JP5065600B2 - Coating structure - Google Patents

Coating structure Download PDF

Info

Publication number
JP5065600B2
JP5065600B2 JP2006022186A JP2006022186A JP5065600B2 JP 5065600 B2 JP5065600 B2 JP 5065600B2 JP 2006022186 A JP2006022186 A JP 2006022186A JP 2006022186 A JP2006022186 A JP 2006022186A JP 5065600 B2 JP5065600 B2 JP 5065600B2
Authority
JP
Japan
Prior art keywords
coating film
coating
photocatalyst
heat
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022186A
Other languages
Japanese (ja)
Other versions
JP2007203495A (en
Inventor
聡 北川
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Homes Co Ltd
KMEW Co Ltd
Original Assignee
Kubota Matsushitadenko Exterior Works Ltd
Panahome Corp
KMEW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Matsushitadenko Exterior Works Ltd, Panahome Corp, KMEW Co Ltd filed Critical Kubota Matsushitadenko Exterior Works Ltd
Priority to JP2006022186A priority Critical patent/JP5065600B2/en
Publication of JP2007203495A publication Critical patent/JP2007203495A/en
Application granted granted Critical
Publication of JP5065600B2 publication Critical patent/JP5065600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Description

本発明は、建築部材を始めとする各種基材に使用され、安定した遮熱性能を維持することにより基材の温度上昇を確実に抑制しうる塗膜構造に関する。   The present invention relates to a coating film structure that can be used for various base materials including building members and can reliably suppress a temperature rise of the base material by maintaining stable heat shielding performance.

太陽光線の約半分を占める赤外線を選択的・効果的に反射させる遮熱塗料は、屋根、外壁などに塗ることで屋内の温度の上昇を抑制でき、冷房の熱負荷を減じて省エネルギーに大きく寄与するため、ランニングコスト、及びCO2 排出削減に大きな効果があり、加えて塗膜自体の耐久性を向上させるメリットもある。そこで、工場、倉庫、学校、体育館を始めとして畜舎、鉄道車両など空調を必要とする構築物の屋根、壁などで広く使用され、一般住宅へも採用の巾を拡大している。更には、日射吸収率が高く蓄熱しやすいアスファルト舗装路面に遮熱塗料を塗布することにより、都市型災害として顕在化しているヒ一トアイランド現象を緩和する工法へも用途を広げている。 A thermal barrier coating that selectively and effectively reflects infrared rays, which occupy about half of the sun's rays, can be applied to the roof, outer walls, etc., to suppress the rise in indoor temperature, greatly reducing the heat load of the cooling and greatly contributing to energy saving. Therefore, it has a great effect on running cost and CO 2 emission reduction, and also has an advantage of improving the durability of the coating film itself. Therefore, it is widely used in the roofs and walls of buildings that require air conditioning such as factories, warehouses, schools, gymnasiums, livestock barns, railway cars, etc., and the range of adoption has been expanded to ordinary houses. Furthermore, the application has been expanded to a construction method that alleviates the heat island phenomenon that has become apparent as an urban disaster by applying a thermal barrier paint to the asphalt pavement surface that has high solar radiation absorption rate and is easy to store heat.

しかしこのような遮熱塗料は、屋根、外壁など屋外に露呈して用いられるため、塗膜表面に雨水或いは空気中のゴミ、埃が付着して汚れ易く、表面が汚れると反射率が落ちることから遮熱効果が低下する。特に都会地域では、自動車、工場から排出される硫黄酸化物、窒素酸化物などの浮遊微粒子によって、空気汚染が進んでいることから、遮熱塗膜表面の汚れが著しいため、時間経過とともに遮熱効果が低下するという問題がある。   However, since such a thermal barrier paint is exposed to the outdoors such as roofs and outer walls, it is easy to get dirty due to rainwater or dust in the air adhering to the surface of the coating film, and if the surface gets dirty, the reflectance will decrease. The heat shielding effect is reduced. In urban areas in particular, air pollution has progressed due to airborne particulate matter such as sulfur oxides and nitrogen oxides emitted from automobiles and factories. There is a problem that the effect is reduced.

そこで、酸化ケイ素に、水滴を水膜状に広げる機能(親水効果)があることに着目して、固形成分換算で酸化ケイ素化合物を8〜20重量%、アクリル樹脂エマルジョンなどのバインダー樹脂を4〜8重量%含む塗料を塗工した防汚層を熱反射塗料層の上に積層して、前記汚れを低減する提案がされている(例えば、特許文献1参照)。   Therefore, focusing on the fact that silicon oxide has a function (hydrophilic effect) for spreading water droplets in the form of a water film, the silicon oxide compound is 8 to 20% by weight in terms of solid components, and the binder resin such as an acrylic resin emulsion is 4 to 4%. A proposal has been made to reduce the dirt by laminating an antifouling layer coated with a paint containing 8% by weight on a heat reflecting paint layer (see, for example, Patent Document 1).

特開2004−155026号公報JP 2004-155026 A

前記酸化ケイ素は塗装後の初期段階では親水効果が有効に作用することから、防汚層によって汚れ付着を抑制する効果が認められる。しかしながら酸化ケイ素は時間経過とともにその親水効果が低下する傾向があり、またそのために汚れが付着すると親水効果が一層低減するという負のスパイラル効果が生じる結果、熱反射塗料層の断熱効果が漸減するという問題がある。   Since the silicon oxide has a hydrophilic effect effectively in the initial stage after coating, the antifouling layer has an effect of suppressing the adhesion of dirt. However, the hydrophilic effect of silicon oxide tends to decrease with time, and as a result, a negative spiral effect that the hydrophilic effect is further reduced when dirt is attached results in a gradual decrease in the heat insulation effect of the heat-reflective coating layer. There's a problem.

本発明は、基材表面に、太陽熱を反射して温度上昇を抑制しうる遮熱性塗膜と、防汚性及び親水性を有する光触媒塗膜とを積層することを基本とし、優れた遮熱効果を長く持続することのできる塗膜構造の提供を課題としている。   The present invention is based on laminating a thermal barrier coating film capable of suppressing the rise in temperature by reflecting solar heat on the surface of the substrate, and an excellent thermal barrier layer. It is an object to provide a coating film structure that can sustain the effect for a long time.

前記目的を達成するために、請求項1に係る発明では、基材を覆って形成されるとともに太陽熱を反射して温度上昇を抑制しうる遮熱性塗膜と、その上に積層されて表面層を形成し、防汚性及び親水性を有する光触媒塗膜とを含み、前記光触媒塗膜は、光触媒塗料を塗工して形成され、この光触媒塗料は、光触媒粒子、及びバインダーとして有機無機ハイブリッドポリマーを含み、前記遮熱性塗膜は、反射性に優れた白色顔料を含む白色塗材を塗工して形成する白色下塗膜と、該白色下塗膜に重ねて着色顔料を含む上塗料を塗工して形成する光透過率の高い上塗膜とを含み、前記白色下塗膜は、750nm〜2200nmの波長領域における光反射率が70%以上であり、前記上塗膜は、750nm〜2200nmの波長における光透過率が60%以上であるとともに、前記上塗膜の前記着色顔料は、白色、または明度8以上の淡彩色であることを特徴とする。
In order to achieve the above object, in the invention according to claim 1, a thermal barrier coating film that is formed so as to cover the base material and that can suppress the rise in temperature by reflecting solar heat, and a surface layer laminated on the thermal barrier coating film. A photocatalytic coating film having antifouling properties and hydrophilicity, wherein the photocatalytic coating film is formed by applying a photocatalytic coating material, and the photocatalytic coating material is an organic-inorganic hybrid polymer as a photocatalytic particle and a binder. The heat-shielding coating film comprises: a white lower coating film formed by applying a white coating material containing a white pigment having excellent reflectivity; and an upper coating film containing a color pigment superimposed on the white lower coating film. An upper coating film with high light transmittance formed by coating, the white lower coating film has a light reflectance of 70% or more in a wavelength region of 750 nm to 2200 nm, and the upper coating film has a thickness of 750 nm to The light transmittance at a wavelength of 2200 nm is With at least 0%, the colored pigment of the overcoat film, white, or wherein the lightness 8 or more is Tinted.

請求項2に係る発明では、前記光触媒塗膜は、暴露1ケ月経過時における静的水接触角が20°以下であり、また請求項3に係る発明において、前記光触媒塗膜は、膜厚が0.1〜10μmであることを特徴とする。   In the invention according to claim 2, the photocatalytic coating film has a static water contact angle of 20 ° or less at the time of exposure of one month, and in the invention according to claim 3, the photocatalytic coating film has a film thickness of It is 0.1-10 micrometers, It is characterized by the above-mentioned.

請求項4に係る発明においては、前記有機無機ハイブリッドポリマーは、一般式(1)RSi(OR1)3 (式中、Rは炭素数1〜8の有機基、R1は炭素数1〜5のアルキル基または炭素数1〜4のアシル基を示す)で表されるオルガノアルコキシシランの加水分解物またはその部分縮合物であるオルガノポリシロキサンを固形分換算で100重量部、有機溶媒を200〜4500重量部、シリル基含有ビニル系樹脂を20〜300重量部含むことを特徴とする。 In the invention according to claim 4, the organic-inorganic hybrid polymer has the general formula (1) RSi (OR1) 3 (wherein R is an organic group having 1 to 8 carbon atoms, R1 is an alkyl having 1 to 5 carbon atoms). Group or an acyl group having 1 to 4 carbon atoms), 100 parts by weight of the organopolysiloxane which is a hydrolyzate of organoalkoxysilane or a partial condensate thereof in terms of solid content, and 200 to 4500 weights of organic solvent. Part and 20 to 300 parts by weight of a silyl group-containing vinyl resin.

請求項5に係る発明では、前記遮熱性塗膜は、750〜2200nmの波長における光反射率が50%以上であり、請求項6に係る発明においては、前記遮熱性塗膜は、有機系バインダーを用いた遮熱性塗料を塗工して形成されるともに、遮熱性塗膜と光触媒塗膜との間に、無機系バリア塗膜が更に形成され、また請求項7に係る発明では、前記無機系バリア塗膜は、バインダーとして有機無機ハイブリッドポリマーを用いたバリア塗料を塗工して形成されることを特徴とする。   In the invention according to claim 5, the thermal barrier coating film has a light reflectance at a wavelength of 750 to 2200 nm of 50% or more. In the invention according to claim 6, the thermal barrier coating film is an organic binder. In addition, an inorganic barrier coating film is further formed between the thermal barrier coating film and the photocatalyst coating film. In the invention according to claim 7, the inorganic coating film is further formed. The system barrier coating film is formed by applying a barrier coating using an organic-inorganic hybrid polymer as a binder.

請求項1に係る発明においては、遮熱性塗膜により赤外線が反射され、加えて防汚性に優れた光触媒塗膜がその上を覆うため、遮熱性塗膜の有する赤外線反射効果がいつまでも低下することがなく、優れた遮熱効果を長く持続することができる。しかも、遮熱性塗膜は、750nm〜2200nmの波長領域における光反射率が70%以上の白色下塗膜3Aの上に、同波長領域においておける光透過率が60%以上の上塗膜3Bを積層して形成されるため、日射時において基材の温度上昇が抑制されて、高い断熱効果が得られる。また表面を覆う光触媒塗膜は、高い親水性を有することから、降雨時或いは霜などが降ると、表面に薄い水膜が形成されるため、これが遮熱効果を一層高める上、この水膜が蒸発する際に塗膜全面から蒸発潜熱を奪って冷却効果を生じることから、温度上昇を有効に抑制できる。しかも、光触媒塗膜は、有機無機ハイブリッドポリマーをバインダーとする光触媒塗料を塗工して形成されるため、無機ポリマーを使用する場合に比べ、光触媒塗膜に柔軟性が付加されて塗膜の耐久性が向上するとともに、柔らかい物性の有機基材に対しても適用が可能となる。 In the invention according to claim 1, since the infrared ray is reflected by the heat-shielding coating film, and in addition, the photocatalyst coating film excellent in antifouling property covers it, the infrared reflection effect of the heat-shielding coating film is reduced forever. And an excellent heat shielding effect can be maintained for a long time. Moreover, the heat-shielding coating film is obtained by forming the upper coating film 3B having a light transmittance of 60% or more in the same wavelength region on the white lower coating film 3A having a light reflectance of 70% or more in the wavelength region of 750 nm to 2200 nm. Since it is formed by laminating, the temperature rise of the base material is suppressed during solar radiation, and a high heat insulation effect is obtained. Moreover, since the photocatalyst coating film covering the surface has high hydrophilicity, a thin water film is formed on the surface when it rains or when frost falls, which further enhances the heat shielding effect. When evaporating, the latent heat of vaporization is removed from the entire surface of the coating film to produce a cooling effect, so that the temperature rise can be effectively suppressed. In addition, the photocatalytic coating is formed by applying a photocatalytic coating with an organic-inorganic hybrid polymer as a binder. Therefore, compared to the case of using an inorganic polymer, flexibility is added to the photocatalytic coating and durability of the coating is improved. As a result, it can be applied to an organic base material having soft physical properties.

請求項2に係る発明のように、光触媒塗膜の暴露1ケ月経過時における静的水接触角が20°以下であると、非常に優れた親水性を発揮して均一な水膜形成が得られることから、高い遮熱効果を持続でき、また請求項3に係る発明のように、膜厚が0.1〜10μmの光触媒塗膜を設けると、光触媒の酸化還元作用に基づく付着油分など汚染物質を分解するセルフクリーニング効果、或いは藻類の発生防止などの効果が安定して得られる。そしてこの効果によって、遮熱性塗膜が遮熱性能をフルに発揮するために必要充分な透光度が維持される。   As in the invention according to claim 2, when the static water contact angle after exposure of the photocatalyst coating is one month or less is 20 ° or less, a very excellent hydrophilicity is exhibited and uniform water film formation is obtained. Therefore, when a photocatalytic coating film having a film thickness of 0.1 to 10 μm is provided as in the invention according to claim 3, contamination such as adhering oil based on the oxidation-reduction action of the photocatalyst can be achieved. The self-cleaning effect of decomposing substances or the effect of preventing the generation of algae can be obtained stably. And by this effect, translucency required and sufficient in order for a heat-shielding coating film to fully exhibit heat-shielding performance is maintained.

請求項4に係る発明のように、オルガノポリシロキサンが固形分換算で100重量部に対して、有機溶媒を200〜4500重量部、シリル基含有ビニル系樹脂を20〜300重量部含む有機無機ハイブリッドポリマーをバインダーとして用いると、光触媒塗料が光触媒の酸化還元作用に侵されない安定性を維持しつつ、しかも柔らかい有機基板に対しても良好に追従しうる柔軟性を有するため、長期間に亘って変質のない優れた耐久性が得られる。   As in the invention according to claim 4, the organic-inorganic hybrid containing 200 to 4500 parts by weight of the organic solvent and 20 to 300 parts by weight of the silyl group-containing vinyl resin with respect to 100 parts by weight of the organopolysiloxane in terms of solid content When a polymer is used as a binder, the photocatalyst paint is flexible enough to follow a soft organic substrate while maintaining the stability that the photocatalyst is not affected by the redox action of the photocatalyst. Excellent durability without any problems.

請求項5に係る発明のように、750〜2200nmの波長における光反射率が50%以上遮熱性塗膜を用いると、高い熱反射率によって優れた断熱性能を発揮でき、請求項6に係る発明のように、有機系バインダーを用いた遮熱性塗膜と光触媒塗膜との間に、無機系バリア塗膜を形成すると、光触媒の酸化還元作用によって遮熱性塗膜が分解されることにより遮熱効果が低下するという不具合を防止でき、高い耐久性を得ることができる。   As in the invention according to claim 5, when a heat-shielding coating film having a light reflectance of 50% or more at a wavelength of 750 to 2200 nm is used, excellent heat insulation performance can be exhibited by a high heat reflectance, and the invention according to claim 6 When an inorganic barrier coating film is formed between a thermal barrier coating film using an organic binder and a photocatalyst coating film, the thermal barrier coating film is decomposed by the oxidation-reduction action of the photocatalyst. The problem that the effect is reduced can be prevented, and high durability can be obtained.

請求項7に係る発明のように、有機無機ハイブリッドポリマーを用いたバリア塗料を塗工して無機系バリア塗膜を形成すると、光触媒による遮熱性塗膜の分解を防止できるとともに、無機系バリア塗膜が柔軟性を有することから太陽光によって高温化する塗膜内部の熱応力が緩和され、耐久性を更に向上することができる。   When an inorganic barrier coating film is formed by applying a barrier coating using an organic-inorganic hybrid polymer as in the invention according to claim 7, it is possible to prevent the thermal barrier coating from being decomposed by the photocatalyst and to prevent the inorganic barrier coating. Since the film has flexibility, the thermal stress inside the coating film that is heated by sunlight is relieved, and the durability can be further improved.

以下、本発明の実施の一形態を、図示例とともに説明する。図1に示すように、塗膜構造1は、基材2を覆う遮熱性塗膜3と、その上に積層されて表面層を形成する光触媒塗膜4とを具える。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the coating film structure 1 includes a heat-shielding coating film 3 that covers a substrate 2 and a photocatalytic coating film 4 that is laminated thereon to form a surface layer.

前記基材2は、屋根、壁その他の建築構築物の外装部分を遮熱する場合には、これらを構成する金属、ガラス、コンクリート、プラスチック、木材などが含まれ、このほか自動車、車両、船舶、コンテナなどのシェルター、更にはヒートアイランド現象抑制の用途においてはアスファルト舗装路面が含まれる。   The base material 2 includes a metal, glass, concrete, plastic, wood, and the like constituting the roof, walls, and other exterior parts of the building structure. In addition, automobiles, vehicles, ships, Asphalt pavement surfaces are included in shelters such as containers, as well as heat island phenomena.

前記遮熱性塗膜3は、これら基材2の表面に積層され、太陽熱を反射することにより基材2の温度上昇を抑えることができる。本形態の遮熱性塗膜3は、図1に示すように、反射性に優れた白色顔料を含む白色塗材を塗工して形成する白色下塗膜3Aと、光透過率の高い上塗膜3Bとからなる二層構成をなしている。   The said heat-shielding coating film 3 is laminated | stacked on the surface of these base materials 2, and can suppress the temperature rise of the base material 2 by reflecting solar heat. As shown in FIG. 1, the heat-shielding coating film 3 of this embodiment includes a white undercoating film 3 </ b> A formed by applying a white coating material containing a white pigment having excellent reflectivity, and a top coating having a high light transmittance. A two-layer structure composed of the film 3B is formed.

前記白色塗料は、バインダー、白色顔料、及び溶媒を必須の構成成分とし、必要に応じて、体質顔料、各種添加剤を加配して得られる。   The white paint is obtained by using a binder, a white pigment, and a solvent as essential components, and adding extender pigments and various additives as necessary.

バインダーとしては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ポリビニル樹脂、フッ素樹脂及びそれらのシリコン変性樹脂の1種以上を主成分とし、必要に応じヘキサメチレンジイソシアネート又はそのアダクト物、イソホロンジイソシアネート又はそのアダクト物、水添キシリレンジイソシアネート又はそのアダクト物、水添ジシクロヘキシルメタンジイソシアネート又はそのアダクト物及びテトラメチルキシリレンジイソシアネート又はそのアダクト物の1種以上の組み合わせや、カルボキシル基及びアミノ基を有するアクリル樹脂を主成分とし、必要に応じグリシジル基を有する化合物との組み合わせることが好ましい。   As the binder, acrylic resin, polyester resin, alkyd resin, epoxy resin, polyvinyl resin, fluororesin and one or more of those silicon-modified resins as a main component, hexamethylene diisocyanate or its adduct, isophorone diisocyanate or The adduct, hydrogenated xylylene diisocyanate or adduct thereof, hydrogenated dicyclohexylmethane diisocyanate or adduct thereof and tetramethylxylylene diisocyanate or a combination of one or more adducts, and an acrylic resin having a carboxyl group and an amino group Is preferably combined with a compound having a glycidyl group as necessary.

溶媒は、メタノール、エタノール、プロパノール、ブタノールを含むアルコール類、キシレン、トルエンを含む炭化水素類、メチルエチルケトン、アセトンを含むケトン類等が用いられる。また必要に応じて、塩酸、硝酸、酢酸等の酸化合物が併用され、10〜50質量%濃度溶液として使用する。   As the solvent, methanol, ethanol, propanol, alcohols including butanol, xylene, hydrocarbons including toluene, methyl ethyl ketone, ketones including acetone, and the like are used. Moreover, acid compounds, such as hydrochloric acid, nitric acid, and an acetic acid, are used together as needed, and it uses as a 10-50 mass% concentration solution.

白色顔料としては、アルミナ、シリカを好適に採用でき、その配合量は、得られる白色下塗膜3A自体の750nm〜2200nmの波長領域における光反射率が、70%以上となるように決定される。なお太陽光の波長750〜2200nmの領域は、そこに含まれる赤外線が、紫外線、可視光線と異なり、熱エネルギーに変換される領域である。   As the white pigment, alumina and silica can be suitably employed, and the blending amount thereof is determined so that the light reflectance in the wavelength region of 750 nm to 2200 nm of the obtained white lower coating film 3A itself is 70% or more. . In addition, the area | region with the wavelength of 750-2200 nm of sunlight is an area | region where the infrared rays contained therein are converted into thermal energy, unlike ultraviolet rays and visible rays.

添加剤としては、チタニウムキレート化合物、アルミニウムキレート化合物、ジルコニウムキレート化合物などの硬化促進剤、分散剤、酸化防止剤、防かび剤等が必要に応じて加配される。このようにして配合される白色塗料は、塗装作業性、厚膜化等の観点から、その塗料固形分が例えば40〜90質量%程度、好ましくは50〜85質量%含まれるように配合される。   As additives, curing accelerators such as titanium chelate compounds, aluminum chelate compounds, zirconium chelate compounds, dispersants, antioxidants, fungicides, and the like are added as necessary. The white paint blended in this way is blended so that the solid content of the paint is, for example, about 40 to 90% by mass, preferably 50 to 85% by mass, from the viewpoint of coating workability, thickening, and the like. .

前記上塗膜3Bは、白色下塗膜3Aに重ねて上塗料を塗工することにより形成される。この上塗料は、バインダー、着色顔料、及び溶媒を必須の構成成分とし、必要に応じて、体質顔料、各種添加剤が加配される。ここでバインダー、溶媒、及び添加剤は、前記白色塗料と同様のものが使用される。   The upper coating 3B is formed by applying an upper coating on the white lower coating 3A. The upper coating contains a binder, a color pigment, and a solvent as essential components, and an extender pigment and various additives are added as necessary. Here, the same binder, solvent, and additive as those of the white paint are used.

着色顔料は、意匠デザインに合わせて適宜選択されるが、反射断熱効果を高めるために、白色、または明度8以上の淡彩色を選択することが好ましい。その配合量は、750nm〜2200nmの波長における光透過率が60%以上となるように決定されることが重要である。具体的配合量としては、使用される顔料に応じて適切に選定されるが、一般には、固形成分換算で上塗料中に例えば0.1〜20質量%程度、好ましくは0.5〜15質量%配合される。   The color pigment is appropriately selected in accordance with the design design, but it is preferable to select a white color or a light color with a brightness of 8 or more in order to enhance the reflection heat insulation effect. It is important that the blending amount is determined so that the light transmittance at a wavelength of 750 nm to 2200 nm is 60% or more. The specific blending amount is appropriately selected according to the pigment to be used, but is generally about 0.1 to 20% by mass, preferably 0.5 to 15% by mass in the upper coating in terms of solid components. % Blended.

しかして、750nm〜2200nmの波長領域における光反射率が70%以上の白色下塗膜3Aの上に、同波長領域においておける光透過率が60%以上の上塗膜3Bを積層して形成された遮熱性塗膜3においては、熱エネルギーを含む同波長領域の太陽光を50%以上反射する性能を発揮できる。そのため日射時において基材2の温度上昇が抑制されて、高い断熱効果が得られることから、冷房効率、即ちエネルギー効率を大幅に改善することができ、ランニングコストを抑制するとともに地球環境を保全しうる。   Thus, an upper coating 3B having a light transmittance of 60% or more in the same wavelength region is laminated on a white lower coating 3A having a light reflectance of 70% or more in the wavelength region of 750 nm to 2200 nm. In the heat-shielding coating film 3, the performance of reflecting 50% or more of sunlight in the same wavelength region including thermal energy can be exhibited. Therefore, since the temperature rise of the base material 2 is suppressed at the time of solar radiation and a high heat insulation effect is obtained, the cooling efficiency, that is, the energy efficiency can be greatly improved, the running cost is suppressed and the global environment is preserved. sell.

前記光触媒塗膜4は、前記遮熱性塗膜3の上に光触媒塗料を塗工して形成される。またこの光触媒塗料は、バインダーとして有機無機ハイブリッドポリマーを用い、これに光触媒粒子6を配合している。   The photocatalyst coating film 4 is formed by applying a photocatalyst paint on the thermal barrier coating film 3. In addition, this photocatalyst paint uses an organic-inorganic hybrid polymer as a binder, and the photocatalyst particles 6 are blended therein.

有機無機ハイブリッドポリマーは、シロキサン無機ポリマーと有機ポリマーとがナノオーダーサイズで均一に分散したものであり、長期の耐久性を維持しつつ柔軟な塗膜を形成しうるポリマーである。具体的には一般式(1)RSi(OR1)3 (式中、Rは炭素数1〜8の有機基、R1は炭素数1〜5のアルキル基または炭素数1〜4のアシル基を示す)で表されるオルガノアルコキシシランの加水分解物またはその部分縮合物であるオルガノポリシロキサンを固形分換算で100重量部、有機溶媒を200〜4500重量部、シリル基含有ビニル系樹脂を20〜300重量部含む。 The organic-inorganic hybrid polymer is a polymer in which a siloxane inorganic polymer and an organic polymer are uniformly dispersed in a nano-order size, and can form a flexible coating film while maintaining long-term durability. Specifically, general formula (1) RSi (OR1) 3 (wherein R represents an organic group having 1 to 8 carbon atoms, R1 represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 carbon atoms). 100 parts by weight in terms of solid content, 200 to 4500 parts by weight of organic solvent, and 20 to 300 parts of silyl group-containing vinyl resin. Including parts by weight.

前記一般式(1)中のRは、炭素数1〜8の有機基であり、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの鎖状、分岐状および環状アルキル基、そのほか、γ−クロロプロピル基、ビニル基、トリフルオロプロピル基、γ−グリシドキしプロピル基、γ−メルカプトプロピル基、γ−メタクリオキシプロピル基、フェニル基、キシリル基、3,4−エポキシシクロヘキシルエチル基などの官能性アルキル基、アリ−ル基などが挙げられる。   R in the general formula (1) is an organic group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, normal propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl. Chain, branched and cyclic alkyl groups such as octyl group, γ-chloropropyl group, vinyl group, trifluoropropyl group, γ-glycidoxypropyl group, γ-mercaptopropyl group, γ-methacryloxypropyl Group, phenyl group, xylyl group, functional alkyl group such as 3,4-epoxycyclohexylethyl group, aryl group and the like.

また一般式(1)中のR1は、炭素数1〜5のアルキル基または炭素数1〜4のアシル基であり、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ブチル基、アセチル基などが挙げられる。R1の炭素数が5を越える場合、加水分解性、塗膜の硬度が低下する場合があり好ましくない。   R1 in the general formula (1) is an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 carbon atoms. For example, methyl group, ethyl group, normal propyl group, isopropyl group, butyl group, acetyl group Group and the like. When R1 has more than 5 carbon atoms, the hydrolyzability and the hardness of the coating film may decrease, which is not preferable.

一般式(1)で表されるオルガノアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、イソプロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどを挙げることができる。メチルトリメトキシシラン、メチルトリエトキシシランを用いるのが好ましい。   Specific examples of the organoalkoxysilane represented by the general formula (1) include methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyl Triisopropoxysilane, isopropyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, γ-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, trifluoro Propyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, Le trimethoxysilane, and the like phenyltriethoxysilane. It is preferable to use methyltrimethoxysilane or methyltriethoxysilane.

オルガノアルコキシシランの加水分解物および/または部分縮合物であるオルガノポリシロキサンの製法については、各種の方法が提案されている。例えば特公昭52−39691に開示された、オルガノアルコキシシランに所定量の水を加えるとともに加熱して、加水分解、縮合を行わせる方法を採用できる。   Various methods have been proposed for producing organopolysiloxanes which are hydrolysates and / or partial condensates of organoalkoxysilanes. For example, a method disclosed in JP-B-52-39691 can be used in which a predetermined amount of water is added to organoalkoxysilane and heated to cause hydrolysis and condensation.

溶媒は、塗膜形成要素が溶解・分散するものであれば特に制限されない。例えば、アルコール類、エーテル類、ケトン類、エステル類、その他ベンゼン、トルエン、キシレン、クロロホルム、ペンタン、ヘキサン、シクロヘキサン等の脂肪族、芳香族、脂環式の炭化水素、石油類等の一般的な有機溶媒、あるいは水が挙げられ、これらを単独、もしくは混合して用いることができる。   A solvent will not be restrict | limited especially if a coating-film formation element melt | dissolves and disperses. For example, alcohols, ethers, ketones, esters, other benzene, toluene, xylene, chloroform, pentane, hexane, cyclohexane, and other aliphatic, aromatic, alicyclic hydrocarbons, petroleum, etc. An organic solvent or water is mentioned, These can be used individually or in mixture.

前記シリル基含有ビニル系樹脂は、主鎖が炭素骨格のビニル系重合体からなり、末端あるいは、側鎖にシラノ−ル基もしくは加水分解性基と結合したケイ素原子を有するシリル基を重合体1分子中に少なくとも1個以上有するものであり、シラン系化合物とビニル系化合物とを共重合することにより製造することができる。   The silyl group-containing vinyl resin is made of a vinyl polymer having a carbon skeleton as a main chain, and a silyl group having a silicon atom bonded to a terminal or side chain with a silanol group or a hydrolyzable group is a polymer 1 It has at least one in the molecule and can be produced by copolymerizing a silane compound and a vinyl compound.

光触媒粒子6は、例えば、TiO2 を始めとし、TiO3 、SrTiO3 、FeTiO3 、WO3 、SnO2 、BiO2 、In2 3 、ZnO、Fe2 3 、RuO2 、CdO、CdS、CdSe、GaP、GaAs、CdFeO3 、MoS2 、LaRhO3 などの無機粒子が用いられる。 The photocatalyst particles 6 include, for example, TiO 2 , TiO 3 , SrTiO 3 , FeTiO 3 , WO 3 , SnO 2 , BiO 2 , In 2 O 3 , ZnO, Fe 2 O 3 , RuO 2 , CdO, CdS, Inorganic particles such as CdSe, GaP, GaAs, CdFeO 3 , MoS 2 , and LaRhO 3 are used.

この光触媒粒子6は、大きさが例えば粒径1〜300μm 程度、好ましくは3〜200μm に形成されたものが用いられる。また光触媒塗料において、光触媒粒子6は、バインダー100重量部に対して、例えば10〜60重量部程度、好ましくは15〜45重量部含まれ、しかも光触媒塗膜4は膜厚は0.1〜10μm の厚さに形成され、その中に光触媒粒子6が均一に分散して含有される。その結果光触媒の酸化還元作用に基づく付着油分など汚染物質を分解するセルフクリーニング効果、及び藻類の発生防止などの効果が作用することから、光触媒塗膜4に防汚染性、超親水性、防菌性、防カビ性、空気中の酸化物の分解機能が付与されるため、遮熱性塗膜3の遮熱性能をフルに発揮するために必要充分な透光度が維持される。なお前記膜厚は、0.1μm 未満では、光触媒粒子6の分布密度が不足するため、表面の汚染を招く恐れがあるとともに親水性能が不足し、逆に10μm を超えると、光触媒粒子6が分布過剰となり遮熱性塗膜3の熱反射機能を低下させる可能性がある。   The photocatalyst particles 6 used are those having a size of, for example, a particle size of about 1 to 300 μm, preferably 3 to 200 μm. In the photocatalyst paint, the photocatalyst particles 6 are contained in an amount of, for example, about 10 to 60 parts by weight, preferably 15 to 45 parts by weight, with respect to 100 parts by weight of the binder. The photocatalyst particles 6 are uniformly dispersed and contained therein. As a result, the self-cleaning effect of decomposing pollutants such as adhering oil based on the oxidation-reduction action of the photocatalyst and the effect of preventing the generation of algae act. Therefore, the necessary and sufficient translucency to maintain the heat shielding performance of the heat shielding coating film 3 is maintained. If the film thickness is less than 0.1 μm, the distribution density of the photocatalyst particles 6 is insufficient, which may cause surface contamination and insufficient hydrophilic performance. Conversely, if the film thickness exceeds 10 μm, the photocatalyst particles 6 are distributed. There is a possibility that the heat-reflecting function of the heat-shielding coating film 3 is reduced due to excess.

またこのように構成された光触媒塗膜4は、暴露1ケ月経過時における静的水接触角が20°以下の性能を持ち、高い親水性が発揮される。従って、降雨時或いは霜などが降る際、塗膜表面に薄い水膜が形成されるため、均一に広がる水膜によって遮熱効果が一層高まられる。更にはこの水膜自体が蒸発する際に塗膜全面から蒸発潜熱を奪って冷却効果を生じ、その結果基材2の温度上昇を有効に抑制できる。   Moreover, the photocatalyst coating film 4 thus configured has a performance with a static water contact angle of 20 ° or less after one month of exposure, and exhibits high hydrophilicity. Accordingly, a thin water film is formed on the surface of the coating film when it rains or when frost falls, so that the heat shielding effect is further enhanced by the uniformly spreading water film. Further, when the water film itself evaporates, latent heat of evaporation is removed from the entire surface of the coating film to produce a cooling effect.

しかも、光触媒塗膜4は、有機無機ハイブリッドポリマーをバインダーとする光触媒塗料を塗工して形成されることから、無機ポリマーを用いた塗膜に比べて、光触媒塗膜4に柔軟性があるため、塗膜耐久性に優れるとともに、基材2が柔らかい物性の有機基材であっても、良好な追従性を有するため問題なく使用できる。しかも本形態で用いる有機無機ハイブリッドポリマーは、オルガノポリシロキサンが固形分換算で100重量部に対して、有機溶媒を200〜4500重量部、シリル基含有ビニル系樹脂を20〜300重量部含む組成であるため、取扱い性に優れ長期耐候性に富んだ塗膜が得られる。   Moreover, since the photocatalyst coating film 4 is formed by applying a photocatalyst paint using an organic-inorganic hybrid polymer as a binder, the photocatalyst coating film 4 is more flexible than a coating film using an inorganic polymer. In addition to being excellent in coating film durability, even if the substrate 2 is an organic substrate having soft physical properties, it can be used without any problem because it has good followability. Moreover, the organic-inorganic hybrid polymer used in this embodiment is a composition containing 200 to 4500 parts by weight of an organic solvent and 20 to 300 parts by weight of a silyl group-containing vinyl resin with respect to 100 parts by weight of organopolysiloxane in terms of solid content. Therefore, it is possible to obtain a coating film excellent in handleability and rich in long-term weather resistance.

従って、赤外線波長域の太陽光の50%以上を反射する遮熱性塗膜3の上を防汚性に優れた光触媒塗膜4が覆って塗膜表面の汚れを除去するため、遮熱性塗膜3の赤外線反射効果がいつまでも低下することがなく、その結果優れた遮熱効果を持続することができる。   Therefore, since the photocatalyst coating film 4 excellent in antifouling property covers the heat shielding coating film 3 that reflects 50% or more of sunlight in the infrared wavelength region and removes dirt on the coating film surface, the heat shielding coating film As a result, the excellent heat shielding effect can be maintained.

本形態の遮熱性塗膜3は、前記の如く有機系バインダーを用いた遮熱性塗料を塗工して形成しいていることから、この上に直接光触媒塗膜4を形成すると光触媒粒子6の酸化還元作用が遮熱性塗膜3の有機系バインダーに作用してこれを分解し、その結果チョーキング(白化)と呼ばれる塗膜欠陥を引き起こす可能性がある。そこで本形態では、図1に示すように、遮熱性塗膜3と光触媒塗膜4との間に無機系バリア塗膜5を形成して、前記光触媒粒子6による侵食作用を防止している。   Since the heat-shielding coating film 3 of this embodiment is formed by applying a heat-shielding coating material using an organic binder as described above, if the photocatalytic coating film 4 is formed directly on this, the photocatalyst particles 6 are oxidized. The reduction action acts on the organic binder of the heat-shielding coating film 3 and decomposes it, and as a result, there is a possibility of causing a coating film defect called choking (whitening). Therefore, in this embodiment, as shown in FIG. 1, an inorganic barrier coating film 5 is formed between the thermal barrier coating film 3 and the photocatalyst coating film 4 to prevent the erosion action by the photocatalyst particles 6.

また本形態の無機系バリア塗膜5は、前記光触媒塗膜4用のバインダーと同様の有機無機ハイブリッドポリマーを用いたバリア塗料を塗工して形成している。従って無機系バリア塗膜5の有する柔軟性が作用することにより、太陽光によって高温化する塗膜内部の熱応力が緩和され、塗膜耐久性を更に向上することができる点で好ましい。   Further, the inorganic barrier coating film 5 of this embodiment is formed by applying a barrier paint using the same organic-inorganic hybrid polymer as the binder for the photocatalyst coating film 4. Accordingly, the flexibility of the inorganic barrier coating film 5 acts, which is preferable in that the thermal stress inside the coating film, which is heated by sunlight, is relieved and the durability of the coating film can be further improved.

なお、セラミック塗料などを塗工して形成される無機系の遮熱性塗膜3においては、光触媒粒子6に侵食されることがないため、無機系バリア塗膜5を設けることなく遮熱性塗膜3に直接光触媒塗膜4を積層することができる。   The inorganic thermal barrier coating 3 formed by applying a ceramic coating or the like is not eroded by the photocatalyst particles 6, so that the thermal barrier coating 5 is not provided without providing the inorganic barrier coating 5. 3 can be directly laminated with the photocatalytic coating film 4.

尚、叙上の説明は本発明の実施の形態を例示したものである。従って本発明の技術的範囲はこれに何ら限定されるものではなく、前記した実施の形態の他にも、各種の変形例が含まれる。   The above description is an example of the embodiment of the present invention. Therefore, the technical scope of the present invention is not limited to this, and various modifications are included in addition to the above-described embodiment.

本発明の一実施の形態を例示する断面図である。It is sectional drawing which illustrates one embodiment of this invention.

符号の説明Explanation of symbols

1 塗膜構造
2 基材
3 遮熱性塗膜
4 光触媒塗膜
5 無機系バリア塗膜
6 光触媒粒子
DESCRIPTION OF SYMBOLS 1 Coating film structure 2 Base material 3 Thermal barrier coating film 4 Photocatalyst coating film 5 Inorganic barrier coating film 6 Photocatalyst particle

Claims (7)

基材を覆って形成されるとともに太陽熱を反射して温度上昇を抑制しうる遮熱性塗膜と、その上に積層されて表面層を形成し、防汚性及び親水性を有する光触媒塗膜とを含み、 前記光触媒塗膜は、光触媒塗料を塗工して形成され、この光触媒塗料は、光触媒粒子、及びバインダーとして有機無機ハイブリッドポリマーを含み、
前記遮熱性塗膜は、反射性に優れた白色顔料を含む白色塗材を塗工して形成する白色下塗膜と、該白色下塗膜に重ねて着色顔料を含む上塗料を塗工して形成する光透過率の高い上塗膜とを含み、
前記白色下塗膜は、750nm〜2200nmの波長領域における光反射率が70%以上であり、
前記上塗膜は、750nm〜2200nmの波長における光透過率が60%以上であるとともに、
前記上塗膜の前記着色顔料は、白色、または明度8以上の淡彩色であることを特徴とする塗膜構造。
A heat-shielding coating film that covers the substrate and that can suppress the rise in temperature by reflecting solar heat, and a photocatalytic coating film that is laminated thereon to form a surface layer and has antifouling properties and hydrophilicity. The photocatalyst coating film is formed by applying a photocatalyst paint, the photocatalyst paint includes photocatalyst particles, and an organic-inorganic hybrid polymer as a binder,
The heat-shielding coating film is formed by applying a white lower coating film formed by applying a white coating material containing a white pigment having excellent reflectivity, and an upper coating film containing a color pigment on the white lower coating film. And an upper coating film with high light transmittance formed by
The white undercoat film has a light reflectance of 70% or more in a wavelength region of 750 nm to 2200 nm,
The top coating film has a light transmittance of 60% or more at a wavelength of 750 nm to 2200 nm ,
The coating structure characterized in that the colored pigment of the upper coating is white or a light-colored color having a brightness of 8 or more .
前記光触媒塗膜は、暴露1ケ月経過時における静的水接触角が20°以下であることを特徴とする請求項1記載の塗膜構造。   The coating structure according to claim 1, wherein the photocatalytic coating film has a static water contact angle of 20 ° or less after one month of exposure. 前記光触媒塗膜は、膜厚が0.1〜10μmであることを特徴とする請求項1又は2記載の塗膜構造。   The coating film structure according to claim 1 or 2, wherein the photocatalyst coating film has a thickness of 0.1 to 10 µm. 前記有機無機ハイブリッドポリマーは、一般式(1)RSi(OR1)3 (式中、Rは炭素数1〜8の有機基、R1は炭素数1〜5のアルキル基または炭素数1〜4のアシル基を示す)で表されるオルガノアルコキシシランの加水分解物またはその部分縮合物であるオルガノポリシロキサンを固形分換算で100重量部、有機溶媒を200〜4500重量部、シリル基含有ビニル系樹脂を20〜300重量部含むことを特徴とする請求項1〜3のいずれかに記載の塗膜構造。 The organic-inorganic hybrid polymer has the general formula (1) RSi (OR1) 3 (wherein R is an organic group having 1 to 8 carbon atoms, R1 is an alkyl group having 1 to 5 carbon atoms or acyl having 1 to 4 carbon atoms). 100 parts by weight in terms of solid content, 200 to 4500 parts by weight of organic solvent, and silyl group-containing vinyl resin. The coating film structure according to any one of claims 1 to 3, comprising 20 to 300 parts by weight. 前記遮熱性塗膜は、750〜2200nmの波長における光反射率が50%以上であることを特徴とする請求項1〜4のいずれかに記載の塗膜構造。   The coating structure according to claim 1, wherein the heat-shielding coating film has a light reflectance of 50% or more at a wavelength of 750 to 2200 nm. 前記遮熱性塗膜は、有機系バインダーを用いた遮熱性塗料を塗工して形成され、
遮熱性塗膜と光触媒塗膜との間に、無機系バリア塗膜が更に形成されることを特徴とする請求項1〜5のいずれかに記載の塗膜構造。
The thermal barrier coating is formed by applying a thermal barrier paint using an organic binder,
The coating film structure according to any one of claims 1 to 5, wherein an inorganic barrier coating film is further formed between the heat-shielding coating film and the photocatalyst coating film.
前記無機系バリア塗膜は、バインダーとして有機無機ハイブリッドポリマーを用いたバリア塗料を塗工して形成されることを特徴とする請求項6記載の塗膜構造。   The coating structure according to claim 6, wherein the inorganic barrier coating film is formed by applying a barrier coating using an organic-inorganic hybrid polymer as a binder.
JP2006022186A 2006-01-31 2006-01-31 Coating structure Active JP5065600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022186A JP5065600B2 (en) 2006-01-31 2006-01-31 Coating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022186A JP5065600B2 (en) 2006-01-31 2006-01-31 Coating structure

Publications (2)

Publication Number Publication Date
JP2007203495A JP2007203495A (en) 2007-08-16
JP5065600B2 true JP5065600B2 (en) 2012-11-07

Family

ID=38483384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022186A Active JP5065600B2 (en) 2006-01-31 2006-01-31 Coating structure

Country Status (1)

Country Link
JP (1) JP5065600B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064473A (en) * 2008-02-01 2010-03-25 Fujifilm Corp Hydrophilic member
JP5307421B2 (en) * 2008-02-28 2013-10-02 日鉄住金鋼板株式会社 Thermal barrier coating plate
JP5554510B2 (en) 2008-05-23 2014-07-23 石原産業株式会社 Infrared reflective material, method for producing the same, and paint and resin composition containing the same
JP6204057B2 (en) * 2013-05-01 2017-09-27 ニチハ株式会社 Architectural board and method for producing architectural board
JP6571950B2 (en) * 2015-02-26 2019-09-04 ケイミュー株式会社 Painted substrate and method for producing the coated substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699668B2 (en) * 1990-07-18 1994-12-07 大八化学工業株式会社 Coating composition for coating
JP4304382B2 (en) * 1997-12-24 2009-07-29 住友金属工業株式会社 Highly reflective surface-treated plate with excellent contamination resistance
JP4223138B2 (en) * 1999-05-13 2009-02-12 日新製鋼株式会社 Precoated steel sheet excellent in workability, weather resistance and photocatalytic activity, and method for producing the same
JP2001353809A (en) * 2000-06-15 2001-12-25 Yodogawa Steel Works Ltd Thermally reflecting precoated metal plate
JP3994191B2 (en) * 2002-03-15 2007-10-17 平岡織染株式会社 Thermal barrier antifouling film material
JP2005034766A (en) * 2003-07-16 2005-02-10 Kajima Corp Method for forming heat shielding coating film

Also Published As

Publication number Publication date
JP2007203495A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4092434B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
CN103275615A (en) Hydrophilic compositions, methods for their production, and substrates coated with such compositions
KR20110104122A (en) Surface-treated precoated metal sheet, process for producing same, and surface treating solution
CN103409028A (en) Photocatalytic type self-repairing super-hydrophobic coating and preparation method thereof
TWI457386B (en) Photocatalyst-coated body and a photocatalyst coating liquid
JP5065600B2 (en) Coating structure
JP2008500208A (en) Multilayer coatings and related methods
EP0989169A1 (en) Method of forming hydrophilic inorganic coating film and inorganic coating composition
KR20110111537A (en) Precoated metal plate having excellent resistance to contamination, manufacturing method therefor, and surface-treatment liquid
WO2016175208A1 (en) Antifouling composition, antifouling sheet and method for producing antifouling sheet
JP2000303027A (en) Photocatalytic hydrophilic coating composition
JP2001040245A (en) Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
JP2018119067A (en) Hydrophilic coating agent, and coated film of the same
JP2001038219A (en) Aqueous photocatalyst hydrophilic composition, aqueous primer for photocatalyst and photocatalytic hydrophilic composite material using them
JP4512935B2 (en) Thermal insulation (heat insulation) method and thermal insulation material
JP5749807B2 (en) Infrared reflective film for solar cell module and infrared reflector
JP2005131552A (en) Transparent photocatalyst layer formation composition and use thereof
JP6112975B2 (en) Precoated metal plate with excellent contamination resistance
JP2007301976A (en) Film for membrane structure
JP2010172797A (en) Photocatalyst coating body
JP5391902B2 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP2003170060A (en) Surface-treated product having photocatalytic function
JP3754578B2 (en) Laminated structure with photocatalyst coating
WO2011118781A1 (en) Photocatalyst-coated body
JP5541879B2 (en) Composite material and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250