RU2068017C1 - Method of refining aluminium from sodium and calcium - Google Patents

Method of refining aluminium from sodium and calcium Download PDF

Info

Publication number
RU2068017C1
RU2068017C1 RU94005991A RU94005991A RU2068017C1 RU 2068017 C1 RU2068017 C1 RU 2068017C1 RU 94005991 A RU94005991 A RU 94005991A RU 94005991 A RU94005991 A RU 94005991A RU 2068017 C1 RU2068017 C1 RU 2068017C1
Authority
RU
Russia
Prior art keywords
refining
flux
aluminum
calcium
sodium
Prior art date
Application number
RU94005991A
Other languages
Russian (ru)
Other versions
RU94005991A (en
Inventor
В.А. Дегтярь
В.П. Кадричев
В.В. Кадричев
М.С. Колесов
А.Ф. Пинаев
С.В. Волков
С.Г. Стародубов
Original Assignee
Акционерное общество "Новокузнецкий алюминиевый завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Новокузнецкий алюминиевый завод" filed Critical Акционерное общество "Новокузнецкий алюминиевый завод"
Priority to RU94005991A priority Critical patent/RU2068017C1/en
Publication of RU94005991A publication Critical patent/RU94005991A/en
Application granted granted Critical
Publication of RU2068017C1 publication Critical patent/RU2068017C1/en

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

FIELD: nonferrous metal engineering. SUBSTANCE: refinement of aluminium and its alloys from sodium and calcium is achieved by melting aluminium, eliminating dross, applying on the melt surface sodium chloride and aluminium fluoride (0.85-0.9 to 1 by weight) flux followed by agitation, ageing, dross elimination, and pouring out of aluminium. The process is carried out at the temperature 710-740 C. EFFECT: increased degree of refinement, shortened time of the process, reduced hygroscopicity and volatility of the flux. 1 tbl

Description

Изобретение относится к металлургии цветных металлов и может быть использовано для рафинирования алюминия и его сплавов от натрия и кальция. The invention relates to the metallurgy of non-ferrous metals and can be used for refining aluminum and its alloys from sodium and calcium.

Известны следующие методы рафинирования: термическое выстаивание алюминия [1] вакуумирование [2] продувка газами [3] фильтрация [4] флюсовое рафинирование [4]
Наиболее близким к заявляемому способу по технической сущности является способ флюсового рафинирования, в частности рафинирование флюсом на основе карналлита (MgCl2•KCl) с добавкой фтористого алюминия (AlF3), принимаемый за базовый вариант [4, стр.59]
Недостатки базового способа: недостаточно высокая степень рафинирования; длительность процесса рафинирования; гигроскопичность флюса, что приводит к гидролизу хлорида магния с образованием хлористого водорода, выделяющегося в атмосферу на рабочем месте, а также к образованию оксида магния, осаждающегося на границе солевого и металлического расплавов, поэтому отрицательно влияет на процесс рафинирования; высокая летучесть флюса, обусловливающая увеличение содержания вредностей на рабочем месте.
The following refining methods are known: thermal aging of aluminum [1] evacuation [2] gas purge [3] filtration [4] flux refining [4]
Closest to the claimed method in technical essence is the method of flux refining, in particular flux refining based on carnallite (MgCl 2 • KCl) with the addition of aluminum fluoride (AlF 3 ), taken as the basic version [4, p. 59]
The disadvantages of the basic method: insufficiently high degree of refining; the duration of the refining process; hygroscopicity of the flux, which leads to the hydrolysis of magnesium chloride with the formation of hydrogen chloride released into the atmosphere at the workplace, as well as to the formation of magnesium oxide deposited at the boundary of salt and metal melts, therefore, negatively affects the refining process; high volatility of flux, causing an increase in the content of harmful substances in the workplace.

Целью изобретения является увеличение степени рафинирования, сокращение времени рафинирования, снижение гигроскопичности и летучести флюса. The aim of the invention is to increase the degree of refining, reducing the time of refining, reducing the hygroscopicity and volatility of the flux.

Поставленная цель достигается за счет использования флюса, содержащего хлорид калия и фторидный алюминий, при следующих соотношениях по массе (0,85-0,95):1. This goal is achieved through the use of a flux containing potassium chloride and aluminum fluoride, with the following mass ratios (0.85-0.95): 1.

Сущность изобретения: экзотермическая реакция взаимодействия фтористого алюминия с натрием и кальцием, в результате чего натрий и кальций переходят в солевую фазу. По термодинамическим расчетам реагентом на натрий и кальций (при температурах рафинирования 710-740oC) является фтористый алюминий, хлорид калия при температурах рафинирования не взаимодействует с натрием и кальцием, но применяется для снижения температуры плавления флюса.The inventive exothermic reaction of the interaction of aluminum fluoride with sodium and calcium, with the result that sodium and calcium are transferred to the salt phase. According to thermodynamic calculations, the reagent for sodium and calcium (at refining temperatures of 710-740 o C) is aluminum fluoride, potassium chloride at refining temperatures does not interact with sodium and calcium, but is used to reduce the melting point of the flux.

Повышение степени рафинирования достигается благодаря более энергичному взаимодействию фтористого алюминия (предлагаемый вариант) с натрием и кальцием по сравнению с карналлитом (базовый вариант). An increase in the degree of refining is achieved due to a more vigorous interaction of aluminum fluoride (the proposed option) with sodium and calcium compared with carnallite (the basic version).

Образующийся при гидролизе карналлита (базовый вариант) оксид магния располагается на границе раздела фаз металл соль и препятствуют взаимодействию рафинирующего реагента с примесями. В предлагаемом варианте оксидная пленка на границе металл соль отсутствует, что значительно упрощает доставку рафинирующего реагента к примеси и сокращает время рафинирования. Magnesium oxide formed during the hydrolysis of carnallite (basic version) is located at the metal-salt phase boundary and prevents the interaction of the refining reagent with impurities. In the proposed embodiment, there is no oxide film at the metal-salt interface, which greatly simplifies the delivery of the refining reagent to the impurity and reduces the refining time.

Применение флюса на основе хлорида калия (КCl) по сравнению с флюсом на основе карналлита (MgCl2•KCl) уменьшает склонность к испарению и снижает гигроскопичность флюса [4] так как уровень гигроскопичности флюсов на основе хлоридов примерно в 10 раз ниже по сравнению с флюсами на основе карналлита (кроме того, добавка фтористого алюминия понижает гигроскопичность хлорида калия). Флюсы на основе хлоридов (NaCl, KCl) имеют склонность к испарению (летучесть) в 10 раз меньшую, чем флюсы на основе карналлита [4, стр.137]
Предлагается использовать флюс состава (по массе) KCl:AlF3=(0,85-0,95): 1. Меньшее количество КСl применять нецелесообразно, поскольку увеличивается летучесть флюса (в основном фтористого алюминия), что приводит к снижению степени рафинирования и увеличению времени рафинирования. Большее количество КСl применять также нецелесообразно, так как в этом случае увеличивается температура плавления флюса и при температурах рафинирования в солевом расплаве появляются твердые агрегаты (комки). Переход части флюса в твердую фазу снижает степень рафинирования и увеличивает продолжительность процесса.
The use of potassium chloride (KCl) -based flux compared to carnallite-based flux (MgCl 2 • KCl) reduces the tendency to evaporate and decreases the flux hygroscopicity [4] since the level of hygroscopicity of chloride-based fluxes is about 10 times lower compared to fluxes based on carnallite (in addition, the addition of aluminum fluoride reduces the hygroscopicity of potassium chloride). Chloride-based fluxes (NaCl, KCl) have a tendency to evaporate (volatility) 10 times less than carnallite-based fluxes [4, p.137]
It is proposed to use a flux of the composition (by weight) KCl: AlF 3 = (0.85-0.95): 1. A smaller amount of KCl is impractical to use, since the volatility of the flux (mainly aluminum fluoride) increases, which leads to a decrease in the degree of refining and an increase in refining time. It is also impractical to use a larger amount of KCl, since in this case the melting temperature of the flux increases and solid aggregates (lumps) appear in the salt melt at refining temperatures. The transition of part of the flux to the solid phase reduces the degree of refining and increases the duration of the process.

Обоснование температурного интервала процесса. Выбранный температурный интервал рафинирования (710-740oС) незначительно превышает температуру плавления флюса. При проведении процесса ниже 710oС наступает окомкование флюса. При этом уменьшается поверхность контакта флюса с металлическим расплавом, что снижает степень рафинирования и увеличивает продолжительность процесса. При температурах выше 740oС резко увеличиваются потери фтористого алюминия в газовую фазу, что также снижает степень рафинирования и увеличивает продолжительность процесса.Justification of the temperature range of the process. The selected refining temperature range (710-740 o C) slightly exceeds the melting temperature of the flux. When carrying out the process below 710 o With comes the pelletization of flux. This reduces the contact surface of the flux with the metal melt, which reduces the degree of refining and increases the duration of the process. At temperatures above 740 o With, the losses of aluminum fluoride in the gas phase sharply increase, which also reduces the degree of refining and increases the duration of the process.

Апробацию способа проводили в промышленных условиях. Рафинирование осуществлялось в литейных ковшах емкостью 5 тонн алюминия. В ковш заливали жидкий алюминий марки А7 или сплав марки АК120Ч (предварительно приготовленный в печи ИАТ-6), снимали шлак, при температуре 740oС на поверхность алюминия наносили флюс, после расплавления флюса осуществляли перемешивание в течение 15 минут, выдерживали расплав и вновь снимали шлак.The method was tested under industrial conditions. Refining was carried out in casting ladles with a capacity of 5 tons of aluminum. Liquid A7 grade aluminum or AK120CH grade alloy (previously prepared in the IAT-6 furnace) was poured into the ladle, slag was removed, a flux was applied to the aluminum surface at a temperature of 740 o C, after the flux was melted, stirring was carried out for 15 minutes, the melt was kept and removed again slag.

Для сравнения приводили рафинирование по базовому варианту. Расход флюса во всех опытах (по базовому варианту и по предлагаемому) принят равным и составил 2 кг на тонну алюминия. For comparison, refining was performed according to the basic version. The flux consumption in all experiments (in the base case and in the proposed one) was assumed equal to 2 kg per ton of aluminum.

Результаты экспериментов приведены в таблице. The experimental results are shown in the table.

Анализ результатов рафинирования, приведенных в таблице, показывает, что при рафинировании по предлагаемому способу, по сравнению с базовым вариантом, увеличивается степень удаления натрия (на 6%) и кальция (на 3%) из алюминия и сокращается время рафинирования. ТТТ1 Analysis of the refining results shown in the table shows that when refining according to the proposed method, in comparison with the base case, the degree of removal of sodium (6%) and calcium (3%) from aluminum increases and the refining time is reduced. TTT1

Claims (1)

Способ рафинирования алюминия от натрия и кальция, включающий расплавление алюминия, снятие с его поверхности шлака, нанесение на поверхность алюминия флюса, содержащего хлорид калия и фторид алюминия, расплавление и перемешивание флюса, снятие шлака и разливку алюминия, отличающийся тем, что хлорид калия и фторид алюминия используют в массовом соотношении КСl AlF3 (0,85 0,95) 1.A method of refining aluminum from sodium and calcium, including melting aluminum, removing slag from its surface, applying a flux containing potassium chloride and aluminum fluoride to the aluminum surface, melting and mixing the flux, removing slag and casting aluminum, characterized in that the potassium chloride and fluoride aluminum is used in a mass ratio of KCl AlF 3 (0.85 0.95) 1.
RU94005991A 1994-02-21 1994-02-21 Method of refining aluminium from sodium and calcium RU2068017C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94005991A RU2068017C1 (en) 1994-02-21 1994-02-21 Method of refining aluminium from sodium and calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94005991A RU2068017C1 (en) 1994-02-21 1994-02-21 Method of refining aluminium from sodium and calcium

Publications (2)

Publication Number Publication Date
RU94005991A RU94005991A (en) 1995-10-20
RU2068017C1 true RU2068017C1 (en) 1996-10-20

Family

ID=20152739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94005991A RU2068017C1 (en) 1994-02-21 1994-02-21 Method of refining aluminium from sodium and calcium

Country Status (1)

Country Link
RU (1) RU2068017C1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Курдюмов А.В. и др. Флюсовая обработка и фильтрование алюминиевых расплавов. - М.: Металлургия, 1980, с. 59. *

Similar Documents

Publication Publication Date Title
Utigard The properties and uses of fluxes in molten aluminum processing
US4099965A (en) Method of using MgCl2 -KCl flux for purification of an aluminum alloy preparation
RU2068017C1 (en) Method of refining aluminium from sodium and calcium
RU2112065C1 (en) Method of refining of aluminum and aluminum-base alloys
US2760859A (en) Metallurgical flux compositions
RU2237736C2 (en) Method of removing bismuth from molten lead by adding calcium/magnesium alloys
RU2184789C1 (en) Method of preparing magnesium alloy for shaped castings
RU2002134993A (en) RECYCLING METHOD
Gallo et al. Aluminum fluxes and fluxing practice
SU897876A1 (en) Covering refining flux for copper and its alloys
US2262106A (en) Flux for use in the treatment of light metal
JP5066018B2 (en) Casting method
RU2772055C1 (en) Method for refining hard zinc from aluminium impurities
RU2113527C1 (en) Method of refining aluminium and alloys thereof
RU2094514C1 (en) Method of modifying silumins
RU2230809C1 (en) Flux for melt, refining, inoculation of non-ferrous metals amd alloys
RU2187559C1 (en) Flux-cored wire for pig iron desulfurization
SU1122721A1 (en) Flux for refining zinc alloys
RU2083699C1 (en) Method of reprocessing aluminium wastes
RU2190679C1 (en) Magnesium alloy ingot production method
SU1700079A1 (en) Aluminium alloy refining flux
SU1705384A1 (en) Method of treating aluminum alloys
RU2156816C1 (en) Method for remelting small-size waste and chips of non-ferrous metals
SU1447908A1 (en) Flux for treating aluminium-silicon alloys
RU2187560C1 (en) Flux-cored wire for pig iron desulfurization