JP5064261B2 - Steel element construction method - Google Patents

Steel element construction method Download PDF

Info

Publication number
JP5064261B2
JP5064261B2 JP2008037135A JP2008037135A JP5064261B2 JP 5064261 B2 JP5064261 B2 JP 5064261B2 JP 2008037135 A JP2008037135 A JP 2008037135A JP 2008037135 A JP2008037135 A JP 2008037135A JP 5064261 B2 JP5064261 B2 JP 5064261B2
Authority
JP
Japan
Prior art keywords
elements
steel
shaft
general
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008037135A
Other languages
Japanese (ja)
Other versions
JP2009197394A (en
Inventor
忠良 石橋
満 清水
貴 齋藤
啓之 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2008037135A priority Critical patent/JP5064261B2/en
Publication of JP2009197394A publication Critical patent/JP2009197394A/en
Application granted granted Critical
Publication of JP5064261B2 publication Critical patent/JP5064261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は鉄道線路等の下方地盤中に鋼製エレメントを施工する方法に関する。   The present invention relates to a method for constructing a steel element in a lower ground such as a railway track.

従来、鉄道線路等の下方地盤中に鋼製エレメントを施工し非開削方式で地下構造物を構築する工法が知られている。この工法の概略を図7〜図9により説明すると、図7(a)に示すように、鉄道線路1の下方の構造物構築箇所、作業用の発進立坑と到達立坑を掘削する箇所を挟むようにして、地盤Gに土留工4をそれぞれ施工し、その内側を掘削して発進立坑2、到達立坑3を施工する。土留工としては、鋼矢板、H形鋼と土留め板と切梁と腹起こし等などが用いられる。次いで、図7(b)に示すように、鋼製のエレメントPを発進立坑2側から推進、又は到達立坑3側から引き込むことによるけん引のいずれか又はその双方により、構造物構築箇所の地盤G内に水平に挿入する。エレメントPの先端には、オーガ等の掘削機構(図示せず)が設けられ、掘削機構によりエレメントPの先端部の土砂を掘削・除去しながら推進又はけん引する。こうして、複数の鋼製エレメントPを順次、構造物構築箇所を囲むように箱型に地盤中に施工する。   Conventionally, a construction method in which a steel element is constructed in a lower ground such as a railroad track and an underground structure is constructed by a non-opening method is known. The outline of this construction method will be described with reference to FIGS. 7 to 9. As shown in FIG. 7A, the structure construction site below the railroad track 1, the work start shaft and the site where the work shaft is excavated are sandwiched. The earth retaining work 4 is constructed on the ground G, and the inside of the earth retaining work 4 is excavated to construct the start shaft 2 and the reaching shaft 3. As the earth retaining work, steel sheet piles, H-section steel, earth retaining plates, beams and upsets are used. Next, as shown in FIG. 7 (b), the ground G of the structure construction site is either by propelling the steel element P from the start shaft 2 side, or by towing by pulling it from the end shaft 3 side or both. Insert horizontally inside. An excavating mechanism (not shown) such as an auger is provided at the tip of the element P, and propelled or towed while excavating and removing the earth and sand at the tip of the element P by the excavating mechanism. In this way, a plurality of steel elements P are sequentially installed in the ground in a box shape so as to surround the structure construction location.

鋼製エレメントの施工は、図8に示すように、最初に上床版の中心の基準エレント10を発進立坑2から到達立坑3へ向けて施工する。図9(a)に示すように、基準エレメント10は、断面「ロ」字状の管状の鋼製エレメントで、両端に継手13を有する平板状の2個の鋼矢板11と、2個の鋼板12をそれぞれ略四角形状に組み合わせて溶接したものである。基準エレメント10を施工した後、一般部エレメント20を基準エレメント10の左右両側にそれぞれ施工していく。図9(b)に示すように、一般部エレメント20は、両端に継手23を有する平板状の2個の鋼矢板21と、1個の鋼板12が「コ」字状に組み合わせて溶接したものである。基準エレメント10に隣接する一般部エレメント20は、継手23を基準エレメント10の継手13に図させ、これをガイドとして発進立坑2から到達立坑3へ向けて施工する。次いで、一般部エレメント20の継手23同士を連結させ、これをガイドとして順次一般部エレメント20を施工していく。   As shown in FIG. 8, the steel element is first constructed by moving the reference element 10 at the center of the upper floor slab from the start shaft 2 to the arrival shaft 3. As shown in FIG. 9 (a), the reference element 10 is a tubular steel element having a "B" -shaped cross section, two flat sheet piles 11 having joints 13 at both ends, and two steel plates. 12 are welded in combination in a substantially square shape. After constructing the reference element 10, the general element 20 is constructed on both the left and right sides of the reference element 10. As shown in FIG. 9 (b), the general element 20 is formed by welding two flat sheet piles 21 having joints 23 at both ends and one steel sheet 12 combined in a "U" shape. It is. The general part element 20 adjacent to the reference element 10 causes the joint 23 to be illustrated on the joint 13 of the reference element 10, and this is used as a guide from the start shaft 2 to the arrival shaft 3. Next, the joints 23 of the general part element 20 are connected to each other, and the general part element 20 is sequentially constructed using this as a guide.

上床版の両端部には隅角部エレメント30を施工する。図9(c)に示すように、隅角部エレメント30は、断面「ロ」字状の管状の鋼製エレメントであり、端部に継手33を有する4個の鋼板31を溶接したものである。継手33を一般部エレメント20の継手23と連結させ、これをガイドとして発進立坑2から到達立坑3へ向けて施工する。この後、同様にして、既に挿入した隅角部エレメント30の下方の隣接箇所に、また、一般部エレメント20の下方の隣接箇所に、順次新たな一般部エレメント20を挿入設置して、鉛直壁状の左右側壁エレメント列を施工する。次いで、鉛直側壁エレメントの下端の隅角部エレメント30の継手33に一般部エレメント20の継手23を連結させて、下床版エレメント列を形成し、下床版エレメント列の中央で閉合することにより、全体として鋼製箱型を地中に構築する。
特開2005−282115号公報
Corner element 30 is applied to both ends of the upper floor slab. As shown in FIG. 9C, the corner element 30 is a tubular steel element having a cross-section “B” shape, and is formed by welding four steel plates 31 each having a joint 33 at the end. . The joint 33 is connected to the joint 23 of the general element 20, and this is used as a guide from the start shaft 2 to the arrival shaft 3. Thereafter, in the same manner, new general element 20 is sequentially inserted and installed in the adjacent portion below the corner element 30 that has already been inserted, and in the adjacent location below the general element 20, and the vertical wall The left and right side wall element rows. Next, the joint 23 of the general element 20 is connected to the joint 33 of the corner element 30 at the lower end of the vertical side wall element to form a lower floor slab element row, and is closed at the center of the lower floor slab element row. As a whole, a steel box mold is built in the ground.
JP 2005-282115 A

特許文献1に示す従来の鋼製エレメント施工法は、エレメントを1本づつ掘進して施工しているため、作業に手間がかかり、特に、上床版の施工に多くの時間を要していた。   Since the conventional steel element construction method shown in Patent Document 1 is constructed by excavating elements one by one, it takes time and effort, and in particular, it takes a lot of time to construct the upper floor slab.

本発明は上記課題を解決しようとするものであり、鋼製エレメントの高速施工、特に上床版エレメントの高速施工を可能にすることを目的とする。
本発明は、地盤中に鋼製エレメントを施工する方法において、上床版に施工する鋼製エレメントを継手で連結して発進立坑側に並べ、基準管を発進立坑側から到達立坑側まで施工した後、基準管の両側の鋼製エレメントを対とし、各対の複数の鋼製エレメントを交互にけん引または推進して複数本同時に施工することを特徴とする。
The present invention is intended to solve the above-described problems, and an object of the present invention is to enable high-speed construction of steel elements, particularly high-speed construction of upper floor slab elements.
The present invention is a method of constructing steel elements in the ground, after connecting steel elements to be constructed on the upper slab with joints and arranging them on the start shaft side, after constructing the reference pipe from the start shaft side to the reach shaft side The steel elements on both sides of the reference pipe are paired, and a plurality of steel elements of each pair are alternately pulled or propelled, and a plurality of them are simultaneously constructed.

本発明は、複数のエレメントを同時に掘進施工することにより、特に上床版エレメントの高速施工が可能になる。   According to the present invention, a plurality of elements can be excavated at the same time, so that an upper floor slab element can be applied at a high speed.

以下、本発明の実施の形態について説明する。本発明のエレメント施工は、発進立坑、到達立坑を施工し、発進立坑側から到達立坑側へ向けて鋼製の基準エレメント、一般部エレメント、隅角部エレメントを使用して順次施工し、鋼製箱型を地中に構築することは図7〜図9の場合と同様であり、その際にエレメントの施工、特に上床版エレメントの施工を高速化するためにエレメントを複数同時に施工する以外は図7〜図9の場合と同じであるので、以下では重複する詳しい説明は省略する。   Embodiments of the present invention will be described below. The element construction of the present invention is to construct a start shaft and an end shaft, and sequentially use a steel reference element, a general element, and a corner element from the start shaft side to the end shaft side. Construction of the box shape in the ground is the same as in the case of FIGS. 7 to 9, and in that case, in order to speed up the construction of the element, particularly the construction of the upper floor slab element, it is a diagram except that a plurality of elements are constructed simultaneously. Since this is the same as in the case of FIGS.

図1は複数のエレメントを同時に掘進施工する方法の一例を説明する図である。
図8で説明したように、発進立坑、到達立坑を掘削し、それぞれ土留工4を施工する。次いで、図1(a)に示すように、発進立坑側に複数の鋼製エレメント、ここでは、説明の便宜上、基準エレメントAの両側に4本の一般部エレメントB、C、D、Eを並べる。このとき、各エレメントの継手を相互に連結させて併置する。次に、図1(b)の矢印で示すように、基準エレメントAを到達立坑側まで高い位置精度で掘進施工する。発進立坑から到達立坑までの長さが長い場合には、途中でエレメントを継ぎ足して施工する。次いで、図1(c)の矢印で示すように、基準エレメントAの両側で互いに離れた位置の一般部エレメントD、Eを対として同時に所定長さまで掘進施工する。後述するように、エレメントの施工にはジャッキ等を備えた推進用治具を必要とし、複数のエレメントを同時に掘進する場合、各推進用治具の設置スペースを確保して相互に干渉しないようにする必要があるとともに、地盤へのストレスが局部的に加わらず、分散させることが可能な離れた位置のエレメントを同時に施工するのが望ましい。もちろん、現場の状況によっては、隣接したエレメント同士を複数本同時に施工するようにしてもよい。
FIG. 1 is a diagram for explaining an example of a method for excavating a plurality of elements simultaneously.
As explained in FIG. 8, the start shaft and the reaching shaft are excavated, and the earth retaining work 4 is constructed respectively. Next, as shown in FIG. 1A, a plurality of steel elements, here, four general elements B, C, D, and E are arranged on both sides of the reference element A for convenience of explanation, as shown in FIG. . At this time, the joints of the elements are connected to each other. Next, as shown by the arrow in FIG. 1 (b), the reference element A is dug up with high positional accuracy up to the reaching shaft side. When the length from the starting shaft to the reaching shaft is long, the elements are added on the way. Next, as shown by the arrows in FIG. 1C, the general elements D and E at positions separated from each other on both sides of the reference element A are dug up to a predetermined length at the same time. As will be described later, a propulsion jig equipped with a jack or the like is required for the construction of the element, and when excavating multiple elements at the same time, ensure the installation space for each propulsion jig so as not to interfere with each other. In addition, it is desirable to simultaneously construct elements at remote locations that can be dispersed without locally applying stress to the ground. Of course, depending on the situation at the site, a plurality of adjacent elements may be simultaneously constructed.

次いで、図1(d)の矢印に示すように、基準エレメントAに隣接し、基準エレメントAと一般部エレメントD、Eに挟まれた一般部エレメントB、Cを対として一般部エレメントD、Eと同じ程度の長さまで掘進施工する。以後、図1(e)の矢印に示すように、一般部エレメントD、Eを同時施工し、次いで一般部エレメントB、Cを同時施工することを交互に行い、発進立坑から到達立坑までの長さが長い場合には、それぞれ途中でエレメントを継ぎ足して到達立坑まで施工する。こうして、2本のエレメントを同時に施工することで、特に上床版のエレメント施工を高速化することができる。なお、上記では一般部エレメントB、C、D、Eをそれぞれ1本として説明したが、B、C、D、Eそれぞれが2本を対にしたダブルエレメントであってもよい。また、上記では5本のエレメントを施工する例について説明したが、より多くの本数のエレメントを施工する場合には、上記と同じ施工法を繰り返すようにしてもよく、或いは、図1(a)において必要とする本数分だけ並べ、図1(d)の状態で、さらにその両側の2本のエレメントを順次同時施工することで全てのエレメントを同程度の長さまで掘進施工し、以後、これを繰り返すことでより多くの本数のエレメントを施工するようにしてもよい。   Next, as shown by the arrow in FIG. 1 (d), the general elements D and E are paired with the general elements B and C adjacent to the reference element A and sandwiched between the reference elements A and the general elements D and E. Digging up to the same length as. Thereafter, as shown by the arrows in FIG. 1 (e), the general elements D and E are simultaneously applied, and then the general elements B and C are alternately applied, and the length from the starting shaft to the reaching shaft is increased. If the length is long, add elements along the way to the shaft. Thus, by constructing the two elements simultaneously, it is possible to speed up the element construction of the upper floor slab in particular. In the above description, the general part elements B, C, D, and E are each described as one, but each of B, C, D, and E may be a double element in which two elements are paired. Moreover, although the example which constructs five elements was demonstrated above, when constructing a larger number of elements, you may make it repeat the same construction method as the above, or Fig.1 (a) In the state shown in FIG. 1 (d), the two elements on both sides of the two elements are simultaneously installed, and all the elements are dug to the same length. It is also possible to construct a larger number of elements by repeating.

図2は複数の鋼製エレメントを同時に施工する方法の他の例を説明する図である。
図2(a)に示すように、土留工4が施工された発進立坑側に鋼製のエレメントA(基準エレメント)、一般部エレメントB、C、D、Eを相互に継手を連結させて並べるのは図1の場合と同様である。次に、図2(b)の矢印で示すように、基準エレメントA、基準エレメントの両側で1つ離れた一般部エレメントD、Eを対にして同時に所定長さまで掘進施工する。1つおきに3本のエレメントを同時に施工するのは、図1の場合と同様に、各推進用治具の設置スペースを確保して相互に干渉しないようにすることと、地盤へのストレスを分散させるためである。もちろん、現場の状況によっては、隣接したエレメント同士を複数本同時に施工するようにしてもよい。
FIG. 2 is a diagram for explaining another example of a method for constructing a plurality of steel elements simultaneously.
As shown in FIG. 2 (a), the steel element A (reference element) and the general elements B, C, D, and E are arranged with joints connected to each other on the start shaft where the earth retaining work 4 is constructed. This is the same as in the case of FIG. Next, as shown by an arrow in FIG. 2B, the reference element A and the general elements D and E separated by one on both sides of the reference element are paired and simultaneously dug to a predetermined length. As in the case of Fig. 1, the construction of three elements every other one is ensured by securing the installation space for each propulsion jig so as not to interfere with each other, and stress on the ground. This is to disperse. Of course, depending on the situation at the site, a plurality of adjacent elements may be simultaneously constructed.

次いで、図2(c)の矢印に示すように、基準エレメントAと一般部エレメントD、Eに挟まれた一般部エレメントB、Cを対にして一般部エレメントD、Eと同じ程度の長さまで掘進施工する。以後、図2(d)の矢印に示すように、基準エレメントA、一般部エレメントD、Eを同時施工し、次いで一般部エレメントB、Cを同時施工することを交互に行い、発進立坑から到達立坑までの長さが長い場合には、それぞれ途中でエレメントを継ぎ足して到達立坑まで施工する。こうして、2本のエレメント、3本のエレメントを同時に施工することで、特に上床版のエレメント施工を高速化することができる。なお、上記では一般部エレメントB、C、D、Eをそれぞれ1本として説明したが、B、C、D、Eそれぞれが2本を対にしたダブルエレメントであってもよい。また、上記では5本のエレメントを施工する例について説明したが、より多くの本数のエレメントを施工する場合には、上記と同じ施工法を繰り返すようにしてもよく、或いは、図2(a)において必要とする本数分だけ並べ、図2(c)の状態で、さらにその両側の2本のエレメントを順次同時施工することで全てのエレメントを同程度の長さまで掘進施工し、以後、3本と2本の掘進を繰り返すことで施工するようにしてもよい。   Next, as shown by the arrow in FIG. 2 (c), the general element B and C sandwiched between the reference element A and the general elements D and E are paired up to the same length as the general elements D and E. Excavation construction. Thereafter, as shown by the arrow in FIG. 2 (d), the reference element A and the general elements D and E are simultaneously applied, and then the general elements B and C are simultaneously applied alternately to reach the starting shaft. If the length to the shaft is long, add elements along the way to construct the shaft. Thus, by constructing two elements and three elements at the same time, it is possible to speed up the element construction of the upper floor slab in particular. In the above description, the general part elements B, C, D, and E are each described as one, but each of B, C, D, and E may be a double element in which two elements are paired. Moreover, although the example which constructs five elements was demonstrated above, when constructing a larger number of elements, you may make it repeat the same construction method as the above, or Fig.2 (a) In the state shown in FIG. 2 (c), two elements on both sides of the two elements are sequentially installed at the same time, and all elements are dug to the same length. You may make it construct by repeating two excavations.

次に、図3〜図6によりダブルエレメントの施工装置について説明する。
図3は施工装置の一例の概略説明図で、図3(a)は装置の概念を示す正面図、図3(b)はダブルエレメントをセットした状態を示す正面図である。本装置は掘削施工した発進立坑と到達立坑間に鋼製のタイロッドを地盤中を通して張り、タイロッドで各立坑の土留め間を圧接して締め付け、鋼製エレメントを掘進する構成をとっている。この例では2本のエレメントを対にしたダブルエレメントを推進する装置であるが、もちろんシングルエレメントを推進する構成であってよい。図3(a)に示すように、鋼製のタイロッド100はエレメントの上下に1本づつ張架し、ここではダブルエレメント120としているので上下に4本のタイロッドを設けてそれぞれエレメント推進用の支圧板110に挿通する。そして、図3(b)に示すように、ダブルエレメント120は、継手121を隣接のエレメントと連結させて発進立坑側に設けたH型鋼からなる受桁130上に載せ、後述するように、支圧板110を反力材として推進施工する。
Next, a double element construction apparatus will be described with reference to FIGS.
FIG. 3 is a schematic explanatory view of an example of a construction apparatus, FIG. 3 (a) is a front view showing the concept of the apparatus, and FIG. 3 (b) is a front view showing a state in which a double element is set. This device has a structure in which a steel tie rod is stretched through the ground between the excavated start shaft and the end shaft, and the steel elements are excavated by pressing the tie rods between the earth retaining members of each shaft. In this example, it is a device for propelling a double element in which two elements are paired, but of course, it may be configured to propel a single element. As shown in FIG. 3A, the steel tie rods 100 are stretched one by one on the top and bottom of the element, and here are double elements 120. Therefore, four tie rods are provided on the top and bottom to support the element propulsion. The pressure plate 110 is inserted. As shown in FIG. 3 (b), the double element 120 is placed on a receiving girder 130 made of H-shaped steel provided on the start shaft side by connecting the joint 121 to the adjacent element, and as will be described later. The pressure plate 110 is used as a reaction material for propulsion.

図4はジャッキにより支圧板を反力材としてエレメントを推進するを示す図で、図4(a)は正面図、図4(b)は側断面図である。
鋼製のダブルエレメント120は、その継手121を隣接エレメントの継手に連結させて受桁130上に載置し、上下4本のタイロッド100を挿通した支圧板110により、各タイロッドの位置に配置した4台のジャッキ140で後端を押すことで推進される。
FIGS. 4A and 4B are diagrams showing an example in which an element is pushed by a jack using a bearing plate as a reaction force member, FIG. 4A is a front view, and FIG. 4B is a side sectional view.
The steel double element 120 is placed on the receiving girder 130 with the joint 121 connected to the joint of the adjacent element, and is arranged at the position of each tie rod by the bearing plate 110 through which the upper and lower four tie rods 100 are inserted. It is propelled by pushing the rear end with four jacks 140.

図5は支圧板を反力材としてエレメントを推進する他の例を示す図で、図5(a)は正面図、図5(b)は側断面図である。
鋼製のダブルエレメント120は、その継手121を隣接エレメントの継手に連結させて受桁130上に載置し、上下4本のタイロッド100は挿通した支圧板110に固定される。ジャッキ140は支圧板110とダブルエレメント120の後端間に設けられ、支圧板110を反力材とすることで、ダブルエレメント120を推進する。
FIGS. 5A and 5B are diagrams showing another example of propelling an element using a bearing plate as a reaction force member, FIG. 5A is a front view, and FIG. 5B is a side sectional view.
The steel double element 120 is placed on the receiving beam 130 with its joint 121 connected to the joint of the adjacent element, and the upper and lower four tie rods 100 are fixed to the inserted pressure bearing plate 110. The jack 140 is provided between the bearing plate 110 and the rear end of the double element 120, and the double element 120 is propelled by using the bearing plate 110 as a reaction force material.

図6はエレメントを推進する例を説明する側断面図である。
腹起こし151で補強された土留め150を通して鋼製のエレメントの上下にタイロッド100が張架される。タイロッド100は支圧板110、ジャッキ140を挿通しており、受桁130上に載置したダブルエレメント120の後端を支圧板110を反力材としてジャッキ140で押すことで土留め4を通して推進する。ダブルエレメント120の先端には刃口部125が設けられ、先端の地盤を掘削・排土しながら推進される。支圧板110のストロークは土留め4までであり、推進距離が長い場合には、エレメントを継ぎ足し、支圧板110の位置を元に戻して掘削推進を行う。なお、エレメントを同時に複数本けん引または推進するため、エレメントと地盤との摩擦力で軌道の横移動(エレメント方向に軌道が移動)が起こる可能性がある。そのため、エレメントと地盤の摩擦を低減するため、例えば、薄い鋼板などの摩擦低減部材120aをエレメント上面に片側を土留めに固定して配置するのが望ましい。
FIG. 6 is a side sectional view for explaining an example of propelling an element.
The tie rod 100 is stretched over and under the steel element through the earth retaining 150 reinforced by the flank 151. The tie rod 100 is inserted through the support plate 110 and the jack 140, and the rear end of the double element 120 placed on the receiving girder 130 is pushed by the jack 140 by using the support plate 110 as a reaction material, and is propelled through the earth retaining member 4. . A blade edge portion 125 is provided at the tip of the double element 120 and is propelled while excavating and discharging the ground at the tip. The stroke of the bearing plate 110 is up to the earth retaining 4, and when the propulsion distance is long, the elements are added and excavation propulsion is performed by returning the position of the bearing plate 110 to the original position. In addition, since a plurality of elements are towed or propelled at the same time, there is a possibility that the trajectory moves laterally (the trajectory moves in the element direction) due to the frictional force between the element and the ground. Therefore, in order to reduce the friction between the element and the ground, for example, it is desirable that the friction reducing member 120a such as a thin steel plate is arranged on the upper surface of the element while being fixed to the earth retaining member.

複数のエレメントを同時に掘進施工する方法の一例を説明する図である。It is a figure explaining an example of the method of excavating a some element simultaneously. 複数のエレメントを同時に掘進施工する方法の他の例を説明する図である。It is a figure explaining the other example of the method of excavating a some element simultaneously. 施工装置の例の概略説明図である。It is a schematic explanatory drawing of the example of a construction apparatus. 支圧板を反力材としてエレメントを推進する例を示す図である。It is a figure which shows the example which pushes an element by using a bearing plate as a reaction material. 支圧板を反力材としてエレメントを推進する他の例を示す図である。It is a figure which shows the other example which propels an element by using a bearing plate as a reaction material. 支圧板を反力材としてエレメントを推進する例を説明する側断面である。It is a side cross section explaining the example which pushes an element using a bearing plate as a reaction material. 非開削方式で地下構造物を構築する工法を説明する図である。It is a figure explaining the construction method which builds an underground structure by a non-cutting method. 鋼製エレメントの施工を説明する図である。It is a figure explaining construction of steel elements. 鋼製エレメントの例を説明する図である。It is a figure explaining the example of steel elements.

符号の説明Explanation of symbols

A,B,C,D,E…鋼製エレメント、4…土留工、100…タイロッド、110…支圧板、120…ダブルエレメント、121…継手、125…刃口部、130…受桁、140…ジャッキ、150…土留め、151…腹起こし。 A, B, C, D, E ... steel element, 4 ... earth retaining, 100 ... tie rod, 110 ... bearing plate, 120 ... double element, 121 ... joint, 125 ... blade edge part, 130 ... girder, 140 ... Jack, 150 ... earth retaining, 151 ... upset.

Claims (1)

地盤中に鋼製エレメントを施工する方法において、
上床版に施工する鋼製エレメントを継手で連結して発進立坑側に並べ、基準管を発進立坑側から到達立坑側まで施工した後、基準管の両側の鋼製エレメントを対とし、各対の複数の鋼製エレメントを交互にけん引または推進して複数本同時に施工することを特徴とする鋼製エレメント施工方法。
In the method of constructing steel elements in the ground,
The steel elements to be constructed on the upper floor slab are connected with joints and arranged on the start shaft side, and after the reference pipe is constructed from the start shaft side to the arrival shaft side, the steel elements on both sides of the reference pipe are used as a pair. A steel element construction method, wherein a plurality of steel elements are alternately towed or propelled to construct a plurality at the same time .
JP2008037135A 2008-02-19 2008-02-19 Steel element construction method Active JP5064261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037135A JP5064261B2 (en) 2008-02-19 2008-02-19 Steel element construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037135A JP5064261B2 (en) 2008-02-19 2008-02-19 Steel element construction method

Publications (2)

Publication Number Publication Date
JP2009197394A JP2009197394A (en) 2009-09-03
JP5064261B2 true JP5064261B2 (en) 2012-10-31

Family

ID=41141203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037135A Active JP5064261B2 (en) 2008-02-19 2008-02-19 Steel element construction method

Country Status (1)

Country Link
JP (1) JP5064261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106836033A (en) * 2016-12-14 2017-06-13 长安大学 A kind of three tube method culvert push constructing devices and construction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230496A (en) * 1984-04-28 1985-11-15 植村 厚一 Construction of underground plate-shaped structure
JP2835418B2 (en) * 1993-04-06 1998-12-14 株式会社奥村組 Pipe roof propulsion method and apparatus
JP2789523B2 (en) * 1996-04-19 1998-08-20 誠 植村 How to build underground structures
JPH1018757A (en) * 1996-07-04 1998-01-20 Iseki Tory Tech Inc Method of constructing pipe roof, coupling pipe and excavating device
JP2995285B2 (en) * 1996-08-05 1999-12-27 誠 植村 How to advance the box-type roof cylinder
JP3845071B2 (en) * 2003-04-24 2006-11-15 株式会社データ・トゥ Pipe roof
JP2007154463A (en) * 2005-12-02 2007-06-21 East Japan Railway Co Penetration method of lining element into natural ground by master pushing method, and master pushing frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106836033A (en) * 2016-12-14 2017-06-13 长安大学 A kind of three tube method culvert push constructing devices and construction method

Also Published As

Publication number Publication date
JP2009197394A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101324173B1 (en) Construction method for underground tunnel using guiding shape steel
JP6037120B2 (en) How to install the box structure
JP5064261B2 (en) Steel element construction method
JP7160239B2 (en) Propulsion method of box structure
JP5885229B2 (en) Reaction force device
CN108979641B (en) Construction method for underground structure
JP5135145B2 (en) Steel element construction method
CN108729469B (en) Construction method of underground structure
KR101255517B1 (en) The tunel execution method and the using fabric
JP5188383B2 (en) Box thrust transmission member and method of constructing underground structure using the same
JP2835418B2 (en) Pipe roof propulsion method and apparatus
JP2019100005A (en) Execution method of underground structure and intermediate pushing jack used therefor
JP6113778B2 (en) Construction method for underground structures
JP5054164B2 (en) Construction method for underground structures
JP6441871B2 (en) Box roof deflection reduction method for box roof method
JPH02252892A (en) Method for constructing underground structure
JP7032737B2 (en) How to install FC plate fixing member and box structure
JP2007154463A (en) Penetration method of lining element into natural ground by master pushing method, and master pushing frame
JP4889997B2 (en) Steel shell joining device, steel shell, outer shell, and outer shell leading tunnel construction method
JP2835416B2 (en) Underground structure and its construction method
JP5999792B2 (en) Construction method of reaction force device
JP3946720B2 (en) How to bury underground structures
JP2020002526A (en) Fc plate fixing unit and caisson structure installation method
JP2024143680A (en) Tow-type underpass construction method
JP3782808B2 (en) Construction method and equipment for underground structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250