JPH06176893A - Phase stabilized transmission device - Google Patents

Phase stabilized transmission device

Info

Publication number
JPH06176893A
JPH06176893A JP35210592A JP35210592A JPH06176893A JP H06176893 A JPH06176893 A JP H06176893A JP 35210592 A JP35210592 A JP 35210592A JP 35210592 A JP35210592 A JP 35210592A JP H06176893 A JPH06176893 A JP H06176893A
Authority
JP
Japan
Prior art keywords
signal
acceleration
acceleration signal
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35210592A
Other languages
Japanese (ja)
Inventor
Takao Yagi
敬雄 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35210592A priority Critical patent/JPH06176893A/en
Publication of JPH06176893A publication Critical patent/JPH06176893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To make identical the electric lengths in the acceleration signal transmitting part and acceleration signal receiving part and make possible acceleration of an electron beam stably by performing the bidirectional transmission using one optical fiber cable in lieu of two coaxial cables as conventional. CONSTITUTION:A high frequency acceleration signal for transmission (e) and a one for reception (g) are converted into optical signals by E/O converters 31, 36, and the resultant are subjected to bidirectional optical coupling by photo- branch couplers 32, 34 and transmitted through one optical fiber cable 33a. This is bidirectionally branched by the couplers 34, 32 and converted into electric signals by O/E converters 35, 37. This ensures that the electric lengths on the transmission side and on the reception side are identical and that no difference in the phase variation amount is produced originating from the temps. on the transmission side and reception side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子ビーム等の粒子を加
速する粒子加速器いおいて、高周波加速信号を高周波加
速空胴へ伝送する位相安定化伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle accelerator for accelerating particles such as an electron beam and a phase stabilizing transmission device for transmitting a high frequency acceleration signal to a high frequency acceleration cavity.

【0002】[0002]

【従来の技術】図2に粒子加速蓄積器の一例を示す。図
において、1は線形加速器であり所定の運動エネルギー
を持つ粒子、例えば電子ビームを出力する。ここで出力
された電子ビームは静電インフレクター2によって静電
偏向を受け、加速蓄積リング3の真空ダクト4内の電子
走行軌道に対して接線方向から入射する。加速蓄積リン
グ3内には偏向電磁石5が図の斜線部位に複数個配置さ
れており、これによって線形加速器1から入射した電子
ビームを偏向させる。故に、電子ビームはこの偏向電磁
石5が発生する磁場によって所定の真空ダクト4の軌道
内に納まるように制御される。高周波加速空胴6内には
予め高周波電場が形成されていて、これによって電子ビ
ームには周回軌道を回る時に失われる運動エネルギー
(電磁波として失われるエネルギー)以上のエネルギー
が与えられ、徐々に加速される。又、この高周波加速空
胴内に発生された電場によって、電子ビームを加減速す
ることにより、周回軌道上にバンチと呼ばれる電子ビー
ムの進行方向にいくつかに区切られた粒子集団を生成さ
せる。この電子の粒子集団数はハーモニック数と呼ばれ
る。そして、所定の運動エネルギーに到達した電子ビー
ムは高周波加速空胴6内に発生された電場によって、一
定の運動エネルギーに保つよう制御される。これによ
り、シンクロトロン放射現象による電子ビームの運動エ
ネルギーの減衰を補う。
2. Description of the Related Art FIG. 2 shows an example of a particle acceleration accumulator. In the figure, 1 is a linear accelerator which outputs particles having a predetermined kinetic energy, for example, an electron beam. The electron beam output here is electrostatically deflected by the electrostatic inflector 2, and is incident tangentially to the electron traveling trajectory in the vacuum duct 4 of the acceleration storage ring 3. A plurality of deflection electromagnets 5 are arranged in the acceleration storage ring 3 in the shaded area in the figure, and this deflects the electron beam incident from the linear accelerator 1. Therefore, the electron beam is controlled by the magnetic field generated by the deflecting electromagnet 5 so as to be contained in the predetermined trajectory of the vacuum duct 4. A high-frequency electric field is pre-formed in the high-frequency acceleration cavity 6, which gives the electron beam more energy than the kinetic energy lost when it orbits the orbit (energy lost as an electromagnetic wave) and is gradually accelerated. It In addition, by accelerating and decelerating the electron beam by the electric field generated in the high-frequency acceleration cavity, a particle group called a bunch, which is divided into some in the traveling direction of the electron beam, is generated on the orbit. This number of electron particle groups is called the harmonic number. Then, the electron beam that has reached a predetermined kinetic energy is controlled to be kept at a constant kinetic energy by the electric field generated in the high-frequency acceleration cavity 6. This compensates for the attenuation of the kinetic energy of the electron beam due to the synchrotron radiation phenomenon.

【0003】又、加速蓄積リング3内の偏向電磁石5に
はビームライン7と呼ばれるポートが設けられており、
所定の運動エネルギーを持つ電子ビームが偏向するとき
に発生するシンクロトロン放射光を、計測ポート8まで
導くよう配設されている。この放射光は極端紫外連続光
であり、計測ポート8の光学系で分光処理された後、半
導体制御装置の光源等に利用される。なお、図2に示し
た加速蓄積リング3,粒子輸送管9等には偏向電磁石5
の他に四極磁石や六極磁石等が設置されており、又、ビ
ームライン7も複数個設けられているが、説明を簡単に
する都合上、ここでは省略した。
Further, a port called a beam line 7 is provided in the deflection electromagnet 5 in the acceleration storage ring 3.
The synchrotron radiation generated when an electron beam having a predetermined kinetic energy is deflected is arranged to be guided to the measurement port 8. This radiated light is extreme ultraviolet continuous light, and after being spectrally processed by the optical system of the measurement port 8, it is used as a light source or the like of the semiconductor control device. The deflection electromagnet 5 is attached to the acceleration storage ring 3, the particle transport tube 9 and the like shown in FIG.
Besides, a quadrupole magnet, a hexapole magnet, etc. are installed, and a plurality of beam lines 7 are also provided, but they are omitted here for the sake of simplicity of description.

【0004】以上説明してきた粒子加速器において、近
年の大型化要求により粒子加速蓄積器内に複数の高周波
加速空胴が設置されて数Gev〜数十Gevの運動エネルギ
ーを得るように設計される場合がある。このような場
合、各高周波加速空胴で与えられる運動エネルギーが同
一で、かつその運動エネルギー増加分と偏向電磁石での
磁場の増加分が所定の比例関係にないと、電子ビームは
安定に軌道を周回することができなくなり、即ち、加速
することができなくなる。従って、複数の高周波加速空
胴内に発生する高周波電場の電子ビームに対する位相を
一致させる必要があり、通常1つの発振器から出力する
基準高周波信号を各高周波加速空胴へ分配伝送する方法
を採用している。しかしながら大型の粒子加速器になる
と、基準加速周波数は数百MHZとなり又、粒子加速器
の周回軌道も数百m〜数Kmとなるため、基準高周波信
号を発生する発振器と各高周波加速空胴との信号伝送距
離を同一とすることは困難である。そこで図3に示す位
相安定化伝送装置で各高周波加速空胴での高周波信号位
相を一致させる構成としている。
In the particle accelerator described above, when a plurality of high-frequency accelerating cavities are installed in the particle accelerating accumulator due to the recent demand for a larger size, the particle accelerator is designed to obtain kinetic energy of several Gev to several tens Gev. There is. In such a case, if the kinetic energy given by each high-frequency accelerating cavity is the same and the increase in the kinetic energy and the increase in the magnetic field in the deflection electromagnet are not in a predetermined proportional relationship, the electron beam will stably orbit. It becomes impossible to orbit, that is, to accelerate. Therefore, it is necessary to match the phases of the high-frequency electric fields generated in a plurality of high-frequency accelerating cavities with the electron beam, and the standard high-frequency signal output from one oscillator is usually distributed and transmitted to each high-frequency accelerating cavity. ing. However, in the case of a large particle accelerator, the reference acceleration frequency is several hundred MHZ, and the orbit of the particle accelerator is also several hundred meters to several km, so the signal between the oscillator that generates the reference high frequency signal and each high frequency acceleration cavity is large. It is difficult to make the transmission distance the same. Therefore, the phase-stabilized transmission device shown in FIG. 3 is configured to match the high-frequency signal phase in each high-frequency acceleration cavity.

【0005】図3は従来の位相安定化伝送装置のシステ
ム構成図である。同図において高周波信号発生器11で発
生された基準高周波信号aはパワーデバイダー12に入力
され、各高周波加速空胴に伝送するための高周波加速信
号b1 〜bm に分配される。分配された高周波加速信号
1 〜bm は以降全く同一の回路を経るため、ここでは
説明を簡単にするためb1 のみを記載しその他は省略す
る。高周波加速信号b1 は増幅器13を経てパワーデバイ
ダー14にて分配され、一方は送信側高周波加速信号cと
し、他方は送信側位相差検出用信号dとして位相差検出
器27に入力される。送信側高周波加速信号cは位相調整
器15及び増幅器16を経て、送信用高周波加速信号eとし
て加速信号送信部17a より出力される。加速信号送信部
17a を出力した送信用高周波加速信号eは、冷却水で温
度制御された同軸ケーブル18a を経て加速信号受信部19
a に入力し、増幅器20を経てパワーデバイダー21に入力
される。そしてパワーデバイダー21にて分配され、一方
は増幅器22を経て各高周波加速空胴へ各高周波加速信号
1 として出力され、他方は増幅器23を経て返信用高周
波加速信号gとして加速信号受信部19a より出力され
る。
FIG. 3 is a system configuration diagram of a conventional phase-stabilized transmission device. In the figure, the reference high frequency signal a generated by the high frequency signal generator 11 is input to the power divider 12 and distributed to the high frequency acceleration signals b 1 to b m to be transmitted to the respective high frequency acceleration cavities. Since the distributed high-frequency acceleration signals b 1 to b m go through exactly the same circuit, only b 1 is shown here and the others are omitted for the sake of simplicity. The high frequency acceleration signal b 1 is distributed by the power divider 14 through the amplifier 13, one of which is input as the transmission side high frequency acceleration signal c and the other is input as the transmission side phase difference detection signal d to the phase difference detector 27. The transmission-side high-frequency acceleration signal c passes through the phase adjuster 15 and the amplifier 16 and is output from the acceleration-signal transmitting unit 17a as a transmission high-frequency acceleration signal e. Acceleration signal transmitter
The transmission high-frequency acceleration signal e that outputs 17a is transmitted to the acceleration signal receiving unit 19 via the coaxial cable 18a whose temperature is controlled by cooling water.
It is input to a and then to the power divider 21 via the amplifier 20. Then, it is distributed by the power divider 21, one is output as each high-frequency acceleration signal f 1 to each high-frequency acceleration cavity via the amplifier 22, and the other is output as the return high-frequency acceleration signal g via the amplifier 23 from the acceleration signal receiving unit 19a. Is output.

【0006】加速信号受信部19a を出力した返信用高周
波加速信号gは、送信側と同様に冷却水で温度制御され
た同軸ケーブル24a を経て加速信号受信部17a に再度入
力される。その後増幅器25と位相調整器26を経て、受信
側位相差検出信号hとして位相差検出器27に入力され
る。位相差検出器27では送信側位相差検出信号dと受信
側位相差検出信号hとの位相差を電圧信号として検出
し、信号半減器28を経て位相調整器15及び26に入力す
る。そして位相調整器15及び26では各々位相差検出器27
で検出した位相差の半分をシフトすることで、高周波加
速信号b1 と各高周波加速空胴へ出力する各高周波加速
信号f1 の位相を一致させていた。従って、各高周波加
速空胴毎に加速信号送信部17a 〜17n と加速信号受信部
19a 〜19n と、双方を接続する同軸ケーブル18a 〜18m
,24a 〜24n を準備することで、各々の回路の高周波
加速信号b1 〜bn と各高周波加速空胴へ出力する各高
周波加速信号f1 〜fn の位相を一致させる構成として
いた。
The return high-frequency acceleration signal g output from the acceleration signal receiving section 19a is re-input to the acceleration signal receiving section 17a via the coaxial cable 24a whose temperature is controlled by cooling water as in the transmitting side. After that, it passes through the amplifier 25 and the phase adjuster 26, and is input to the phase difference detector 27 as the reception side phase difference detection signal h. The phase difference detector 27 detects the phase difference between the transmission side phase difference detection signal d and the reception side phase difference detection signal h as a voltage signal, and inputs it to the phase adjusters 15 and 26 via the signal halve unit 28. Then, in the phase adjusters 15 and 26, the phase difference detector 27
The phase of the high-frequency acceleration signal b 1 and the phase of each high-frequency acceleration signal f 1 output to each high-frequency acceleration cavity are matched by shifting half of the phase difference detected in 1 . Therefore, the acceleration signal transmitters 17a to 17n and the acceleration signal receivers are provided for each high-frequency acceleration cavity.
19a to 19n and coaxial cables 18a to 18m connecting both
By preparing the 24a 24n, it was configured to match the phase of each rf signal f 1 ~f n to be outputted to the high-frequency acceleration signal b 1 ~b n and the radio frequency accelerating cavity of the respective circuits.

【0007】[0007]

【発明が解決しようとする課題】しかしながら大型の粒
子加速器になると前述したように周回軌道は数百m〜数
Kmにもなる。そのため、加速信号送信部と加速信号受
信部との距離も同様となる。即ち、加速信号送信部と加
速信号受信部とを接続する同軸ケーブルが数百m程度と
なることを示し、数百mにもなる2本の送信用,返信用
同軸ケーブルの長さを電気長として一致させなければな
らない。ところが仮に高周波加速信号の周波数を500 M
HZ、同軸ケーブルの波長短縮率を66%とすると、高周
波加速信号の波長λは、 となり、送信用,受信用同軸ケーブル間で長さが1.1 m
m相違すると位相が1deg相違することとなる。数百
mにもなる同軸ケーブル2本間の長さをmm単位で同一
長さとするこは難しく、即ち、送信側と返信側との間で
本来の位相差よりも大きな位相差を検出することとな
り、各高周波加速空胴へ出力する各高周波加速信号f1
〜fn と高周波加速信号b1 〜bn を同位相とすること
ができなくなる。
However, in the case of a large particle accelerator, as described above, the orbit becomes several hundred meters to several kilometers. Therefore, the distance between the acceleration signal transmitter and the acceleration signal receiver is the same. That is, it shows that the coaxial cable connecting the acceleration signal transmission unit and the acceleration signal reception unit is about several hundred meters, and the length of the two transmission and reply coaxial cables, which is several hundred meters, is the electrical length. Must match as. However, if the frequency of the high-frequency acceleration signal is 500 M
If the wavelength reduction rate of HZ and coaxial cable is 66%, the wavelength λ of the high frequency acceleration signal is And the length between the transmitting and receiving coaxial cables is 1.1 m.
When m is different, the phase is different by 1 deg. It is difficult to make the length between two coaxial cables of several hundred meters the same length in mm, that is, a phase difference larger than the original phase difference is detected between the transmitting side and the returning side. , Each high frequency acceleration signal f 1 output to each high frequency acceleration cavity
.About.f n and the high frequency acceleration signals b 1 to b n cannot be in phase.

【0008】更に送信側と返信側の同軸ケーブルは冷却
水で温度制御されているが、数百mにわたり同一温度に
制御し、又、2本の同軸ケーブル間の温度差を全く生じ
ないように制御することは困難である。仮に高周波加速
信号の周波数を500 MHZ,同軸ケーブルの波長短縮率
を66%,銅の線膨脹係数を16.7×10-6/℃,同軸ケーブ
ル長さ500 mとすると、高周波加速信号の波長は前述し
たように0.396 mであり、よって1℃の温度差で生じる
位相変動量Δθは、 となる。従って従来の構成では各加速信号送信部と各加
速信号受信部間を接続する長い同軸ケーブル2本の電気
長を同一とすることが困難であった。本発明は上記問題
を解決するためになされたものであり、送信側と返信側
の電気長が同一となる位相安定化伝送装置を提供するこ
とを目的としている。
Further, the temperature of the coaxial cable on the transmitting side and that on the returning side are controlled by cooling water, but the temperature is controlled to the same temperature for several hundreds of meters, and there is no temperature difference between the two coaxial cables. It is difficult to control. If the frequency of the high-frequency acceleration signal is 500 MHZ, the wavelength shortening rate of the coaxial cable is 66%, the linear expansion coefficient of copper is 16.7 × 10 -6 / ° C, and the length of the coaxial cable is 500 m, the wavelength of the high-frequency acceleration signal is as described above. As described above, the phase fluctuation amount Δθ caused by the temperature difference of 1 ° C. is 0.396 m. Becomes Therefore, in the conventional configuration, it is difficult to make the electric lengths of the two long coaxial cables that connect the acceleration signal transmitters and the acceleration signal receivers the same. The present invention has been made to solve the above problems, and an object thereof is to provide a phase-stabilized transmission device in which the electrical lengths of the transmitting side and the returning side are the same.

【0009】[0009]

【課題を解決するための手段】本発明は従来の位相安定
化伝送装置に採用していた2本の同軸ケーブルを光ファ
イバケーブル1本とし、加速信号送信部及び加速信号受
信部に電気信号/光信号変換器(以降E/O変換器とす
る),光信号/電気信号変換器(以降O/E変換器とす
る)を準備し、更に加速信号送信部及び加速信号受信部
に光分岐結合器を準備することで、送信側と返信側の信
号を前述の1本の光ファイバケーブルで伝送するように
したものである。
According to the present invention, the two coaxial cables used in the conventional phase-stabilized transmission apparatus are replaced by one optical fiber cable, and the acceleration signal transmitting section and the acceleration signal receiving section receive an electric signal / electric signal. An optical signal converter (hereinafter referred to as an E / O converter) and an optical signal / electrical signal converter (hereinafter referred to as an O / E converter) are prepared, and the optical signal is branched and coupled to the acceleration signal transmitter and the acceleration signal receiver. By preparing a container, the signal on the transmitting side and the signal on the returning side are transmitted by the above-mentioned one optical fiber cable.

【作用】位相安定化伝送装置で送信側と返信側の電気長
を同一とし、更に温度差による位相変動を生じないよう
にするためには、加速信号送信部と加速信号受信部との
間の接続ケーブルを1本とすれば可能ではある。しかし
ながら電気信号として、1本のケーブルに送信側,返信
側双方の伝送を行なうことは双方向信号の結合,分離を
要するため難しい。ところが光信号であれば1本の光フ
ァイバケーブルで送信側,返信側双方の信号を伝送する
ことは可能であるため、2本の長さを同一に合わせる必
要がない。又、数百MHZ程度の高周波信号のE/O変
換としてはレーザダイオードを使用したE/O変換器
が、O/E変換としてPINフォトダイオードを使用し
たO/E変換器が共に技術的に確立されている。そして
1本の光ファイバケーブルに送受信2つの光信号を伝送
するための光分岐結合器も技術的に確立されている。更
に光ファイバケーブルの温度変換に伴なう位相変動量に
ついては、高周波加速信号の周波数を500 MHZ,光フ
ァイバケーブル長を500m,光ファイバケーブルの石英
ガラスの屈折率を1.48,同線膨脹係数を0.4 ×10-6とす
ると、波長λは、 であり、同軸ケーブルと比較し非常に安定しているた
め、冷却水による温度制御の必要もなく経済的である。
しかも同一光ファイバケーブルで送信側,返信側双方が
伝送されるため、仮に光ファイバケーブル敷設上に温度
差を生じたとしても、送信側,返信側共に同一位相変動
量になるため、各高周波加速信号相互間の位相差は常に
同一位相に保つ位相安定化伝送装置を得ることが可能と
なる。
In the phase-stabilized transmission device, in order to make the electric lengths of the transmitting side and the returning side the same and to prevent the phase fluctuation due to the temperature difference, the phase difference between the acceleration signal transmitting section and the acceleration signal receiving section is set. It is possible if only one connection cable is used. However, as an electric signal, it is difficult to perform transmission on both the transmitting side and the returning side on a single cable because it requires coupling and separation of bidirectional signals. However, as long as it is an optical signal, it is possible to transmit both the transmitting side signal and the returning side signal with a single optical fiber cable, so it is not necessary to match the lengths of the two optical fibers. Moreover, both an E / O converter using a laser diode and an O / E converter using a PIN photodiode are technically established for E / O conversion of a high frequency signal of about several hundred MHZ. Has been done. An optical branching / coupling device for transmitting and receiving two optical signals to one optical fiber cable is also technically established. Regarding the amount of phase fluctuation due to temperature conversion of the optical fiber cable, the frequency of the high frequency acceleration signal is 500 MHZ, the optical fiber cable length is 500 m, the refractive index of the silica glass of the optical fiber cable is 1.48, and the linear expansion coefficient is Assuming 0.4 × 10 -6 , the wavelength λ is Since it is much more stable than a coaxial cable, it is economical without the need for temperature control by cooling water.
Moreover, since both the transmitting side and the returning side are transmitted by the same optical fiber cable, even if there is a temperature difference on the laying of the optical fiber cable, the transmitting side and the returning side will have the same phase fluctuation amount, so each high frequency acceleration It is possible to obtain a phase-stabilized transmission device in which the phase difference between signals is always kept in the same phase.

【0010】[0010]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による位相安定化伝送装置の一実施例の構成図
であり、図1中、図3と同一符号は同一又は相当部分を
示す。図1の構成で図3と異なる点は、まず加速信号送
信部17a での送信用高周波加速信号eは、E/O変換器
31及び光分岐結合器32を経て光ファイバケーブル33a に
て加速信号受信部19a に伝送され、光分岐結合器34及び
O/E変換器35を経て増幅器20に入力するようにした点
である。そして次に加速信号受信部19a での返信用高周
波加速信号gは、E/O変換器36及び光分岐結合器34を
経て光ファイバケーブル33a にて加速信号送信部17aに
伝送され、光分岐結合器32及びO/E変換器37を経て増
幅器25に入力するようにした点である。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 3 is a configuration diagram of an embodiment of a phase-stabilized transmission device according to the present invention. In FIG. 1, the same reference numerals as those in FIG. 3 denote the same or corresponding parts. The configuration of FIG. 1 is different from that of FIG. 3 in that the transmission high-frequency acceleration signal e in the acceleration signal transmission unit 17a is the E / O converter.
The point is that the signal is transmitted to the acceleration signal receiving section 19a via the optical fiber cable 33a via 31 and the optical branching / coupling device 32, and is input to the amplifier 20 via the optical branching / coupling device 34 and the O / E converter 35. Then, the return high-frequency acceleration signal g from the acceleration signal receiving section 19a is transmitted to the acceleration signal transmitting section 17a via the optical fiber cable 33a via the E / O converter 36 and the optical branching / coupling unit 34, and the optical branching / coupling is performed. The point is that the signal is input to the amplifier 25 via the converter 32 and the O / E converter 37.

【0011】以上の構成において、送信用高周波加速信
号eはE/O変換器31において電気信号を光信号に変換
され、更に光分岐結合器32にて光結合され、加速信号送
信部17a より出力され、光ファイバケーブル33a にて伝
送されて加速信号受信部19aに入力される。加速信号受
信部19a では光分岐結合器34にて分岐され、O/E変換
器35にて電気信号に変換されて増幅器20に入力されるこ
ととなる。一方、返信用高周波加速信号gはE/O変換
器36により電気信号を光信号に変換する。更に信号gは
光分岐結合器34にて送信側信号と光結合されて加速信号
受信部19a より出力される。この信号は、光ファイバケ
ーブル33a より光分岐結合器32へ伝送され、返信用信号
として分岐される。この光信号は、O/E変換器37にて
電気信号に変換された後、増幅器25に入力される。
In the above-mentioned structure, the transmission high-frequency acceleration signal e is converted from an electric signal into an optical signal in the E / O converter 31, is further optically coupled in the optical branching / coupling device 32, and is output from the acceleration signal transmitting unit 17a. Then, it is transmitted through the optical fiber cable 33a and input to the acceleration signal receiving section 19a. In the acceleration signal receiving unit 19a, the light is branched by the optical branching / coupling device 34, converted into an electric signal by the O / E converter 35, and input to the amplifier 20. On the other hand, the reply high-frequency acceleration signal g is converted into an optical signal by the E / O converter 36. Further, the signal g is optically combined with the transmitting side signal by the optical branching / coupling device 34 and output from the acceleration signal receiving section 19a. This signal is transmitted from the optical fiber cable 33a to the optical branching / coupling device 32 and branched as a return signal. This optical signal is converted into an electric signal by the O / E converter 37 and then input to the amplifier 25.

【0012】即ち、送信用高周波加速信号eと返信用高
周波加速信号gは各々E/O変換器31及び36にて光信号
に変換され、光分岐結合器32及び34にて双方光結合され
た後、1本の光ファイバケーブル33a で伝送される。そ
して光分岐結合器34及び32にて双方分岐された後、O/
E変換器35及び37にて電気信号に変換されることとな
る。従って、1本の光ファイバケーブルで送信側,返信
側双方の信号を伝送することができるため、送信側,返
信側の電気長を同一とし、かつ送信側と返信側で温度に
よる位相変動量に差を生じなくすることができる。よっ
て各高周波加速空胴毎に本回路による加速信号送信部17
a 〜17n と光ファイバケーブル33a 〜33nと加速信号受
信部19a 〜19n を準備することで、送信側,返信側の電
気長を同一とすると共に、温度による位相差変動量が送
信側,返信側双方で差の生じない位相安定化伝送装置と
なる。
That is, the transmission high-frequency acceleration signal e and the return high-frequency acceleration signal g are converted into optical signals by the E / O converters 31 and 36, respectively, and both are optically coupled by the optical branching / coupling devices 32 and 34. After that, it is transmitted by one optical fiber cable 33a. Then, after both are branched by the optical branching and coupling devices 34 and 32, O /
The E converters 35 and 37 convert the electric signals. Therefore, since it is possible to transmit both signals on the transmitting side and the returning side with one optical fiber cable, the electrical lengths on the transmitting side and the returning side are the same, and the amount of phase fluctuation due to temperature on the transmitting side and the returning side is the same. The difference can be eliminated. Therefore, for each high-frequency acceleration cavity, the acceleration signal transmitter 17
By preparing a to 17n, optical fiber cables 33a to 33n, and acceleration signal receiving sections 19a to 19n, the electrical lengths of the transmitting side and the replying side are made the same, and the phase difference fluctuation amount due to temperature is transmitted to the sending side and the replying side. The phase-stabilized transmission device has no difference between the two.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば送
信側と返信側の各信号を1本の光ファイバケーブルによ
って伝送することにより、送信側,返信側の電気長を同
一とすると共に、温度による位相変動量も送信側,返信
側双方で差の生じない位相安定化伝送装置を得ることが
できる。従って複数の高周波加速空胴に対しその台数分
の本回路を準備することで各高周波加速空胴内に発生さ
せる高周波電場の位相を一致させ、安定に電子ビームを
加速させることができることとなる。
As described above, according to the present invention, by transmitting each signal on the transmitting side and the returning side by one optical fiber cable, the electric lengths on the transmitting side and the returning side are made the same. Thus, it is possible to obtain a phase-stabilized transmission device in which there is no difference in the amount of phase fluctuation due to temperature on both the transmitting side and the returning side. Therefore, by preparing this circuit for a plurality of high-frequency accelerating cavities, the phases of the high-frequency electric fields generated in the respective high-frequency accelerating cavities can be matched, and the electron beam can be stably accelerated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す位相安定化伝送装置を
示すシステム構成図。
FIG. 1 is a system configuration diagram showing a phase-stabilized transmission device showing an embodiment of the present invention.

【図2】粒子加速蓄積器の構成を示す構成図。FIG. 2 is a configuration diagram showing a configuration of a particle acceleration accumulator.

【図3】従来の位相安定化伝送装置を示すシステム構成
図。
FIG. 3 is a system configuration diagram showing a conventional phase-stabilized transmission device.

【符号の説明】[Explanation of symbols]

1 線形加速器 2 静電インフレクター 3 加速蓄積リング 4 真空ダクト 5 偏向電磁石 6 高周波加速空胴 7 ビームライン 8 計測ポート 9 粒子輸送管 11 高周波信号発生器 12,14,21 パワーデバイダー 13,16,20,22,23,25 増幅器 15,26 位相蓄積器 17a 〜17n 加速信号送信部 18a 〜18n ,24a 〜24n 同軸ケーブル 27 位相差検出器 28 信号半減器 31,36 E/O変換器 32,34 光分岐結合器 33a 〜33n 光ファイバケーブル 35,37 O/E変換器 1 Linear Accelerator 2 Electrostatic Inflector 3 Acceleration Storage Ring 4 Vacuum Duct 5 Deflection Magnet 6 High Frequency Accelerating Cavity 7 Beamline 8 Measurement Port 9 Particle Transport Tube 11 High Frequency Signal Generator 12, 14, 21 Power Divider 13, 16, 20 , 22, 23, 25 Amplifier 15, 26 Phase accumulator 17a to 17n Acceleration signal transmitter 18a to 18n, 24a to 24n Coaxial cable 27 Phase difference detector 28 Signal half unit 31, 36 E / O converter 32, 34 Optical Branch coupler 33a to 33n Optical fiber cable 35, 37 O / E converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1つの高周波信号発生器と、複数の高周
波加速空胴と、前記高周波信号発生器からの高周波加速
信号を前記した複数の高周波加速空胴へ分配するパワー
デバイダーと、このパワーデバイダーで分配された信号
を同軸ケーブルを経由して高周波加速空胴へ送信する加
速信号送信部と、前記送信された信号を受信して各高周
波加速空胴へ出力すると共に、加速信号送信部へも再び
別の同軸ケーブルを経由して返送する加速信号受信部
と、返信された信号を加速信号送信部で受信し、前記パ
ワーデバイダーで分配された信号との間で位相差を検出
し、送信用信号の位相調整を行なう回路を備えて、前記
した複数の高周波加速空胴へ分配する高周波加速信号の
相互位相を安定に伝送するようにした位相安定化伝送装
置において、前記2本の同軸ケーブルに代えて1本の光
ファイバケーブルとし、前記加速信号送信部と加速信号
受信部との間で、前記1本の光ファイバケーブルを介し
て相方向伝送することを特徴とする粒子加速器の位相安
定化伝送装置。
1. A high frequency signal generator, a plurality of high frequency acceleration cavities, a power divider for distributing a high frequency acceleration signal from the high frequency signal generator to the plurality of high frequency acceleration cavities, and a power divider. And an acceleration signal transmitting unit that transmits the signal distributed by the above to the high-frequency acceleration cavity via a coaxial cable, and receives the transmitted signal and outputs it to each high-frequency acceleration cavity, and also to the acceleration signal transmission unit. For the transmission, the acceleration signal receiving unit that returns again via another coaxial cable, and the returned signal is received by the acceleration signal transmitting unit, and the phase difference between the signal distributed by the power divider is detected and used. A phase-stabilized transmission device comprising a circuit for adjusting the phase of a signal to stably transmit the mutual phases of the high-frequency acceleration signals to be distributed to the plurality of high-frequency acceleration cavities. The particle accelerator, instead of the coaxial cable, is a single optical fiber cable, and phase-directional transmission is performed between the acceleration signal transmitting unit and the acceleration signal receiving unit via the single optical fiber cable. Phase stabilized transmission device.
JP35210592A 1992-12-09 1992-12-09 Phase stabilized transmission device Pending JPH06176893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35210592A JPH06176893A (en) 1992-12-09 1992-12-09 Phase stabilized transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35210592A JPH06176893A (en) 1992-12-09 1992-12-09 Phase stabilized transmission device

Publications (1)

Publication Number Publication Date
JPH06176893A true JPH06176893A (en) 1994-06-24

Family

ID=18421817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35210592A Pending JPH06176893A (en) 1992-12-09 1992-12-09 Phase stabilized transmission device

Country Status (1)

Country Link
JP (1) JPH06176893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153205A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Particle accelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153205A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Particle accelerator

Similar Documents

Publication Publication Date Title
PL167324B1 (en) Optical wave-guide telecommunication line
US7221438B2 (en) Coherent laser radar apparatus
NO792063L (en) RADAR SYSTEM.
CN110275143B (en) High-integration microwave photon MIMO radar signal transceiving device and method
CN109244801B (en) Tunable photoelectric oscillator based on random Brillouin fiber laser and method
CN108988948A (en) Coherent light, which is kept pouring in, passs relay system and trunking method
CN111095673A (en) Device for optically receiving signals from a phased antenna array and antenna system
CN115349230A (en) Optical carrier distribution system
JPH06176893A (en) Phase stabilized transmission device
JP2020518149A (en) Large-diameter scalable millimeter-wave array realized by millimeter-wave dielectric waveguide
CN109342763A (en) A kind of all -fiber wind velocity measurement system based on three axis laser
US7440699B1 (en) Systems, devices and methods for transmitting and receiving signals on an optical network
US20030193711A1 (en) Device and system for the optical transmission of data between satellites
RU2666577C1 (en) Receiving multi-beam active phased antenna array
Hall et al. Bidirectional transmission over 11 km of single-mode optical fibre at 34 Mbit/s using 1.3 μm LEDs and directional couplers
RU2365007C1 (en) Onboard sending device of information transfer laser system
CN103944642B (en) All-optical spatial information network allowing dynamic linking and information transmitting devices thereof
Peschardt et al. Phase compensated fibre-optic links for the lep rf reference distribution
Vyas Modified Power over fiber link architecture for high power applications and its implementation challenges
RU2725758C1 (en) Wide-range intelligent on-board communication system using radio-photon elements
CN116054947A (en) Radio frequency signal transmission system
KR102649377B1 (en) Waveguide array antenna with a plurality of sources
JP5601144B2 (en) High frequency oscillator and high frequency oscillation method
Tedder et al. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication
Lutes Experimental optical fiber communications link