JP2002356723A - Method for dissolving and dehydrogenating copper scrap alloy - Google Patents

Method for dissolving and dehydrogenating copper scrap alloy

Info

Publication number
JP2002356723A
JP2002356723A JP2001165152A JP2001165152A JP2002356723A JP 2002356723 A JP2002356723 A JP 2002356723A JP 2001165152 A JP2001165152 A JP 2001165152A JP 2001165152 A JP2001165152 A JP 2001165152A JP 2002356723 A JP2002356723 A JP 2002356723A
Authority
JP
Japan
Prior art keywords
molten metal
copper alloy
scrap
melting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001165152A
Other languages
Japanese (ja)
Inventor
Kiyoaki Nishikawa
清明 西川
Toru Saito
徹 齊藤
Hiroyuki Nishida
博之 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001165152A priority Critical patent/JP2002356723A/en
Publication of JP2002356723A publication Critical patent/JP2002356723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for dissolving a copper scrap alloy by which, on dissolution of a copper scrap alloy, hydrogen in a molten metal can rapidly be removed as possible. SOLUTION: In the copper scrap alloy adhered with emulsion, rolling oil, or lubricating oil, a metallic reducing agent such as Mg, Si, Zr, Ti and Al is contained by >=20 wt.%. This alloy is subjected to reducing dissolution and then, the surface of the molten metal is coated with charcoal only for preventing reoxidation. Next, bubbling by an inert gas such as gaseous Ar is performed to control the concentration of hydrogen to <=3 ppm, so that casting defects such as splitting and blistering are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は屑銅合金の溶解方法
に関し、更に詳しくは屑銅合金の溶解に際して、溶湯中
の水素を可及的速やかに除去する事が可能な屑銅合金の
溶解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting a scrap copper alloy, and more particularly, to a method for melting a scrap copper alloy capable of removing hydrogen in a molten metal as quickly as possible when melting the scrap copper alloy. It is about.

【0002】[0002]

【従来の技術】銅合金は優れた伝熱性や導電性を有して
いると共に、耐食性や加工性においても非常に優れたも
のであり、電気・電子分野や熱交換器分野をはじめてと
して多分野に亘って広く活用されている。しかし、銅は
鉄鋼材料に比べて原料鉱石の埋蔵量が少なく高価である
ところから、資源保護の観点からもスクラップの回収再
利用が重要な課題となっている。特に近年電気・電子用
銅合金として活性な金属元素が添加されている高機能材
料が多量に使用されるようになってきたが、これら高機
能銅合金においてもスクラップの回収再利用は避けられ
ない課題である。
2. Description of the Related Art Copper alloys have excellent heat conductivity and conductivity as well as very good corrosion resistance and workability. Widely used. However, copper has low reserves of raw material ores compared to steel materials and is expensive, and therefore, from the viewpoint of resource protection, the recovery and reuse of scrap is an important issue. Particularly in recent years, high-performance materials to which active metal elements have been added as copper alloys for electric and electronic use have come to be used in large quantities, but even in these high-performance copper alloys, it is inevitable to collect and reuse scrap. It is an issue.

【0003】しかしながら、一般的にその高機能銅合金
を製造する際に発生するスクラップについてはエマルジ
ョンや圧延油が多量に付着しており、またそれら銅合金
が種々の電気・電子部品に加工する際に発生するスクラ
ップには潤滑油等が多量に付着している。これらエマル
ジョンや圧延油、潤滑油が多量に付着しているスクラッ
プをそのまま再溶解する事は出来ず、もし、これらのス
クラップを溶解原料として使用する場合には、溶解炉の
総溶湯量の5wt%以下にしなければ製品に対して重大
な欠陥をもたらしていた。
[0003] However, a large amount of emulsion or rolling oil is attached to scraps generally produced during the production of such high-performance copper alloys, and these copper alloys are used when processing into various electric and electronic parts. A large amount of lubricating oil and the like adheres to the scrap generated in the above. It is not possible to re-dissolve these scraps with a large amount of emulsion, rolling oil, and lubricating oil as they are. If these scraps are used as the raw material for melting, 5 wt% of the total molten metal in the melting furnace is used. Failure to do so would result in significant defects to the product.

【0004】[0004]

【発明が解決しようとする課題】ところで、銅合金製品
の品質を高めるためには、原料溶製段階で不純介在物を
極力少なくすることが必要であるが、これら不純介在物
は酸化物系介在物である。特に活性な金属元素を添加す
る高機能銅合金の溶解では、溶湯中の酸素濃度が高い場
合には添加元素が酸化して介在物となるため事前に溶湯
の脱酸即ち還元溶解が不可欠である。
In order to improve the quality of copper alloy products, it is necessary to minimize impurity inclusions in the raw material melting stage. Things. In particular, in the dissolution of a high-performance copper alloy to which an active metal element is added, when the oxygen concentration in the molten metal is high, the added element is oxidized to become inclusions, so deoxidation of the molten metal, that is, reduction melting is indispensable in advance. .

【0005】この還元溶解は溶湯に対して固体還元剤と
してMg、Si、Zr、Ti、Alや木炭等を添加する
方法であり、これによって溶湯中の酸素濃度を下げて溶
湯を清浄にするものであるが、この還元溶解の脱酸の際
に生成する酸化物の溶湯中への懸濁も介在物が銅合金製
品中に残留する要因の一つである。
[0005] This reduction dissolution is a method in which Mg, Si, Zr, Ti, Al, charcoal and the like are added to the molten metal as a solid reducing agent, whereby the oxygen concentration in the molten metal is reduced to clean the molten metal. However, suspension of oxides generated during the deoxidation of the reduction dissolution in the molten metal is also one of the factors that cause inclusions to remain in the copper alloy product.

【0006】高機能銅合金には活性な金属が添加元素と
して使用されており、本発明者はこれら高機能銅合金の
スクラップを溶解原料として多量に使用した場合、溶落
直後に溶湯中の酸素濃度はかなり低くすることが出来、
上述の還元溶解を省略できる事を発明した。
An active metal is used as an additive element in a high-performance copper alloy, and the inventor of the present invention has found that when a large amount of scrap of such a high-performance copper alloy is used as a melting raw material, the oxygen in the molten metal immediately after melting is dropped. The concentration can be quite low,
The inventors invented that the above-mentioned reduction dissolution can be omitted.

【0007】しかしながら、原料として上述のエマルジ
ョン、圧延油や潤滑油が多量に付着したスクラップを使
用した場合、溶解後の溶湯中の水素濃度が高くなってし
まうという問題点がある。銅合金製品に認められる欠陥
の内、ピンホールやブローホールさらにはフクレ等のガ
ス系欠陥の主原因は水素と考えられており、これら欠陥
の発生を避けるためには溶湯中の水素濃度を低くする必
要がある。
However, when the above-mentioned emulsion, rolling oil or scrap containing a large amount of lubricating oil is used as a raw material, there is a problem that the hydrogen concentration in the molten metal after melting increases. Of the defects found in copper alloy products, hydrogen is considered to be the main cause of gas-related defects such as pinholes, blowholes, and blisters.To avoid these defects, lower the hydrogen concentration in the molten metal. There is a need to.

【0008】本発明は上記に説明した従来における屑銅
合金の溶解に係わる問題点に鑑み、本発明者が鋭意研究
を行い、検討を重ねた結果、比較的簡単な手段により屑
銅合金を多量に使用する方法を開発したのである。
In view of the above-mentioned problems relating to the dissolution of conventional copper alloys, the present inventors have conducted intensive studies and conducted extensive studies. As a result, a large amount of copper alloys was produced by relatively simple means. We developed a method to use it.

【0009】即ち本発明は、エマルジョンや圧延油、潤
滑油等の付着した屑銅合金であって、Mg、Si、Z
r、Ti、Al等の金属状還元剤を含有した屑銅合金を
20wt%以上含有させ還元溶解し、溶解後溶湯表面に
再酸化防止のみの為木炭被覆を行い、次いで、Arガス
等の不活性ガスによるバブリングを行い、水素濃度を3
ppm以下とすることでソゲ、フクレ等の鋳造欠陥を防
止する屑銅合金の脱水素法を提供する。
That is, the present invention relates to a scrap copper alloy to which an emulsion, a rolling oil, a lubricating oil, or the like has adhered, wherein Mg, Si, Z
20% by weight or more of scrap copper alloy containing a metallic reducing agent such as r, Ti, Al, etc., is reduced and melted, and after melting, the surface of the molten metal is coated with charcoal only to prevent re-oxidation. Bubbling with active gas is performed to reduce the hydrogen concentration to 3
Provided is a method for dehydrogenating scrap copper alloy, which prevents casting defects such as scabs and blisters by controlling the content to less than ppm.

【0010】請求項2に記載の発明は、上記の屑銅合金
の脱水素法において、前記屑銅合金が、エマルジョンや
圧延油、潤滑油等の付着したC7025合金である屑銅
合金の脱水素法である。
According to a second aspect of the present invention, in the method for dehydrogenating scrap copper alloy, the scrap copper alloy is a C7025 alloy to which an emulsion, rolling oil, lubricating oil or the like is attached. Is the law.

【0011】本発明に係わる屑銅合金の溶解方法につい
て、以下に詳細に説明する。活性金属元素であるMg、
Si、Zr、Ti、Al等を含む屑銅合金を使わず純銅
糸屑100wt%で溶解した場合には、溶湯内の酸素濃
度は2000ppm前後まで上昇し、この溶湯中の酸素
濃度を下げるために還元溶解が不可欠である。因みに最
も多用される木炭添加では添加後90分を経過しても酸
素濃度は1000ppm程度である。このため、固体還
元剤であるMg、Si、Zr、Ti、Al等の添加は避
けられない。これらの添加によって溶湯中の酸素濃度は
その後の合金成分添加が許容される50ppm以下まで
低下するが、その還元溶解中に生成される酸化物が溶湯
内に懸濁し、そのまま鋳造されることによって製品に対
して酸化物系介在物の形で残留し、その後の加工工程で
発生するソゲ等の表面欠陥の原因となる。
The method for dissolving scrap copper alloy according to the present invention will be described in detail below. Active metal element Mg,
In the case where pure copper yarn scrap is melted at 100 wt% without using scrap copper alloy containing Si, Zr, Ti, Al, etc., the oxygen concentration in the molten metal increases to about 2000 ppm, and in order to lower the oxygen concentration in the molten metal, Reductive dissolution is essential. By the way, in the most frequently used charcoal addition, even after 90 minutes from the addition, the oxygen concentration is about 1000 ppm. For this reason, addition of solid reducing agents such as Mg, Si, Zr, Ti, and Al cannot be avoided. By these additions, the oxygen concentration in the molten metal is reduced to 50 ppm or less, where the subsequent addition of alloying components is allowed. However, the oxide generated during the reduction melting is suspended in the molten metal and cast as it is, so that the product However, it remains in the form of oxide-based inclusions, and causes surface defects such as soot and the like generated in the subsequent processing step.

【0012】これに対して、本発明に係わる屑銅合金の
溶解方法は、活性な金属元素であるMg、Si、Zr、
Ti、Al等を含む屑銅合金を溶解炉の総湯量の20w
t%以上含まれるように配合して溶解することにより、
溶解中に xCu2O+yM→2xCu+MyOx(M:活性金
属元素) x +yM → MyOx の反応が起こり、溶落直後で溶湯内の酸素濃度が50p
pm以下まで低減しており、上述の還元溶解を全く必要
としない。その後、溶湯表面を大気から遮断する目的で
木炭等の被覆材により表面を保護する。
On the other hand, the method for dissolving scrap copper alloy according to the present invention uses the active metal elements Mg, Si, Zr,
The scrap copper alloy containing Ti, Al, etc. is melted to 20 w
By blending and dissolving so as to contain at least t%,
XCu2O in lysis + yM → 2xCu + MyOx: occur reaction (M active metal element) x O + yM → MyOx, the oxygen concentration in the melt immediately after burn through 50p
pm or less, and does not require the above-mentioned reductive dissolution at all. Thereafter, the surface is protected by a coating material such as charcoal in order to shield the surface of the molten metal from the atmosphere.

【0013】このような溶解方法で溶解した溶湯は、溶
湯中の水素濃度が高く6ppmという高濃度に達するも
のがある。本発明者らの調査ではこのような高濃度の水
素を含む場合、必ず後の加工工程の中でフクレと呼ばれ
る重大な表面欠陥を発生させてしまう。このフクレと溶
湯中の水素濃度との関係を調査すると、溶湯中の水素濃
度を3ppm以下に下げるとその後の加工工程でフクレ
が発生しないことが判った。
Some of the melts melted by such a melting method have a high hydrogen concentration in the melt and reach a high concentration of 6 ppm. According to the investigation by the present inventors, when such a high concentration of hydrogen is contained, a serious surface defect called blister is necessarily generated in a later processing step. Investigation of the relationship between this blister and the hydrogen concentration in the molten metal revealed that if the hydrogen concentration in the molten metal was reduced to 3 ppm or less, blisters would not be generated in the subsequent processing steps.

【0014】そこで、上述の溶解方法によって得られた
低酸素濃度の溶湯に対して不活性ガス例えばArガスを
吹き込み、溶湯中の水素を不活性ガス気泡中に分圧差を
利用して取り込み、この水素を取り込んだ不活性ガスを
大気中もしくは雰囲気中に放出して溶湯中の水素を低減
させるものである。
Therefore, an inert gas such as Ar gas is blown into the molten metal having a low oxygen concentration obtained by the above-described melting method, and hydrogen in the molten metal is taken into the inert gas bubbles by utilizing a partial pressure difference. This is to reduce the amount of hydrogen in the molten metal by releasing an inert gas containing hydrogen into the atmosphere or the atmosphere.

【0015】本発明の溶解方法により低酸素濃度の溶湯
を得て還元溶解を省略し、その後の合金成分添加を容易
にし、更に後工程におけるフクレやソゲと呼ばれる表面
欠陥を防止する事が出来る。
According to the melting method of the present invention, it is possible to obtain a molten metal having a low oxygen concentration, omit the reductive melting, facilitate the subsequent addition of alloy components, and prevent surface defects such as blisters and scabs in the subsequent steps.

【0016】[0016]

【実施例1】エマルジョンや圧延油、潤滑油が多量に付
着した活性金属元素を含むスクラップのみを原料に使用
し、溶湯中ガス濃度を調べた。溶落後、Arガス吹き込
みによって脱水素を行った。 [手順] 原料(10Ton)→坩堝炉溶解(1200±30℃)
→ガス分析用サンプル採取→木炭添加(40kg)→所
定時間Arガス吹き込み→成分調整(C7025)→ガ
ス分析用サンプル採取→鋳造→製品厚まで圧延→表面検
査 [Ar吹き込み条件] Ar流量 20000Nl/hr
EXAMPLE 1 Only the scrap containing an active metal element to which a large amount of emulsion, rolling oil and lubricating oil adhered was used as a raw material, and the gas concentration in the molten metal was examined. After melting, dehydrogenation was performed by blowing Ar gas. [Procedure] Raw material (10 Ton) → melting in crucible furnace (1200 ± 30 ° C)
→ Sampling for gas analysis → Charcoal addition (40 kg) → Injection of Ar gas for a predetermined time → Component adjustment (C7025) → Sampling for gas analysis → Casting → Rolling to product thickness → Surface inspection [Ar injection conditions] Ar flow rate 20000Nl / hr

【0017】実施例1の調査結果を表1に示す。更に比
較例1、比較例2、の調査結果も合せて表1に示す。比
較例1の溶湯中の酸素濃度の経時変化を表2に示す。
Table 1 shows the results of the investigation in Example 1. Further, Table 1 also shows the investigation results of Comparative Example 1 and Comparative Example 2. Table 2 shows changes over time in the oxygen concentration in the molten metal of Comparative Example 1.

【表1】 (注)エマルジョンや圧延油、潤滑油が多量に付着した
活性金属元素を含むスクラップ。
[Table 1] (Note) Scraps containing active metal elements with a large amount of emulsion, rolling oil and lubricating oil attached.

【0018】No.4〜7の原料には何れもエマルジョ
ン、圧延油や潤滑油が多量に付着したスクラップを10
0wt%使用したため、溶落直後の溶湯中の酸素濃度は
50ppm以下であり、還元溶解は必要なかった。溶落
直後の溶湯中の水素濃度が何れも3ppmを超えていた
ため、脱水素処理が必要であった。No.4、No.5
では120分間、No.6、No.7では60分間のA
rガス吹き込みを行った。Ar吹き込み後、何れも溶湯
中の水素濃度は3ppmを下回っており、製品にフクレ
が発生しなかった。また、製品表面にソゲも発生しなか
った。
No. In all of the raw materials 4 to 7, emulsions, rolling oils and lubricating oils with a large amount of
Since 0 wt% was used, the oxygen concentration in the molten metal immediately after melting was 50 ppm or less, and no reductive dissolution was required. Since the hydrogen concentration in the molten metal immediately after the meltdown exceeded 3 ppm, dehydrogenation treatment was required. No. 4, no. 5
No. for 120 minutes. 6, no. 7 is A for 60 minutes
r gas was blown. After the Ar injection, the hydrogen concentration in the molten metal was less than 3 ppm, and no blisters were generated in the products. Also, no shavings were generated on the product surface.

【0019】[0019]

【比較例1】活性金属元素を含まず、エマルジョンや圧
延油、潤滑油が付着していない純銅糸屑を原料に使用
し、溶湯中ガス濃度を調べた。溶湯中の酸素濃度に関し
ては、還元溶解による経時変化を調べた。 [手順] 原料(10Ton)→坩堝炉溶解(1200±30℃)
→ガス分析用サンプル採取→木炭添加(40kg)→3
0分後ガス分析用サンプル採取→更に60分後ガス分析
用サンプル採取→活性金属添加→成分調整(C702
5)→ガス分析用サンプル採取→鋳造→製品厚まで圧延
→表面検査
Comparative Example 1 Pure copper yarn waste containing no active metal element and having no emulsion, rolling oil, or lubricating oil attached was used as a raw material, and the gas concentration in the molten metal was examined. With respect to the oxygen concentration in the molten metal, the change over time due to reduction and dissolution was examined. [Procedure] Raw material (10 Ton) → melting in crucible furnace (1200 ± 30 ° C)
→ Sampling for gas analysis → Charcoal addition (40kg) → 3
Sample collection for gas analysis after 0 minutes → Sample collection for gas analysis after 60 minutes → Addition of active metal → Component adjustment (C702
5) → sampling for gas analysis → casting → rolling to product thickness → surface inspection

【0020】No.1では純銅糸屑のみで溶解したた
め、溶落直後の溶湯中の酸素濃度は2000ppmを超
えており、溶湯中の酸素濃度を下げるため還元溶解が不
可欠であった。固体還元材として最も多用される木炭を
添加後90分を経過しても酸素濃度は1000ppmを
超えていた。その後、活性金属元素添加による還元溶解
を行ったため、鋳造直前の酸素濃度は4ppmまで低下
したが、製品表面に還元溶解によって生成した酸化物の
混濁に起因するソゲが発生していた。溶落直後の溶湯中
の水素濃度は3ppmを下回っており、脱水素処理を行
わなくても製品表面にフクレは発生しなかった。
No. In No. 1, since only pure copper waste was melted, the oxygen concentration in the molten metal immediately after the melting exceeded 2000 ppm, and reduction and dissolution were indispensable to lower the oxygen concentration in the molten metal. Even after 90 minutes from the addition of the charcoal most frequently used as a solid reducing agent, the oxygen concentration exceeded 1000 ppm. Thereafter, reduction and dissolution by addition of an active metal element were performed, so that the oxygen concentration immediately before casting was reduced to 4 ppm, but sodging was generated on the product surface due to turbidity of the oxide generated by the reduction and dissolution. The hydrogen concentration in the molten metal immediately after melting was lower than 3 ppm, and no blistering occurred on the product surface without performing the dehydrogenation treatment.

【0021】[0021]

【表2】比較例1 [Table 2] Comparative Example 1

【0022】[0022]

【比較例2】エマルジョンや圧延油、潤滑油が多量に付
着した活性金属元素を含むスクラップを原料の一部に使
用し、溶湯中ガス濃度を調べた。 [手順] 原料(10Ton)→坩堝炉溶解(1200±30℃)
→ガス分析用サンプル採取→木炭添加(40kg)→成
分調整(C7025)→ガス分析用サンプル採取→鋳造
→製品厚まで圧延→表面検査
Comparative Example 2 Scraps containing an active metal element to which a large amount of emulsion, rolling oil, and lubricating oil adhered were used as a part of raw materials, and the gas concentration in the molten metal was examined. [Procedure] Raw material (10 Ton) → melting in crucible furnace (1200 ± 30 ° C)
→ Sampling for gas analysis → Charcoal addition (40 kg) → Component adjustment (C7025) → Sampling for gas analysis → Casting → Rolling to product thickness → Surface inspection

【0023】No.2、No.3の原料には何れもエマ
ルジョン、圧延油や潤滑油が多量に付着したスクラップ
を溶解炉の総湯量の30wt%使用したため、溶落直後
の溶湯中の酸素濃度は50ppm以下であり、還元溶解
は必要なかった。溶落直後の溶湯中の水素濃度は何れも
3ppmを超えており、製品表面にソゲは発生しなかっ
たものの、フクレが発生していた。
No. 2, No. In all of the raw materials of No. 3, scrap containing a large amount of emulsion, rolling oil and lubricating oil was used in an amount of 30 wt% based on the total amount of molten metal in the melting furnace. I didn't need it. The hydrogen concentration in the molten metal immediately after the meltdown exceeded 3 ppm in all cases, and no swelling was generated on the product surface, but blisters were generated.

【0024】[0024]

【発明の効果】以上に述べたように、本発明では活性金
属元素を含むスクラップを原料に使用することで、 (1)溶解中に脱酸が完了するため、還元溶解が不要で
あり、その後の活性金属元素添加による酸化物の懸濁及
びそれに起因したソゲは発生しない。
As described above, according to the present invention, scrap containing an active metal element is used as a raw material. (1) Since deoxidation is completed during dissolution, reduction dissolution is unnecessary, and No suspension of oxides due to the addition of the active metal element and sodging caused by the suspension are not generated.

【0025】(2)また溶落後、不活性ガス吹き込みに
よって脱水素を行うことで製品表面にフクレが発生しな
い。 (3)本発明によって、製品にソゲ、フクレ等の鋳造欠
陥を発生させることなくエマルジョンや圧延油、潤滑油
が多量に付着したスクラップを制限なく使用することで
きる。
(2) After the melt-down, dehydrogenation is performed by blowing an inert gas to prevent blisters on the product surface. (3) According to the present invention, a scrap to which a large amount of emulsion, rolling oil, or lubricating oil has adhered can be used without limitation without causing casting defects such as shavings and blisters in the product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 博之 神奈川県高座郡寒川町倉見3番地 日鉱金 属株式会社倉見工場内 Fターム(参考) 4K001 AA09 BA22 EA03 EA04 HA01 HA02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Nishida 3rd Kurami, Samukawa-cho, Koza-gun, Kanagawa Prefecture F-term in Nippon Mining & Metals Co., Ltd. Kurami Factory 4K001 AA09 BA22 EA03 EA04 HA01 HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エマルジョンや圧延油、潤滑油等の付着し
た屑銅合金であって、Mg、Si、Zr、Ti、Al等
の金属状還元剤を含有した屑銅合金を20wt%以上含
有させ還元溶解し、溶解後溶湯表面に再酸化防止のみの
為木炭被覆を行い、次いで、Arガス等の不活性ガスに
よるバブリングを行い、水素濃度を3ppm以下とする
ことでソゲ、フクレ等の鋳造欠陥を防止することを特徴
とする屑銅合金の脱水素法。
1. A scrap copper alloy to which an emulsion, rolling oil, lubricating oil or the like has adhered, wherein a scrap copper alloy containing a metallic reducing agent such as Mg, Si, Zr, Ti, or Al is contained in an amount of 20 wt% or more. After reducing and dissolving, the surface of the molten metal is coated with charcoal only to prevent re-oxidation, and then bubbling with an inert gas such as Ar gas is performed to reduce the hydrogen concentration to 3 ppm or less to reduce casting defects such as soges and blisters. A dehydrogenation method for scrap copper alloys, characterized by preventing the occurrence of waste.
【請求項2】請求項1に記載の屑銅合金の脱水素法にお
いて、前記屑銅合金が、エマルジョンや圧延油、潤滑油
等の付着したC7025合金であることを特徴とする屑
銅合金の脱水素法。
2. The method for dehydrogenating scrap copper alloy according to claim 1, wherein said scrap copper alloy is a C7025 alloy to which an emulsion, rolling oil, lubricating oil or the like has adhered. Dehydrogenation method.
JP2001165152A 2001-05-31 2001-05-31 Method for dissolving and dehydrogenating copper scrap alloy Pending JP2002356723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165152A JP2002356723A (en) 2001-05-31 2001-05-31 Method for dissolving and dehydrogenating copper scrap alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165152A JP2002356723A (en) 2001-05-31 2001-05-31 Method for dissolving and dehydrogenating copper scrap alloy

Publications (1)

Publication Number Publication Date
JP2002356723A true JP2002356723A (en) 2002-12-13

Family

ID=19007860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165152A Pending JP2002356723A (en) 2001-05-31 2001-05-31 Method for dissolving and dehydrogenating copper scrap alloy

Country Status (1)

Country Link
JP (1) JP2002356723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179356A (en) * 2009-02-09 2010-08-19 Dowa Metaltech Kk Copper alloy casting method
CN111455196A (en) * 2020-03-09 2020-07-28 福建省长乐市华拓五金有限公司 Treatment method for chromium bronze scrap regeneration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179356A (en) * 2009-02-09 2010-08-19 Dowa Metaltech Kk Copper alloy casting method
CN111455196A (en) * 2020-03-09 2020-07-28 福建省长乐市华拓五金有限公司 Treatment method for chromium bronze scrap regeneration

Similar Documents

Publication Publication Date Title
Melford The influence of residual and trace elements on hot shortness and high temperature embrittlement
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JPH07118818A (en) Method for making magnetic permeability of hard-to-work co alloy low
JP5212581B1 (en) Method for producing high Si austenitic stainless steel
JP2002161308A (en) Production method for high strength, high fatigue resistant steel for use in structural application
JP2002356723A (en) Method for dissolving and dehydrogenating copper scrap alloy
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP4182429B2 (en) Method for producing Cr-Zr-Al based copper alloy wire material
JP2017160504A (en) SURFACE TREATMENT METHOD OF Ti-Al-BASED ALLOY
KR100566895B1 (en) Method for removing impurities in copper alloy melt
JP3473080B2 (en) Flux for treating Al or Al alloy molten metal
JP4034700B2 (en) Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel
JP2016047944A (en) Cu-Sn COEXISTENCE STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
JPH04329843A (en) Manufacture of high strength nickel alloy resisting against seawater corrosion
Bowyer The effects of impurities on the properties of OFP copper specified for the copper Iron Canister
JP2009078273A (en) Method for producing ingot by electroslag melting process
RU2087560C1 (en) Method of refining of copper alloys
JP5066018B2 (en) Casting method
JP6796220B1 (en) Fe-Ni-Cr-Mo-Cu alloy
JP4227478B2 (en) Low carbon steel slab manufacturing method
US1837432A (en) Purification of metals and alloys
JPH04120225A (en) Manufacture of ti-al series alloy
JPH06256904A (en) Hot rolled steel containing cu and sn
JP6288397B1 (en) Austenitic stainless steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309