JP5058098B2 - Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering - Google Patents

Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering Download PDF

Info

Publication number
JP5058098B2
JP5058098B2 JP2008212403A JP2008212403A JP5058098B2 JP 5058098 B2 JP5058098 B2 JP 5058098B2 JP 2008212403 A JP2008212403 A JP 2008212403A JP 2008212403 A JP2008212403 A JP 2008212403A JP 5058098 B2 JP5058098 B2 JP 5058098B2
Authority
JP
Japan
Prior art keywords
shrinkage
concrete
civil engineering
structural unit
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008212403A
Other languages
Japanese (ja)
Other versions
JP2010047440A (en
Inventor
承寧 呉
道和 俵
光男 木之下
和秀 齊藤
竜平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Oriental Shiraishi Corp
Original Assignee
Takemoto Oil and Fat Co Ltd
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Oriental Shiraishi Corp filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2008212403A priority Critical patent/JP5058098B2/en
Publication of JP2010047440A publication Critical patent/JP2010047440A/en
Application granted granted Critical
Publication of JP5058098B2 publication Critical patent/JP5058098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は土木用低収縮AEコンクリートの調製方法及び土木用低収縮AEコンクリートに関する。近年、使用上の便宜から多機能混和剤を用いて練り混ぜ直後の目標スランプを比較的低く抑えた状態に調製する土木用低収縮AEコンクリートにも、高品質化及び高耐久性化を図ることが要求され、具体的には、1)先ず前提として、用いる多機能混和剤が安定性に優れていること、2)調製した土木用低収縮AEコンクリートの流動性及び空気量の経時的な低下を抑えて良好な施工性を確保すること、3)得られる硬化体の乾燥収縮率が低いこと、4)得られる硬化体の凍結融解作用に対する抵抗性が強いこと、5)得られる硬化体の中性化速度が遅いこと、6)得られる硬化体の圧縮強度が相応に優れていること、以上の1)〜6)を同時に充足することが要求されるようになっている。本発明は、かかる要求に応える土木用低収縮AEコンクリートの調製方法及びこの調製方法によって調製された土木用低収縮AEコンクリートに関する。   The present invention relates to a method for preparing a low-shrinkage AE concrete for civil engineering and a low-shrinkage AE concrete for civil engineering. To improve the quality and durability of low-shrinkage AE concrete for civil engineering, which is prepared in recent years with a target slump that has been kept relatively low using a multifunctional admixture for convenience in use. Specifically, 1) First, as a premise, the multifunctional admixture used is excellent in stability, and 2) The fluidity of the prepared low-shrinkage AE concrete for civil engineering and the decrease in the amount of air over time 3) Low drying shrinkage rate of the resulting cured product, 4) Strong resistance to freeze-thaw action of the resulting cured product, and 5) of the resulting cured product. It is required that the neutralization rate is slow, 6) the compressive strength of the resulting cured product is correspondingly excellent, and the above 1) to 6) are simultaneously satisfied. The present invention relates to a method for preparing low-shrinkage AE concrete for civil engineering that meets such requirements, and a low-shrinkage AE concrete for civil engineering prepared by this preparation method.

従来、調製する土木用低収縮AEコンクリートに優れた流動性を付与し、得られる硬化体に優れた圧縮強度を発現させる混和剤として、ポリカルボン酸系化合物を主成分とする各種のセメント分散剤が知られている(例えば特許文献1及び2参照)。また得られる硬化体の乾燥収縮率を低くする混和剤として、各種の乾燥収縮低減剤も知られている(例えば特許文献3参照)。更に調製する土木用低収縮AEコンクリートに流動性を付与すると共に得られる硬化体の乾燥収縮率を低くする混和剤も知られている(例えば特許文献4及び5参照)。   Conventionally, various cement dispersants mainly composed of polycarboxylic acid-based compounds as admixtures that impart excellent fluidity to the low-shrinkage AE concrete for civil engineering and exhibit excellent compressive strength in the resulting cured product Is known (see, for example, Patent Documents 1 and 2). Various dry shrinkage reducing agents are also known as admixtures that lower the drying shrinkage of the resulting cured product (see, for example, Patent Document 3). Furthermore, an admixture that imparts fluidity to the low-shrinkage AE concrete for civil engineering and lowers the drying shrinkage of the resulting cured product is also known (see, for example, Patent Documents 4 and 5).

しかし、かかる従来の混和剤を用いたのでは、これらを適宜併用しても、前記した1)〜6)の要求を同時に充足することができないという問題がある。
特開昭58−74552号公報 特開平1−226757号公報 特公昭59−3430号公報 特開2004−262715号公報 特開2007−153652号公報
However, when such conventional admixtures are used, there is a problem that the requirements 1) to 6) described above cannot be satisfied at the same time even if they are used together as appropriate.
JP 58-74552 A JP-A-1-226757 Japanese Patent Publication No.59-3430 JP 2004-262715 A JP 2007-153652 A

本発明が解決しようとする課題は、使用上の便宜から多機能混和剤を用いて練り混ぜ直後のスランプを比較的低く抑えた土木用低収縮コンクリートを調製するに際し、1)先ず前提として、用いる多機能混和剤が安定性に優れていること、2)調製した土木用低収縮AEコンクリートの流動性及び空気量の経時的な低下を抑えて良好な施工性を確保すること、3)得られる硬化体の乾燥収縮率が低いこと、4)得られる硬化体の凍結融解作用に対する抵抗性が強いこと、5)得られる硬化体の中性化速度が遅いこと、6)得られる硬化体の圧縮強度が相応に優れていること、以上の1)〜6)を同時に充足する土木用低収縮AEコンクリートの調製方法及び土木用低収縮AEコンクリートを提供する処にある。   The problem to be solved by the present invention is to prepare a low-shrinkage concrete for civil engineering in which the slump immediately after kneading is kept relatively low using a multifunctional admixture for convenience of use. The multifunctional admixture is excellent in stability, 2) the flowability of the prepared low-shrinkage AE concrete for civil engineering and the reduction of the air volume over time are ensured, and good workability is ensured. Low drying shrinkage of the cured product 4) Strong resistance to freeze-thaw action of the resulting cured product 5) Slow neutralization rate of the resulting cured product 6) Compression of the resulting cured product The present invention provides a method for preparing a low-shrinkage AE concrete for civil engineering and a low-shrinkage AE concrete for civil engineering that satisfies the above-mentioned 1) to 6) at the same time.

しかして本発明者らは、前記の課題を解決するべく研究した結果、セメントを所定割合で用い、またかかるセメントに対して特定の3成分から成る特定の多機能混和剤を所定割合で用いて、所定のスランプ及び連行空気(AE)量の土木用低収縮AEコンクリートを調製することが正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, the cement is used at a predetermined ratio, and a specific multifunctional admixture composed of specific three components is used at a predetermined ratio with respect to the cement. It has been found that it is correctly suitable to prepare a low-shrinkage AE concrete for civil engineering with a predetermined slump and entrained air (AE) amount.

すなわち本発明は、セメント、水、細骨材、粗骨材、多機能混和剤及び空気量調節剤を用いて土木用低収縮AEコンクリートを調製するに際し、セメントを単位量290〜450kg/mの範囲で用い、またセメント100質量部当たり下記の多機能混和剤を0.3〜1.5質量部の割合で用いて、更に練り混ぜ直後のスランプを6〜15cmの範囲に調製すると共に連行空気量を3〜8容量%の範囲に調製することを特徴とする土木用低収縮AEコンクリートの調製方法に係る。また本発明は、かかる土木用低収縮AEコンクリートの調製方法によって調製された土木用低収縮AEコンクリートに係る。 That is, according to the present invention, when preparing low-shrinkage AE concrete for civil engineering using cement, water, fine aggregate, coarse aggregate, multifunctional admixture and air amount adjusting agent, the unit amount of cement is 290 to 450 kg / m 3. In addition, the following multifunctional admixture is used at a ratio of 0.3 to 1.5 parts by mass per 100 parts by mass of cement, and a slump immediately after mixing is further adjusted to a range of 6 to 15 cm and entrained. The present invention relates to a method for preparing low-shrinkage AE concrete for civil engineering, characterized in that the amount of air is adjusted to a range of 3 to 8% by volume. Moreover, this invention relates to the low shrinkage AE concrete for civil engineering prepared by the preparation method of this low shrinkage AE concrete for civil engineering.

多機能混和剤:下記のセメント分散剤、乾燥収縮低減剤及び分離低減剤から成り、該セメント分散剤を10〜30質量%、該乾燥収縮低減剤を65〜85質量%及び該分離低減剤を0.05〜5質量%(合計100質量%)含有して成るもの   Multifunctional admixture: Consists of the following cement dispersant, drying shrinkage reducing agent and separation reducing agent, the cement dispersing agent being 10 to 30% by mass, the drying shrinkage reducing agent being 65 to 85% by mass and the separation reducing agent Containing 0.05 to 5 mass% (total 100 mass%)

セメント分散剤:分子中に下記の構成単位Dを45〜85モル%、下記の構成単位Eを15〜55モル%及び下記の構成単位Fを0〜5モル%(合計100モル%)有する質量平均分子量2000〜70000の水溶性ビニル共重合体   Cement dispersant: Mass having 45 to 85 mol% of the following structural unit D, 15 to 55 mol% of the following structural unit E, and 0 to 5 mol% of the following structural unit F (total 100 mol%) in the molecule. Water-soluble vinyl copolymer having an average molecular weight of 2000 to 70000

構成単位D:メタアクリル酸から形成された構成単位及びメタアクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位E:分子中に7〜75個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位F:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
Structural unit D: one or two or more selected from structural units formed from methacrylic acid and structural units formed from methacrylic acid salt Structural unit E: composed of 7 to 75 oxyethylene units in the molecule Structural unit formed from methoxypolyethyleneglycol methacrylate having a polyoxyethylene group formed Structural unit F: selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate One or more

乾燥収縮低減剤:下記の化1で示される(ポリ)アルキレングリコールモノアルキルエーテル   Drying shrinkage reducing agent: (poly) alkylene glycol monoalkyl ether represented by the following chemical formula 1

Figure 0005058098
Figure 0005058098

化1において、
R:炭素数3〜5のアルキル基
A:分子中に1〜5個のオキシエチレン単位のみで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基
In chemical formula 1,
R: an alkyl group having 3 to 5 carbon atoms A: a residue obtained by removing all hydroxyl groups from a (poly) alkylene glycol having a (poly) oxyalkylene group composed of only 1 to 5 oxyethylene units in the molecule

分離低減剤:ポリ酢酸ビニルから合成された鹸化度80〜95モル%のポリビニルアルコールであって、4質量%水溶液の20℃における粘度が1〜50mPa・sの範囲のポリビニルアルコール   Separation-reducing agent: polyvinyl alcohol synthesized from polyvinyl acetate having a saponification degree of 80 to 95 mol% and a viscosity of 4% by weight aqueous solution at 20 ° C. in the range of 1 to 50 mPa · s

本発明に係る土木用低収縮AEコンクリートの調製方法(以下、本発明の調製方法という)では、セメント、水、細骨材及び粗骨材の他に、多機能混和剤及び空気量調節剤を用いる。本発明の調製方法で用いる多機能混和剤は、セメント分散剤、乾燥収縮低減剤及び分離低減剤から成るものである。   In the method for preparing low-shrinkage AE concrete for civil engineering according to the present invention (hereinafter referred to as the preparation method of the present invention), in addition to cement, water, fine aggregate, and coarse aggregate, a multifunctional admixture and an air amount adjusting agent are added. Use. The multifunctional admixture used in the preparation method of the present invention comprises a cement dispersant, a drying shrinkage reducing agent, and a separation reducing agent.

多機能混和剤の一成分として用いるセメント分散剤は、1)構成単位Dと構成単位Eとから構成された水溶性ビニル共重合体、又は2)構成単位Dと構成単位Eと構成単位Fとから構成された水溶性ビニル共重合体である。   The cement dispersant used as one component of the multifunctional admixture is 1) a water-soluble vinyl copolymer composed of the structural unit D and the structural unit E, or 2) the structural unit D, the structural unit E, and the structural unit F. Is a water-soluble vinyl copolymer composed of

構成単位Dとしては、1)メタクリル酸から形成された構成単位、2)メタクリル酸塩から形成された構成単位、3)メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位の双方が挙げられる。ここで、メタクリル酸塩から形成された構成単位としては、イ)メタクリル酸のリチウム、ナトリウム、カリウム等のアルカリ金属塩から形成された構成単位、ロ)メタクリル酸のカルシウム、マグネシウム等のアルカリ土類金属塩から形成された構成単位、ハ)メタクリル酸のジエタノールアミン、トリエタノールアミン等の有機アミン塩から形成された構成単位等が挙げられる。なかでも、構成単位Dとしては、メタクリル酸塩から形成された構成単位が好ましく、メタクリル酸ナトリウムから形成された構成単位がより好ましい。   The structural unit D includes 1) a structural unit formed from methacrylic acid, 2) a structural unit formed from methacrylate, 3) a structural unit formed from methacrylic acid, and a structural unit formed from methacrylate. Both are mentioned. Here, structural units formed from methacrylates are as follows: a) structural units formed from alkali metal salts such as lithium, sodium, and potassium methacrylic acid, and b) alkaline earths such as calcium and magnesium methacrylates. Examples include structural units formed from metal salts, and c) structural units formed from organic amine salts such as diethanolamine and triethanolamine of methacrylic acid. Especially, as the structural unit D, the structural unit formed from the methacrylate is preferable, and the structural unit formed from sodium methacrylate is more preferable.

構成単位Eは、分子中に7〜75個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位である。   The structural unit E is a structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group composed of 7 to 75 oxyethylene units in the molecule.

構成単位Fとしては、1)(メタ)アリルスルホン酸塩から形成された構成単位、2)メチル(メタ)アクリレートから形成された構成単位、3)(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位の双方が挙げられる。かかる(メタ)アリルスルホン酸塩から形成された構成単位としては、アリルスルホン酸塩から形成された構成単位、メタリルスルホン酸塩から形成された構成単位が挙げられ、塩としては、リチウム、ナトリウム、カリウム等のアルカリ金属塩が挙げられるが、ナトリウム塩が好ましい。   As the structural unit F, 1) a structural unit formed from (meth) allyl sulfonate, 2) a structural unit formed from methyl (meth) acrylate, and 3) a structure formed from (meth) allyl sulfonate. Both the unit and the structural unit formed from methyl (meth) acrylate are mentioned. Examples of the structural unit formed from such (meth) allyl sulfonate include a structural unit formed from allyl sulfonate and a structural unit formed from methallyl sulfonate. Examples of the salt include lithium and sodium. And alkali metal salts such as potassium, sodium salt is preferred.

セメント分散剤が以上説明したような構成単位Dと構成単位Eで構成された水溶性ビニル共重合体から成る場合、かかる水溶性ビニル共重合体は分子中に構成単位Dを45〜85モル%、構成単位Eを15〜55モル%(合計100モル%)の割合で有するものとするが、構成単位Dを50〜80モル%、構成単位Eを20〜50モル%(合計100モル%)の割合で有するものとするのが好ましい。またセメント分散剤が以上説明したような構成単位Dと構成単位Eと構成単位Fとで構成された水溶性ビニル共重合体から成る場合、かかる水溶性ビニル共重合体は分子中に構成単位Dを45〜80モル%、構成単位Eを15〜55モル%、構成単位Fを5モル%以下(合計100モル%)の割合で有するものとするが、構成単位Dを50〜75.5モル%、構成単位Eを20〜50モル%、構成単位Fを0.3〜4.5モル%(合計100モル%)の割合で有するものとするのが好ましい。いずれの場合も、以上説明した水溶性ビニル共重合体は、質量平均分子量が2000〜70000(GPC法、プルラン換算、以下同じ)のものとするが、3000〜50000のものとするのが好ましい。   When the cement dispersant is composed of the water-soluble vinyl copolymer composed of the structural unit D and the structural unit E as described above, the water-soluble vinyl copolymer contains 45 to 85 mol% of the structural unit D in the molecule. The structural unit E has a proportion of 15 to 55 mol% (total 100 mol%), the structural unit D is 50 to 80 mol%, and the structural unit E is 20 to 50 mol% (total 100 mol%). It is preferable to have it in the ratio. When the cement dispersant is composed of a water-soluble vinyl copolymer composed of the structural unit D, the structural unit E, and the structural unit F as described above, the water-soluble vinyl copolymer has the structural unit D in the molecule. Is 45 to 80 mol%, the structural unit E is 15 to 55 mol%, and the structural unit F is 5 mol% or less (total of 100 mol%), but the structural unit D is 50 to 75.5 mol. %, The structural unit E is 20 to 50 mol%, and the structural unit F is preferably 0.3 to 4.5 mol% (100 mol% in total). In any case, the water-soluble vinyl copolymer described above has a mass average molecular weight of 2000 to 70000 (GPC method, converted to pullulan, hereinafter the same), but preferably 3000 to 50000.

以上説明したセメント分散剤自体は公知の方法で合成できる。これには例えば、特開昭58−74552号公報や特開平1−226757号公報に記載されているような方法が適用できる。   The cement dispersant described above can be synthesized by a known method. For example, methods described in Japanese Patent Application Laid-Open Nos. 58-74552 and 1-2226757 can be applied.

本発明の調製方法において多機能混和剤の一成分として用いる乾燥収縮低減剤は、前記の化1で示される(ポリ)アルキレングリコールモノアルキルエーテルである。化1中のRは炭素数3〜5のアルキル基である。これには例えば、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、ペンチル基、イソペンチル基等が挙げられるが、なかでもノルマルブチル基が好ましい。また化1中のAは、分子中に1〜5個のオキシエチレン単位のみで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基である。なかでも、乾燥収縮低減剤としては、ジエチレングリコールモノブチルエーテルが好ましい。   The drying shrinkage reducing agent used as one component of the multifunctional admixture in the preparation method of the present invention is the (poly) alkylene glycol monoalkyl ether represented by Chemical Formula 1 above. R in Chemical Formula 1 is an alkyl group having 3 to 5 carbon atoms. Examples thereof include a propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, and an isopentyl group, and among them, a normal butyl group is preferable. A in Chemical Formula 1 is a residue obtained by removing all hydroxyl groups from a (poly) alkylene glycol having a (poly) oxyalkylene group composed of only 1 to 5 oxyethylene units in the molecule. Of these, diethylene glycol monobutyl ether is preferred as the drying shrinkage reducing agent.

本発明の調製方法において多機能混和剤の一成分として用いる分離低減剤は、ポリ酢酸ビニルから合成された鹸化度80〜95モル%のポリビニルアルコールであって、その4質量%水溶液の20℃における粘度が1〜50mPa・sのものである。かかる分離低減剤は連行空気の気泡膜を強め、気泡の安定性を保つことによって、不安定な気泡が抜けることによる凍結融解抵抗性の低下を防ぐために用いる。   The separation reducing agent used as one component of the multifunctional admixture in the preparation method of the present invention is polyvinyl alcohol synthesized from polyvinyl acetate having a saponification degree of 80 to 95 mol%, and a 4 mass% aqueous solution thereof at 20 ° C. The viscosity is 1 to 50 mPa · s. Such a separation reducing agent is used to strengthen the bubble film of entrained air and maintain the stability of the bubbles, thereby preventing a decrease in resistance to freezing and thawing due to the escape of unstable bubbles.

本発明の調製方法における多機能混和剤は、以上説明したセメント分散剤、乾燥収縮低減剤及び分離低減剤を所定割合で混合することにより、一液にしても各剤の成分が分離しない均一液として用いることができる。多機能混和剤における各剤の割合は、セメント分散剤を10〜30質量%、乾燥収縮低減剤を65〜85質量%及び分離低減剤を0.05〜5質量%(合計100質量%)となるようにするが、セメント分散剤を12〜27質量%、乾燥収縮低減剤を70〜85質量%及び分離低減剤を0.1〜3質量%(合計100質量%)となるようにするのが好ましい。各剤の割合がかかる範囲から外れると、調製した土木用低収縮AEコンクリートは前記した複数の要求を同時に充足することができない。   The multifunctional admixture in the preparation method of the present invention is a uniform liquid in which the components of each agent are not separated even if they are mixed by mixing the cement dispersant, the drying shrinkage reducing agent and the separation reducing agent described above in a predetermined ratio. Can be used as The ratio of each agent in the multifunctional admixture is 10 to 30% by mass for the cement dispersant, 65 to 85% by mass for the drying shrinkage reducing agent, and 0.05 to 5% by mass for the separation reducing agent (total 100% by mass). The cement dispersant is 12 to 27% by mass, the drying shrinkage reducing agent is 70 to 85% by mass, and the separation reducing agent is 0.1 to 3% by mass (total 100% by mass). Is preferred. If the ratio of each agent is out of the range, the prepared low shrinkage AE concrete for civil engineering cannot satisfy the above-described plurality of requirements at the same time.

本発明の調製方法に用いる空気量調節剤としては、ポリオキシアルキレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルベンゼンスルホン酸塩、ロジン石けん、高級脂肪酸石けん、アルキルリン酸エステル塩、ポリオキシアルキレンアルキルエーテルアルキルリン酸エステル塩等が挙げられるが、なかでもアルキルリン酸モノエステル塩が好ましく、オクチルリン酸モノエステルカリウム塩がより好ましい。空気量調節剤の使用量は通常、セメント100質量部当たり、0.001〜0.01質量部の割合とする。   Examples of the air amount adjusting agent used in the preparation method of the present invention include polyoxyalkylene alkyl ether sulfate, alkyl benzene sulfonate, polyoxyethylene alkyl benzene sulfonate, rosin soap, higher fatty acid soap, alkyl phosphate ester salt, polyoxy Examples include alkylene alkyl ether alkyl phosphate ester salts, among which alkyl phosphate monoester salts are preferable, and octyl phosphate monoester potassium salt is more preferable. The amount of the air amount regulator used is usually 0.001 to 0.01 parts by mass per 100 parts by mass of cement.

本発明の調製方法において、セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントの他に、高炉セメント、フライアッシュセメント、シリカフュームセメント等の各種混合セメント等を使用できる。また必要に応じて、フライアッシュ、高炉スラグ微粉末、シリカフューム微粉末等の潜在水硬性物質、石灰石微粉末等を混合使用できる。また本発明の調製方法において、細骨材としては、いずれも公知の川砂、山砂、海砂、砕砂等を使用でき、粗骨材としては、いずれも公知の川砂利、砕石、軽量骨材等を使用できる。   In the preparation method of the present invention, as the cement, in addition to various Portland cements such as ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, low heat Portland cement, various types of mixed blast furnace cement, fly ash cement, silica fume cement and the like. Cement etc. can be used. Further, if necessary, it is possible to mix and use latent hydraulic substances such as fly ash, blast furnace slag fine powder and silica fume fine powder, limestone fine powder and the like. In the preparation method of the present invention, any known river sand, mountain sand, sea sand, crushed sand, etc. can be used as the fine aggregate, and any known river gravel, crushed stone, lightweight aggregate can be used as the coarse aggregate. Etc. can be used.

本発明の調製方法では、以上説明したセメント、細骨材、粗骨材、多機能混和剤及び空気量調節剤を水と共に練り混ぜ、土木用低収縮AEコンクリートを調製するが、調製するAEコンクリートを土木用に好適なものとするため、セメントを単位量(調製するAEコンクリート1m当たりのセメント量)290〜450kg/mの範囲で用い、水/セメント比は通常、35〜60%の範囲となるようにする。また多機能混和剤は、セメント100質量部当たり、0.3〜1.5質量部の割合で用いる。本発明の調製方法において、セメント、水、細骨材、粗骨材、多機能混和剤及び空気量調節剤を練り混ぜる手順は特に制限されないが、通常は先にセメント、細骨材及び粗骨材をミキサーに投入して空練りする一方で、別に多機能混和剤及び空気量調節剤を水で希釈して練り混ぜ、しかる後に双方を練り混ぜて土木用低収縮AEコンクリートを調製する。 In the preparation method of the present invention, the cement, fine aggregate, coarse aggregate, multifunctional admixture and air amount adjusting agent described above are kneaded with water to prepare a low-shrinkage AE concrete for civil engineering. the order shall suitable for civil engineering, with cement in the range of 290~450kg / m 3 (cement per AE concrete 1 m 3 to prepare) unit quantity, water / cement ratio is typically of 35% to 60% Try to be in range. The multifunctional admixture is used at a ratio of 0.3 to 1.5 parts by mass per 100 parts by mass of cement. In the preparation method of the present invention, the procedure for kneading the cement, water, fine aggregate, coarse aggregate, multifunctional admixture and air amount adjusting agent is not particularly limited, but usually the cement, fine aggregate and coarse bone are firstly used. While the material is put into a mixer and kneaded, the multifunctional admixture and the air amount adjusting agent are separately diluted with water and kneaded, and then both are kneaded to prepare a low-shrinkage AE concrete for civil engineering.

本発明の調製方法では、調製する土木用低収縮AEコンクリートの連行空気量が3〜8容量%となるようにし、好ましくは4〜7容量%となるようにする。連行空気量がこれより少ないと、そのような土木用低収縮AEコンクリートから得られる硬化体の気泡間隔係数が大きくなり、凍結融解抵抗性が低下し、逆に連行空気量がこれより多いと、そのような土木用低収縮AEコンクリートから得られる硬化体の強度が低下する。また練り混ぜ直後のスランプは、6〜15cmの範囲となるようにするが、好ましくは8〜13cmの範囲となるようにする。   In the preparation method of the present invention, the amount of entrained air in the low-shrinkage AE concrete for civil engineering to be prepared is 3 to 8% by volume, preferably 4 to 7% by volume. When the amount of entrained air is less than this, the bubble spacing coefficient of the cured body obtained from such a low-shrinkage AE concrete for civil engineering increases, the freeze-thaw resistance decreases, and conversely, when the amount of entrained air exceeds this, The intensity | strength of the hardening body obtained from such a low shrinkage | contraction AE concrete for civil engineering falls. The slump immediately after kneading is in the range of 6 to 15 cm, preferably in the range of 8 to 13 cm.

本発明の調製方法では、以上説明したように、セメント、水、細骨材、粗骨材、多機能混和剤及び空気量調節剤を練り混ぜ、土木用低収縮AEコンクリートを調製するが、この際に、本発明の効果を損なわない範囲内で、必要に応じて凝結促進剤、凝結遅延剤、防水剤、防腐剤、防錆剤等の添加剤を併用することができる。   In the preparation method of the present invention, as described above, cement, water, fine aggregate, coarse aggregate, multifunctional admixture and air amount adjusting agent are kneaded to prepare a low-shrinkage AE concrete for civil engineering. In this case, additives such as a setting accelerator, a setting retarder, a waterproofing agent, a preservative, and a rust preventing agent can be used in combination within the range not impairing the effects of the present invention.

本発明に係る土木用低収縮AEコンクリートは、以上説明した本発明の調製方法によって調製されるものである。かかる土木用低収縮AEコンクリートのなかでも、得られる硬化体の乾燥収縮率が400×10−6〜700×10−6の範囲となるものが好ましく、また得られる硬化体の気泡間隔係数が100〜300μmの範囲となるものが好ましい。 The low-shrinkage AE concrete for civil engineering according to the present invention is prepared by the preparation method of the present invention described above. Among such low-shrinkage AE concretes for civil engineering, it is preferable that the obtained cured product has a drying shrinkage ratio in the range of 400 × 10 −6 to 700 × 10 −6 , and the obtained cured product has a cell spacing coefficient of 100. What becomes the range of -300 micrometers is preferable.

本発明によると、使用上の便宜から多機能混和剤を用いて練り混ぜ直後のスランプを比較的低く抑えた土木用低収縮AEコンクリートを調製するに際し、1)先ず前提として、用いる多機能混和剤が安定性に優れていること、2)調製した土木用低収縮AEコンクリートの流動性及び空気量の経時的な低下を抑えて良好な施工性を確保すること、3)得られる硬化体の乾燥収縮率が低いこと、4)得られる硬化体の凍結融解作用に対する抵抗性が強いこと、5)得られる硬化体の中性化速度が遅いこと、6)得られる硬化体の圧縮強度が相応に優れていること、以上の1)〜6)を同時に充足できるという効果がある。   According to the present invention, when preparing a low-shrinkage AE concrete for civil engineering in which the slump immediately after kneading is kept relatively low using a multifunctional admixture for the convenience of use, 1) First, the multifunctional admixture used as a premise Is excellent in stability, 2) the flowability of the prepared low-shrinkage AE concrete for civil engineering is suppressed, and good workability is secured by suppressing a decrease in the amount of air over time, and 3) drying of the obtained cured body. Low shrinkage rate 4) Strong resistance to freeze-thaw action of the resulting cured product 5) Slow neutralization rate of the resulting cured product 6) Compressive strength of the resulting cured product correspondingly It has the effect that it is excellent and the above 1) -6) can be satisfied simultaneously.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(セメント分散剤の合成)
・セメント分散剤としての水溶性ビニル共重合体(A−1)の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位が23個、以下n=23という)エチレングリコールメタクリレート300g及びメタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸4g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、これらを攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、水溶性ビニル共重合体(A−1)の40%水溶液を得た。水溶性ビニル共重合体(A−1)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量33800の水溶性ビニル共重合体であった。
Test category 1 (synthesis of cement dispersant)
Synthesis of water-soluble vinyl copolymer (A-1) as a cement dispersant 60 g of methacrylic acid, 300 g of methoxypoly (23 oxyethylene units, hereinafter referred to as n = 23) ethylene glycol methacrylate and 5 g of sodium methallylsulfonate After charging 4 g of 3-mercaptopropionic acid and 490 g of water into a reaction vessel, 58 g of a 48% aqueous sodium hydroxide solution was added, and these were partially neutralized while stirring and dissolved uniformly. After the atmosphere in the reaction vessel was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, 25 g of a 20% aqueous solution of sodium persulfate was added to start radical polymerization reaction, and the reaction was continued for 5 hours. The reaction was terminated. Thereafter, 23 g of a 48% aqueous sodium hydroxide solution was added to completely neutralize the reaction product, thereby obtaining a 40% aqueous solution of the water-soluble vinyl copolymer (A-1). When the water-soluble vinyl copolymer (A-1) was analyzed, it was formed from a structural unit formed from sodium methacrylate / a structural unit formed from methoxypoly (n = 23) ethylene glycol methacrylate / sodium methallylsulfonate. The structural unit was a water-soluble vinyl copolymer having a mass average molecular weight of 33,800 at a ratio of 70/27/3 (mol%).

・セメント分散剤としての水溶性ビニル共重合体(A−2)〜(A−5)及び(AR−1)〜(AR−3)の合成
水溶性ビニル共重合体(A−1)の合成と同様にして、水溶性ビニル共重合体(A−2)〜(A−5)及び(a−1)〜(a−3)を合成した。以上で合成した各水溶性ビニル共重合体の種類(以下、説明の便宜上、セメント分散剤の種類ともいう)及びその内容を表1にまとめて示した。
Synthesis of water-soluble vinyl copolymers (A-2) to (A-5) and (AR-1) to (AR-3) as cement dispersants Synthesis of water-soluble vinyl copolymer (A-1) In the same manner, water-soluble vinyl copolymers (A-2) to (A-5) and (a-1) to (a-3) were synthesized. Table 1 summarizes the types of water-soluble vinyl copolymers synthesized above (hereinafter also referred to as types of cement dispersants for convenience of explanation) and their contents.

Figure 0005058098
Figure 0005058098

表1において、
D−1:メタクリル酸ナトリウムから形成された構成単位
D−2:メタクリル酸から形成された構成単位
E−1:メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位
E−2:メトキシポリ(n=68)エチレングリコールメタアクリレートから形成された構成単位
E−3:メトキシポリ(n=23)エチレングリコールメタアクリレートから形成された構成単位
F−1:メタリルスルホン酸ナトリウムから形成された構成単位
F−2:アリルスルホン酸ナトリウムから形成された構成単位
F−3:メチルアクリレートから形成された構成単位
In Table 1,
D-1: Structural unit formed from sodium methacrylate D-2: Structural unit formed from methacrylic acid E-1: Structural unit formed from methoxypoly (n = 23) ethylene glycol methacrylate E-2: Methoxypoly ( n = 68) structural unit formed from ethylene glycol methacrylate E-3: methoxy poly (n = 23) structural unit formed from ethylene glycol methacrylate F-1: structural unit formed from sodium methallylsulfonate F -2: Structural unit formed from sodium allyl sulfonate F-3: Structural unit formed from methyl acrylate

試験区分2(多機能混和剤の調製及び評価)
・多機能混和剤(G−1)の調製
ガラス容器にセメント分散剤として表1記載のセメント分散剤(A−1)29部、乾燥収縮低減剤としてジエチレングリコールモノブチルエーテル(B−1)70部、分離低減剤としてポリビニルアルコール(C−1)1部及び水100部を投入して混合し、多機能混和剤(G−1)の50%水溶液を調製した。
Test Category 2 (Preparation and evaluation of multifunctional admixture)
-Preparation of multifunctional admixture (G-1) 29 parts of cement dispersant (A-1) described in Table 1 as a cement dispersant in a glass container, 70 parts of diethylene glycol monobutyl ether (B-1) as a drying shrinkage reducing agent, As a separation reducing agent, 1 part of polyvinyl alcohol (C-1) and 100 parts of water were added and mixed to prepare a 50% aqueous solution of the multifunctional admixture (G-1).

・多機能混和剤(G−2)〜(G−10)及び(R−1)〜(R−14)の調製
多機能混和剤(G−1)の調製と同様にして、多機能混和剤(G−2)〜(G−10)及び(R−1)〜(R−14)を調製した。調製した各多機能混和剤の内容を表2にまとめて示した。
Preparation of multifunctional admixtures (G-2) to (G-10) and (R-1) to (R-14) Multifunctional admixtures in the same manner as the preparation of multifunctional admixture (G-1) (G-2) to (G-10) and (R-1) to (R-14) were prepared. The contents of each prepared multifunctional admixture are summarized in Table 2.

・多機能混和剤の安定性の評価
調製した多機能混和剤(G−1)〜(G−10)及び(R−1)〜(R−14)の50%水溶液を、100ml容量のメスシリンダーに入れ、室温で1週間放置した後の該水溶液の外観を観察し、下記の基準で評価した。
評価基準
○:均一透明
×:分離又は濁りが認められる。





















Evaluation of the stability of the multifunctional admixture A 50% aqueous solution of the prepared multifunctional admixtures (G-1) to (G-10) and (R-1) to (R-14) was added to a 100 ml graduated cylinder. And the appearance of the aqueous solution was observed after being allowed to stand at room temperature for 1 week and evaluated according to the following criteria.
Evaluation criteria ○: Uniform transparency ×: Separation or turbidity is observed.





















Figure 0005058098
Figure 0005058098

表2において、
A−1〜A−5,AR−1〜AR−3:試験区分1で合成した水溶性ビニル共重合体
B−1:ジエチレングリコールモノブチルエーテル
B−2:ジエチレングリコールモノペンチルエーテル
B−3:ジエチレングリコールモノプロピルエーテル
BR−1:ジエチレングリコールモノエチルエーテル
BR−2:トリエチレングリコールモノヘキシルエーテル
BR−3:ポリ(n=7)エチレングリコールモノブチルエーテル
C−1:ポリビニルアルコール(日本酢ビ・ポバール社製の商品名J−ポバールJP−05、鹸化度88モル%、4%水溶液の20℃における粘度が5mPa・sのもの)
C−2:ポリビニルアルコール(日本酢ビ・ポバール社製の商品名J−ポバールJP−18、鹸化度88モル%、4%水溶液の20℃における粘度が25mPa・sのもの)
CR−1:ポリビニルアルコール(日本酢ビ・ポバール社製の商品名J−ポバールJF−10、鹸化度99モル%、4%水溶液の20℃における粘度が10mPa・sのもの)
In Table 2,
A-1 to A-5, AR-1 to AR-3: Water-soluble vinyl copolymer synthesized in Test Category 1 B-1: Diethylene glycol monobutyl ether B-2: Diethylene glycol monopentyl ether B-3: Diethylene glycol monopropyl Ether BR-1: Diethylene glycol monoethyl ether BR-2: Triethylene glycol monohexyl ether BR-3: Poly (n = 7) ethylene glycol monobutyl ether C-1: Polyvinyl alcohol (trade name, manufactured by Nihon Vinegar-Poval) J-Poval JP-05, saponification degree 88 mol%, 4% aqueous solution with a viscosity of 5 mPa · s at 20 ° C.)
C-2: Polyvinyl alcohol (product name: J-Poval JP-18, manufactured by Nippon Vineyard Poval Co., saponification degree: 88 mol%, 4% aqueous solution having a viscosity of 25 mPa · s at 20 ° C.)
CR-1: Polyvinyl alcohol (trade name J-Poval JF-10, manufactured by Nippon Bibi-Poval Co., saponification degree 99 mol%, 4% aqueous solution having a viscosity of 10 mPa · s at 20 ° C.)

試験区分3(土木用低収縮AEコンクリートの調製及び評価)
・実施例1〜10及び比較例1〜14
表3に記載した配合No.1の条件で、50リットルのパン型強制練りミキサーに普通ポルトランドセメント(密度=3.16g/cm、ブレーン値3300)、細骨材(岩瀬産砕砂、密度=2.61、F.M.=2.83)及び粗骨材(岩瀬産砕石、密度=2.63、F.M.=6.74)を順次投入して15秒間空練りした。次いで、目標スランプが10±1cm、目標空気量が4.5±0.5%の範囲となるよう、試験区分2で調製した表2記載の多機能混和剤及び空気量調節剤としてオクチルリン酸モノエステルカリウム塩をそれぞれ所定量練り混ぜ水で希釈した後に投入して練り混ぜ、各例の土木用低収縮AEコンクリートを調製した。調製した各土木用低収縮AEコンクリートの内容を表4にまとめて示した。
Test category 3 (Preparation and evaluation of low-shrinkage AE concrete for civil engineering)
-Examples 1-10 and Comparative Examples 1-14
Formulation No. described in Table 3 No. 1 to a 50-liter pan-type forced kneading mixer with ordinary Portland cement (density = 3.16 g / cm 3 , brain value 3300), fine aggregate (Iwase crushed sand, density = 2.61, FM = 2.83) and coarse aggregate (crushed stone from Iwase, density = 2.63, FM = 6.74) were sequentially added and kneaded for 15 seconds. Next, the multifunctional admixture described in Table 2 prepared in Test Category 2 and octyl phosphate as the air amount adjusting agent so that the target slump is in the range of 10 ± 1 cm and the target air amount is 4.5 ± 0.5%. Each monoester potassium salt was kneaded in a predetermined amount and diluted with water, and then added and kneaded to prepare low shrinkage AE concrete for civil engineering in each example. The contents of the prepared low shrinkage AE concrete for civil engineering are summarized in Table 4.

・実施例11〜20及び比較例15〜28
表3に記載した配合No.2の条件で、50リットルのパン型強制練りミキサーに普通ポルトランドセメント(密度=3.16g/cm、ブレーン値3300)、細骨材(岩瀬産砕砂、密度=2.61、F.M.=2.83)及び粗骨材(岩瀬産砕石、密度=2.63、F.M.=6.74)を順次投入して15秒間空練りした。次いで、目標スランプが12±1cm、目標空気量が4.5±0.5%の範囲となるよう、試験区分2で調製した表2記載の多機能混和剤及び空気量調節剤としてオクチルリン酸モノエステルカリウム塩をそれぞれ所定量練り混ぜ水で希釈した後に投入して練り混ぜ、各例の土木用低収縮AEコンクリートを調製した。調製した各土木用低収縮AEコンクリートの内容を表5にまとめて示した。
-Examples 11-20 and Comparative Examples 15-28
Formulation No. described in Table 3 2 in a 50-liter pan-type forced kneading mixer, ordinary Portland cement (density = 3.16 g / cm 3 , brain value 3300), fine aggregate (Iwase crushed sand, density = 2.61, FM = 2.83) and coarse aggregate (crushed stone from Iwase, density = 2.63, FM = 6.74) were sequentially added and kneaded for 15 seconds. Next, the multifunctional admixture described in Table 2 prepared in Test Category 2 and octyl phosphate as the air amount adjusting agent so that the target slump is in the range of 12 ± 1 cm and the target air amount is 4.5 ± 0.5%. Each monoester potassium salt was kneaded in a predetermined amount and diluted with water, and then added and kneaded to prepare low shrinkage AE concrete for civil engineering in each example. The contents of the prepared low shrinkage AE concrete for civil engineering are summarized in Table 5.

Figure 0005058098
Figure 0005058098

・土木用低収縮AEコンクリートの物性評価
調製した各例の土木用低収縮AEコンクリートについて、空気量、スランプ、スランプ残存率を下記のように求め、結果を表4及び表5にまとめて示した。また各例の土木用低収縮AEコンクリートから得られる硬化体について、乾燥収縮率、気泡間隔係数、凍結融解耐久性指数、促進中性化深さ及び圧縮強度を下記のように求め、結果を表6及び表7にまとめて示した。
-Evaluation of physical properties of low-shrinkage AE concrete for civil engineering For the prepared low-shrinkage AE concrete for civil engineering, the air amount, slump, and slump residual rate were determined as follows, and the results are shown in Tables 4 and 5 below. . Moreover, about the hardened | cured material obtained from the low shrinkage | contraction AE concrete for civil engineering of each example, a drying shrinkage rate, a bubble space | interval coefficient, a freeze-thaw durability index, accelerated neutralization depth, and compressive strength were calculated | required as follows, and a result is shown. 6 and Table 7 collectively.

・空気量(容量%):練り混ぜ直後の土木用低収縮AEコンクリート及び60分間静置後の土木用低収縮AEコンクリートについて、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に、JIS−A1101に準拠して測定した。
・スランプ残存率(%):(60分間静置後のスランプ/練り混ぜ直後のスランプ)×100で求めた。
・乾燥収縮率:JIS−A1129に準拠し、各例の土木用低収縮AEコンクリートを20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・気泡間隔係数(μm):各例の土木用低収縮AEコンクリートを、20℃×60%RHの条件下で26週間保存し、得られた硬化体の表面を研磨仕上げした供試体について、気泡組織をASTM−C457のリニアトラバース法に準拠して顕微鏡下で測定した。
・凍結融解耐久性指数(300サイクル):各例の土木用低収縮AEコンクリートについて、JIS−A1148に準拠して測定した値を用い、ASTM−C666−75の耐久性指数で計算した数値を求めた。この数値は、最大値が100で、100に近いほど、凍結融解に対する抵抗性が優れていることを示す。
・促進中性化深さ(mm):各例の土木用低収縮AEコンクリートについて、10×10×40cmの角型供試体の打ち込み面、底面及び両端面をエポキシ樹脂でシールし、20℃×60%RH、炭酸ガス濃度5%の条件下で促進試験を行なった。材齢26週に供試体の断面を切断し、1%フェノールフタレイン溶液を吹き付けて赤色化しない部分を中性化しない部分とし、外側からの幅を促進中性化深さとした。この数値は小さいほど中性化が進まず、耐久性が優れていることを示す。
・圧縮強度(N/mm):各例の土木用低収縮AEコンクリートについて、JIS−A1108に準拠し、材齢7日と材齢28日で測定した。
-Air content (volume%): Low-shrinkage AE concrete for civil engineering immediately after mixing and low-shrinkage AE concrete for civil engineering after standing for 60 minutes were measured according to JIS-A1128.
-Slump (cm): Measured according to JIS-A1101 simultaneously with the measurement of the air amount.
-Slump residual rate (%): (slump after standing for 60 minutes / slump immediately after kneading) x 100.
-Drying shrinkage ratio: According to JIS-A1129, dry shrinkage strain was measured by a comparator method for a 26-week-old specimen in which the low-shrinkage AE concrete for civil engineering in each case was stored at 20 ° C x 60% RH. Then, the drying shrinkage was determined. The smaller this value, the smaller the drying shrinkage.
・ Bubble spacing coefficient (μm): Low-shrinkage AE concrete for civil engineering of each example was stored for 26 weeks under the condition of 20 ° C. × 60% RH, and the test specimens obtained by polishing the surface of the obtained cured body The tissue was measured under a microscope according to the linear traverse method of ASTM-C457.
-Freezing and thawing durability index (300 cycles): Using the values measured according to JIS-A1148 for the low-shrinkage AE concrete for civil engineering in each example, the numerical value calculated by the durability index of ASTM-C666-75 is obtained. It was. This numerical value indicates that the maximum value is 100, and the closer to 100, the better the resistance to freezing and thawing.
-Accelerated neutralization depth (mm): For each example of low-shrinkage AE concrete for civil engineering, 10 × 10 × 40 cm square test specimens are sealed with epoxy resin on the surface, bottom and both ends, and 20 ° C. × The acceleration test was performed under the conditions of 60% RH and carbon dioxide concentration of 5%. The cross section of the specimen was cut at the age of 26 weeks, and a 1% phenolphthalein solution was sprayed to make a portion that did not turn red, a portion that did not become neutral, and a width from the outside was defined as an accelerated neutralization depth. A smaller value indicates that neutralization does not progress and durability is excellent.
-Compressive strength (N / mm < 2 >): About the low shrinkage | contraction AE concrete for civil engineering of each example, based on JIS-A1108, it measured by material age 7 days and material age 28 days.

Figure 0005058098
Figure 0005058098













Figure 0005058098
Figure 0005058098



















Figure 0005058098
Figure 0005058098



















Figure 0005058098
Figure 0005058098

表4〜表7において、
*1:セメント100質量部当たりの各例としての質量部
*2:土木用低収縮AEコンクリートの調製時に目標とする流動性(スランプ値)が得られなかったので測定しなかった。
G1〜G10及びR1〜R14:試験区分2で調製した多機能混和剤
S−1:オクチルリン酸モノエステルカリウム塩
S−2:樹脂酸石けん系AE剤(竹本油脂社製の商品名チューポールAE−300)
In Tables 4-7,
* 1: Mass parts as examples per 100 parts by mass of cement * 2: Measurement was not performed because the target fluidity (slump value) was not obtained when preparing low-shrinkage AE concrete for civil engineering.
G1 to G10 and R1 to R14: Multifunctional admixture prepared in Test Category 2 S-1: Octyl phosphate monoester potassium salt S-2: Resin acid soap-based AE agent (trade name Tupole AE manufactured by Takemoto Yushi Co., Ltd.) −300)

Claims (8)

セメント、水、細骨材、粗骨材、多機能混和剤及び空気量調節剤を用いて土木用低収縮AEコンクリートを調製するに際し、セメントを単位量290〜450kg/mの範囲で用い、またセメント100質量部当たり下記の多機能混和剤を0.3〜1.5質量部の割合で用いて、更に練り混ぜ直後のスランプを6〜15cmの範囲に調製すると共に連行空気量を3〜8容量%の範囲に調製することを特徴とする土木用低収縮AEコンクリートの調製方法。
多機能混和剤:下記のセメント分散剤、乾燥収縮低減剤及び分離低減剤から成り、該セメント分散剤を10〜30質量%、該乾燥収縮低減剤を65〜85質量%及び該分離低減剤を0.05〜5質量%(合計100質量%)含有して成るもの
セメント分散剤:分子中に下記の構成単位Dを45〜85モル%、下記の構成単位を15〜55モル%及び下記の構成単位Fを0〜5モル%(合計100モル%)有する質量平均分子量2000〜70000の水溶性ビニル共重合体
構成単位D:メタアクリル酸から形成された構成単位及びメタアクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位E:分子中に7〜75個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位F:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
乾燥収縮低減剤:下記の化1で示される(ポリ)アルキレングリコールモノアルキルエーテル
Figure 0005058098
(化1において、
R:炭素数3〜5のアルキル基
A:分子中に1〜5個のオキシエチレン単位のみで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基)
分離低減剤:ポリ酢酸ビニルから合成された鹸化度80〜95モル%のポリビニルアルコールであって、4質量%水溶液の20℃における粘度が1〜50mPa・sの範囲のポリビニルアルコール
When preparing low-shrinkage AE concrete for civil engineering using cement, water, fine aggregate, coarse aggregate, multifunctional admixture, and air amount regulator, cement is used in a unit amount of 290 to 450 kg / m 3. and using a multi-functional admixture of the following per 100 parts by weight of cement in a ratio of 0.3 to 1.5 parts by weight, further kneading the communication line air quantity with the preparation of a slump immediately after the range of 6~15cm A method for preparing a low-shrinkage AE concrete for civil engineering, which is prepared in a range of 3 to 8 % by volume.
Multifunctional admixture: Consists of the following cement dispersant, drying shrinkage reducing agent and separation reducing agent, the cement dispersing agent being 10 to 30% by mass, the drying shrinkage reducing agent being 65 to 85% by mass and the separation reducing agent Containing 0.05 to 5% by mass (total 100% by mass) Cement dispersant: 45 to 85% by mol of the following structural unit D in the molecule, 15 to 55% by mol of the following structural unit E and the following A water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 70000 having 0 to 5 mol% (100 mol% in total) of the structural unit F: Structural unit D: formed from a structural unit formed from methacrylic acid and methacrylic acid has been one selected from the structural unit or two or more structural units E: methoxypolyethylene glycol having a polyoxyethylene group composed of 7-75 oxyethylene units in the molecule Structural unit formed from tacrylate Structural unit F: One or more selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate Drying shrinkage reducing agent: (Poly) alkylene glycol monoalkyl ether represented by the following chemical formula 1
Figure 0005058098
(In chemical formula 1,
R: an alkyl group having 3 to 5 carbon atoms A: a residue obtained by removing all hydroxyl groups from a (poly) alkylene glycol having a (poly) oxyalkylene group composed of only 1 to 5 oxyethylene units in the molecule )
Separation-reducing agent: polyvinyl alcohol synthesized from polyvinyl acetate having a saponification degree of 80 to 95 mol% and a viscosity of 4% by weight aqueous solution at 20 ° C. in the range of 1 to 50 mPa · s
練り混ぜ直後のスランプを8〜13cmの範囲に調製する請求項1記載の土木用低収縮AEコンクリートの調製方法。 Process for the preparation of civil engineering for low shrinkage AE concrete according to claim 1, wherein preparing the immediately following scan lamp range of 8 to 13 cm kneading. 連行空気量を4〜7容量%の範囲に調製する請求項1又は2記載の土木用低収縮AEコンクリートの調製方法。 The method for preparing low-shrinkage AE concrete for civil engineering according to claim 1 or 2, wherein the amount of entrained air is adjusted to a range of 4 to 7 % by volume. 乾燥収縮低減剤が、ジエチレングリコールモノブチルエーテルである請求項1〜のいずれか一つの項記載の土木用低収縮AEコンクリートの製造方法。 The method for producing a low shrinkage AE concrete for civil engineering according to any one of claims 1 to 3 , wherein the drying shrinkage reducing agent is diethylene glycol monobutyl ether. 空気量調節剤が、アルキルリン酸モノエステル塩である請求項1〜のいずれか一つの項記載の土木用低収縮AEコンクリートの調製方法。 The method for preparing a low-shrinkage AE concrete for civil engineering according to any one of claims 1 to 4 , wherein the air amount adjusting agent is an alkyl phosphate monoester salt. 請求項1〜のいずれか一つの項記載の土木用低収縮AEコンクリートの調製方法によって調製された土木用低収縮AEコンクリート。 The low-shrinkage AE concrete for civil engineering prepared by the method for preparing low-shrinkage AE concrete for civil engineering according to any one of claims 1 to 5 . 得られる硬化体の乾燥収縮率が、400×10−6〜700×10−6の範囲となるものである請求項記載の土木用低収縮AEコンクリート。 Drying shrinkage of the resulting cured product, 400 × 10 -6 ~700 × 10 -6 in which the scope of the claims 6 civil engineering low shrinkage AE concrete description. 得られる硬化体の気泡間隔係数が、100〜300μmの範囲となるものである請求項又は記載の土木用低収縮AEコンクリート。 The low-shrinkage AE concrete for civil engineering according to claim 6 or 7 , wherein a cell spacing coefficient of the obtained cured product is in a range of 100 to 300 µm.
JP2008212403A 2008-08-21 2008-08-21 Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering Active JP5058098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212403A JP5058098B2 (en) 2008-08-21 2008-08-21 Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212403A JP5058098B2 (en) 2008-08-21 2008-08-21 Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering

Publications (2)

Publication Number Publication Date
JP2010047440A JP2010047440A (en) 2010-03-04
JP5058098B2 true JP5058098B2 (en) 2012-10-24

Family

ID=42064868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212403A Active JP5058098B2 (en) 2008-08-21 2008-08-21 Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering

Country Status (1)

Country Link
JP (1) JP5058098B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610626B2 (en) * 2010-12-01 2014-10-22 株式会社竹中工務店 Preparation method of low shrinkage AE concrete and low shrinkage AE concrete
JP5868188B2 (en) * 2012-01-11 2016-02-24 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Additive for high salinity cement composition and high salinity cement composition
JP6414657B2 (en) * 2012-09-07 2018-10-31 清水建設株式会社 Ultra low shrinkage concrete
JP6432755B2 (en) * 2013-07-09 2018-12-05 清水建設株式会社 Surface finishing method for concrete structure and concrete structure
JP6251634B2 (en) * 2014-05-12 2017-12-20 株式会社日本触媒 Ultra high strength cement composition
CN107474196B (en) * 2017-09-16 2020-02-21 四川砼道科技有限公司 Polycarboxylate superplasticizer for low-slump concrete and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286060A (en) * 2002-03-28 2003-10-07 Taiheiyo Cement Corp Cement composition
JP3877636B2 (en) * 2002-04-25 2007-02-07 電気化学工業株式会社 Cement admixture and cement composition using the same
JP4884679B2 (en) * 2005-02-09 2012-02-29 電気化学工業株式会社 Cement admixture and cement composition using the same
JP4883757B2 (en) * 2005-12-02 2012-02-22 株式会社竹中工務店 AE concrete manufacturing method and AE concrete
KR101271399B1 (en) * 2006-08-01 2013-06-05 덴끼 가가꾸 고교 가부시키가이샤 Cement admixture and cement composition making use of the same
JP4500325B2 (en) * 2007-04-26 2010-07-14 株式会社竹中工務店 Shrinkage reducing AE concrete composition
JP5004653B2 (en) * 2007-05-15 2012-08-22 竹本油脂株式会社 AE concrete preparation method and AE concrete

Also Published As

Publication number Publication date
JP2010047440A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4707197B2 (en) Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering
JP4500325B2 (en) Shrinkage reducing AE concrete composition
JP4883757B2 (en) AE concrete manufacturing method and AE concrete
JP6192208B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP5058098B2 (en) Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering
JP2003300766A (en) Concrete composition, method for producing the same and cement admixture
JP6260037B2 (en) Multifunctional admixture for concrete
JP2007153641A (en) Cement additive and cement composition using the same
JP6893821B2 (en) Cement Additives and Cement Compositions
JP4674879B2 (en) Drying shrinkage reducing cement dispersant
JPH028983B2 (en)
JP5822397B2 (en) AE concrete composition using blast furnace cement
JP5422233B2 (en) Additive composition for hydraulic composition
JP7027105B2 (en) Cement composition
JP6029233B2 (en) AE concrete preparation method and AE concrete
JP5135056B2 (en) Shrinkage reducing agent for hydraulic material and shrinkage reducing agent composition for hydraulic material
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP7055338B2 (en) Additives for hydraulic compositions, and hydraulic compositions
JP5975716B2 (en) Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof
JP5545435B2 (en) Dispersant composition for cement
JP4724697B2 (en) Drying shrinkage-reducing cement dispersant
JP6887739B2 (en) Surface aesthetic improver composition for hydraulic composition
JP6362531B2 (en) Hydraulic composition
JP7488732B2 (en) Additives for hydraulic compositions
JPS641425B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250