JP5059378B2 - Fuel cell electrode catalyst, method for producing the same, and fuel cell - Google Patents

Fuel cell electrode catalyst, method for producing the same, and fuel cell Download PDF

Info

Publication number
JP5059378B2
JP5059378B2 JP2006305679A JP2006305679A JP5059378B2 JP 5059378 B2 JP5059378 B2 JP 5059378B2 JP 2006305679 A JP2006305679 A JP 2006305679A JP 2006305679 A JP2006305679 A JP 2006305679A JP 5059378 B2 JP5059378 B2 JP 5059378B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
electrode
electrode catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006305679A
Other languages
Japanese (ja)
Other versions
JP2008123810A (en
Inventor
泰雄 吉井
英年 唐澤
周一 菅野
修一 鈴木
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006305679A priority Critical patent/JP5059378B2/en
Publication of JP2008123810A publication Critical patent/JP2008123810A/en
Application granted granted Critical
Publication of JP5059378B2 publication Critical patent/JP5059378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Description

本発明は、燃料電池用の電極触媒に係り、特に金属錯体または金属クラスターから構成される電極触媒とその製法に関する。   The present invention relates to an electrode catalyst for a fuel cell, and more particularly to an electrode catalyst composed of a metal complex or a metal cluster and a method for producing the same.

自動車や一般家庭用の分散型燃料電池として固体高分子形燃料電池(Polymer Electrolyte Fuel Cell、以下PEFCと略す)が開発され、また、携帯用電子機器の電源としてメタノールを燃料とする直接メタノール形燃料電池(以下、DMFCと略す)が開発されている。これらの燃料電池の心臓部は電極であり、アノード極とカソード極からなる。この種の燃料電池では一般にカソード極の電極材料に白金、アノード極の電極材料に白金−ルテニウムを使用しているため、電池材料コストは高い。   A polymer electrolyte fuel cell (hereinafter abbreviated as PEFC) has been developed as a distributed fuel cell for automobiles and general households, and direct methanol fuel that uses methanol as the power source for portable electronic devices Batteries (hereinafter abbreviated as DMFC) have been developed. The heart of these fuel cells is an electrode, which consists of an anode and a cathode. Since this type of fuel cell generally uses platinum as the cathode electrode material and platinum-ruthenium as the anode electrode material, the battery material cost is high.

燃料電池の動作原理の概略を、DMFCを例にとって説明する。DMFCはアノード極(燃料極)とカソード極(空気極)から構成される。アノード極では(1)式に示すように、燃料であるメタノールと水が反応して水素イオン(以下、Hと略す)と電子(以下、eと略す)及びCOが生成する。一方、カソード極では(2)式に示すように、電解質膜を透過したHと外部から供給された空気中のOとが反応して水を生成する。アノード極とカソード極を外部回路で継ぐことにより、電流を得ることができる。 An outline of the operation principle of the fuel cell will be described by taking DMFC as an example. The DMFC is composed of an anode electrode (fuel electrode) and a cathode electrode (air electrode). At the anode electrode, as shown in the equation (1), methanol as a fuel and water react to generate hydrogen ions (hereinafter abbreviated as H + ), electrons (hereinafter abbreviated as e ), and CO 2 . On the other hand, as shown in the equation (2), H + that has passed through the electrolyte membrane reacts with O 2 in the air supplied from the outside to generate water as shown in the equation (2). A current can be obtained by connecting the anode and cathode with an external circuit.

アノード極での反応:CHOH+HO→6H+CO+6e …(1)
カソード極での反応:6H+3/2O+6e→3HO …(2)
これらの反応を進行させる活性成分として、一般にアノード極では白金とルテニウムが、カソード極では白金が使用される。一方、PEFCではアノード極とカソード極の両方で白金が使用される。
Reaction at anode electrode: CH 3 OH + H 2 O → 6H + + CO 2 + 6e (1)
Reaction at cathode electrode: 6H + + 3 / 2O 2 + 6e → 3H 2 O (2)
As active components for promoting these reactions, platinum and ruthenium are generally used at the anode electrode and platinum is used at the cathode electrode. On the other hand, in PEFC, platinum is used for both the anode and cathode.

このように、燃料電池では白金が重要な構成材料であるが、非常に高価である。このため、触媒の性能を高めて白金の使用量を低減する研究がなされている(例えば、非特許文献1参照)。   Thus, platinum is an important component in fuel cells, but it is very expensive. For this reason, research which raises the performance of a catalyst and reduces the usage-amount of platinum is made (for example, refer nonpatent literature 1).

日本化学会誌、1988、(8)、p.1426〜1432The Chemical Society of Japan, 1988, (8), p. 1426-1432

PEFCやDMFC等の燃料電池では、電極触媒材料に白金等の貴金属を使用しているため、燃料電池コストを低減するには限界があった。   In fuel cells such as PEFC and DMFC, noble metals such as platinum are used as the electrode catalyst material, so there is a limit to reducing the fuel cell cost.

本発明の目的は、高価な白金を使用しないでも高い触媒活性が得られるようにした燃料電池用電極触媒とその製法並びに燃料電池を提供することにある。   An object of the present invention is to provide an electrode catalyst for a fuel cell, a method for producing the same, and a fuel cell so that high catalytic activity can be obtained without using expensive platinum.

本発明は、金属の周囲が配位子で覆われた金属錯体または金属クラスターを炭素担体または無機酸化物担体に担持した燃料電池用電極触媒において、前記配位子がカルボニル基を有し、前記炭素担体または無機酸化物担体が水酸基を有し、前記炭素担体の1gを10mlの沸騰した蒸留水に混合し冷却後の炭素を含んだ縣濁液のpHが9より小さいことを特徴とする。   The present invention relates to an electrode catalyst for a fuel cell in which a metal complex or metal cluster in which a metal is covered with a ligand is supported on a carbon support or an inorganic oxide support, wherein the ligand has a carbonyl group, The carbon support or inorganic oxide support has a hydroxyl group, and 1 g of the carbon support is mixed with 10 ml of boiling distilled water, and the pH of the suspension containing carbon after cooling is less than 9.

本発明は、金属の周囲が配位子で覆われた金属錯体または金属クラスターを炭素担体または無機酸化物担体に担持した燃料電池用電極触媒において、前記配位子が炭素及び水素原子を少なくとも1個含む有機物であり、前記炭素担体の1gを10mlの沸騰した蒸留水に混合し冷却後の炭素を含んだ縣濁液のpHが9以上であることを特徴とする。   The present invention provides a fuel cell electrode catalyst in which a metal complex or metal cluster in which a metal is covered with a ligand is supported on a carbon support or an inorganic oxide support, wherein the ligand contains at least one carbon and hydrogen atom. It is an organic substance containing one piece, and 1 g of the carbon support is mixed with 10 ml of boiling distilled water, and the pH of the suspension containing carbon after cooling is 9 or more.

本発明は、前記した構成を有する燃料電池用電極触媒において、炭素担体または無機酸化物担体に担持されている金属成分が金、タングステン、銅、コバルト、ニッケル、鉄、マンガン、パラジウム、レニウム、オスニウム、イリジウム、ロジウム、ルテニウム、白金から選ばれた少なくとも一種よりなることを特徴とする。   The present invention provides an electrode catalyst for a fuel cell having the above-described configuration, wherein the metal component supported on the carbon support or the inorganic oxide support is gold, tungsten, copper, cobalt, nickel, iron, manganese, palladium, rhenium, osmium And at least one selected from iridium, rhodium, ruthenium, and platinum.

本発明は、前記した燃料電池用電極触媒において、炭素担体が硫黄原子と窒素原子から選ばれる少なくとも1種を含むことを特徴とする。   The present invention is characterized in that, in the above-described electrode catalyst for a fuel cell, the carbon support contains at least one selected from a sulfur atom and a nitrogen atom.

本発明は、前記した燃料電池用電極触媒において、炭素担体がカーボンブラック、カーボンナノチューブまたはフラーレン化合物であり、無機酸化物担体がケイ素、チタン、アルミニウムを含有する複合酸化物であることを特徴とする。   In the fuel cell electrode catalyst according to the present invention, the carbon support is carbon black, a carbon nanotube, or a fullerene compound, and the inorganic oxide support is a composite oxide containing silicon, titanium, and aluminum. .

本発明は、金属の周囲がカルボニル基を有する配位子で覆われた金属錯体または金属クラスターを、水酸基を有しpHが9.0より小さい炭素担体または水酸基を有する無機酸化物担体に担持した燃料電池用電極触媒の製造方法において、前記金属錯体または金属クラスターと担体の混合物を真空下で加熱処理することを特徴とする。   In the present invention, a metal complex or metal cluster in which a metal periphery is covered with a ligand having a carbonyl group is supported on a carbon carrier having a hydroxyl group and a pH of less than 9.0 or an inorganic oxide carrier having a hydroxyl group. In the method for producing a fuel cell electrode catalyst, the mixture of the metal complex or metal cluster and the support is heat-treated under vacuum.

本発明は、金属の周囲が炭素及び水素原子を少なくとも1個含む有機物よりなる配位子で覆われた金属錯体または金属クラスターを、pHが9より大きい炭素担体または無機酸化物担体に担持した燃料電池用電極触媒の製造方法において、前記金属錯体または金属クラスターと担体の混合物を真空下で加熱処理することを特徴とする。   The present invention relates to a fuel in which a metal complex or metal cluster in which a metal is covered with a ligand made of an organic substance containing at least one carbon and hydrogen atom is supported on a carbon support or an inorganic oxide support having a pH higher than 9. In the method for producing an electrode catalyst for a battery, the metal complex or the mixture of metal clusters and a support is heat-treated under vacuum.

本発明は、アノード電極とカソード電極の間に水素イオンを透過する電解質膜を備えた膜/電極接合体において、前記した構成を有する電極触媒をアノード電極とカソード電極の少なくとも一方に備えたことを特徴とする。   According to the present invention, in a membrane / electrode assembly including an electrolyte membrane that transmits hydrogen ions between an anode electrode and a cathode electrode, an electrode catalyst having the above-described configuration is provided in at least one of the anode electrode and the cathode electrode. Features.

本発明は、前記膜/電極接合体を備えた燃料電池にある。また、前記燃料電池を電源として具備した携帯用電子機器並びに固体高分子形燃料電池システムにある。   The present invention resides in a fuel cell including the membrane / electrode assembly. Further, the present invention resides in a portable electronic device equipped with the fuel cell as a power source and a polymer electrolyte fuel cell system.

本発明の触媒は、触媒活性成分と担体との親和性が良く、非白金系の元素を触媒活性成分とした場合でも高い電極性能が得られる。本発明の触媒を燃料電池の電極触媒に適用することで、活性成分として高価な白金を使用しない、低コストの燃料電池システムを実現できる。   The catalyst of the present invention has good affinity between the catalytically active component and the carrier, and high electrode performance can be obtained even when a non-platinum element is used as the catalytically active component. By applying the catalyst of the present invention to an electrode catalyst of a fuel cell, a low-cost fuel cell system that does not use expensive platinum as an active component can be realized.

本発明の電極触媒は、PEFCやDMFCに適用するのに極めて好適である。また、本発明の電極触媒において、触媒活性成分としてはCoが極めて好適である。Coは白金に比べて単位重量当たりの価格が極めて低いため、Coを金属錯体化または金属クラスター化することで単位重量当たりの性能を向上すれば、これを用いた燃料電池のコストを大幅に低減することができる。ここで、金属クラスターとは金属間に結合をもつ3個以上の金属集団で周囲が配位子で覆われた分子と定義され、バルク金属と金属錯体の中間に位置づけられる一群の特異な化合物である。   The electrode catalyst of the present invention is extremely suitable for application to PEFC and DMFC. In the electrode catalyst of the present invention, Co is very suitable as a catalytically active component. Co has a much lower price per unit weight than platinum, so if the performance per unit weight is improved by metal complexing or metal clustering of Co, the cost of fuel cells using this will be greatly reduced. can do. Here, a metal cluster is defined as a group of 3 or more metal groups with bonds between metals and surrounded by a ligand, and is a group of unique compounds positioned between a bulk metal and a metal complex. is there.

炭素担体としてはカーボンブラック、カーボンナノチューブまたはフラーレン化合物が好ましい。また、無機酸化物担体としてはメソポーラスシリカ、メソポーラスアルミナまたはメソポーラスチタンが好ましい。これらの担体材料は、高比表面積を持つ多孔質担体とすることが可能であり、触媒活性成分を高分散担持することができる。   As the carbon carrier, carbon black, carbon nanotubes or fullerene compounds are preferred. The inorganic oxide carrier is preferably mesoporous silica, mesoporous alumina, or mesoporous titanium. These carrier materials can be made into a porous carrier having a high specific surface area, and can carry a catalytically active component in a highly dispersed manner.

以下、本発明を実施例で具体的に説明するが、本発明はこれらの実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

本実施例ではAu錯体触媒の作製方法について説明する。   In this example, a method for producing an Au complex catalyst will be described.

HAuCl・4HOとトリフェニルホスフィンをそれぞれ別のフラスコに採取し、両フラスコにアセトンを添加して、各溶液を作製した。トリフェニルホスフィンを入れたフラスコを0℃に氷浴し、アセトンに溶解したHAuCl・4HO溶液を注射器で採取し、少量づつトリフェニルホスフィン溶液に添加した。白色針状結晶が析出したら、フラスコ内を真空排気することでアセトンを蒸発させ、結晶を乾燥し、AuCl(PPh)を得た。次にシュレンク管に炭素担体とAuCl(PPh)を入れ、これにテトラヒドロフランを添加した。 HAuCl 4 · 4H 2 O and triphenylphosphine were collected in separate flasks, and acetone was added to both flasks to prepare solutions. The flask containing triphenylphosphine was ice bathed at 0 ° C., and a HAuCl 4 .4H 2 O solution dissolved in acetone was collected with a syringe and added in small portions to the triphenylphosphine solution. When white acicular crystals were precipitated, the flask was evacuated to evaporate acetone, and the crystals were dried to obtain AuCl (PPh 3 ). Next, a carbon support and AuCl (PPh 3 ) were placed in a Schlenk tube, and tetrahydrofuran was added thereto.

AuCl(PPh)の添加量は炭素担体の重量に対するAu重量、すなわちAu担持率が33wt%となるようにした。ここで使用した炭素担体は、導電性カーボンブラックの一つである、カーボンブラック1担体(以下、C1と記載)である。この担体のpHは9.0である。pH測定法について下記に記述する。 The added amount of AuCl (PPh 3 ) was set such that the Au weight relative to the weight of the carbon support, that is, the Au loading rate was 33 wt%. The carbon carrier used here is a carbon black 1 carrier (hereinafter referred to as C1), which is one of conductive carbon blacks. The pH of this carrier is 9.0. The pH measurement method is described below.

試料1gを秤量して20mlビーカーに採取後、1mlのエチルアルコールと予め沸騰させた蒸留水を11ml加え、ビーカーに蓋をして、60分間放冷した。その後、懸濁液のpHをpHメータで測定した。   After weighing 1 g of a sample and collecting it in a 20 ml beaker, 1 ml of ethyl alcohol and 11 ml of distilled water boiled in advance were added, the beaker was covered and allowed to cool for 60 minutes. Thereafter, the pH of the suspension was measured with a pH meter.

これらの混合物を室温で3時間攪拌した。攪拌後、シュレンク管内を真空排気することでテトラヒドロフラン蒸発させた。最後にAuCl(PPh)を固定するために、攪拌しながら、真空下で185℃の温度に2時間加熱処理して、Au錯体をカーボンブラック1担体に担持した触媒(以下、Au錯体/C1触媒と記載)を作製した。
(比較例1)
本発明の触媒と比較するために、Auバルク触媒(以下、Auバルク/C1触媒と記載)を作製した。塩化金溶液とカーボン担体の混合物に水を添加し、これをライカイ機で30分間混練した後、120℃で2時間乾燥し、最終的に3%の水素と97%のアルゴンガスを100cc/min流量で流通し、500℃で3時間焼成した。Au担持率は33wt%とした。
These mixtures were stirred at room temperature for 3 hours. After stirring, the inside of the Schlenk tube was evacuated to evaporate tetrahydrofuran. Finally, in order to fix AuCl (PPh 3 ), a catalyst (hereinafter referred to as Au complex / C1), which was heat-treated at a temperature of 185 ° C. under vacuum for 2 hours with stirring to carry Au complex on a carbon black 1 carrier. (Denoted as catalyst).
(Comparative Example 1)
For comparison with the catalyst of the present invention, an Au bulk catalyst (hereinafter referred to as Au bulk / C1 catalyst) was prepared. Water is added to the mixture of the gold chloride solution and the carbon carrier, which is kneaded for 30 minutes with a lyi machine and then dried at 120 ° C. for 2 hours. Finally, 3% hydrogen and 97% argon gas are added at 100 cc / min. The mixture was circulated at a flow rate and baked at 500 ° C. for 3 hours. The Au loading rate was 33 wt%.

図1に、Au錯体/C1触媒およびAuバルク/C1触媒について、カソード電極触媒の性能指標となる酸素還元活性を評価した結果を示す。横軸に電位、縦軸に酸素還元電流の相対値を示す。同じ電位で酸素還元電流の相対値が大きい程、カソード電極触媒性能は高い。ここではAu錯体触媒の0.3V時の酸素還元電流値を1.0とした。図1からわかるように、Au錯体触媒の性能は従来触媒のAuバルク触媒に比べて高い。例えば0.3Vで約4倍、0.4Vで4.4倍、0.5Vで約4.9倍、0.6Vで4.6倍の性能を有する。以上より、本発明のAu錯体電極触媒の性能は高いことが実証された。   FIG. 1 shows the results of evaluating the oxygen reduction activity, which is a performance index of the cathode electrode catalyst, for the Au complex / C1 catalyst and the Au bulk / C1 catalyst. The horizontal axis represents the potential, and the vertical axis represents the relative value of the oxygen reduction current. The larger the relative value of the oxygen reduction current at the same potential, the higher the cathode electrode catalyst performance. Here, the oxygen reduction current value at 0.3 V of the Au complex catalyst was set to 1.0. As can be seen from FIG. 1, the performance of the Au complex catalyst is higher than that of the conventional Au bulk catalyst. For example, it has a performance of about 4 times at 0.3V, 4.4 times at 0.4V, about 4.9 times at 0.5V, and 4.6 times at 0.6V. From the above, it was demonstrated that the performance of the Au complex electrode catalyst of the present invention is high.

白金の酸素還元活性は、回転ディスク電極法によって行った。この手法は、反応物質の供給量がディスク電極の角速度ω(rad/s)の1/2乗に比例することを利用して、拡散の影響を排除して活性を評価できる特徴がある。電解液はHSO溶液で、測定前に1時間以上Oバブリングを行った。測定温度は35℃である。酸素還元活性測定は走印速度10mV/s、走印範囲0.2〜1.1V vs.NHEで行った。また酸素還元活性の測定時は作用極のディスク電極を、種々の回転数で回転させた。回転数は400、625、900、1600、2500rpmである。酸素の還元電流は回転数が速くなるにしたがって、反応物質の供給量が増えるため増加する。測定された0.7V vs.NHEにおける電流値I(mA)の逆数と、電極の角速度ω(rad/s)の−1/2乗の関係は、(3)式に示すKoutecky−Levich式で表される。 The oxygen reduction activity of platinum was performed by the rotating disk electrode method. This technique is characterized in that the activity can be evaluated by eliminating the influence of diffusion by utilizing the fact that the supply amount of the reactant is proportional to the 1/2 power of the angular velocity ω (rad / s) of the disk electrode. The electrolyte was an H 2 SO 4 solution, and O 2 bubbling was performed for 1 hour or more before measurement. The measurement temperature is 35 ° C. Oxygen reduction activity was measured at a stamping speed of 10 mV / s and a stamping range of 0.2 to 1.1 V vs. Performed with NHE. When measuring the oxygen reduction activity, the disk electrode of the working electrode was rotated at various rotational speeds. The number of rotations is 400, 625, 900, 1600, 2500 rpm. The reduction current of oxygen increases as the number of reactants supplied increases as the rotational speed increases. Measured 0.7V vs. The relationship between the reciprocal of the current value I (mA) in NHE and the -1/2 power of the angular velocity ω (rad / s) of the electrode is expressed by the Koutecky-Levich equation shown in the equation (3).

Figure 0005059378
Figure 0005059378

ここで、i:活性支配電流(mA)、n:反応電子数、F:ファラデー定数(C/mol)、A:ディスク電極の幾何面積(cm)、c:反応物活量(mol/ml)、D:反応物の拡散係数(cm/s)、v:溶液の動粘度係数(cm/s)であり、電極の回転数f(rpm)と角速度ω(rad/s)の関係はω=2πf/60である。 Here, i K : activity dominant current (mA), n: number of reaction electrons, F: Faraday constant (C / mol), A: geometric area (cm 2 ) of disk electrode, c: activity of reactant (mol / ml), D: diffusion coefficient of the reactant (cm 2 / s), v: kinematic viscosity coefficient (cm 2 / s) of the solution, and the number of rotations f (rpm) and angular velocity ω (rad / s) of the electrode. The relationship is ω = 2πf / 60.

(3)式において、ω−1/2=0(ω=∞すなわち反応物の供給量が無限大)の切片からiの逆数を求めることができる。したがって、得られたiは反応物の拡散の影響がない、触媒の正味の活性となる。 In equation (3), the reciprocal of i K can be obtained from the intercept of ω −1/2 = 0 (ω = ∞, that is, the amount of reactant supplied is infinite). Thus, the i K obtained is the net activity of the catalyst without the influence of reactant diffusion.

本実施例ではCoクラスターの作製方法について説明する。   In this example, a method for producing a Co cluster will be described.

Co(CO)をフラスコに入れ、N下で攪拌しながらオイルバス中で60℃に加熱した。加熱は20時間行った。加熱後、フラスコを室温まで徐冷しCo(CO)12を得た。次にシュレンク管に炭素担体を入れ、これに無水エーテルを添加した。Co(CO)12の添加量は炭素担体の重量に対するCo重量が10wt%となるようにした。ここで使用した炭素担体は、導電性のカーボンブラックの一つである、カーボンブラック2担体(以下、C2と記載)である。これらの混合物を室温で3時間攪拌した。攪拌後、シュレンク管内を真空排気することで無水エーテル蒸発させた。最後にCo(CO)12を固定するために、攪拌しながら、真空下で185℃の温度に2時間加熱処理して、Coクラスターをカーボンブラック2担体に担持した触媒(以下、Coクラスター/C2触媒と記載)を作製した。
(比較例2)
Coクラスター/C2触媒と比較するために、Coバルク触媒(以下、Coバルク/C2触媒と記載)を作製した。硝酸コバルトとカーボン担体の混合物に水を添加し、これをライカイ機で30分間混練した後、120℃で2時間乾燥し、最終的に3%の水素と97%のアルゴンガスを100cc/min流量で流通し、500℃で3時間焼成することで触媒を作製した。Co担持率は10wt%とした。
Co 2 (CO) 8 was placed in the flask and heated to 60 ° C. in an oil bath with stirring under N 2 . Heating was performed for 20 hours. After heating, the flask was gradually cooled to room temperature to obtain Co 4 (CO) 12 . Next, a carbon support was placed in a Schlenk tube, and anhydrous ether was added thereto. The amount of Co 4 (CO) 12 added was such that the Co weight relative to the weight of the carbon support was 10 wt%. The carbon carrier used here is a carbon black 2 carrier (hereinafter referred to as C2), which is one of conductive carbon blacks. These mixtures were stirred at room temperature for 3 hours. After stirring, the inside of the Schlenk tube was evacuated to evaporate anhydrous ether. Finally, in order to fix Co 4 (CO) 12 , a catalyst (hereinafter referred to as a Co cluster / carbon catalyst) in which Co clusters are supported on a carbon black 2 support by heating at 185 ° C. under vacuum for 2 hours with stirring. C2 catalyst) was prepared.
(Comparative Example 2)
For comparison with a Co cluster / C2 catalyst, a Co bulk catalyst (hereinafter referred to as a Co bulk / C2 catalyst) was prepared. Water is added to the mixture of cobalt nitrate and carbon support, and this is kneaded for 30 minutes with a raikai machine and then dried at 120 ° C. for 2 hours. Finally, 3% hydrogen and 97% argon gas are supplied at a flow rate of 100 cc / min. The catalyst was produced by calcining at 500 ° C. for 3 hours. Co loading was 10 wt%.

図2に、Coクラスター/C2触媒およびCoバルク/C2触媒について、カソード用電極触媒の性能指標となる、Co系触媒の酸素還元活性を評価した結果を示す。横軸に電位、縦軸に酸素還元電流の相対値を示す。同じ電位で酸素還元電流の値が大きい程、カソード電極触媒性能は高い。ここではCoクラスター/C2触媒の0.3V時の酸素還元電流値を1.0とした。図2からわかるように、Coクラスター触媒の性能は従来触媒のCoバルク触媒に比べて高い。例えば0.3Vで約2倍、0.4Vで約4倍、0.5Vで約6倍の性能を有する。これより、本発明のCoクラスター電極触媒の性能は高いことが実証された。   FIG. 2 shows the results of evaluating the oxygen reduction activity of the Co-based catalyst, which is a performance index of the cathode electrode catalyst, for the Co cluster / C2 catalyst and the Co bulk / C2 catalyst. The horizontal axis represents the potential, and the vertical axis represents the relative value of the oxygen reduction current. The larger the value of the oxygen reduction current at the same potential, the higher the cathode electrode catalyst performance. Here, the oxygen reduction current value at 0.3 V of the Co cluster / C2 catalyst was set to 1.0. As can be seen from FIG. 2, the performance of the Co cluster catalyst is higher than that of the conventional Co bulk catalyst. For example, it has about twice the performance at 0.3 V, about 4 times at 0.4 V, and about 6 times at 0.5 V. From this, it was demonstrated that the performance of the Co cluster electrode catalyst of the present invention is high.

図3に0.6Vでの酸素還元電流値を触媒活性成分として選んだ金属の単位価格当たりの性能(mA/¥)に換算し、その相対値を示した。ここでは、C2炭素担体に硫黄をドーピングした炭素担体(以下、C2(CSx)と記載)にCoクラスターを担持した触媒(以下、Coクラスター/C2(CSx)触媒と記載)の性能を100とした。電極触媒材料として一般に使用されている白金バルク触媒と比較すると、本実施例1で作製したAu錯体/C1触媒は1/10の性能であるが、実施例2で作製したCoクラスター/C2触媒の性能は白金触媒の約120倍である。更にC2炭素担体に硫黄をドーピングしたCoクラスター/C2(CSx)触媒の性能は、白金触媒の約200倍に相当し、電極材料のコストを大幅に低減できると期待される。   In FIG. 3, the oxygen reduction current value at 0.6 V is converted into the performance per unit price (mA / ¥) of the metal selected as the catalytically active component, and the relative value is shown. Here, the performance of a catalyst (hereinafter referred to as a Co cluster / C2 (CSx) catalyst) in which a Co cluster is supported on a carbon support (hereinafter referred to as C2 (CSx)) doped with sulfur on a C2 carbon support is defined as 100. . Compared with a platinum bulk catalyst generally used as an electrode catalyst material, the Au complex / C1 catalyst produced in Example 1 has 1/10 performance, but the Co cluster / C2 catalyst produced in Example 2 The performance is about 120 times that of the platinum catalyst. Furthermore, the performance of the Co cluster / C2 (CSx) catalyst in which sulfur is doped on the C2 carbon support is equivalent to about 200 times that of the platinum catalyst, and it is expected that the cost of the electrode material can be greatly reduced.

図4に、実施例1で作製したAu錯体/C1触媒と、Au錯体をカーボンブラック2担体に担持した触媒(以下、Au錯体/C2触媒と記載)の酸素還元電流の相対値を示す。ここではAu錯体/C1触媒の0.3V時の酸素還元電流値を1.0とした。   FIG. 4 shows the relative values of the oxygen reduction currents of the Au complex / C1 catalyst prepared in Example 1 and a catalyst in which the Au complex is supported on a carbon black 2 carrier (hereinafter referred to as Au complex / C2 catalyst). Here, the oxygen reduction current value at 0.3 V of the Au complex / C1 catalyst was set to 1.0.

図4からわかるように、Au錯体/C1触媒の性能はAu錯体/C2触媒の性能を上回った。C1担体はC2担体よりも水酸基などの親水基が少なく、疎水性の担体である。これに対して、実施例1で作製したAu錯体は、フェニル基を3個有しており、疎水性の錯体と考えられる。よって、疎水性材料同士の親和性が良いため、Au錯体のC1担体への分散性が良くなり、触媒性能が向上したと考えられる。   As can be seen from FIG. 4, the performance of the Au complex / C1 catalyst exceeded that of the Au complex / C2 catalyst. The C1 carrier has a smaller number of hydrophilic groups such as hydroxyl groups than the C2 carrier, and is a hydrophobic carrier. On the other hand, the Au complex produced in Example 1 has three phenyl groups and is considered to be a hydrophobic complex. Therefore, since the affinity between the hydrophobic materials is good, it is considered that the dispersibility of the Au complex in the C1 carrier is improved and the catalyst performance is improved.

図5に、実施例2で作製したCoクラスター/C2触媒と、実施例2で作製したCoクラスターをC1担体に担持した触媒(以下、Coクラスター/C1触媒と記載)との酸素還元電流の相対値を示す。ここではCoクラスター/C2触媒の0.3V時の酸素還元電流値を1.0とした。C1及びC2担体は実施例3と同じ担体である。   FIG. 5 shows the relative oxygen reduction currents of the Co cluster / C2 catalyst prepared in Example 2 and the catalyst having the Co cluster prepared in Example 2 supported on a C1 carrier (hereinafter referred to as Co cluster / C1 catalyst). Indicates the value. Here, the oxygen reduction current value at 0.3 V of the Co cluster / C2 catalyst was set to 1.0. The C1 and C2 carriers are the same as in Example 3.

図5からわかるように、Coクラスター/C2触媒の性能はCoクラスター/C1触媒の性能を上回った。C2担体はC1担体よりも水酸基などの親水基が多く、親水性の担体である。この水酸基はHを放出してOイオンを形成する。これに対して、実施例2で作製したCoクラスターは、カルボニル基を12個有しており、カルボニル基の炭素原子の隣に位置する酸素原子が持つ電子求引性のため、炭素原子は弱い正電荷を帯びている。よって、Coクラスターのカルボニル基炭素上の正電荷と炭素担体中のOイオンが結合し易くなることで、Coクラスターと炭素担体との親和性が良くなる。その結果、CoクラスターのC2担体への分散性が良くなり、触媒性能が向上したと考えられる。 As can be seen from FIG. 5, the performance of the Co cluster / C2 catalyst exceeded that of the Co cluster / C1 catalyst. The C2 carrier has more hydrophilic groups such as hydroxyl groups than the C1 carrier, and is a hydrophilic carrier. This hydroxyl group releases H + to form O ions. In contrast, the Co cluster produced in Example 2 has 12 carbonyl groups, and the carbon atoms are weak because of the electron withdrawing property of the oxygen atom located next to the carbon atom of the carbonyl group. It has a positive charge. Therefore, the positive charge on the carbonyl group carbon of the Co cluster and the O ion in the carbon support are easily combined, so that the affinity between the Co cluster and the carbon support is improved. As a result, it is considered that the dispersibility of the Co cluster on the C2 support is improved and the catalyst performance is improved.

図6に触媒製法1と触媒製法2によって作製した触媒の酸素還元電流の相対値を示す。黒丸印の触媒製法1は真空下で185℃にて排気処理した触媒であり、実施例1と同じ製法で作製した触媒である。白丸印の触媒製法2は触媒製法1の185℃処理の代わりに、室温で排気処理した触媒である。ここでは触媒製法1で作製したAu錯体/C1触媒において、0.3V時の酸素還元電流値を1.0とした。   FIG. 6 shows the relative values of the oxygen reduction currents of the catalysts produced by the catalyst production method 1 and the catalyst production method 2. The catalyst production method 1 indicated by black circles is a catalyst exhausted at 185 ° C. under vacuum, and is a catalyst produced by the same production method as in Example 1. The catalyst manufacturing method 2 indicated by white circles is a catalyst which was exhausted at room temperature instead of the 185 ° C. processing of the catalyst manufacturing method 1. Here, in the Au complex / C1 catalyst produced by the catalyst production method 1, the oxygen reduction current value at 0.3 V was 1.0.

図6からわかるように、真空下において185℃の温度で排気処理した触媒の性能は室温排気処理した触媒の性能を大きく上回った。ここで加熱処理の温度は100℃から300℃であることが望ましい。温度が100℃より低くなると排気効果が少なくなり、300℃より高くなると触媒活性成分となる金属粒子が凝集して、金属粒子が粗大化することで、触媒として作用する面積が減少し、含有金属量当たりの触媒活性が低下する。   As can be seen from FIG. 6, the performance of the catalyst exhausted at 185 ° C. under vacuum greatly exceeded the performance of the catalyst exhausted at room temperature. Here, the temperature of the heat treatment is desirably 100 ° C. to 300 ° C. When the temperature is lower than 100 ° C., the exhaust effect is reduced. When the temperature is higher than 300 ° C., the metal particles as the catalytically active component are aggregated and the metal particles are coarsened. The catalytic activity per volume is reduced.

Auを活性成分とする触媒の電位と酸素還元電流相対値の関係を示した図である。It is the figure which showed the relationship between the electric potential of the catalyst which uses Au as an active component, and the oxygen reduction current relative value. Coを活性成分とする触媒の電位と酸素還元電流相対値の関係を示した図である。It is the figure which showed the relationship between the electric potential of the catalyst which uses Co as an active component, and the oxygen reduction current relative value. 各触媒の活性金属価格当たりの性能相対値を比較した図である。It is the figure which compared the performance relative value per active metal price of each catalyst. Au錯体を活性成分とする触媒の電位と酸素還元電流相対値の関係を示した図である。It is the figure which showed the relationship between the electric potential of the catalyst which uses Au complex as an active ingredient, and oxygen reduction current relative value. Coクラスターを活性成分とする触媒の電位と酸素還元電流相対値の関係を示した図である。It is the figure which showed the relationship between the electric potential of the catalyst which uses a Co cluster as an active ingredient, and the oxygen reduction current relative value. 異なる製法で作製した触媒について、電位と酸素還元電流相対値の関係を示した図である。It is the figure which showed the relationship between an electric potential and an oxygen reduction current relative value about the catalyst produced with the different manufacturing method.

Claims (9)

金属の周囲が配位子で覆われたCoクラスターを炭素担体に担持した燃料電池用電極触媒において、前記配位子がカルボニル基を有し、前記炭素担体が水酸基を有することを特徴とする燃料電池用電極触媒。   A fuel cell electrode catalyst in which a metal support is coated with a Co cluster covered with a ligand on a carbon support, wherein the ligand has a carbonyl group, and the carbon support has a hydroxyl group. Battery electrode catalyst. 前記炭素担体がカーボンブラックであることを特徴とする請求項1記載の燃料電池用電極触媒。   2. The fuel cell electrode catalyst according to claim 1, wherein the carbon support is carbon black. 前記カーボンブラック1gを1mlのエチルアルコールと予め沸騰させた蒸留水11mlとに混合し冷却した後における縣濁液のpHが9.0であることを特徴とする請求項記載の燃料電池用電極触媒。 The pH of the suspension after 1 g of carbon black was mixed with 1 ml of ethyl alcohol and 11 ml of distilled water previously boiled and cooled was 9 . The fuel cell electrode catalyst according to claim 2, which is zero . 前記炭素担体が硫黄を含むことを特徴とする請求項1記載の燃料電池用電極触媒。   2. The fuel cell electrode catalyst according to claim 1, wherein the carbon support contains sulfur. 金属の周囲がカルボニル基を有する配位子で覆われたCoクラスターを、水酸基を有する炭素担体に担持した燃料電池用電極触媒の製造方法であって、前記Coクラスターと前記炭素担体の混合物を真空下で加熱処理することを特徴とする燃料電池用電極触媒の製造方法。   A method for producing an electrode catalyst for a fuel cell in which a Co cluster covered with a ligand having a carbonyl group around a metal is supported on a carbon support having a hydroxyl group, wherein the mixture of the Co cluster and the carbon support is evacuated. The manufacturing method of the electrode catalyst for fuel cells characterized by heat-processing below. 燃料を酸化するアノード電極と酸素を還元するカソード電極との間に水素イオンを透過する電解質膜を備えた膜/電極接合体において、前記アノード電極及び前記カソード電極の少なくとも一方が請求項1〜請求項のいずれか一項に記載の燃料電池用電極触媒を含むことを特徴とする膜/電極接合体。 In a membrane / electrode assembly including an electrolyte membrane that allows hydrogen ions to pass between an anode electrode that oxidizes fuel and a cathode electrode that reduces oxygen, at least one of the anode electrode and the cathode electrode is claimed in claims 1 to 4. A membrane / electrode assembly comprising the fuel cell electrode catalyst according to any one of Items 4 to 5 . 請求項に記載の膜/電極接合体を備えたことを特徴とする燃料電池。 A fuel cell comprising the membrane / electrode assembly according to claim 6 . 燃料電池により駆動される携帯用電子機器において、請求項記載の燃料電池を具備したことを特徴とする携帯用電子機器。 A portable electronic device driven by a fuel cell, comprising the fuel cell according to claim 7 . 請求項記載の燃料電池を具備したことを特徴とする固体高分子形燃料電池システム。 A solid polymer fuel cell system comprising the fuel cell according to claim 7 .
JP2006305679A 2006-11-10 2006-11-10 Fuel cell electrode catalyst, method for producing the same, and fuel cell Expired - Fee Related JP5059378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305679A JP5059378B2 (en) 2006-11-10 2006-11-10 Fuel cell electrode catalyst, method for producing the same, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305679A JP5059378B2 (en) 2006-11-10 2006-11-10 Fuel cell electrode catalyst, method for producing the same, and fuel cell

Publications (2)

Publication Number Publication Date
JP2008123810A JP2008123810A (en) 2008-05-29
JP5059378B2 true JP5059378B2 (en) 2012-10-24

Family

ID=39508348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305679A Expired - Fee Related JP5059378B2 (en) 2006-11-10 2006-11-10 Fuel cell electrode catalyst, method for producing the same, and fuel cell

Country Status (1)

Country Link
JP (1) JP5059378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283213A (en) * 2008-05-21 2009-12-03 Hitachi Ltd Catalyst for fuel cell, method for manufacturing catalyst for fuel cell, and electrode for fuel cell
JP5259293B2 (en) * 2008-07-30 2013-08-07 株式会社コンポン研究所 Catalyst activity evaluation method and cluster catalyst
CN102859766B (en) * 2010-04-20 2015-09-30 日清纺控股株式会社 For the C catalyst of the negative electrode of direct-type fuel cell and the negative electrode of the direct-type fuel cell of the described catalyst of use and direct-type fuel cell
JP6462294B2 (en) * 2014-09-30 2019-01-30 ダイハツ工業株式会社 Oxygen reduction catalyst, method for producing the same, and fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159866A (en) * 2000-11-29 2002-06-04 Mitsubishi Heavy Ind Ltd Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
JP2003117398A (en) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc carrying catalyst and production method thereof
JP2004082007A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Catalyst particle and alcohol dehydrogenation catalyst particle
JP2004217626A (en) * 2002-12-24 2004-08-05 Honjo Chemical Corp Organic platinum group element compound of fullerenol and/or fullerenol hydrogen sulfate ester, its use and method for producing the same
JP2005205287A (en) * 2004-01-21 2005-08-04 Toyota Motor Corp Catalyst material using large organic ring compound
JP2007111635A (en) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd Metal catalyst and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008123810A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
Chen et al. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction
Guo et al. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology
US4186110A (en) Noble metal-refractory metal alloys as catalysts and method for making
US4192907A (en) Electrochemical cell electrodes incorporating noble metal-base metal alloy catalysts
Zhang et al. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions
CN108067631B (en) A kind of stable noble metal orphan's atom material in the solution
El-Khatib et al. Core–shell structured Cu@ Pt nanoparticles as effective electrocatalyst for ethanol oxidation in alkaline medium
JP5204714B2 (en) Alloy fine particles and their production and use
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
JP5059378B2 (en) Fuel cell electrode catalyst, method for producing the same, and fuel cell
Sravani et al. Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction
JP2015032468A (en) Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
Li et al. Vacancy-engineered CeO 2/Co heterostructure anchored on the nitrogen-doped porous carbon nanosheet arrays vertically grown on carbon cloth as an integrated cathode for the oxygen reduction reaction of rechargeable Zn–air battery
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
KR101077704B1 (en) Fuel cell using a metal cluster catalyst
US8980786B2 (en) Metal oxide-platinum compound catalyst and method for producing same
RU2428769C1 (en) Preparation method of bimetallic catalyst (versions) and its use for fuel elements
CN115369438A (en) Method for preparing CoTi oxide alloy electrocatalyst by using cotton fibers
JP6668018B2 (en) Electrode catalyst for fuel cell, fuel cell, and method for producing the electrode catalyst
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP2006134835A (en) Fuel cell and membrane electrode assembly
KR101616189B1 (en) Catalyst for Vanadium Redox Flow Battery and Method for preparing the Same
Sakthinathan et al. Activated graphite supported tunable Au–Pd bimetallic nanoparticle composite electrode for methanol oxidation
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees