JP5061635B2 - Process for producing 4-fluoro-1,3-dioxolan-2-one - Google Patents

Process for producing 4-fluoro-1,3-dioxolan-2-one Download PDF

Info

Publication number
JP5061635B2
JP5061635B2 JP2007035071A JP2007035071A JP5061635B2 JP 5061635 B2 JP5061635 B2 JP 5061635B2 JP 2007035071 A JP2007035071 A JP 2007035071A JP 2007035071 A JP2007035071 A JP 2007035071A JP 5061635 B2 JP5061635 B2 JP 5061635B2
Authority
JP
Japan
Prior art keywords
reaction
dioxolan
fluoro
fluoride
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007035071A
Other languages
Japanese (ja)
Other versions
JP2008195691A (en
Inventor
明天 高
昭佳 山内
みちる 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007035071A priority Critical patent/JP5061635B2/en
Publication of JP2008195691A publication Critical patent/JP2008195691A/en
Application granted granted Critical
Publication of JP5061635B2 publication Critical patent/JP5061635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture 4-fluoro-1,3-dioxolan-2-one in a short time while maintaining a high yield. <P>SOLUTION: 4-Fluoro-1,3-dioxolan-2-one is manufactured by fluorinating 4-chloro-1,3-dioxolan-2-one with a metal fluoride in an organic solvent using as a catalyst a compound of a specific quaternary ammonium cation with a halogen anion. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、4−フルオロ−1,3−ジオキソラン−2−オンを短時間で高収率にて製造する方法に関する。   The present invention relates to a method for producing 4-fluoro-1,3-dioxolan-2-one in a short time and in a high yield.

4−フルオロ−1,3−ジオキソラン−2−オン(以下、「F−EC」という)は、二次電池やキャパシタなどの電気化学デバイスに用いる電解液の溶媒として、充放電サイクル特性や電流効率などに優れる点から注目されている。   4-Fluoro-1,3-dioxolan-2-one (hereinafter referred to as “F-EC”) is a solvent for electrolytes used in electrochemical devices such as secondary batteries and capacitors, and is used for charge / discharge cycle characteristics and current efficiency. It is attracting attention because of its superiority.

このF−ECの製造法としては、1,3−ジオキソラン−2−オンを出発物質とし、フッ素ガスで直接フッ素化する方法と、フッ素化剤として金属フッ化物を用いて4−クロロ−1,3−ジオキソラン−2−オン(以下、「Cl−EC」という)の4位の塩素原子をフッ素原子で置換する方法が知られている(特許文献1、2)。   As a method for producing this F-EC, 1,3-dioxolan-2-one is used as a starting material, a method of directly fluorinating with a fluorine gas, and 4-chloro-1, A method is known in which the chlorine atom at the 4-position of 3-dioxolan-2-one (hereinafter referred to as “Cl-EC”) is substituted with a fluorine atom (Patent Documents 1 and 2).

特許文献1では、Cl−ECとフッ化カリウムとを混ぜて反応させてF−ECを収率70%で得たと記載されているが、反応溶媒や反応温度、反応時間といった基本的な条件の開示もない。   In Patent Document 1, it is described that Cl-EC and potassium fluoride are mixed and reacted to obtain F-EC in a yield of 70%. However, the basic conditions such as reaction solvent, reaction temperature, and reaction time are described. There is no disclosure.

特許文献2では、Cl−ECとフッ化カリウムとをアセトニトリル中で80〜85℃にて11時間かけて反応させ、出発物質のCl−ECを含むF−ECの粗生成物を収率87.5%で得ている(再結晶すると、粗生成物の85%でF−ECが採取できる)。   In Patent Document 2, Cl-EC and potassium fluoride are reacted in acetonitrile at 80 to 85 ° C. for 11 hours to obtain a crude product of F-EC containing Cl—EC as a starting material in a yield of 87. It is obtained in 5% (when recrystallized, F-EC can be collected in 85% of the crude product).

国際公開第98/15024号パンフレットInternational Publication No. 98/150424 Pamphlet 特開2007−8826号公報JP 2007-8826 A

本発明は、Cl−ECを出発物質とし、これをフッ素化剤でフッ素化する製造法において、高収率を維持しながら短時間でF−ECを製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing F-EC in a short time while maintaining a high yield in a production method in which Cl-EC is used as a starting material and fluorinated with a fluorinating agent. .

本発明は、
式(1):
4+- (1)
(式中、Rは炭素数1〜7のアルキル基、フェニル基、ベンジル基またはシクロアルキル基;Xはハロゲン原子)で示される4級アンモニウムカチオンとハロゲンアニオンとの化合物を触媒とし、4−クロロ−1,3−ジオキソラン−2−オン(Cl−EC)を有機溶媒中にて金属フッ化物によりフッ素化することを特徴とする4−フルオロ−1,3−ジオキソラン−2−オン(F−EC)の製造法に関する。
The present invention
Formula (1):
R 4 N + X - (1 )
(Wherein R is an alkyl group having 1 to 7 carbon atoms, phenyl group, benzyl group or cycloalkyl group; X is a halogen atom), and a compound of a quaternary ammonium cation and a halogen anion is used as a catalyst. 4-fluoro-1,3-dioxolan-2-one (F-EC), characterized by fluorinating 1,3-dioxolan-2-one (Cl-EC) with a metal fluoride in an organic solvent ) Manufacturing method.

触媒である4級アンモニウムカチオンとハロゲンアニオンとの化合物としては、式(1)において、Rが炭素数1〜7のアルキル基である化合物が、取り扱いが容易である点から好ましい。   As a compound of a quaternary ammonium cation and a halogen anion as a catalyst, a compound in which R is an alkyl group having 1 to 7 carbon atoms in the formula (1) is preferable from the viewpoint of easy handling.

また、触媒である4級アンモニウムカチオンとハロゲンアニオンとの化合物を構成するハロゲン原子としては、フッ素原子であることが、初期の反応性が高い点から好ましい。   In addition, the halogen atom constituting the compound of the quaternary ammonium cation and the halogen anion as a catalyst is preferably a fluorine atom from the viewpoint of high initial reactivity.

有機溶媒としては、非プロトン性溶媒、特にアセトニトリル(AN)、テトラヒドロフラン(THF)、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミドまたはN,N−ジメチルアセトアミドであることが、誘電率が高い点から好ましい。   The organic solvent is an aprotic solvent, particularly acetonitrile (AN), tetrahydrofuran (THF), N-methylpyrrolidone (NMP), N, N-dimethylformamide or N, N-dimethylacetamide, It is preferable from a high point.

金属フッ化物としては、アルカリ金属フッ化物が、取り扱いやすく反応性が高い点から好ましい。   As the metal fluoride, alkali metal fluoride is preferable because it is easy to handle and has high reactivity.

触媒である4級アンモニウムカチオンとハロゲンアニオンとの化合物は、金属フッ化物の0.01〜0.5等量使用することが、反応性が高い点から好ましい。   The compound of a quaternary ammonium cation and a halogen anion, which is a catalyst, is preferably used in an amount of 0.01 to 0.5 equivalent of metal fluoride from the viewpoint of high reactivity.

本発明の製造法によれば、高収率を維持しながら短時間でF−ECを製造することができる。   According to the production method of the present invention, F-EC can be produced in a short time while maintaining a high yield.

本発明のF−ECの製造法は、特定の4級アンモニウムカチオンとハロゲンアニオンとの化合物を触媒とし、Cl−ECを有機溶媒中にて金属フッ化物によりフッ素化することを特徴とする。   The method for producing F-EC of the present invention is characterized in that Cl-EC is fluorinated with a metal fluoride in an organic solvent using a compound of a specific quaternary ammonium cation and a halogen anion as a catalyst.

本発明の製造法の反応式はつぎのとおりである。   The reaction formula of the production method of the present invention is as follows.

Figure 0005061635
Figure 0005061635

なお、MFは金属フッ化物(固体)であり、また出発物質のCl−ECと目的物質のF−ECはいずれも液体である。   MF is a metal fluoride (solid), and Cl-EC as a starting material and F-EC as a target material are both liquids.

本発明で使用する触媒は、
式(1):
4+- (1)
で示される4級アンモニウムカチオンとハロゲンアニオンとの化合物である。
The catalyst used in the present invention is:
Formula (1):
R 4 N + X - (1 )
It is a compound of the quaternary ammonium cation and halogen anion shown by these.

4級アンモニウムカチオンとハロゲンアニオンとの化合物(1)のRとしては、炭素数1〜7のアルキル基、フェニル基、ベンジル基またはシクロアルキル基であり、特に極性溶媒への溶解性が良好な点から、メチル、エチル、n−プロピル、n−ブチル、シクロプロピル、シクロブチル、イソプロピル、イソブチルなどが好ましい。   R in the compound (1) of a quaternary ammonium cation and a halogen anion is an alkyl group having 1 to 7 carbon atoms, a phenyl group, a benzyl group or a cycloalkyl group, and particularly has good solubility in a polar solvent. Therefore, methyl, ethyl, n-propyl, n-butyl, cyclopropyl, cyclobutyl, isopropyl, isobutyl and the like are preferable.

Xはハロゲン原子であり、塩素原子、フッ素原子、臭素原子などがあげられるが、なかでも初期の反応性が高い点からフッ素原子が好ましい。   X is a halogen atom, and examples thereof include a chlorine atom, a fluorine atom, and a bromine atom. Among these, a fluorine atom is preferable from the viewpoint of high initial reactivity.

4級アンモニウムカチオンとハロゲンアニオンとの化合物(1)の具体例としては、たとえばテトラメチルアンモニウムフルオライド、テトラエチルアンモニウムフルオライド、テトラプロピルアンモニウムフルオライド、テトラブチルアンモニウムフルオライドなどがあげられる。   Specific examples of the compound (1) of a quaternary ammonium cation and a halogen anion include, for example, tetramethylammonium fluoride, tetraethylammonium fluoride, tetrapropylammonium fluoride, and tetrabutylammonium fluoride.

金属フッ化物はフッ素化剤として機能する。フッ化物を構成する金属としては、リチウム、カリウム、ナトリウムなどのアルカリ金属が取り扱いやすさや反応性が高い点から好ましく、特にカリウムが反応性が高い点で特に好ましい。   The metal fluoride functions as a fluorinating agent. As the metal constituting the fluoride, alkali metals such as lithium, potassium and sodium are preferable from the viewpoint of easy handling and reactivity, and potassium is particularly preferable from the viewpoint of high reactivity.

これらの金属フッ化物は固体であり、スプレー乾燥した微粒子、粉砕した粉末などの形状で反応に供される。   These metal fluorides are solid, and are subjected to the reaction in the form of spray-dried fine particles, pulverized powder, and the like.

本発明の反応は、有機溶媒中で行う。水が存在すると反応性が低下するので、実質的に無水の状態で行うことが望ましい。   The reaction of the present invention is carried out in an organic solvent. Since the reactivity is lowered in the presence of water, it is desirable to carry out in a substantially anhydrous state.

有機溶媒としては非プロトン性有機溶媒が好ましく、さらには反応速度が大きくなる点から極性有機溶媒が好ましい。具体的には、アセトニトリル(AN)、テトラヒドロフラン(THF)、N−メチルピロリドン(NMP)、塩化メチレン、クロロホルム、ニトロメタン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノンなどが例示できる。これらのなかでも誘電率が高く粘性が低い点からアセトニトリルが、また誘電率が高く沸点が好適な点からN−メチルピロリドンが好ましい。   The organic solvent is preferably an aprotic organic solvent, and more preferably a polar organic solvent from the viewpoint of increasing the reaction rate. Specifically, acetonitrile (AN), tetrahydrofuran (THF), N-methylpyrrolidone (NMP), methylene chloride, chloroform, nitromethane, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl- Examples include 2-imidazolidinone. Among these, acetonitrile is preferable from the viewpoint of high dielectric constant and low viscosity, and N-methylpyrrolidone is preferable from the viewpoint of high dielectric constant and favorable boiling point.

触媒の使用量としては特に限定されないが、金属フッ化物の0.01〜0.5等量、さらには0.01〜0.1等量であることが、反応後の塩化物の後処理が容易である点から好ましい。   The amount of the catalyst used is not particularly limited, but it is 0.01 to 0.5 equivalent of metal fluoride, more preferably 0.01 to 0.1 equivalent, so that the post treatment of chloride after the reaction is performed. It is preferable because it is easy.

出発物質のCl−ECと金属フッ化物の反応は等モル比で進むが、反応性の点から金属フッ化物をCl−EC1モルに対して1〜2モル、さらには1〜1.5モル使用することが好ましい。   The reaction between the starting material Cl-EC and the metal fluoride proceeds in an equimolar ratio, but from the viewpoint of reactivity, the metal fluoride is used in an amount of 1 to 2 mol, further 1 to 1.5 mol with respect to 1 mol of Cl-EC. It is preferable to do.

有機溶媒中の出発物質のCl−ECの濃度としては、広い範囲が採用できるが、5重量%以上、さらには20重量%以上であることが反応を制御しやすい点から好ましい。上限は60重量%、さらには50重量%が好ましい。   As the concentration of the starting material Cl-EC in the organic solvent, a wide range can be adopted, but it is preferably 5% by weight or more, more preferably 20% by weight or more from the viewpoint of easy control of the reaction. The upper limit is preferably 60% by weight, more preferably 50% by weight.

反応温度は、扱いやすさの点から30℃以上、さらには50℃以上が好ましい。また上限は使用する有機溶媒の沸点である。   The reaction temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher from the viewpoint of ease of handling. The upper limit is the boiling point of the organic solvent used.

反応は、従来の製造法における反応より早く進み、同等の収率では、従来の反応時間の1/2以下の時間で反応が完結する。収率も80〜85%と従来と同等かそれ以上である。   The reaction proceeds faster than the reaction in the conventional production method, and with the same yield, the reaction is completed in a time that is ½ or less of the conventional reaction time. The yield is 80 to 85%, which is equal to or higher than the conventional one.

反応生成物は、たとえば純水で再沈殿させ、得られたF−ECの溶液を蒸留することにより精製できる。   The reaction product can be purified by, for example, reprecipitation with pure water and distilling the resulting F-EC solution.

つぎに実施例をあげて本発明の製造法を説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the production method of the present invention will be described with reference to examples, but the present invention is not limited to these examples.

以下の実施例で使用した分析方法はつぎのものである。   The analysis methods used in the following examples are as follows.

(1)NMR
装置:BRUKER製のAC−300
測定条件:
19F−NMR:282MHz(トリフルオロメチルベンゼン=−62.3ppm)
1H−MNR:300MHz(トリフルオロメチルベンゼン=7.51ppm)
(1) NMR
Apparatus: AC-300 manufactured by BRUKER
Measurement condition:
19 F-NMR: 282 MHz (trifluoromethylbenzene = −62.3 ppm)
1 H-MNR: 300 MHz (trifluoromethylbenzene = 7.51 ppm)

(2)ガスクロマトグラフィ(GC)
装置:島津製作所製のGC−17A
カラム:DB624(J&Wサイエンティフィック社製)
測定条件:100℃→5分間保持→10℃/分で昇温→230℃
(2) Gas chromatography (GC)
Apparatus: GC-17A manufactured by Shimadzu Corporation
Column: DB624 (manufactured by J & W Scientific)
Measurement conditions: 100 ° C. → hold for 5 minutes → temperature rise at 10 ° C./min→230° C.

実施例1
撹拌装置を備えた30mlのガラス製3口フラスコの上部に還流管を取り付け、スプレー乾燥したフッ化カリウム2.85g(49.0mmol)を加え、真空下で攪拌しながらフレームドライにより水分除去を行った。その後シリンジを用いてアセトニトリル15ml、Cl−EC5g(40.6mmol)、テトラブチルアンモニウムフルオライド−THF溶液(1mol/l)4.9ml(4.90mmol)を加えて攪拌した。反応温度80℃で反応を行い進行はGCを用いて分析した。反応は4時間で終了し、原料のピークの消失を確認した。反応終了後、反応溶液を純水で再沈を行い下層の溶液を採取した。採取後蒸留により精製を行い、85℃(100mmHg)の留分として、収率85%、GC純度99.8%でF−ECが得られた。
Example 1
Attach a reflux tube to the top of a 30 ml glass three-necked flask equipped with a stirrer, add 2.85 g (49.0 mmol) of spray-dried potassium fluoride, and remove moisture by flame drying while stirring under vacuum. It was. Thereafter, 15 ml of acetonitrile, 5 g (40.6 mmol) of Cl-EC and 4.9 ml (4.90 mmol) of tetrabutylammonium fluoride-THF solution (1 mol / l) were added and stirred using a syringe. The reaction was performed at a reaction temperature of 80 ° C., and the progress was analyzed using GC. The reaction was completed in 4 hours, and disappearance of the raw material peak was confirmed. After completion of the reaction, the reaction solution was reprecipitated with pure water, and the lower layer solution was collected. After collection, purification was performed by distillation, and F-EC was obtained as a fraction at 85 ° C. (100 mmHg) with a yield of 85% and a GC purity of 99.8%.

このF−ECを19F−NMR、1H−NMR分析により分析し、4−フルオロ−1,3−ジオキソラン−2−オンであることを確認した。
19F−NMR:(重アセトン):−122.6〜−122.3ppm(1F,m)
1H−NMR:(重アセトン):4.54〜4.91ppm(2H,m)、6.42〜6.68ppm(1H,dd)
This F-EC was analyzed by 19 F-NMR and 1 H-NMR analysis and confirmed to be 4-fluoro-1,3-dioxolan-2-one.
19 F-NMR: (heavy acetone): -122.6 to -122.3 ppm (1F, m)
1 H-NMR: (heavy acetone): 4.54 to 4.91 ppm (2H, m), 6.42 to 6.68 ppm (1H, dd)

実施例2
撹拌装置を備えた30mlのガラス製3口フラスコの上部に還流管を取り付け、粉末のフッ化カリウム2.85g(49.0mmol)を加え、真空下で攪拌しながらフレームドライにより水分除去を行った。その後シリンジを用いてアセトニトリル15ml、Cl−EC5g(40.6mmol)、テトラブチルアンモニウムフルオライド−THF溶液(1mol/l)4.9ml(4.90mmol)を加えて攪拌した。反応温度80℃で反応を行い進行はGCを用いて分析した。反応は9時間で終了し、原料のピークの消失を確認した。反応終了後、反応溶液を純水で再沈を行い下層の溶液を採取した。採取後蒸留により精製を行い、85℃(100mmHg)の留分として、収率85%、GC純度99.8%でF−ECが得られた。
Example 2
A reflux tube was attached to the top of a 30 ml glass three-necked flask equipped with a stirrer, 2.85 g (49.0 mmol) of powdered potassium fluoride was added, and water was removed by flame drying while stirring under vacuum. . Thereafter, 15 ml of acetonitrile, 5 g (40.6 mmol) of Cl-EC and 4.9 ml (4.90 mmol) of tetrabutylammonium fluoride-THF solution (1 mol / l) were added and stirred using a syringe. The reaction was performed at a reaction temperature of 80 ° C., and the progress was analyzed using GC. The reaction was completed in 9 hours, and disappearance of the raw material peak was confirmed. After completion of the reaction, the reaction solution was reprecipitated with pure water, and the lower layer solution was collected. After collection, purification was performed by distillation, and F-EC was obtained as a fraction at 85 ° C. (100 mmHg) with a yield of 85% and a GC purity of 99.8%.

このF−ECを19F−NMR、1H−NMR分析により分析し、4−フルオロ−1,3−ジオキソラン−2−オンであることを確認した。 This F-EC was analyzed by 19 F-NMR and 1 H-NMR analysis and confirmed to be 4-fluoro-1,3-dioxolan-2-one.

実施例3
撹拌装置を備えた30mlのガラス製3口フラスコの上部に還流管を取り付け、スプレー乾燥したフッ化カリウム2.85g(49.0mmol)を加え、真空下で攪拌しながらフレームドライにより水分除去を行った。その後シリンジを用いてN−メチルピロリドン15ml、Cl−EC5g(40.6mmol)、テトラブチルアンモニウムフルオライド−THF溶液(1mol/l)4.9ml(4.90mmol)を加えて攪拌した。反応温度80℃で反応を行い進行はGCを用いて分析した。反応は8時間で終了し、原料のピークの消失を確認した。反応終了後、反応溶液を純水で再沈を行い下層の溶液を採取した。採取後蒸留により精製を行い、85℃(100mmHg)の留分として、収率85%、GC純度99.8%でF−ECが得られた。
Example 3
Attach a reflux tube to the top of a 30 ml glass three-necked flask equipped with a stirrer, add 2.85 g (49.0 mmol) of spray-dried potassium fluoride, and remove moisture by flame drying while stirring under vacuum. It was. Thereafter, 15 ml of N-methylpyrrolidone, 5 g (40.6 mmol) of Cl-EC, and 4.9 ml (4.90 mmol) of tetrabutylammonium fluoride-THF solution (1 mol / l) were added and stirred using a syringe. The reaction was performed at a reaction temperature of 80 ° C., and the progress was analyzed using GC. The reaction was completed in 8 hours, and disappearance of the raw material peak was confirmed. After completion of the reaction, the reaction solution was reprecipitated with pure water, and the lower layer solution was collected. After collection, purification was performed by distillation, and F-EC was obtained as a fraction at 85 ° C. (100 mmHg) with a yield of 85% and a GC purity of 99.8%.

このF−ECを19F−NMR、1H−NMR分析により分析し、4−フルオロ−1,3−ジオキソラン−2−オンであることを確認した。 This F-EC was analyzed by 19 F-NMR and 1 H-NMR analysis and confirmed to be 4-fluoro-1,3-dioxolan-2-one.

Claims (5)

テトラブチルアンモニウムフルオライドを触媒とし、4−クロロ−1,3−ジオキソラン−2−オンを有機溶媒中にて金属フッ化物によりフッ素化することを特徴とする4−フルオロ−1,3−ジオキソラン−2−オンの製造法。 4-Fluoro-1,3-dioxolane-, characterized by fluorinating 4-chloro-1,3-dioxolan-2-one with a metal fluoride in an organic solvent using tetrabutylammonium fluoride as a catalyst A process for producing 2-one. 有機溶媒が非プロトン性溶媒である請求項記載の製造法。 Process of claim 1 the organic solvent is an aprotic solvent. 有機溶媒が、アセトニトリル、テトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミドまたはN,N−ジメチルアセトアミドである請求項記載の製造法。 Organic solvent, acetonitrile, tetrahydrofuran, N- methylpyrrolidone, N, N- dimethylformamide or N, process according to claim 2, wherein the N- dimethylacetamide. 金属フッ化物が、アルカリ金属フッ化物である請求項1〜のいずれかに記載の製造法。 The method according to any one of claims 1 to 3 , wherein the metal fluoride is an alkali metal fluoride. テトラブチルアンモニウムフルオライドを金属フッ化物の0.01〜0.5等量使用する請求項1〜のいずれかに記載の製造法。 The production method according to any one of claims 1 to 4 , wherein tetrabutylammonium fluoride is used in an amount of 0.01 to 0.5 equivalent of metal fluoride.
JP2007035071A 2007-02-15 2007-02-15 Process for producing 4-fluoro-1,3-dioxolan-2-one Expired - Fee Related JP5061635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035071A JP5061635B2 (en) 2007-02-15 2007-02-15 Process for producing 4-fluoro-1,3-dioxolan-2-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035071A JP5061635B2 (en) 2007-02-15 2007-02-15 Process for producing 4-fluoro-1,3-dioxolan-2-one

Publications (2)

Publication Number Publication Date
JP2008195691A JP2008195691A (en) 2008-08-28
JP5061635B2 true JP5061635B2 (en) 2012-10-31

Family

ID=39754973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035071A Expired - Fee Related JP5061635B2 (en) 2007-02-15 2007-02-15 Process for producing 4-fluoro-1,3-dioxolan-2-one

Country Status (1)

Country Link
JP (1) JP5061635B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100558721C (en) * 2007-06-01 2009-11-11 张家港市华盛化学有限公司 The preparation method of fluoric cyclic carbonate
JP5358974B2 (en) * 2008-02-28 2013-12-04 ダイキン工業株式会社 Method for producing fluorinated 1,3-dioxolan-2-one
TW201121938A (en) * 2009-09-28 2011-07-01 Solvay Fluor Gmbh Manufacture of difluoroethylene carbonate, trifluoroethylene carbonate and tetrafluoroethylene carbonate
CN102060838A (en) * 2010-12-31 2011-05-18 浙江华晶氟化学科技有限公司 Method for preparing fluoroethylene carbonate
CN105440008A (en) * 2015-12-18 2016-03-30 苏州华一新能源科技有限公司 Method for preparing fluoroethylene carbonate
CN110156743A (en) * 2019-05-24 2019-08-23 泰兴华盛精细化工有限公司 A kind of synthetic method of fluorinated ethylene carbonate
CN113402496B (en) * 2021-07-07 2022-03-25 山东海科创新研究院有限公司 Application of dimethylacetamide to preparation of fluoroethylene carbonate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642399A (en) * 1984-11-29 1987-02-10 Mallinckrodt, Inc. Method for producing fluoronitrobenzene compounds
CN1115316C (en) * 2000-11-17 2003-07-23 中国科学院上海有机化学研究所 Water phase fluorination process of preparing 1,1,1,2-tetra-fluoroethane
CN1218935C (en) * 2003-08-15 2005-09-14 中国科学院动物研究所 Substituted benzoyl urea insect growth regulator synthesizing method
CN1696088A (en) * 2005-04-06 2005-11-16 上海立科药物化学有限公司 Method for synthesizing fluoro-polypxylene
JP4848684B2 (en) * 2005-06-28 2011-12-28 セントラル硝子株式会社 Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one
JP4848683B2 (en) * 2005-06-28 2011-12-28 セントラル硝子株式会社 Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one

Also Published As

Publication number Publication date
JP2008195691A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5061635B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
JP5135926B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
JP5082520B2 (en) Method for producing fluorine-containing diol compound
JP5974181B2 (en) Method for producing lithium bis (fluorosulfonyl) imide
JP5208782B2 (en) Fluorosulfonylimides and process for producing the same
JP4621783B2 (en) Fluorosulfonylimides and process for producing the same
WO2016002771A1 (en) Complex center formation agent, ionic complex and production method thereof
JP2008297299A (en) Method for producing fluoro cyclic carbonate
JP2007008826A (en) Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one
JP2012188359A (en) Processes for producing halogenofluorinated cycloalkane and hydrofluorinated cycloalkane
TWI636034B (en) Method for producing fluorinated methane
JP5313579B2 (en) Process for producing novel fluorinated 1,2-oxathiolane 2,2-dioxide
EP2308862B1 (en) Manufacturing method for fluoropropylene carbonate
JP2015509907A (en) Fluoride isolation method
JP5540508B2 (en) Process for producing 1,2-dialkyl-1,2-difluoroethylene carbonate
JP6550927B2 (en) Method for producing alkyl iodide compound
JP2010030965A (en) Method for producing fluoroalkene compound
JP2022048291A (en) Methods for producing iodofluoroalkane and fluoroolefin
JP2010138161A (en) Method for producing high-purity 4-chloro-1,3-dioxolan-2-one
JP5351456B2 (en) Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination
JP2006232704A (en) New fluorosulfonyl group-containing compound
KR100744834B1 (en) Method for preparing of fluorinated alkoxysilane derivatives
JP4228668B2 (en) Method for producing perfluoro (3-methoxypropene)
JP4284493B2 (en) Method for producing difluorohaloacetyl fluoride
JP2016060698A (en) 1,2-bis(2,2-difluoroethoxy)ethane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R151 Written notification of patent or utility model registration

Ref document number: 5061635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees