JP5066018B2 - Casting method - Google Patents

Casting method Download PDF

Info

Publication number
JP5066018B2
JP5066018B2 JP2008177032A JP2008177032A JP5066018B2 JP 5066018 B2 JP5066018 B2 JP 5066018B2 JP 2008177032 A JP2008177032 A JP 2008177032A JP 2008177032 A JP2008177032 A JP 2008177032A JP 5066018 B2 JP5066018 B2 JP 5066018B2
Authority
JP
Japan
Prior art keywords
metal
aluminum
titanium dioxide
dross
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008177032A
Other languages
Japanese (ja)
Other versions
JP2010013722A (en
Inventor
康雄 大寺
Original Assignee
大寺 一生
大寺 康太
大島 瑠美子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大寺 一生, 大寺 康太, 大島 瑠美子 filed Critical 大寺 一生
Priority to JP2008177032A priority Critical patent/JP5066018B2/en
Publication of JP2010013722A publication Critical patent/JP2010013722A/en
Application granted granted Critical
Publication of JP5066018B2 publication Critical patent/JP5066018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

この発明は、アルミニウムおよびそれらの合金から金属鋳造品を製造する鋳造方法に関する。   The present invention relates to a casting method for producing a metal casting from aluminum and alloys thereof.

従来の鋳造方法は、まず溶解炉や溶解用坩堝に、例えばアルミニウムのインゴットを入れて、このインゴットを700〜800℃に上昇させて、溶融金属を生成する。このとき、一旦大気中に取り出された材料を溶融することになるので、溶湯中には金属酸化物が混入している。特に、溶解を繰り返した金属や酸化のひどい金属材料を使用した場合、混入した金属酸化物が増えて、生成した材料や製品の機械的強度(伸び、引っ張り強度、等)が低く、ブローホール、ピンホール、割れ等を発生させる。   In a conventional casting method, first, for example, an aluminum ingot is put into a melting furnace or a melting crucible, and the ingot is raised to 700 to 800 ° C. to generate a molten metal. At this time, since the material once taken out to the atmosphere is melted, the metal oxide is mixed in the molten metal. In particular, when a metal that has been repeatedly dissolved or a metal material that is heavily oxidized is used, the mixed metal oxide increases, and the mechanical strength (elongation, tensile strength, etc.) of the generated material or product is low. Generate pinholes, cracks, etc.

そこで、特許文献1に開示されているように、インゴットを溶融する際に二酸化チタンを溶剤として用いることにより、溶湯中より金属酸化物を取り除き、溶湯を改善する方法が提案されている。またこの方法は、従来の溶剤では分離しきれなかったノロやドロス中の金属も分離することができることが開示されている。
特開2002−18553号公報
Therefore, as disclosed in Patent Document 1, a method has been proposed in which metal oxide is removed from the molten metal by using titanium dioxide as a solvent when melting the ingot to improve the molten metal. It is also disclosed that this method can also separate metals in noro and dross that could not be separated with conventional solvents.
JP 2002-18553 A

上記特許文献1に開示された方法を用いて、溶融させた塩化マグネシウムまたは塩化ナトリウム中にアルミニウムのドロス等の金属酸化物と二酸化チタン粉末を投入し、その状態において所定温度に加熱し、ドロス等の金属酸化物を溶融させると、ドロス中の金属と酸化物を分離することができる。しかし、所定温度に加熱した段階においては、金属酸化物から球状の溶融金属が複数箇所より析出し、析出金属が大気中の酸素と反応して、発火とともに連鎖的に酸化反応が進む。これにより、析出金属は酸化物となり、十分に金属アルミニウム成分を回収できない事態が発生した。   Using the method disclosed in Patent Document 1, metal oxide such as aluminum dross and titanium dioxide powder are put into molten magnesium chloride or sodium chloride, heated to a predetermined temperature in that state, dross etc. When the metal oxide is melted, the metal and oxide in the dross can be separated. However, when heated to a predetermined temperature, spherical molten metal is deposited from a plurality of locations from the metal oxide, the precipitated metal reacts with oxygen in the atmosphere, and the oxidation reaction proceeds in a chain with ignition. As a result, the deposited metal became an oxide, and a situation in which the metal aluminum component could not be sufficiently recovered occurred.

また、特許文献1のように、二酸化チタンを含む溶剤を使用した場合、消耗品である溶剤として二酸化チタンを用いることにより、二酸化チタンも鋳造滓とともに廃棄され、コストがかかるものであった。   Moreover, when the solvent containing titanium dioxide is used like patent document 1, titanium dioxide was also discarded with the casting iron by using titanium dioxide as a solvent which is a consumable item, and it was expensive.

この発明は、上記従来の技術の問題点に鑑みてなされたもので、二酸化チタンによる溶湯内の金属酸化物を取り除くメカニズムを研究し、より安価に効率良く、溶湯、鋳造製品の品質を向上させることが可能な鋳造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and has studied a mechanism for removing metal oxides in the molten metal with titanium dioxide, thereby improving the quality of the molten metal and cast product more efficiently at a lower cost. An object of the present invention is to provide a casting method that can be used.

先ず、本願発明者によるこれまでの研究の結果、二酸化チタン粉末自身は溶融金属あるいは金属酸化物と反応しないことが分かった。一方、溶融金属中に混在する金属酸化物の溶融金属からの分離を容易にする、あるいは金属酸化物からの金属成分の分離回収を容易に実現する、という機能が二酸化チタンには存在することが実験的に分かった。これらの結果により、二酸化チタン粉末は、触媒的に作用していることを示唆しているものである。   First, as a result of previous studies by the present inventor, it has been found that titanium dioxide powder itself does not react with molten metal or metal oxide. On the other hand, titanium dioxide has a function of facilitating the separation of the metal oxide mixed in the molten metal from the molten metal or easily separating and recovering the metal component from the metal oxide. I found it experimentally. These results suggest that the titanium dioxide powder is acting catalytically.

さらに、二酸化チタン粉末は、金属酸化物の金属からの分離作用を持つことが分かったが、アルミニウムのような酸化しやすい金属に対して行った研究の結果、二酸化チタンが酸化を促進させる作用を持つことも分かった。そのため、溶融金属が大気中の酸素と反応しづらい状況下では、アルミニウムのような酸化しやすい金属であっても二酸化チタンが金属酸化物と金属成分を分離する機能を示すことが確認され、本願発明を完成したものである。   In addition, titanium dioxide powder was found to have a separation effect of metal oxides from metals, but as a result of research conducted on easily oxidizable metals such as aluminum, titanium dioxide promoted oxidation. I also understood that I have it. Therefore, under circumstances where molten metal is difficult to react with oxygen in the atmosphere, it was confirmed that titanium dioxide has a function of separating metal oxides and metal components even if it is a metal that is easily oxidized, such as aluminum. The invention has been completed.

この発明は、アルミニウムの鋳造時に発生するドロスを坩堝に入れ、前記坩堝内に入れられた前記ドロスに二酸化チタン粉末と炭素粉末をふりかけて、前記坩堝内の前記ドロスを前記アルミニウムの溶融温度に加熱して、前記アルミニウムと金属酸化物粉末を分離させて前記アルミニウムの溶湯を造る鋳造方法である。 The present invention takes into dross generated during aluminum casting crucible, sprinkle titanium powder and carbon powder dioxide to the dross that has been placed in the crucible, heating the dross in the crucible to the melting temperature of the aluminum Then, the aluminum and metal oxide powder are separated to form a molten metal of the aluminum .

この発明の鋳造方法によれば、二酸化チタンの作用により、鋳造製品の品質を向上させ、酸化により滓として廃棄される割合が減少し、歩留まりが向上する。さらに、金属屑やドロス、その他の滓を集めて金属を効率的に回収することも可能であり、資源の有効骨用に貢献する。   According to the casting method of the present invention, the quality of the cast product is improved by the action of titanium dioxide, the proportion discarded as soot by oxidation is reduced, and the yield is improved. Furthermore, metal scraps, dross, and other soot can be collected to efficiently recover the metal, contributing to the effective use of resources.

特に、材料中の二酸化チタンによって溶湯内に混入した金属酸化物を分離して溶湯の純度を向上させることができる。その結果、鋳造された材料や製品の金属組織に、ピンホールやクラックが少なく、機械的強度も高い製品を得ることができる。   In particular, the purity of the molten metal can be improved by separating the metal oxide mixed in the molten metal with titanium dioxide in the material. As a result, it is possible to obtain a product with few pinholes and cracks and high mechanical strength in the metal structure of the cast material or product.

以下、この発明の実施の形態について、図面に基づいて説明する。図1、図2は、坩堝10と攪拌棒12を示す。この実施形態の坩堝10は、銅、アルミニウム、または鉄等の金属のインゴットを収容し、溶解炉中に入れられて、インゴットを溶融させるものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a crucible 10 and a stirring rod 12. The crucible 10 of this embodiment accommodates an ingot of a metal such as copper, aluminum, or iron, and is placed in a melting furnace to melt the ingot.

この坩堝10は、アルミナ等のセラミックスにより形成され、その組成中に二酸化チタン(TiO)を含むものである。二酸化チタンは、少なくとも坩堝10の内壁面に二酸化チタン層10aが一定の厚さで設けられていれば良く、坩堝10の全体に含まれていなくても良い。二酸化チタンの配合割合は、多い方が好ましいが、坩堝強度に鑑みて、適宜5%〜60%程度、好ましくは10%〜50%含む。 This crucible 10 is formed of ceramics such as alumina and contains titanium dioxide (TiO 2 ) in its composition. Titanium dioxide is sufficient if the titanium dioxide layer 10 a is provided at a constant thickness on at least the inner wall surface of the crucible 10, and may not be included in the entire crucible 10. A larger proportion of titanium dioxide is preferable, but in view of crucible strength, it is appropriately contained in an amount of about 5% to 60%, preferably 10% to 50%.

攪拌棒12も図2に示すように、表面に二酸化チタン層12aが設けられている。二酸化チタン層12aは、二酸化チタンを含むセラミックス材料でコーティングしたものまたは、攪拌棒12の材料中に二酸化チタンを混合して形成したものである。   As shown in FIG. 2, the stirring rod 12 also has a titanium dioxide layer 12a on the surface. The titanium dioxide layer 12a is formed by coating with a ceramic material containing titanium dioxide or by mixing titanium dioxide into the material of the stirring rod 12.

この実施形態の坩堝10、攪拌棒12の使用方法は、溶解炉に設置される坩堝10中に溶融する金属塊や金属屑、ドロス等の溶融金属の材料を入れる。そして、溶解炉の電源の投入または燃料を燃焼させ、溶解炉の内部を加熱して坩堝10内の温度が金属の融点以上になると、坩堝10内に溶融金属である溶湯が生成される。さらに、溶湯は、適宜攪拌棒12により撹拌すると良い。このときの溶融温度は、アルミニウムの場合700℃〜800℃、銅が1200℃〜1250℃、鉄の場合1400℃〜1500℃程度である。   In this embodiment, the crucible 10 and the stirring rod 12 are used by putting a molten metal material such as a metal lump, metal scrap or dross into the crucible 10 installed in the melting furnace. Then, when the melting furnace is turned on or the fuel is burned and the inside of the melting furnace is heated so that the temperature in the crucible 10 is equal to or higher than the melting point of the metal, molten metal that is a molten metal is generated in the crucible 10. Further, the molten metal may be appropriately stirred with the stirring rod 12. The melting temperature at this time is about 700 ° C. to 800 ° C. for aluminum, 1200 ° C. to 1250 ° C. for copper, and about 1400 ° C. to 1500 ° C. for iron.

溶融時には、溶解炉の扉を閉じて酸素を遮断した雰囲気で溶融する。また、溶湯を撹拌するときは、アルゴンガス等の不活性ガスを溶湯表面に注入して、酸素を遮断する。   At the time of melting, it melts in an atmosphere in which the melting furnace is closed and oxygen is shut off. When stirring the molten metal, an inert gas such as argon gas is injected into the molten metal surface to block oxygen.

これにより、坩堝10の壁面の二酸化チタン層10aや攪拌棒12の二酸化チタン層12aの触媒作用により、溶融金属の酸化が抑えられ、金属酸化物も金属成分と分離される。これにより、溶湯改善用の溶剤を使うことなく、低コストで酸化物の少ない良質な溶湯ができる。   As a result, the catalytic action of the titanium dioxide layer 10a on the wall surface of the crucible 10 and the titanium dioxide layer 12a of the stirring rod 12 suppresses oxidation of the molten metal, and the metal oxide is also separated from the metal component. As a result, a high-quality molten metal with low oxides can be produced at low cost without using a solvent for improving the molten metal.

これは、金属酸化物になる前の亜酸化物と言うべき金属組成が二酸化チタンの触媒作用により、酸化または還元作用が働き、安定な金属酸化物または溶融金属となり、金属溶湯から分離しまたは金属に戻る。さらに、溶湯を攪拌することにより、二酸化チタン層12aが溶湯全体に接触し、その触媒作用で、全体に万遍なく金属酸化物と金属成分を分離し、純度の高い金属溶湯が生成される。   This is because the metal composition to be called a suboxide before becoming a metal oxide is oxidized or reduced by the catalytic action of titanium dioxide, and becomes a stable metal oxide or molten metal, which is separated from the molten metal or metal Return to. Furthermore, by stirring the molten metal, the titanium dioxide layer 12a comes into contact with the entire molten metal, and by its catalytic action, the metal oxide and the metal component are uniformly separated throughout, and a high-purity molten metal is generated.

これにより得られる金属は、機械的強度が高く、ブローホール、ピンホール、割れの少ない材料や、製品を得ることができる。なお、適用できる金属は、アルミニウム、銅、鉄及びこれらの合金に特に好適であり、その他の金属にも適用可能であり、対象となる金属を選ばない。   The metal thus obtained has a high mechanical strength and can provide a material or product with few blowholes, pinholes and cracks. The applicable metal is particularly suitable for aluminum, copper, iron, and alloys thereof, and can be applied to other metals, and the target metal is not selected.

次に、他の鋳造方法について説明する。この実施形態は、図3に示すように、坩堝10内に、銅、アルミニウム、または鉄等の金属のインゴットや滓、アルミニウムのドロス22等の材料を入れ、溶解炉14上面の扉を閉めて、酸素を遮断する。   Next, another casting method will be described. In this embodiment, as shown in FIG. 3, a material such as copper, aluminum, iron, or other metal ingot or iron, dross 22, or the like is placed in the crucible 10, and the door on the upper surface of the melting furnace 14 is closed. , Block oxygen.

この状態で、溶解炉14のコークス16を燃焼させ内部を加熱すると、溶融金属が生成される。溶融時は、溶解炉14の扉を閉じて酸素が遮断された雰囲気であるが、図3(a)に示すように、撹拌するときは大気中の酸素が侵入するので、アルゴンガス等の不活性ガスを溶湯表面に注入して酸素を遮断し、図3(b)に示す攪拌棒12で撹拌する。   In this state, when the coke 16 of the melting furnace 14 is burned and the inside is heated, molten metal is generated. At the time of melting, the atmosphere of the melting furnace 14 is closed and oxygen is shut off. However, as shown in FIG. 3 (a), oxygen in the atmosphere enters when stirring, so there is no possibility of argon gas or the like. An active gas is injected into the molten metal surface to block oxygen, and the mixture is stirred with the stirring rod 12 shown in FIG.

このようにして溶融すると、金属が例えばアルミニウムの場合、粉状の鋳造滓が溶湯の表面に現れ容易に除去可能となる。そして、この分離された溶融金属である溶湯が鋳型に鋳込まれ、金属鋳造品が製造される。溶湯温度は、アルミニウムの場合700℃、銅が1250℃、鉄の場合1500℃程度で良好な品質の金属製品が得られる。   When melted in this manner, when the metal is, for example, aluminum, a powdered cast iron appears on the surface of the molten metal and can be easily removed. And the molten metal which is this separated molten metal is cast into a mold, and a metal cast product is manufactured. The molten metal is 700 ° C. in the case of aluminum, 1250 ° C. in the case of copper, and 1500 ° C. in the case of iron.

この実施形態の、鋳造方法によれば、二酸化チタンの作用により、溶融金属内にノロや鋳造滓がほとんど残らず、金属鋳造品内にはピンホールやクラックが発生しないものである。従って、鋳造品の品質が極めて良好なものとなり、安価に高品質の鋳造品を製造可能とる。   According to the casting method of this embodiment, due to the action of titanium dioxide, there is almost no slot or cast iron remaining in the molten metal, and no pinholes or cracks are generated in the metal casting. Accordingly, the quality of the cast product becomes extremely good, and a high-quality cast product can be manufactured at a low cost.

次に、この発明の実施形態の鋳造方法について説明する。この実施形態は、図4に示すように、坩堝10内に、アルミニウムのドロスを入れ、プロパンガスのバーナー18でドロス22全体を加熱する。このとき、二酸化チタン粉末21をドロス22に散布し、大気中で加熱する。   Next, a casting method according to an embodiment of the present invention will be described. In this embodiment, as shown in FIG. 4, an aluminum dross is put in the crucible 10, and the entire dross 22 is heated by a propane gas burner 18. At this time, the titanium dioxide powder 21 is spread on the dross 22 and heated in the atmosphere.

すると、図4(b)に示すように、二酸化チタン粉末21だけをふりかけた場合は、ドロスは完全に金属酸化物の白い粉24になってしまう。これに対して、図4(c)に示すようにドロス22に二酸化チタン粉末21とともに、自身が酸化して酸素を奪う還元剤である炭素粉末23をふりかけて、加熱すると、図4(d)に示すように、白い粉24とともにアルミニウム金属成分26が分離された。   Then, as shown in FIG.4 (b), when only the titanium dioxide powder 21 is sprinkled, dross will become the white powder 24 of a metal oxide completely. On the other hand, as shown in FIG. 4 (c), when the carbon powder 23, which is a reducing agent that oxidizes itself and deprives oxygen, is sprinkled on the dross 22 together with the titanium dioxide powder 21, and heated, FIG. As shown, the aluminum metal component 26 was separated together with the white powder 24.

従って、大気中での溶融であっても、炭素等の自身が酸化し易い還元剤とともに二酸化チタンを加えて、金属酸化物を加熱し溶融させると、金属成分には難酸化反応の雰囲気となり、金属酸化物になる前の亜酸化物である金属組成が、二酸化チタンの触媒作用により、その酸素が還元剤に奪われて還元され溶融金属となる。これによりドロス中の金属成分と、安定な金属酸化物と金属成分が分離され、金属成分を回収することができる。   Therefore, even when melting in the atmosphere, when titanium dioxide is added together with a reducing agent that is easily oxidized such as carbon, and the metal oxide is heated and melted, the metal component becomes an atmosphere of a difficult oxidation reaction, The metal composition, which is a suboxide before becoming a metal oxide, is reduced by the catalytic action of titanium dioxide, with its oxygen being deprived by the reducing agent. As a result, the metal component in the dross, the stable metal oxide and the metal component are separated, and the metal component can be recovered.

また、このとき溶融させる金属酸化物の材料ととともに、塩化マグネシウムまたは塩化ナトリウムを溶融し、チタン粉末を投入しても良い。この状態で所定温度に加熱し、金属酸化物を溶融させることにより、ドロス中の金属成分と金属酸化物を効率良く分離し、金属成分を回収することができる。   Further, together with the metal oxide material to be melted at this time, magnesium chloride or sodium chloride may be melted and titanium powder may be charged. By heating to a predetermined temperature in this state and melting the metal oxide, the metal component and the metal oxide in the dross can be separated efficiently and the metal component can be recovered.

なお、この発明は上記実施形態に限定されるものではなく、鋳造に使用する攪拌棒や柄杓等の鋳造用具の構成材料について、少なくとも表面層を、二酸化チタンを配合した組成材料としても良い。これにより、この鋳造用具に接する溶湯が改善され、上記と同様に鋳造品のピンホールやクラックも抑えられる。   In addition, this invention is not limited to the said embodiment, About the constituent material of casting tools, such as a stirring rod used for casting, and a handle, at least a surface layer is good also as a composition material which mix | blended titanium dioxide. Thereby, the molten metal which contact | connects this casting tool is improved, and the pinhole and crack of a cast are also suppressed like the above.

さらにこの発明の鋳造装置や用具は、坩堝や攪拌棒に限らず、鋳型に流し込む前の溶湯が接する部材であれば何でも良く、溶湯が接する溶解炉の内壁面や、柄杓、取り鍋、保持炉、流路等適宜の装置や用具に適用可能なものである。   Further, the casting apparatus and tools of the present invention are not limited to crucibles and stirring rods, and any member can be used as long as it is in contact with the molten metal before pouring into the mold. It can be applied to appropriate devices and tools such as flow paths.

次に、実施例について説明する。この実施例では、坩堝10や攪拌棒12に二酸化チタン層10a,12aを有した鋳造装置を使用して、アルミニウム製品鋳造時に出たアルミドロスからアルミニウム合金を回収した。この場合、通常は高温で起きるアルミニウムの燃焼反応が、二酸化チタンの作用により低温(750℃程度)でも起きるので、大気中の酸素をアルゴンガスで遮断した環境で行った。実験では、内側壁面に二酸化チタン成分を有した坩堝炉(コークス燃焼式)にArガスを大量に流しながら、二酸化チタン撹拌棒12で撹拌してアルミドロスを溶融してアルミニウム合金を回収した。   Next, examples will be described. In this example, an aluminum alloy was recovered from aluminum dross produced during the casting of an aluminum product using a casting apparatus having titanium dioxide layers 10a, 12a on the crucible 10 and the stirring rod 12. In this case, since the combustion reaction of aluminum that usually occurs at a high temperature occurs even at a low temperature (about 750 ° C.) due to the action of titanium dioxide, it was carried out in an environment where oxygen in the atmosphere was blocked with argon gas. In the experiment, while flowing a large amount of Ar gas in a crucible furnace (coke combustion type) having a titanium dioxide component on the inner wall surface, the aluminum dross was melted by stirring with a titanium dioxide stirring rod 12 to recover the aluminum alloy.

ここで用いたドロスは、成分の熱分析による事前評価によれば、20%弱のアルミニウム金属成分を含むとされていた。   The dross used here was supposed to contain an aluminum metal component of less than 20% according to the preliminary evaluation by thermal analysis of the component.

この実施例では、2回実験を行い、アルミニウムの回収率は質量割合で33%、32%であった。アルミドロスの溶解温度は、700℃〜900℃であった。   In this example, the experiment was performed twice, and the aluminum recovery was 33% and 32% in mass ratio. The dissolution temperature of alumidoros was 700 ° C to 900 ° C.

この実施例によれば、予想されたアルミニウム金属成分よりも高い回収率でアルミニウムが回収された。   According to this example, aluminum was recovered at a higher recovery rate than the expected aluminum metal component.

次に、アルミニウム合金のインゴットとアルミニウムの鋳造時に出たドロスを、本発明の方法にと用具を用いて各々溶融した。   Next, the aluminum alloy ingot and the dross produced during the casting of aluminum were respectively melted using the method of the present invention and tools.

材料を加熱し、二酸化チタンを加えると、ドロスは全部粉状になり、炉内が800℃程度になった。これに塩化マグネシウムの粉を振りかけ、ドロスから、アルミニウム金属の溶湯が得られ、アルミニウムを回収することができ、引っ張り試験片を作成した。以上の結果を表1に示す。アルミニウムインゴットを溶融して得られた試験片の結果も合わせて示す。

Figure 0005066018
When the material was heated and titanium dioxide was added, all the dross became powdery, and the inside of the furnace became about 800 ° C. Magnesium chloride powder was sprinkled on this, and a molten aluminum metal was obtained from the dross, and aluminum could be recovered, and a tensile test piece was created. The results are shown in Table 1. The result of the test piece obtained by melting the aluminum ingot is also shown.
Figure 0005066018

ここで、引っ張り強さの砂型鋳物の標準値は、147N/mmであり、この実施例のドロスから製造したアルミニウム試験片の性能の良さが分かった。 Here, the standard value of the sand mold casting of tensile strength was 147 N / mm 2 , and it was found that the aluminum test piece manufactured from the dross of this example had good performance.

次に、他のアルミニウム合金のインゴットとアルミニウム鋳造時に出たドロスを、本発明の方法と用具を用いて各々溶融した。   Next, other aluminum alloy ingots and dross produced during aluminum casting were each melted using the method and tool of the present invention.

上記と同様に材料を加熱し、二酸化チタンコーティングされた用具を用いてアルミニウム金属の溶融を行った。また、アルミドロスからアルミニウムを回収することができ、試験片を作成した。以上の結果を表2に示す。アルミニウムインゴットを従来装置により溶融して得られた試験片の結果も合わせて示す。

Figure 0005066018
The material was heated as above and the aluminum metal was melted using a tool coated with titanium dioxide. Moreover, aluminum can be collect | recovered from aluminum dross and the test piece was created. The results are shown in Table 2. The result of a test piece obtained by melting an aluminum ingot with a conventional apparatus is also shown.
Figure 0005066018

以上の結果から、二酸化チタンの粉を振りかけない場合でも高品質のアルミニウム鋳造製品が得られることが分かった。   From the above results, it was found that a high-quality aluminum cast product can be obtained even when the titanium dioxide powder is not sprinkled.

鋳造に用いる坩堝の斜視図である。It is a perspective view of a crucible used for casting. 坩堝と攪拌棒の断面図である。It is sectional drawing of a crucible and a stirring rod. 酸素を遮断した鋳造方法を示す概略断面図である。It is a schematic sectional drawing which shows the casting method which interrupted | blocked oxygen . この発明の実施形態の鋳造方法を示す概略断面図である。It is a schematic sectional drawing which shows the casting method of embodiment of this invention.

10 坩堝
10a,12a 二酸化チタン層
12 攪拌棒
14 溶解炉
10 Crucible 10a, 12a Titanium dioxide layer 12 Stirring rod 14 Melting furnace

Claims (1)

アルミニウムの鋳造時に発生するドロスを坩堝に入れ、前記坩堝内に入れられた前記ドロスに二酸化チタン粉末と炭素粉末をふりかけて、前記坩堝内の前記ドロスを前記アルミニウムの溶融温度に加熱して、前記アルミニウムと金属酸化物粉末を分離させて前記アルミニウムの溶湯を造ることを特徴とする鋳造方法。 Put dross generated during the casting of the aluminum crucible, sprinkle titanium powder and carbon powder dioxide to the dross that has been placed in the crucible, and heating the dross in the crucible to the melting temperature of the aluminum, the A casting method characterized in that aluminum and metal oxide powder are separated to form a molten aluminum .
JP2008177032A 2008-07-07 2008-07-07 Casting method Active JP5066018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177032A JP5066018B2 (en) 2008-07-07 2008-07-07 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177032A JP5066018B2 (en) 2008-07-07 2008-07-07 Casting method

Publications (2)

Publication Number Publication Date
JP2010013722A JP2010013722A (en) 2010-01-21
JP5066018B2 true JP5066018B2 (en) 2012-11-07

Family

ID=41700083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177032A Active JP5066018B2 (en) 2008-07-07 2008-07-07 Casting method

Country Status (1)

Country Link
JP (1) JP5066018B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912154B (en) * 2012-11-02 2014-11-26 南阳市汇森精密仪器铸造有限公司 Melting process for increasing conductivity of red copper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030131A (en) * 1996-07-19 1998-02-03 Mitsui Mining & Smelting Co Ltd Method for reducing impurity in misch metal as well as its alloy
JP2002018553A (en) * 2000-05-01 2002-01-22 Yasuo Odera Casting method and casting apparatus
JP2003095738A (en) * 2001-09-27 2003-04-03 Itochu Ceratech Corp Titania or alumina-titania clinker, and refractory obtained by using the clinker

Also Published As

Publication number Publication date
JP2010013722A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP6698229B2 (en) Method for producing PGM-rich alloy
TWI614349B (en) Process for the production of a pgm-enriched alloy
JP3668081B2 (en) Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
JP5066018B2 (en) Casting method
RU2683176C1 (en) Method of obtaining silumin
US20220154306A1 (en) Method for producing a pgm collector alloy
JP2009114532A (en) Manufacturing method of magnesium alloy material
JP3235670B2 (en) Dissolution method of aluminum and aluminum alloy
KR101147648B1 (en) Magnesium alloy and manufacturing method thereof
JPS6158532B2 (en)
JP4652537B2 (en) Method for melting titanium or titanium alloy scrap
KR100566895B1 (en) Method for removing impurities in copper alloy melt
JP3766363B2 (en) Method for refining molten aluminum alloy
RU2237736C2 (en) Method of removing bismuth from molten lead by adding calcium/magnesium alloys
JP2004277776A (en) Method of refining aluminum alloy molten metal and flux for refining aluminum alloy molten metal
RU2340694C2 (en) Method for aluminathermic receiving of carbon-bearing ligature for alloying of titanium alloy
JP3463343B2 (en) Manufacturing method of aluminum
JP2000309832A (en) Method for recovering aluminum component from molten aluminum slag
JP2004027287A (en) Method of recycling magnesium alloy
RU2068017C1 (en) Method of refining aluminium from sodium and calcium
KR20200027664A (en) Mg-Al Alloy Cast Method
RU2005127302A (en) METHOD FOR PRODUCING ALLOYS BARS ON THE BASIS OF REFROOMING METALS VACUUM ARC SURFACE MELT
JP2002018553A (en) Casting method and casting apparatus
JP2004269954A (en) Method for manufacturing titanium-zinc mother alloy
JP2002356723A (en) Method for dissolving and dehydrogenating copper scrap alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5066018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250