JP5069673B2 - Particle accelerator - Google Patents

Particle accelerator Download PDF

Info

Publication number
JP5069673B2
JP5069673B2 JP2008329925A JP2008329925A JP5069673B2 JP 5069673 B2 JP5069673 B2 JP 5069673B2 JP 2008329925 A JP2008329925 A JP 2008329925A JP 2008329925 A JP2008329925 A JP 2008329925A JP 5069673 B2 JP5069673 B2 JP 5069673B2
Authority
JP
Japan
Prior art keywords
cavity
signal
low power
waveform generator
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008329925A
Other languages
Japanese (ja)
Other versions
JP2010153205A (en
Inventor
智史 上田
定博 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008329925A priority Critical patent/JP5069673B2/en
Publication of JP2010153205A publication Critical patent/JP2010153205A/en
Application granted granted Critical
Publication of JP5069673B2 publication Critical patent/JP5069673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

この発明は、電子や陽子、あるいは重粒子などの荷電粒子を加速して高エネルギーの粒子ビームを生成する粒子加速装置に関するものである。   The present invention relates to a particle accelerator that accelerates charged particles such as electrons, protons, or heavy particles to generate a high-energy particle beam.

粒子加速装置は、電子や陽子、あるいは重粒子などの荷電粒子を加速して高エネルギーの粒子ビームを生成する装置である。一般に粒子加速装置は、高周波電力により励振され、内部に配置された電極間に電場を発生し、この電場によって荷電粒子を加速する加速空洞と、この加速空洞に高周波電力を供給する電源装置を備えている(例えば特許文献1参照)。電源装置は一般に振幅、周波数および位相等を制御した低電力の波形を生成する低電力波形生成部と、低電力波形生成部の出力波形を粒子の加速に必要な電力まで増幅する増幅器を備えている。   The particle accelerator is an apparatus that generates a high-energy particle beam by accelerating charged particles such as electrons, protons, or heavy particles. In general, a particle accelerator is provided with an acceleration cavity that is excited by a high-frequency power and generates an electric field between electrodes disposed therein, and accelerates charged particles by the electric field, and a power supply device that supplies the high-frequency power to the acceleration cavity. (For example, refer to Patent Document 1). Generally, a power supply device includes a low power waveform generation unit that generates a low power waveform with controlled amplitude, frequency, phase, and the like, and an amplifier that amplifies the output waveform of the low power waveform generation unit to the power required for particle acceleration. Yes.

特開平7−57898号公報(段落0009−0015、図1)Japanese Unexamined Patent Publication No. 7-57898 (paragraphs 0009-0015, FIG. 1)

従来、デジタル信号の演算処理装置を有する低電力波形生成器は、加速空洞を配置する放射線管理区域に設置する場合、粒子加速装置によって加速されたビームにより発生する放射線の影響により停止や誤動作し、電源装置は適切な電力を加速空洞に供給できず、正常に粒子を加速できなくなるという問題がある。このため電源装置を鉛等の金属板で覆い、放射線を遮蔽する場合があるが、金属板の設置費用が必要となり製造コストが大きくなるという問題がある。また、電源装置を非放射線管理区域に配置する場合もあるが、加速空洞と電源装置の距離が大きくなるため、伝送線路での電力ロスが大きくなるという問題がある。また、加速空洞に必要な大きな高周波電力を伝送する同軸管や導波管は一般に高価であるため、伝送線路が長くなることにより、製造コストが大きくなる。さらに、放射線管理区域と非管理区域を隔てる遮蔽壁を出力伝送路が貫通するため、遮蔽壁に貫通穴が必要となる。このとき、遮蔽壁の遮蔽能力が低下するため、十分な効果を得るためには、貫通穴および貫通穴内の同軸管を屈曲させることや、遮蔽壁をより厚くする等の対策が必要となる場合がある。   Conventionally, when a low-power waveform generator having a digital signal processing unit is installed in a radiation management area where an acceleration cavity is arranged, the low-power waveform generator stops or malfunctions due to the influence of radiation generated by a beam accelerated by a particle accelerator, There is a problem that the power supply device cannot supply appropriate power to the accelerating cavity and the particles cannot be accelerated normally. For this reason, the power supply device may be covered with a metal plate such as lead to shield radiation, but there is a problem that the installation cost of the metal plate is required and the manufacturing cost is increased. In some cases, the power supply device may be arranged in a non-radiation control area, but the distance between the acceleration cavity and the power supply device becomes large, and there is a problem that the power loss in the transmission line becomes large. In addition, a coaxial tube or a waveguide that transmits a large high-frequency power necessary for the accelerating cavity is generally expensive, so that the manufacturing cost increases due to the length of the transmission line. Furthermore, since the output transmission path passes through the shielding wall that separates the radiation management area from the non-management area, a through hole is required in the shielding wall. At this time, since the shielding ability of the shielding wall is lowered, in order to obtain a sufficient effect, it is necessary to take measures such as bending the through hole and the coaxial tube in the through hole or making the shielding wall thicker. There is.

この発明は、前述のような課題を解決するためになされたもので、安定した動作を実現する粒子加速装置を安価に得るものである。   The present invention has been made in order to solve the above-described problems, and provides a particle accelerator that realizes stable operation at a low cost.

この発明に係わる粒子加速装置は、低電力波形生成器とこの低電力波形生成器の低電力
出力を増幅する増幅器を有する電源装置、及び前記増幅器の出力により荷電粒子を加速す
る加速空洞を備え、前記低電力波形生成器は前記加速空洞で荷電粒子が加速されるように
コンピュータで制御される粒子加速装置において、前記加速空洞と前記増幅器を放射線管
理区域に設置、前記コンピュータを有する前記低電力波形生成器を放射線管理区域外に設置すると共に、前記低電力波形生成器の出力部であるダイレクトデジタルシンセサイザを放射線管理区域に設置し、前記加速空洞内の電磁場をモニタする空洞モニタ信号、及び前記加速空洞への投入電力をモニタする空洞投入電力モニタ信号によるフィードバック制御にて前記低電力波形生成器が制御されており、前記モニタ信号は前記加速空洞の近傍にてアナログ信号からデジタル信号に変換された信号であるものである。
A particle accelerator according to the present invention includes a power source device having a low power waveform generator and an amplifier that amplifies a low power output of the low power waveform generator, and an acceleration cavity that accelerates charged particles by the output of the amplifier, The low power waveform generator is a particle accelerating apparatus controlled by a computer such that charged particles are accelerated in the accelerating cavity, wherein the accelerating cavity and the amplifier are installed in a radiation management area, and the low power waveform generator includes the computer. Installing a waveform generator outside the radiation control area, installing a direct digital synthesizer that is an output of the low-power waveform generator in the radiation management area, and a cavity monitor signal for monitoring an electromagnetic field in the acceleration cavity; and The low-power waveform generator is controlled by feedback control using the cavity power monitor signal that monitors the power input to the acceleration cavity. Are your, the monitor signal is one which is a signal converted from an analog signal to a digital signal in the vicinity of the accelerating cavities.

この発明の粒子加速装置によれば、放射線による低電力波形生成器の停止、誤動作を防止し、安定した動作を実現できる粒子加速装置を安価に提供することができる。   According to the particle accelerator of the present invention, it is possible to provide a particle accelerator that can prevent a low-power waveform generator from stopping and malfunctioning due to radiation and can realize a stable operation at low cost.

実施の形態1.
図1は、この発明の実施の形態1である粒子加速装置を示すブロック構成図である。図において、粒子加速装置は、加速空洞1とその電源装置2を備え、電源装置2は増幅器3と低電力波形生成器4を備えている。ここで、加速空洞1と電源装置2の増幅器3は放射線管理区域内に、電源装置2の低電力波形生成器4は非放射線管理区域に設置されている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a particle accelerator according to Embodiment 1 of the present invention. In the figure, the particle accelerator includes an acceleration cavity 1 and its power supply 2, and the power supply 2 includes an amplifier 3 and a low power waveform generator 4. Here, the acceleration cavity 1 and the amplifier 3 of the power supply device 2 are installed in the radiation management area, and the low power waveform generator 4 of the power supply apparatus 2 is installed in the non-radiation management area.

低電力波形生成器4のダイレクトデジタルシンセサイザ5は、基準信号発生器6から出力される基準信号7と、コンピュータ8から出力される命令信号9に従い、低電力出力10を増幅器3に供給する。このとき、コンピュータ8は加速空洞1内に発生する電磁場が効率よく粒子を加速するために、ダイレクトデジタルシンセサイザ5の低電力出力10の波形が適切となるように、フィードバック制御信号11や、外部信号12によりメモリ13に設定した値等から、必要な命令信号9を常時、演算処理装置14にて計算し、出力する。フィードバック制御信号11は例えば、加速空洞内の電磁場をモニタする空洞モニタ信号15や、空洞への投入電力16の波形をモニタする空洞投入電力モニタ信号17を信号処理回路18によって比較し、アナログデジタル変換器(A/D変換器)19により処理することにより生成される。増幅器3は低電力出力10を粒子の加速に必要な電力に増幅して加速空洞1に投入する。増幅器3の増幅率は増幅器出力調整器20により調整されている。この投入電力により加速空洞内に発生・制御された電場を用いて、荷電粒子を加速する。   The direct digital synthesizer 5 of the low power waveform generator 4 supplies a low power output 10 to the amplifier 3 in accordance with the reference signal 7 output from the reference signal generator 6 and the command signal 9 output from the computer 8. At this time, the computer 8 uses a feedback control signal 11 or an external signal so that the waveform of the low power output 10 of the direct digital synthesizer 5 is appropriate so that the electromagnetic field generated in the accelerating cavity 1 efficiently accelerates the particles. The necessary instruction signal 9 is always calculated by the arithmetic processing unit 14 from the value set in the memory 13 by 12 and outputted. The feedback control signal 11 compares, for example, a cavity monitor signal 15 for monitoring the electromagnetic field in the acceleration cavity and a cavity input power monitor signal 17 for monitoring the waveform of the input power 16 to the cavity by the signal processing circuit 18 and performs analog-to-digital conversion. It is generated by processing by a device (A / D converter) 19. The amplifier 3 amplifies the low power output 10 to the power necessary for accelerating the particles and puts it into the acceleration cavity 1. The amplification factor of the amplifier 3 is adjusted by the amplifier output adjuster 20. Charged particles are accelerated using an electric field generated and controlled in the acceleration cavity by this input power.

実施の形態1によれば、演算処理装置14は非放射線管理区域に設置されているため、高い線量の放射線を浴びることは無い。このため、遮蔽用の金属板等を使用しない場合であっても、放射線を原因とした低電力波形生成器4の停止・誤動作は発生しない。
また、増幅器3は、放射線管理区域内の従来と同等の位置に設置できるため、伝送線路を延長する必要が無い。このため、伝送線路での電力ロスは増大せず、また、同軸管・導波管の追加費用は必要が無い。また、遮蔽壁21を通過する信号は低電力出力10と、空洞モニタ信号15および空洞投入電力モニタ信号17のみであり、これらの信号は低電力であることから伝送線路は線径が小さいものでよく、遮蔽壁21の遮蔽能力の低下を最小限に抑えることができる。
また、図2に示すようにコンピュータ8から出力される命令信号9a,9bは複数であってもよく、命令信号9bの制御対象は増幅器出力調整器20等、低電力波形生成器4の構成要素以外の要素であってもよい。
According to the first embodiment, since the arithmetic processing unit 14 is installed in the non-radiation control area, it does not receive a high dose of radiation. For this reason, even when a shielding metal plate or the like is not used, the low power waveform generator 4 is not stopped or malfunctioned due to radiation.
In addition, the amplifier 3 can be installed at the same position in the radiation management area as that in the past, so that there is no need to extend the transmission line. For this reason, the power loss in the transmission line does not increase, and the additional cost of the coaxial tube / waveguide is not necessary. The signals passing through the shielding wall 21 are only the low power output 10, the cavity monitor signal 15 and the cavity input power monitor signal 17. Since these signals are low power, the transmission line has a small wire diameter. It is possible to minimize the decrease in the shielding ability of the shielding wall 21.
Further, as shown in FIG. 2, the command signals 9a and 9b output from the computer 8 may be plural, and the control target of the command signal 9b is a component of the low power waveform generator 4 such as the amplifier output regulator 20 or the like. Other elements may be used.

実施の形態2.
図3は、実施の形態2である粒子加速装置を示すブロック構成図である。なお、各図中において、同一符号は同一又は相当部分を示す。実施の形態2においては、低電力波形生成器4において、基準信号発生器6及びダイレクトデジタルシンセサイザ5を放射線管理区域に設置する点において、実施の形態1とは異なる。低電力波形生成器4を非放射線管理区域に設置するとき、設置場所が限られていることや、粒子加速装置やそれを設置する施設が大規模であることから、加速空洞1や増幅器3との距離を、例えば、数100m程度の長距離とする必要がある場合がある。このとき、低電力波形生成器4を非放射線管理区域に配置すると、増幅器3との距離が大きくなり、低電力波形生成器4の出力伝送路が長くなる。出力伝送路が長くなると低電力出力10の電力ロスが大きくなるため、増幅器3に十分な電力を供給できない場合がある。
Embodiment 2. FIG.
FIG. 3 is a block configuration diagram showing the particle accelerator according to the second embodiment. In each figure, the same numerals indicate the same or corresponding parts. The second embodiment is different from the first embodiment in that the low-power waveform generator 4 has the reference signal generator 6 and the direct digital synthesizer 5 installed in the radiation management area. When the low power waveform generator 4 is installed in a non-radiation controlled area, the installation location is limited, and the particle accelerator and the facility where it is installed are large. The distance may need to be a long distance of about several hundred meters, for example. At this time, if the low power waveform generator 4 is arranged in the non-radiation control area, the distance from the amplifier 3 becomes large, and the output transmission path of the low power waveform generator 4 becomes long. When the output transmission line becomes longer, the power loss of the low power output 10 becomes larger, so that sufficient power may not be supplied to the amplifier 3 in some cases.

実施の形態2においては、低電力出力10を発生するダイレクトデジタルシンセサイザ5(低電力波形生成器の出力部)は、放射線管理区域内の増幅器3の近傍に設置する。このため、低電力出力10の伝送線路は従来と同等の長さでよい。そのため、電力ロスを大きくすることなく、放射線による低電力波形生成器の停止、誤動作を防止し、安定した動作を実現できる粒子加速装置を安価に提供することができる。   In the second embodiment, the direct digital synthesizer 5 (the output unit of the low power waveform generator) that generates the low power output 10 is installed in the vicinity of the amplifier 3 in the radiation management area. For this reason, the transmission line of the low power output 10 may be the same length as the conventional one. Therefore, it is possible to inexpensively provide a particle accelerator that can prevent a low power waveform generator from stopping and malfunctioning due to radiation and realize stable operation without increasing power loss.

実施の形態3.
図4は、実施の形態3である粒子加速装置を示すブロック構成図である。実施の形態3においては、信号処理回路18、アナログ信号をデジタル信号に変換するアナログデジタル変換器19及び、電気信号を光信号に変換する電気/光信号変換器22を放射線管理区域内の加速空洞1の近傍に配置し、光信号を電気信号に変換する光/電気信号変換器23を低電力波形生成器4に配置した点において、実施の形態1,2とは異なる。
Embodiment 3 FIG.
FIG. 4 is a block configuration diagram showing the particle accelerator according to the third embodiment. In the third embodiment, the signal processing circuit 18, the analog-digital converter 19 that converts an analog signal into a digital signal, and the electric / optical signal converter 22 that converts an electric signal into an optical signal are included in an acceleration cavity in the radiation management area. 1 and 2 is different from the first and second embodiments in that an optical / electrical signal converter 23 that is disposed near 1 and converts an optical signal into an electrical signal is disposed in the low-power waveform generator 4.

実施の形態2で説明したとおり、低電力波形生成器4を非放射線管理区域に配置すると、加速空洞1との距離が大きくなる場合がある。一般に高周波のアナログ信号は伝送線路が長距離となると、ノイズ等の影響を受けやすく、精度よく伝送するのは困難となる。空洞モニタ信号15や空洞投入電力モニタ信号17としてアナログの信号を用い、低電力波形生成器4を非放射線管理区域に配置すると、伝送線路が長距離となり、精度が悪化する場合がある。このとき、電源装置2は精度よく加速空洞1に投入電力16を供給できず、加速空洞は粒子を効率よく加速できないという問題がある。   As described in the second embodiment, when the low power waveform generator 4 is arranged in the non-radiation management area, the distance from the acceleration cavity 1 may be increased. In general, high-frequency analog signals are easily affected by noise and the like when the transmission line is long, and it is difficult to accurately transmit the signals. If analog signals are used as the cavity monitor signal 15 and the cavity input power monitor signal 17 and the low power waveform generator 4 is arranged in the non-radiation management area, the transmission line becomes long and accuracy may deteriorate. At this time, the power supply device 2 cannot supply the input power 16 to the acceleration cavity 1 with high accuracy, and the acceleration cavity cannot efficiently accelerate the particles.

実施の形態3においては、空洞モニタ信号15と空洞投入電力モニタ信号17を、放射線管理区域内の加速空洞近傍に設置した信号処理回路18、A/D変換器19にてデジタルのフィードバック制御用モニタ信号11aに変換する。さらにこの信号を電気/光信号変換器22にて光信号に変換して、光ファイバにより伝送する。光信号を非放射線管理区域に設置された光/電気信号変換器23にて電気のフィードバック制御信号11bに変換し、コンピュータ8に入力する。このため、空洞モニタ信号15や空洞投入電力モニタ信号17の伝送距離が長距離となる場合においても、ノイズ等の影響を受けることなく、精度よくコンピュータ8に入力することができる。実施の形態3においては、デジタルに変換された電気信号をさらに光信号に変換する構成を示したが、電気信号にて送信しても十分な精度を得られる場合があることは言うまでもない。   In the third embodiment, the cavity monitor signal 15 and the cavity input power monitor signal 17 are digitally controlled by the signal processing circuit 18 and the A / D converter 19 installed in the vicinity of the acceleration cavity in the radiation management area. Convert to signal 11a. Further, this signal is converted into an optical signal by the electrical / optical signal converter 22 and transmitted through an optical fiber. The optical signal is converted into an electrical feedback control signal 11 b by the optical / electrical signal converter 23 installed in the non-radiation management area and input to the computer 8. For this reason, even when the transmission distance of the cavity monitor signal 15 and the cavity input power monitor signal 17 is long, it can be accurately input to the computer 8 without being affected by noise or the like. In the third embodiment, the configuration is shown in which the electrical signal converted into the digital signal is further converted into the optical signal. However, it goes without saying that sufficient accuracy may be obtained even if the electrical signal is transmitted.

実施の形態4.
図5は、実施の形態4である粒子加速装置を示すブロック構成図である。実施の形態4においては、空洞モニタ信号15と、空洞投入電力モニタ信号17の伝送路は冷却されている。冷却は例えば、図6に示すように伝送路24と同軸の構造となったジャケット25の間を、温度調整機能を有する冷却装置にて温度が一定となるよう冷却された冷却水26が循環することにより達成されている。伝送路24は、内導体27,誘電体28,外導体29と被覆30で構成されている。
Embodiment 4 FIG.
FIG. 5 is a block diagram showing a particle acceleration apparatus according to the fourth embodiment. In the fourth embodiment, the transmission paths for the cavity monitor signal 15 and the cavity input power monitor signal 17 are cooled. For example, as shown in FIG. 6, cooling water 26 circulated between a jacket 25 having a coaxial structure with the transmission path 24 as shown in FIG. Has been achieved. The transmission path 24 includes an inner conductor 27, a dielectric 28, an outer conductor 29, and a coating 30.

実施の形態4による作用効果を説明する。一般にアナログ信号の伝送線路において、伝送線路上での電気信号の波長の長さを、伝送線路物理的長さで割った値である電気長は、周囲の温度の影響を受けて変化する。伝送線路の電気長が変化すると、ある時間に信号処理回路に到達する空洞モニタ信号15と、空洞投入電力モニタ信号17の位相が変化する。このため、二つの信号の位相を比較して周波数の制御を行うPLL(Phase Lock Loop)制御等を用いる場合には、伝送線路の電気長の変化の影響を受け、本来の2つの信号の位相差を精度がよく求めることができない場合がある。電気長の変化は一般に、伝送線路が長くなるほど大きくなるため、低電力波形生成器4を非放射線管理区域に配置すると、伝送線路が長距離となり、この影響は大きくなる。実施の形態4においては、空洞モニタ信号15と、空洞投入電力モニタ信号17の伝送路を冷却するため、電気長の変化は小さくなる。このため、伝送路周辺の温度変化による空洞モニタ信号15や空洞投入電力モニタ信号17の位相の変化も小さくすることができ、周囲の温度の変化の影響が小さく、適切に低電力出力10の波形を制御することが可能となる。   The effect by Embodiment 4 is demonstrated. In general, in an analog signal transmission line, the electrical length, which is a value obtained by dividing the length of the wavelength of the electrical signal on the transmission line by the physical length of the transmission line, varies depending on the influence of the ambient temperature. When the electrical length of the transmission line changes, the phases of the cavity monitor signal 15 that reaches the signal processing circuit at a certain time and the cavity input power monitor signal 17 change. For this reason, when using PLL (Phase Lock Loop) control or the like that controls the frequency by comparing the phases of two signals, it is affected by the change in the electrical length of the transmission line, and the original two signal levels are affected. In some cases, the phase difference cannot be obtained with high accuracy. The change in electrical length generally increases as the transmission line becomes longer. Therefore, when the low-power waveform generator 4 is arranged in a non-radiation management area, the transmission line becomes longer, and this influence is increased. In the fourth embodiment, since the transmission paths for the cavity monitor signal 15 and the cavity input power monitor signal 17 are cooled, the change in the electrical length becomes small. For this reason, the phase change of the cavity monitor signal 15 and the cavity input power monitor signal 17 due to the temperature change around the transmission line can also be reduced, the influence of the ambient temperature change is small, and the waveform of the low power output 10 can be appropriately set. Can be controlled.

実施の形態5.
図7は、実施の形態5である粒子加速装置を示すブロック構成図である。実施の形態5において、空洞モニタ信号15と、空洞投入電力モニタ信号17の各伝送路には、これらのモニタ信号を得る場所の近傍(放射線管理区域内の加速空洞の近傍)に設置された発信器31から、モニタ信号と異なる周波数帯の正弦波等の信号を混ぜて、モニタ信号と共に、信号処理回路18へと伝送されている。発信器31から2つの伝送路にそれぞれ投入する2つの信号は、例えば、一つの信号を分岐するなど、ある点において位相が同じ信号又は、位相差が明らか信号である。
Embodiment 5 FIG.
FIG. 7 is a block configuration diagram showing the particle acceleration apparatus according to the fifth embodiment. In the fifth embodiment, the transmission lines of the cavity monitor signal 15 and the cavity input power monitor signal 17 are installed in the vicinity of the place where these monitor signals are obtained (in the vicinity of the acceleration cavity in the radiation management area). A signal such as a sine wave having a frequency band different from that of the monitor signal is mixed from the device 31 and transmitted to the signal processing circuit 18 together with the monitor signal. The two signals respectively input from the transmitter 31 to the two transmission paths are, for example, signals having the same phase at a certain point or signals having a clear phase difference, such as branching one signal.

信号処理回路18においては、空洞モニタ信号15及び空洞投入電力モニタ信号17と、発信器31からの信号とを周波数帯によって分離し、発信器31から2つの伝送路に出力された信号が2つの伝送路を通ったときの位相のずれ(発信器からの信号の位相差)を検出する。このずれた位相分(位相差)を二つのモニタ信号の周波数帯における位相差に換算し、空洞モニタ信号15と空洞投入電力モニタ17のPLL制御等における位相比較時の位相差から差し引くことで補正し、A/D変換器11へと出力する。このとき、二つのモニタ信号の位相差と、発信器31からの信号の位相差はそれぞれA/D変換器11によりデジタル信号に変換され、コンピュータ8へ入力し、コンピュータ8にて位相差を補正してもよい。   In the signal processing circuit 18, the cavity monitor signal 15, the cavity input power monitor signal 17, and the signal from the transmitter 31 are separated by the frequency band, and two signals output from the transmitter 31 to the two transmission paths are two. A phase shift (phase difference of the signal from the transmitter) when passing through the transmission line is detected. This shifted phase (phase difference) is converted into a phase difference in the frequency band of the two monitor signals, and corrected by subtracting from the phase difference during phase comparison in the PLL control of the cavity monitor signal 15 and the cavity input power monitor 17. And output to the A / D converter 11. At this time, the phase difference between the two monitor signals and the phase difference between the signals from the transmitter 31 are converted into digital signals by the A / D converter 11 and input to the computer 8, and the phase difference is corrected by the computer 8. May be.

実施の形態5においては、実施の形態4にて説明したように、2つのモニタ信号の伝送路の電気長が変化した場合であっても、その電気長の変化を、発信器31から2つのモニタ信号の伝送路に、前記モニタ信号と周波数帯の異なる信号をそれぞれ投入し、投入したそれらの信号の位相差で検知し、電気長の変化を補正して低電力波形器が制御される。このため、周囲の温度の変化の影響が小さく、適切に低電力出力10の波形を制御することが可能となる。   In the fifth embodiment, as described in the fourth embodiment, even when the electrical lengths of the transmission paths of the two monitor signals are changed, the change in the electrical length is transmitted from the transmitter 31 to the two A signal having a frequency band different from that of the monitor signal is input to the transmission path of the monitor signal, detected by the phase difference between the input signals, and a change in electrical length is corrected to control the low power waveform device. For this reason, the influence of the change in ambient temperature is small, and the waveform of the low power output 10 can be appropriately controlled.

この発明の実施の形態1である粒子加速装置を示すブロック構成図である。It is a block block diagram which shows the particle | grain acceleration apparatus which is Embodiment 1 of this invention. 実施の形態1である他の粒子加速装置を示すブロック構成図である。It is a block block diagram which shows the other particle acceleration apparatus which is Embodiment 1. FIG. 実施の形態2である粒子加速装置を示すブロック構成図である。It is a block block diagram which shows the particle | grain acceleration apparatus which is Embodiment 2. FIG. 実施の形態3である粒子加速装置を示すブロック構成図である。FIG. 6 is a block configuration diagram illustrating a particle acceleration apparatus according to a third embodiment. 実施の形態4である粒子加速装置を示すブロック構成図である。FIG. 6 is a block configuration diagram illustrating a particle acceleration apparatus according to a fourth embodiment. 実施の形態4の粒子加速装置における、冷却された伝送路を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing a cooled transmission line in the particle accelerator of the fourth embodiment. 実施の形態5である粒子加速装置を示すブロック構成図である。FIG. 10 is a block configuration diagram illustrating a particle acceleration apparatus according to a fifth embodiment.

符号の説明Explanation of symbols

1 加速空洞 2 電源装置
3 増幅器 4 低電力波形生成器
5 ダイレクトデジタルシンセサイザ 6 基準信号発生器
8 コンピュータ 13 メモリ
14 演算処理装置 18 信号処理回路
19 アナログデジタル変換器 20 増幅器出力調整器
21 遮蔽壁 22 電気/光信号変換器
23 光/電気信号変換器 24 伝送路
25 ジャケット 26 冷却水
27 内導体 28 誘電体
29 外導体 30 被覆
31 発信器
DESCRIPTION OF SYMBOLS 1 Acceleration cavity 2 Power supply device 3 Amplifier 4 Low power waveform generator 5 Direct digital synthesizer 6 Reference signal generator 8 Computer 13 Memory 14 Arithmetic processing device 18 Signal processing circuit 19 Analog-digital converter 20 Amplifier output regulator 21 Shielding wall 22 Electricity / Optical signal converter 23 Optical / electrical signal converter 24 Transmission path 25 Jacket 26 Cooling water 27 Inner conductor 28 Dielectric 29 Outer conductor 30 Cover 31 Transmitter

Claims (1)

低電力波形生成器とこの低電力波形生成器の低電力出力を増幅する増幅器を有する電源装置、及び前記増幅器の出力により荷電粒子を加速する加速空洞を備え、前記低電力波形生成器は前記加速空洞で荷電粒子が加速されるようにコンピュータで制御される粒子加速装置において、
前記加速空洞と前記増幅器を放射線管理区域に設置、前記コンピュータを有する前記低電力波形生成器を放射線管理区域外に設置すると共に、前記低電力波形生成器の出力部であるダイレクトデジタルシンセサイザを放射線管理区域に設置し、
前記加速空洞内の電磁場をモニタする空洞モニタ信号、及び前記加速空洞への投入電力をモニタする空洞投入電力モニタ信号によるフィードバック制御にて前記低電力波形生成器が制御されており、前記モニタ信号は前記加速空洞の近傍にてアナログ信号からデジタル信号に変換された信号であることを特徴とする粒子加速装置。
A power supply apparatus having a low power waveform generator and an amplifier for amplifying a low power output of the low power waveform generator, and an acceleration cavity for accelerating charged particles by the output of the amplifier, wherein the low power waveform generator includes the acceleration In a particle accelerator that is controlled by a computer so that charged particles are accelerated in the cavity,
The acceleration cavity and the amplifier are installed in a radiation management area, the low power waveform generator having the computer is installed outside the radiation management area , and a direct digital synthesizer that is an output unit of the low power waveform generator is used as a radiation. Set up in a controlled area,
The low power waveform generator is controlled by feedback control using a cavity monitor signal for monitoring an electromagnetic field in the acceleration cavity and a cavity input power monitor signal for monitoring input power to the acceleration cavity, and the monitor signal is 2. A particle accelerator according to claim 1, wherein the particle accelerator is a signal converted from an analog signal to a digital signal in the vicinity of the acceleration cavity .
JP2008329925A 2008-12-25 2008-12-25 Particle accelerator Active JP5069673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329925A JP5069673B2 (en) 2008-12-25 2008-12-25 Particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329925A JP5069673B2 (en) 2008-12-25 2008-12-25 Particle accelerator

Publications (2)

Publication Number Publication Date
JP2010153205A JP2010153205A (en) 2010-07-08
JP5069673B2 true JP5069673B2 (en) 2012-11-07

Family

ID=42572077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329925A Active JP5069673B2 (en) 2008-12-25 2008-12-25 Particle accelerator

Country Status (1)

Country Link
JP (1) JP5069673B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268322A (en) * 1987-04-27 1988-11-07 Nec Corp Absolute delay time correcting device
JPH0353499A (en) * 1989-07-20 1991-03-07 Toshiba Corp High frequency control device for accelerator
JPH06176893A (en) * 1992-12-09 1994-06-24 Toshiba Corp Phase stabilized transmission device
JPH10135000A (en) * 1996-10-28 1998-05-22 Sumitomo Heavy Ind Ltd Synchrotron radiation generating device
JP2002237399A (en) * 2001-02-09 2002-08-23 Mitsubishi Electric Corp Electron beam acceleration device and electron beam acceleration method
JP2002237400A (en) * 2001-02-13 2002-08-23 Mitsubishi Electric Corp Charged particle beam acceleration device and radiation exposure facility using same

Also Published As

Publication number Publication date
JP2010153205A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
TW201944729A (en) Adaptive counter measure control thwarting IMD jamming impairments for RF plasma systems
Ma et al. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for low energy accelerator facility
Hao et al. Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition
KR102620676B1 (en) Automatic control apparatus and method for resonant frequency matching of linear electron accelerator for magnetron-based radiation therapy
Zhang et al. Radio-frequency system of the high energy photon source
JP5069673B2 (en) Particle accelerator
CN106716153A (en) Partial discharge signal processing device
Qiu et al. Application of disturbance observer-based control on pulsed superconducting radio frequency cavities
JP2007078496A (en) Neutron instrumentation system in nuclear power plant
KR100811343B1 (en) The apparatus of EMI's prevention for the plat panel display device
Kazakevich et al. Utilization of the CW magnetrons as coherent RF sources for superconducting RF accelerators
Liu et al. JACoW: The Installation and Commissioning of the AWAKE Stripline BPM
KR100907239B1 (en) A method for controlling the radio-frequency accelerator
Michizono et al. Performance of a Digital LLRF Field Control System for the J-PARC Linac
US9590578B2 (en) Amplifier device with at least one microwave tube
Frisch et al. Electron beam diagnostics and feedback for the LCLS-II
Min et al. Low-level RF control of a klystron for medical linear accelerator applications
Lee et al. Design and numerical simulation of miniaturised COBRA lens horn
Inagaki et al. Upgrade status of the RF system for SPRING-8 storage ring
Piquet et al. RF Conditionning of the Spiral 2 CW RFQ
Jensen et al. Applications of high power induction output tubes in high intensity superconducting proton linacs
KR101779474B1 (en) Plasma generator for plasma substrate processing apparatus
Hadmack et al. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser
Tu et al. Beam Instability Induced by RF System of an FEL-THZ Source
Peng et al. Stabilization of HEPS linac microwave system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5069673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250