くないという問題がある。
ここで、フロン等の冷媒を用いる冷凍機で使用される潤滑油は、圧縮された高圧の冷媒ガスが雰囲気となる環境下で使用される。このような高圧冷媒ガスの雰囲気下におかれた潤滑油には、冷媒ガスが溶け込むことから、その粘度が変化し、溶け込んだ冷媒ガスの量が多いと、潤滑油の性能に影響が及ぶことがある。このため、潤滑油、特に、冷凍機用の潤滑油に係る技術分野では、潤滑油が実際に使用される圧力および雰囲気下において、その動粘度の直接測定が行える粘度測定装置が要望されている。
しかしながら、従来の冷媒は、オゾン層破壊や地球温暖化等の環境での影響が懸念されることから、さらに環境保護に適した冷媒として炭化水素、アンモニア、炭酸ガスなどのいわゆる自然系冷媒が注目されている。
しかしながら炭化水素冷媒は可燃性の問題、アンモニア冷媒は臭気、毒性などの問題があるため、カーエアコンなどでは使用が難しく、毒性、可燃性がなく安全性には全く問題とならないと考えられている、炭酸ガスが次世代の冷媒として考えられており、炭酸ガスを冷媒とした冷媒圧縮式の冷凍設備が検討されている。
一方、炭酸ガスを冷媒として用いた場合には運転圧が非常に高くなるこという問題があり、従来のガラス製の容器(耐圧3MPa)では、炭酸ガスのような高圧冷媒(7.6MPa:測定温度31℃)には適用することができない。
また、ガラス製の密閉容器の中での毛細管粘度計による液体の粘度測定装置について検討されているが(例えば特許文献1)、炭酸ガスのような高圧冷媒の使用に関する開示はない。
特開平10−142139号公報
本発明は、このような状況下で、炭酸ガスのような高圧冷媒と潤滑油とくに冷凍機油との混合液体の粘度を毛細管粘度計で直接測定するのに最適な液体の粘度測定装置および測定方法を提供することを目的とするものである。
本発明者らは、前記の好ましい粘度測定装置を開発すべく鋭意研究を重ねた結果、液体を密閉状態で収納する容器として、単結晶サファイア管を用いることによってその目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1) 粘度の測定対象となる液体を密閉状態で収納する単結晶サファイア管からなる容器と、この容器の内部に移動自在に配置された毛細管粘度計とを備えた液体の粘度測定装置であって、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられていることを特徴とする液体の粘度測定装置、
(2) 前記液体が、冷媒と潤滑油の混合液体である上記(1)の液体の粘度測定装置、
(3) 前記冷媒が炭酸ガスである上記(2)の液体の粘度測定装置、
(4) 前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされている上記(1)〜(3)の液体の粘度測定装置、
(5) 前記毛細管粘度計の内部の液体の液面位置を検出する近接センサが前記容器の外部に設けられている上記(1)〜(4)の液体の粘度測定装置、
(6) 前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成されている上記(1)〜(5)の液体の粘度測定装置、
(7) 前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられている上記(1)〜(6)の液体の粘度測定装置、及び
(8) 粘度の測定対象となる液体を密閉状態で収納する容器と、この容器の内部に、磁性体を含んで構成された毛細管粘度計が移動自在に配置され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられている液体の粘度測定装置を用いて、前記液体の粘度を測定するための液体の粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを特徴とする液体の粘度測定方法、
を提供するものである。
本発明によれば、炭酸ガスのような高圧冷媒と潤滑油、特に冷凍機油との混合液体の動粘度について直接測定を簡単な操作で、かつ安全に行うことができる液体の粘度測定装置および測定方法を提供することができる。
先ず、本発明の液体の粘度測定装置は、粘度の測定対象となる液体を密閉状態で収納する容器は単結晶サファイア管からなることを要する。
本発明に用いられる単結晶サファイアは、従来の石英ガラスに比べ化学的安定性、機械的特性、透過波長領域に優れ、硬度が高いため傷つきにくいなどの特徴を有している。なかでも使用圧力範囲がガラス管の0〜3MPaに対して、0〜30MPaと広く、高圧領域まで使用可能である。単結晶サファイア管の好ましい使用圧力範囲は3〜25MPa、より好ましくは5〜20MPaである。
単結晶サファイア管は、チョクラルスキー(CZ)法、ベルヌーイ法等の通常公的に用いられる方法を用いて製造することができるが、特開昭54−41281記載の方法によっても製造が可能である。
また、前記液体は潤滑油と冷媒との混合液体であることが好ましく、さらに該冷媒が、毒性、可燃性がなく安全性および環境問題には全く問題の無い炭酸ガスであることが好ましい。
上述のように、高圧領域まで使用可能な単結晶サファイア管を液体を密閉状態で収納する容器として用いることにより炭酸ガスを冷媒として用いることが可能となり、潤滑油との混合液体の動粘度について直接測定を簡単な操作でかつ安全に行うことができる。
さらに、本発明の液体の粘度測定装置は、サファイア管からなる容器の内部に移動自在に配置された毛細管粘度計とを備えた液体の粘度測定装置であって、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられていることが必要である。
また、前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされていることが好ましい。
また、前記毛細管粘度計の内部の液体の液面位置を検出する近接センサが前記容器の外部に設けられていることが望ましい。
さらに、前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成されていることが好ましい。
さらにまた、前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられていることが望ましい。
また、本発明の液体の粘度測定方法は、前記の液体の粘度測定装置を用いる粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを要する。
このような本発明では、サファイア管よりなる耐圧の容器の内部に入れた毛細管粘度計が測定対象となる液体に浸からない空間が残るように、容器の内部に所定量の潤滑油を入れるとともに、当該容器内に毛細管粘度計および所定量の高圧冷媒の炭酸ガスを入れ、この状態で容器を密閉すれば、高圧の雰囲気ガスの下に測定対象の潤滑油と冷媒の混合液体がおかれることとなる。ここで、密閉された容器の内部に入れた毛細管粘度計の磁性体が磁気発生手段の磁力を受け、磁気発生手段を容器の外部で操作することにより、毛細管粘度計を非接触で移動することができるようになっている。
このため、液体の液面下に完全に浸かる位置に毛細管粘度計を移動し、毛細管粘度計を測定対象の液体で満たした後、液体の液面から上方へ完全に脱した位置に毛細管粘度計を移動し、毛細管粘度計から前述の液体を滴下させれば、毛細管粘度計内の液体の液面が所定の二位置を通過するのに要する通過こととなり、これらの二位置間を通過する時間を計測することにより、動粘度の直接測定が行えるようになる。従って、高圧ガスの雰囲気下で混合液体の動粘度について直接測定が簡単な操作で行えるようになり、これにより前記目的が達成される。
そして、液体を入れる容器を細長い密閉耐圧容器とし、容器の長手方向に沿って毛細管粘度計を移動自在とし、かつ、磁気発生手段としてリング状の永久磁石を採用し、このリング状の永久磁石の内部に前述の容器を挿通させれば、磁気発生手段と毛細管粘度計との距離が短縮されるとともに、磁気発生手段の磁力線が毛細管粘度計の近傍に集中するようになり、毛細管粘度計の磁性体に有効に作用する磁気発生手段の磁力が増大され、容器外部の磁気発生手段で容器内部の毛細管粘度計を確実に移動できるようになる。
また、毛細管粘度計の内部の液体の液面位置を検出する近接センサを容器の外部に設ければ、毛細管粘度計内の液体の液面が所定の二位置を通過するのに要する通過時間を自動計測することが可能となり、これにより、液体の動粘度測定の自動化が可能となる。さらに、容器を透明材料で形成されたものとし、毛細管粘度計の少なくとも一部分を、その内部が視認可能となる透明材料で形成し、毛細管粘度計内の液体の液面が、所定位置から所定距離低下するのを目視で観察できるようにすれば、さらに簡単な構造で動粘度の直接測定が可能となる。
また、容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つを容器に設ければ、圧力、温度、屈折率、密度および濃度の測定値が動粘度の測定と同時に得られるようになり、得られた動粘度の測定値についての補正等が速やかに行える。
次に、図面を参照して本発明の一実施態様を詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
図1には、本実施形態に係る粘度測定装置1が示されている。この粘度測定装置1は、粘度の測定対象となる液体2を密閉状態で収納するサファイア管からなる容器10と、この容器10の内部に配置された毛細管粘度計20と、容器10を収納する恒温槽3とを備えたものである。なお、測定対象となる液体2は、特定しないが、動粘度測定の機会が多い潤滑油と冷媒との混合液体を想定するのが好ましい。恒温槽3は、水又はアルコール等の液体からなる冷媒又は熱媒体4に満たされたものである。
この恒温槽3には、熱媒体4を常に所定の温度に保つために、温度調節手段5が設けられている。温度調節手段5は、図には示されていないが、加熱装置および冷却装置と、冷媒又は熱媒体4の温度を検出する温度センサと、この温度センサの検出した温度に基づいて加熱装置および冷却装置をコントロールするコントローラとを備えたものとなっている。
容器10は、細長い管状に形成されたガラス製等の透明なサファイア管よりなる密閉耐圧容器である。容器10の図中下端は、閉じられている一方、図中上端には、蓋11で密閉可能な開口が設けられている。容器10の蓋11を介して炭酸ガスのような高圧冷媒を容器10内に導入する手段として、耐圧仕様のT字型ジョイント24、ニードル弁25、安全弁26及び耐圧ホース27を設けておくことが好ましい。
この開口から測定対象となる液体2が容器10の内部に入れられるようになっている。また、蓋11には、ガス6を含む冷媒を容器10の内部に導入するための導入管12が挿通されている。この導入管12の図中上方の端部には、容器10の内部に入れたガス6が外部に漏れないようにする、チェック弁等の逆止装置13が設けられている。なお、ガス6は、気化しやすい冷媒の蒸気等が想定される。
例えば、水素、アンモニア、プロパン、フロンおよび炭酸ガス等が用いられる。
容器10の周囲には、リング状の永久磁石14と、端面を互いに対向させて配置された二対の光ファイバ15とが配置されている。永久磁石14は、毛細管粘度計20を容器10の外部から非接触で移動させるための磁気発生手段である。
リング状の永久磁石14の内部には、容器10が挿通されている。この状態で永久磁石14は、容器10の図中下端近傍の位置、および、容器10の中間部分の所定位置の二位置の間を、容器10の側面に沿って移動可能となっている。永久磁石14の移動は、当該磁石14に取付けられたアーム14A を介して、電動機等の駆動手段により自動的に行われるようになっている。
光ファイバ15は、光ファイバ15A, 15Bおよび光ファイバ15C, 15D のそれぞれが、毛細管粘度計20の内部に収納された液体2の液面位置を検出する近接センサの一部を形成するものとなっている。すなわち、光ファイバ15A は、図示しない粘度計算機に設けられた所定の光源からの光を光ファイバ15B の端面に向かって投光するものである。一方、光ファイバ15B は、光ファイバ15A からの光を受光して前述の粘度計算機内の受光素子まで導くものとなっている。液体2の液面が光ファイバ15A、 15Bの間の位置まで降下すると、当該液面が光ファイバ15A からの光を遮り、光ファイバ15B が光を受光できなくなる。これにより、容器10の所定位置で、毛細管粘度計20内の液体2の液面位置が検出されるようになっている。
同様に、光ファイバ15C は、前述の光源からの光を光ファイバ15D の端面に向かって投光するものである一方、光ファイバ15D は、光ファイバ15C からの光を受光するためのものである。液体2の液面が光ファイバ15C、 15Dの間にあって、光ファイバ15C からの光を遮ると、光ファイバ15D が光を受光できなくなり、これにより、光ファイバ15A,15Bとは別の位置で、毛細管粘度計20内の液体2の液面位置が検出されるようになっている。なお、容器10には、図には示されていないが、当該容器10の内部の液体2を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサが設けられている。
毛細管粘度計20は、両端が開口されるとともに、ガラス等で形成された透明な筒状のものであり、その長手方向が容器10の長手方向に沿って配置されるとともに、容器10の長手方向に沿って移動自在とされている。毛細管粘度計20の図中上端近傍には、図2にも示されるように、側壁を膨らませた液溜め部21が設けられている。液溜め部21の図中上方および下方には、液体2の流量計測等に利用される標線21A、21Bがそれぞれ設けられている。なお、標線21A、21Bは、光ファイバ15A,15Cからの光を遮らないものとなっている。
毛細管粘度計20の標線21B の図中下方の部分には、内径が著しく小さくなった細管部22が設けられている。この細管部22の内部を所定量の液体2が通過するのに要する時間(換言すれば、液体2の流量)を計測することにより、液体2の動粘度が測定されるようになっている。細管部22の側壁の外周面には、磁性体からなる帯状外環部23が固定されている。永久磁石14を容器10の長手方向に沿って移動することにより、帯状外環部23が磁力により吸引される。
これにより、容器10の外部における操作により非接触で、毛細管粘度計20が永久磁石14に追従して移動するようになっている。
毛細管粘度計20の移動範囲は、液体2の液面下に完全に浸かってしまう位置Aと、その標線21A、21Bの各々が光ファイバ15A、15Bおよび光ファイバ15C、15Dにそれぞれ挟まれる位置Bとの間となっている。ここで、毛細管粘度計20を位置Aから位置Bまで移動すると、毛細管粘度計20の内部に液体2が満たされるようになっている。また、液体2で満たされた毛細管粘度計20を位置Bに保持しておくと、液体2が毛細管粘度計20から滴下し、毛細管粘度計20が空になるまで、液体2の液面が降下していく。そして、液体2の液面が標線21B を通過したことが光ファイバ15C、15Dにより検知され、前述の粘度計算機に内蔵されたカウンタ(図示略)が起動されるとともに、液体2の液面が標線21A を通過したことが光ファイバ15A、15Bにより検知され、前述のカウンタが停止するようになっている。これにより、前述の粘度計算機が、細管部22の内部を所定量の液体2が通過するのに要する時間を計測するとともに、動粘度を自動的に測定するようになっている。
次に、本実施形態における測定手順について説明する。まず、所定量の潤滑油の液体2および毛細管粘度計20を耐圧20MPaのサファイア管からなる容器10の中に入れた後、蓋11を閉じ、次に、冷媒(液化炭酸ガス)を導入する場合は、耐圧30MPa仕様のT字型ジョイント24に安全弁26(作動圧力14MPa)及びニードル弁25を装着した後、容器10を冷媒4の入った恒温槽3に浸す。次にニードル弁25と冷媒採取ライン(図示せず)を耐圧ホース27を介して接続する。尚、冷媒4の温度は試料に用いる液化炭酸ガスの沸点(−59℃)以下の温度に保持する。
次に、真空ポンプ(図示せず)を作動し容器10及び冷媒採取ライン内を約13.3Paまで脱気する。真空ポンプを止め、冷媒容器の元弁を開き容器10に冷媒を導入する。
このようにして冷媒を容器10内に採取することによって、潤滑油と冷媒の混合比率を任意の値にすることができる。
尚、上記操作に当っては、容器10内の温度及び圧力については特に注視する必要がある。ここで、安全弁26の作動圧力はサファイア管の使用圧力20MPaの3分の2の14MPa程度のものを使用することが好ましい。
所定量の冷媒が導入されたらニードル弁25を閉じ、冷媒容器の弁を閉じ、耐圧ホース27を切り離した後、予め温度調節手段5で内部の熱媒体4を所定の温度にするとともに、永久磁石14を位置Aに降下させておいた恒温槽3内の所定位置に、密閉した容器10を設置する。容器10全体が熱的に平衡状態になったら、永久磁石14を移動させる駆動手段を起動して、永久磁石14を移動させ、毛細管粘度計20を位置Bまで上昇させる。これにより、図3に示されるように、液体2が毛細管粘度計20から滴下し、液体2の液面が降下していく。そして、液体2の液面が標線21B および標線21A を通過したことを、光ファイバ15に検知させ、細管部22の内部を所定量の潤滑油と炭酸ガス冷媒との混合液体2が通過するのに要する時間を粘度計算機に自動計測させるとともに粘度を自動測定させ、測定を完了する。
本発明の液体の粘度測定装置は、炭酸ガスのような高圧冷媒と潤滑油、特に冷凍機油との混合液体の動粘度について直接測定を簡単な操作で、かつ安全に行うことができる。
本発明の実施態様の一例を示す断面図である。 本発明の実施態様の一例を示す実施形態の要部を示す拡大断面図である。 本発明の実施態様の測定における一手順を示す断面図である。
符号の説明
1.粘度測定装置 10.容器
2.測定対象となる液体 14.磁気発生手段
3.恒温槽 15.近接センサの一部である光ファイバ
4.冷媒又は熱媒体 20.毛細管粘度計
5.温度調節手段 23.磁性体からなる帯状外環部

Claims (4)

  1. 粘度の測定対象となる液体を密閉状態で収納する単結晶サファイア管からなる容器と、この容器の内部に移動自在に配置された毛細管粘度計とを備え、前記毛細管粘度計が磁性体を含んで構成され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられてなる液体の粘度測定装置であって、前記液体が冷媒と潤滑油の混合液体であり、前記冷媒が炭酸ガスであり、前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされ、前記毛細管粘度計の内部の液体の液面位置を検出する光ファイバが前記容器の外部に設けられ、前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成され、かつ前記単結晶サファイア管の使用圧力範囲が5〜25MPaであることを特徴とする液体の粘度測定装置。
  2. 前記容器内に冷媒を導入する手段として、T字型ジョイント、ニードル弁、安全弁及び耐圧ホースが設けられている請求項に記載の液体の粘度測定装置。
  3. 前記容器の内部の液体を測定対象とする、圧力センサ、温度センサ、屈折率センサ、密度センサおよび濃度センサの少なくとも一つが前記容器に設けられている請求項1又は2に記載の液体の粘度測定装置。
  4. 粘度の測定対象となる液体を密閉状態で収納する単結晶サファイア管からなる容器と、この容器の内部に、磁性体を含んで構成された毛細管粘度計が移動自在に配置され、かつ、この毛細管粘度計の磁性体を前記容器の外部から非接触で移動させる磁気発生手段が設けられ、前記液体が冷媒と潤滑油の混合液体であり、前記冷媒が炭酸ガスであり、前記容器が細長い密閉耐圧容器とされ、前記毛細管粘度計が前記容器の長手方向に沿って移動自在とされ、前記磁気発生手段が、内部に前記容器を挿通可能なリング状の永久磁石とされ、前記毛細管粘度計の内部の液体の液面位置を検出する光ファイバが前記容器の外部に設けられ、前記容器が透明材料で形成されたものとされ、前記毛細管粘度計の少なくとも一部分が、その内部を視認可能とする透明材料で形成され、かつ前記単結晶サファイア管の使用圧力範囲が5〜25MPaである液体の粘度測定装置を用いて、前記液体の粘度を測定するための液体の粘度測定方法であって、前記磁気発生手段を操作することにより、前記容器に収納した測定対象の液体中に浸漬した前記毛細管粘度計を当該液体の上方へ移動した後、前記毛細管粘度計の内部の前記液体の液面が所定の二位置を通過するのに要する通過時間を計測することを特徴とする液体の粘度測定方法。
JP2005299993A 2005-10-14 2005-10-14 液体の粘度測定装置および測定方法 Active JP5074683B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299993A JP5074683B2 (ja) 2005-10-14 2005-10-14 液体の粘度測定装置および測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299993A JP5074683B2 (ja) 2005-10-14 2005-10-14 液体の粘度測定装置および測定方法

Publications (2)

Publication Number Publication Date
JP2007108045A JP2007108045A (ja) 2007-04-26
JP5074683B2 true JP5074683B2 (ja) 2012-11-14

Family

ID=38034009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299993A Active JP5074683B2 (ja) 2005-10-14 2005-10-14 液体の粘度測定装置および測定方法

Country Status (1)

Country Link
JP (1) JP5074683B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624782B2 (ja) * 2010-03-25 2014-11-12 出光興産株式会社 試料液体の体積抵抗率測定装置及びそれを用いた体積抵抗率測定方法
JP5903142B2 (ja) * 2014-09-29 2016-04-13 出光興産株式会社 試料液体の電気特性測定装置及びそれを用いた電気特性測定方法
FR3046843B1 (fr) * 2016-01-18 2020-11-06 Snf Sas Dispositif de mesure de viscosite sous atsmosphere inerte
CN108776082B (zh) * 2018-08-22 2023-06-27 天津大学 一种自动测量制冷剂与润滑油粘度的毛细管装置及方法
KR20210124247A (ko) 2019-02-14 2021-10-14 이데미쓰 고산 가부시키가이샤 냉동기용 조성물
CN111208039A (zh) * 2020-01-11 2020-05-29 长江大学 一种在高温高压下测量含水原油粘度的系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153825B2 (ja) * 1992-01-10 2001-04-09 三菱電機株式会社 表示用蛍光ランプ
JP3711303B2 (ja) * 1996-11-08 2005-11-02 出光興産株式会社 液体の粘度測定装置および測定方法

Also Published As

Publication number Publication date
JP2007108045A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5074683B2 (ja) 液体の粘度測定装置および測定方法
CN106168564B (zh) 一种测量冷冻机油与制冷剂混合介质的装置及方法
US5351500A (en) Refrigerant leak detector system
CN105548137A (zh) 一种原位观测水合物微观反应动力学过程的高压冷热台装置及使用方法
KR100947109B1 (ko) 초저온 부품 시험기
EP3039423B1 (en) Determining minimum miscibility pressure of an oil composition with a fluid
MX2011003287A (es) Proceso de medicion de la viscosidad dinamica de crudo vivo pesado desde la presion de yacimiento hasta la presion atmosferica, incluyendo la presion en el punto de burbuja, basado en un viscosimetro electromagnetico.
JP3711303B2 (ja) 液体の粘度測定装置および測定方法
Chaudhary et al. Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene
KR100918193B1 (ko) 냉매 누설 시험 장치
CN105371541A (zh) 冷媒注入装置和冷媒注入方法
KR102513693B1 (ko) 수소가스환경에서의 취화거동에 대한 정량평가용 인장시험장치 및 이에 사용되는 시험편
Grebner The effects of oil on the thermodynamic properties of dichlorodifluoromethane (R-12) and tetrafluoroethane (R-134a)
JP5624782B2 (ja) 試料液体の体積抵抗率測定装置及びそれを用いた体積抵抗率測定方法
Feja et al. Experimental studies of thermodynamic properties of R744-oil-mixtures up to 140 C and 150 bar
BR102015011187B1 (pt) Dispositivo pressurizado para testes de embebição espontânea
CN215296308U (zh) 一种流体相容性测定装置
JP2007108046A (ja) 二層分離温度測定装置およびその測定方法
RU175813U1 (ru) Устройство для определения давления насыщения по нефти и определения давления начала кипения конденсата
Nguyen et al. New Viscosity Data for CuO-Water Nanofluid–the Hysteresis Phenomenon Revisited
JP5903142B2 (ja) 試料液体の電気特性測定装置及びそれを用いた電気特性測定方法
Sofekun Rheometric properties of pure liquid elemental sulfur
WO2023104637A1 (en) Variable volume and variable pressure sampling container
CN108279185B (zh) 一种气液组份粘度的测量装置及测量方法
Kay et al. Determination of the critical constants of high-boiling hydrocarbons Experiments with gallium as a containing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3