JP5422233B2 - Additive composition for hydraulic composition - Google Patents

Additive composition for hydraulic composition Download PDF

Info

Publication number
JP5422233B2
JP5422233B2 JP2009065437A JP2009065437A JP5422233B2 JP 5422233 B2 JP5422233 B2 JP 5422233B2 JP 2009065437 A JP2009065437 A JP 2009065437A JP 2009065437 A JP2009065437 A JP 2009065437A JP 5422233 B2 JP5422233 B2 JP 5422233B2
Authority
JP
Japan
Prior art keywords
compound
mixture
component
area
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009065437A
Other languages
Japanese (ja)
Other versions
JP2010215462A (en
Inventor
久登 寺井
穂高 山室
美明 谷所
裕嗣 市川
豊美 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009065437A priority Critical patent/JP5422233B2/en
Publication of JP2010215462A publication Critical patent/JP2010215462A/en
Application granted granted Critical
Publication of JP5422233B2 publication Critical patent/JP5422233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

本発明は、水硬性組成物用添加剤組成物に関する。   The present invention relates to an additive composition for hydraulic compositions.

セメントを使用した水硬性組成物、例えばコンクリートは硬化後、時間の経過と共に水分が蒸発し、乾燥収縮によりひび割れが生じることがある。この乾燥収縮を抑制するために、直接的な方法として乾燥収縮低減剤が検討されている。また、間接的な方法として、単位水量を減少させることが有効であり、そのために高性能減水剤、例えばβ−ナフタレンスルホン酸ホルマリン高縮合物塩やポリカルボン酸系高性能減水剤が一般に乾燥収縮低減剤と併用されている。例えば、乾燥収縮低減剤としては炭素数1〜4のアルコールのアルキレンオキシド付加物(特許文献1、2)や、ひび割れ防止効果を有する平均分子量400〜10000のポリアルキレングリコールとコンクリートの分散性を有するポリカルボン酸系重合体を主成分とする混和剤(特許文献3)、多価アルコールアルキレンオキシド付加物とポリカルボン酸系重合体を含む混和剤(特許文献4)が提案されている。また、高性能減水剤としては、低粘性なコンクリートを製造できるリン酸エステル系重合体が提示されている(特許文献5)。   A hydraulic composition using cement, such as concrete, may evaporate with time after hardening, and may crack due to drying shrinkage. In order to suppress this drying shrinkage, a drying shrinkage reducing agent has been studied as a direct method. As an indirect method, it is effective to reduce the unit amount of water. For this reason, high-performance water reducing agents such as β-naphthalenesulfonic acid formalin high condensate salts and polycarboxylic acid-based high-performance water reducing agents are generally used for drying shrinkage. Used in combination with a reducing agent. For example, as a drying shrinkage reducing agent, an alkylene oxide adduct of alcohol having 1 to 4 carbon atoms (Patent Documents 1 and 2) or a polyalkylene glycol having an average molecular weight of 400 to 10000 having an effect of preventing cracking and dispersibility of concrete. Admixtures containing a polycarboxylic acid polymer as a main component (Patent Document 3) and admixtures containing a polyhydric alcohol alkylene oxide adduct and a polycarboxylic acid polymer (Patent Document 4) have been proposed. Further, as a high-performance water reducing agent, a phosphate ester polymer capable of producing low-viscosity concrete has been proposed (Patent Document 5).

特公昭56−51148号公報Japanese Patent Publication No. 56-51148 特開2001−294466号公報JP 2001-294466 A 特開2002−12461号公報JP 2002-12461 A 特開2004−2175号公報JP 2004-2175 A 特開2006−52381号公報JP 2006-52381 A

最近、コンクリート構造物の耐久性志向が高まっており、収縮低減剤や高性能減水剤の効果的な使用方法が検討されている。生コンプラントでコンクリートを製造する際に、添加する薬剤の数が少ないほど製造工程や添加設備の点から製造の負担軽減がはかられる。そのため、乾燥収縮低減効果、分散効果等の複数の効果を兼ね備えた添加剤の開発が求められている。更に、このような目的には、高性能減水剤との相溶性のよい混和剤(例えば収縮低減剤)を用いて1液製品とすることが有利である。   Recently, durability of concrete structures has been increasing, and effective methods of using shrinkage reducing agents and high performance water reducing agents are being studied. When manufacturing concrete in a green plant, the smaller the number of chemicals to be added, the less the manufacturing burden is reduced in terms of the manufacturing process and addition equipment. Therefore, development of an additive having a plurality of effects such as a drying shrinkage reduction effect and a dispersion effect is demanded. Further, for such purposes, it is advantageous to make a one-component product using an admixture (for example, shrinkage reducing agent) having good compatibility with the high-performance water reducing agent.

本発明の課題は、高性能(AE)減水剤との相溶性に優れると共に、臭気の問題が無く、コンクリート等の水硬性組成物に乾燥収縮低減効果を付与し、水硬性組成物の流動性、凍結融解抵抗性、空気連行性について、複数の優れた物性を同時に付与することができる水硬性組成物用添加剤組成物、及びその製造方法を提供することにある。   The problem of the present invention is that it has excellent compatibility with high performance (AE) water reducing agent, has no problem of odor, imparts a drying shrinkage reducing effect to a hydraulic composition such as concrete, and the fluidity of the hydraulic composition An object of the present invention is to provide an additive composition for a hydraulic composition that can simultaneously provide a plurality of excellent physical properties with respect to freeze-thaw resistance and air entrainment, and a method for producing the same.

本発明は、下記一般式(1)で表される化合物の混合物を含有する水硬性組成物用添加剤組成物であって、
前記混合物の水酸基価より求めたnの平均値が3〜12であり、
ガスクロマトグラフィーによって求めた前記混合物中のnが3以下の化合物の含有量が0〜15面積%であり、且つ、
ガスクロマトグラフィーによって求めた前記混合物中のnが11以上の化合物の含有量が0〜20面積%である、
水硬性組成物用添加剤組成物に関する。
1−O−(AO)n−R2 (1)
(式中、R1及びR2は、それぞれ水素原子又は炭素原子数1〜22の炭化水素基であり、Aは炭素数2〜8のアルキレン基であり、nは付加モル数であり、0以上の整数である。ただし、R1及びR2が同時に水素原子である場合及び同時にアルキル基である場合を除く。)
The present invention is an additive composition for a hydraulic composition containing a mixture of compounds represented by the following general formula (1),
The average value of n determined from the hydroxyl value of the mixture is 3 to 12,
The content of the compound having n of 3 or less in the mixture determined by gas chromatography is 0 to 15 area%, and
The content of the compound having n of 11 or more in the mixture determined by gas chromatography is 0 to 20 area%.
The present invention relates to an additive composition for hydraulic compositions.
R 1 —O— (AO) n —R 2 (1)
(In the formula, R 1 and R 2 are each a hydrogen atom or a hydrocarbon group having 1 to 22 carbon atoms, A is an alkylene group having 2 to 8 carbon atoms, n is the number of added moles, and 0 (However, the case where R 1 and R 2 are simultaneously hydrogen atoms and the case where they are simultaneously alkyl groups is excluded.)

また、本発明は、上記本発明の水硬性組成物用添加剤組成物の製造方法であって、一般式(1)中のnが3である化合物を90〜99重量%含有する混合物に炭素数2〜8のアルキレンオキシドを付加する工程を有する、水硬性組成物用添加剤組成物の製造方法に関する。   The present invention also relates to a method for producing the hydraulic composition additive composition of the present invention, wherein carbon is added to a mixture containing 90 to 99% by weight of a compound in which n is 3 in the general formula (1). It is related with the manufacturing method of the additive composition for hydraulic compositions which has the process of adding the alkylene oxide of several 2-8.

また、本発明は、上記本発明の水硬性組成物用添加剤組成物の製造方法であって、炭素数1〜22のアルコールに炭素数2〜8のアルキレンオキシドを付加する工程と、該工程により得られた反応生成物中の一般式(1)中のnが3以下の化合物を低減する工程とを有する、水硬性組成物用添加剤組成物の製造方法に関する。   The present invention also relates to a method for producing the additive composition for hydraulic composition according to the present invention, the step of adding an alkylene oxide having 2 to 8 carbon atoms to an alcohol having 1 to 22 carbon atoms, and the step And a step of reducing the compound in which n in the general formula (1) in the reaction product obtained by the step of 3 is 3 or less, relates to a method for producing an additive composition for a hydraulic composition.

本発明によれば、高性能(AE)減水剤との相溶性に優れると共に、臭気の問題が無く、コンクリート等の水硬性組成物に乾燥収縮低減効果を付与し、水硬性組成物の流動性、凍結融解抵抗性、空気連行性について、複数の優れた物性を同時に付与することができる水硬性組成物用添加剤、及びその製造方法が提供される。   According to the present invention, it is excellent in compatibility with a high performance (AE) water reducing agent, has no problem of odor, imparts a drying shrinkage reducing effect to a hydraulic composition such as concrete, and the fluidity of the hydraulic composition. An additive for a hydraulic composition capable of simultaneously imparting a plurality of excellent physical properties with respect to freeze-thaw resistance and air entrainment, and a method for producing the same are provided.

〔(A)成分〕
(A)成分は、下記一般式(1)で表される化合物の混合物であって、該混合物の水酸基価より求めたnの平均値が3〜12であり、該混合物中、nが3以下の化合物の合計が0〜15面積%であり、且つ、該混合物中、nが11以上の化合物の合計が0〜20面積%である混合物である。
1−O−(AO)n−R2 (1)
(式中、R1及びR2は、それぞれ水素原子又は炭素原子数1〜22の炭化水素基であり、Aは炭素数2〜8のアルキレン基であり、nは付加モル数であり、0以上の整数である。ただし、R1及びR2が同時に水素原子である場合及び同時にアルキル基である場合を除く。)
[Component (A)]
The component (A) is a mixture of compounds represented by the following general formula (1), the average value of n determined from the hydroxyl value of the mixture is 3 to 12, and n is 3 or less in the mixture The total of the compounds is from 0 to 15% by area, and in the mixture, the total of the compounds having n of 11 or more is from 0 to 20% by area.
R 1 —O— (AO) n —R 2 (1)
(In the formula, R 1 and R 2 are each a hydrogen atom or a hydrocarbon group having 1 to 22 carbon atoms, A is an alkylene group having 2 to 8 carbon atoms, n is the number of added moles, and 0 (However, the case where R 1 and R 2 are simultaneously hydrogen atoms and the case where they are simultaneously alkyl groups is excluded.)

一般式(1)において、R1及びR2は、それぞれ、炭素数1〜22の炭化水素基であり、高性能(AE)減水剤との相溶性の観点から、炭素数は、好ましくは1〜18、より好ましくは2〜12、更に好ましくは2〜6、より更に好ましくは3〜4である。炭化水素基は、アルキル基、アルケニル基等が挙げられ、アルキル基が好ましい。R1及びR2は、一方が水素原子であり、他方が炭素原子数1〜22の炭化水素基であることが好ましい。 In the general formula (1), R 1 and R 2 are each a hydrocarbon group having 1 to 22 carbon atoms, and the number of carbon atoms is preferably 1 from the viewpoint of compatibility with a high performance (AE) water reducing agent. To 18, more preferably 2 to 12, still more preferably 2 to 6, and still more preferably 3 to 4. Examples of the hydrocarbon group include an alkyl group and an alkenyl group, and an alkyl group is preferable. One of R 1 and R 2 is preferably a hydrogen atom, and the other is preferably a hydrocarbon group having 1 to 22 carbon atoms.

また、一般式(1)において、Aは炭素数2〜8のアルキレン基であり、高性能(AE)減水剤との相溶性の観点から、炭素数は、好ましくは2〜6、より好ましくは2〜4、より好ましくは2〜3、更に好ましくは2である。   Moreover, in General formula (1), A is a C2-C8 alkylene group, From a compatible viewpoint with a high performance (AE) water reducing agent, carbon number becomes like this. Preferably it is 2-6, More preferably 2 to 4, more preferably 2 to 3, still more preferably 2.

(A)成分における水酸基価より求めたnの平均値は3〜12であり、乾燥収縮低減効果、凍結融解抵抗性と空気連行性との両立の観点から、好ましくは3〜10、更に好ましくは4〜6である。   The average value of n obtained from the hydroxyl value in the component (A) is 3 to 12, and preferably 3 to 10, and more preferably from the viewpoints of the effect of reducing drying shrinkage and the compatibility between freeze-thaw resistance and air entrainment. 4-6.

なお、(A)成分について、水酸基価によるnの平均値とは、該混合物の水酸基価から求めた分子量(平均分子量)から、R1及びR2部分の分子量を除いた部分の分子量を、アルキレンオキシドの分子量で除することにより求めた値をいう。また、(A)成分の水酸基価は公知の方法で測定でき、例えば後述の実施例の方法で測定できる。 As for the component (A), the average value of n by hydroxyl value, the molecular weight determined from the hydroxyl value of the mixture (average molecular weight), the molecular weight of the portion excluding the molecular weight of R 1 and R 2 moieties, alkylene The value obtained by dividing by the molecular weight of the oxide. Moreover, the hydroxyl value of (A) component can be measured by a well-known method, for example, can be measured by the method of the below-mentioned Example.

また、(A)成分は、ガスクロマトグラフィーによって求めたnが3以下の化合物の含有量が0〜15面積%であり、臭気、凍結融解抵抗性、空気連行性の観点から、好ましくは0〜10面積%、より好ましくは0〜7面積%、更に好ましくは0〜3面積%である。更に、(A)成分は、ガスクロマトグラフィーによって求めたnが2以下の化合物の含有量が同様の観点から0〜1面積%が好ましく、0面積%がより好ましい。   Further, the component (A) has a content of a compound having n of 3 or less determined by gas chromatography in an amount of 0 to 15% by area, and preferably 0 to 0 from the viewpoint of odor, freeze-thaw resistance, and air entrainment. It is 10 area%, More preferably, it is 0-7 area%, More preferably, it is 0-3 area%. Further, the component (A) is preferably 0 to 1% by area, more preferably 0% by area, from the same viewpoint of the content of the compound having n of 2 or less determined by gas chromatography.

本発明において、ガスクロマトグラフィー(以下、GCと表記することもある)によって求めた(A)成分中の化合物の含有量についての面積%は、ガスクロマトグラフィーチャートのベースラインと各化合物のピークで囲まれた面積が、該チャートの総面積に占める割合を百分率で示したものである(以下、このようにして得られた面積%を単に面積%と表記することもある)。また、GC条件は、後述の実施例に記載したものによる。   In the present invention, the area% of the content of the compound in the component (A) obtained by gas chromatography (hereinafter sometimes referred to as GC) is the baseline of the gas chromatography chart and the peak of each compound. The ratio of the enclosed area to the total area of the chart is expressed as a percentage (hereinafter, the area% obtained in this way may be simply referred to as area%). The GC conditions are those described in the examples described later.

また、(A)成分中、一般式(1)中のnが11以上の化合物の合計は0〜20面積%であり、乾燥収縮低減効果の維持の観点から、好ましくは0〜15面積%、より好ましくは0〜10面積%、更に好ましくは0〜5面積%である。本発明のGC条件で得られたGCチャートの総面積(100面積%)から、nが1〜10の化合物の合計面積(合計面積%)を差し引くことで、該混合物中のnが11以上の化合物の面積%を求めることができる。   In addition, in the component (A), the sum of the compounds in which n in the general formula (1) is 11 or more is 0 to 20 area%, and preferably 0 to 15 area% from the viewpoint of maintaining the effect of reducing drying shrinkage, More preferably, it is 0-10 area%, More preferably, it is 0-5 area%. By subtracting the total area (total area%) of compounds having n of 1 to 10 from the total area (100 area%) of the GC chart obtained under the GC conditions of the present invention, n in the mixture is 11 or more. The area% of the compound can be determined.

また、凍結融解抵抗性、空気連行性、乾燥収縮低減効果の両立の観点から、(A)成分中、一般式(1)中のnが4〜8の化合物の合計は、好ましくは50〜99面積%、好ましくは55〜99面積%、より好ましくは80〜99面積%、更に好ましくは90〜99面積%である。   In addition, from the viewpoint of coexistence of freeze-thaw resistance, air entrainment, and drying shrinkage reduction effect, the total of the compounds having n of 4 to 8 in the general formula (1) in the component (A) is preferably 50 to 99. Area%, preferably 55 to 99 area%, more preferably 80 to 99 area%, still more preferably 90 to 99 area%.

更に、凍結融解抵抗性、空気連行性、乾燥収縮低減効果がバランスよく得られ、より優れた乾燥収縮低減効果が得られる観点から、(A)成分中、一般式(1)中のnが4の化合物を含有することが好ましい。また、(A)成分が一般式(1)中のnが4の化合物を含有する場合、その含有量は、好ましくは2〜95面積%、より好ましくは30〜90面積%、更に好ましくは50〜85面積%、より更に好ましくは70〜80面積%の範囲から選択できる。その際、一般式(1)中のnが5〜8の化合物の含有量は、前記した一般式(1)中のnが4〜8の化合物の合計の好適範囲となるような量が好ましい。また、一般式(1)中のnが4の化合物の含有量は、一般式(1)中のnが4〜8の化合物の合計面積%中、3〜95%、更に15〜85%、25〜80%であってもよい。   Furthermore, from the viewpoint that freeze-thaw resistance, air entrainment, and drying shrinkage reduction effects are well-balanced and a more excellent drying shrinkage reduction effect is obtained, n in the general formula (1) is 4 in the component (A). It is preferable to contain the compound. Moreover, when (A) component contains the compound whose n in General formula (1) is 4, the content becomes like this. Preferably it is 2-95 area%, More preferably, it is 30-90 area%, More preferably, it is 50 It can be selected from a range of ˜85 area%, more preferably 70-80 area%. At that time, the content of the compound in which n in the general formula (1) is 5 to 8 is preferably an amount such that n in the general formula (1) is within the total preferable range of the compounds in the range of 4 to 8. . In addition, the content of the compound in which n in the general formula (1) is 4 is 3 to 95%, more preferably 15 to 85% in the total area% of the compound in which n in the general formula (1) is 4 to 8. It may be 25 to 80%.

また、(A)成分が一般式(1)中のnが5の化合物を含有する場合、その含有量は、好ましくは2〜95面積%、より好ましくは15〜90面積%、更に好ましくは25〜80面積%の範囲から選択できる。その際、一般式(1)中のnが4、6〜8の化合物の含有量は、前記した一般式(1)中のnが4〜8の化合物の合計の好適範囲となるような量が好ましい。   Moreover, when (A) component contains the compound whose n in General formula (1) is 5, the content becomes like this. Preferably it is 2-95 area%, More preferably, it is 15-90 area%, More preferably, it is 25 It can be selected from a range of ˜80 area%. At that time, the content of the compound having n of 4, 6 to 8 in the general formula (1) is such that the total range of the compounds having n of 4 to 8 in the above general formula (1) is within a suitable range. Is preferred.

また、(A)成分が一般式(1)中のnが6の化合物を含有する場合、その含有量は、好ましくは5〜95面積%、より好ましくは10〜90面積%、更に好ましくは15〜80面積%の範囲から選択できる。その際、一般式(1)中のnが4、5、7、8の化合物の含有量は、前記した一般式(1)中のnが4〜8の化合物の合計の好適範囲となるような量が好ましい。   Moreover, when (A) component contains the compound whose n in General formula (1) is 6, the content becomes like this. Preferably it is 5-95 area%, More preferably, it is 10-90 area%, More preferably, it is 15 It can be selected from a range of ˜80 area%. At that time, the content of the compound in which n in the general formula (1) is 4, 5, 7, or 8 is in a preferable range of the total of the compounds in which n in the general formula (1) is 4 to 8. Is preferred.

また、(A)成分が一般式(1)中のnが7の化合物を含有する場合、その含有量は、好ましくは5〜95面積%、より好ましくは10〜90面積%、更に好ましくは15〜80面積%の範囲から選択できる。その際、一般式(1)中のnが4〜6、8の化合物の含有量は、前記した一般式(1)中のnが4〜8の化合物の合計の好適範囲となるような量が好ましい。   Moreover, when (A) component contains the compound whose n in General formula (1) is 7, the content becomes like this. Preferably it is 5-95 area%, More preferably, it is 10-90 area%, More preferably, it is 15 It can be selected from a range of ˜80 area%. At that time, the content of the compound in which n in the general formula (1) is 4 to 6 and 8 is such that the total range of the compounds in which n in the general formula (1) is 4 to 8 is within the preferable range. Is preferred.

また、(A)成分が一般式(1)中のnが8の化合物を含有する場合、その含有量は、好ましくは5〜95面積%、より好ましくは10〜90面積%、更に好ましくは15〜80面積%の範囲から選択できる。その際、一般式(1)中のnが4〜7の化合物の含有量は、前記した一般式(1)中のnが4〜8の化合物の合計の好適範囲となるような量が好ましい。   Moreover, when (A) component contains the compound whose n in General formula (1) is 8, the content becomes like this. Preferably it is 5-95 area%, More preferably, it is 10-90 area%, More preferably, it is 15 It can be selected from a range of ˜80 area%. At that time, the content of the compound in which n in the general formula (1) is 4 to 7 is preferably an amount such that n in the above general formula (1) is within the total preferable range of the compounds in the range of 4 to 8. .

(A)成分のようなアルキレンオキシド付加物は、通常、アルコール等の活性水素を有する化合物にアルキレンオキシドを付加させた反応生成物として得ることができるが、一般的な製法で得られる混合物は、本発明の(A)成分に該当する付加モル数の分布とはならない。例えば、平均付加モル数が4〜5程度のエチレンオキシド付加物を得る場合、アルカリ触媒の存在下、1価アルコール1モルに対して4〜5モルのエチレンオキシドを反応させるが、得られた付加物(混合物)中の付加モル数が3以下〔一般式(1)中のnが3以下〕の化合物の合計は15面積%を超えるものとなる。   The alkylene oxide adduct such as component (A) can usually be obtained as a reaction product obtained by adding alkylene oxide to a compound having active hydrogen such as alcohol, but the mixture obtained by a general production method is: The distribution of the added mole number corresponding to the component (A) of the present invention is not obtained. For example, when an ethylene oxide adduct having an average addition mole number of about 4 to 5 is obtained, 4 to 5 mol of ethylene oxide is reacted with 1 mol of a monohydric alcohol in the presence of an alkali catalyst. The total number of compounds in which the number of added moles in the mixture) is 3 or less (n in the general formula (1) is 3 or less) exceeds 15 area%.

〔水硬性組成物用添加剤組成物〕
本発明の水硬性組成物用添加剤組成物は、(A)成分を、好ましくは3〜100重量%、より好ましくは10〜100重量%、更に好ましくは50〜100重量%、より更に好ましくは80〜100重量%含有する。水硬性組成物用添加剤組成物における(A)成分以外の成分としては、安全性や作業性の観点から水が挙げられる。
[Additive composition for hydraulic composition]
The additive composition for a hydraulic composition of the present invention preferably comprises the component (A) in an amount of 3 to 100% by weight, more preferably 10 to 100% by weight, still more preferably 50 to 100% by weight, and still more preferably. Contains 80 to 100% by weight. Ingredients other than the component (A) in the additive composition for hydraulic compositions include water from the viewpoints of safety and workability.

(A)成分の種類によっては、水と混合した液状組成物とすることで、危険物(消防法に定める危険物)に該当しない組成物を得ることができる。該液状組成物における(A)成分の含有量は、選択する化合物の種類によって適宜決めれば良いが、危険物からの除外と高濃度化の観点から、好ましくは40〜98重量%、より好ましくは50〜95重量%、更に好ましくは80〜93重量%である。   Depending on the type of component (A), a composition that does not correspond to a dangerous substance (dangerous substance specified in the Fire Service Act) can be obtained by using a liquid composition mixed with water. The content of the component (A) in the liquid composition may be appropriately determined depending on the type of compound to be selected, but is preferably 40 to 98% by weight, more preferably from the viewpoint of exclusion from dangerous substances and high concentration. 50 to 95% by weight, more preferably 80 to 93% by weight.

本発明の水硬性組成物用添加剤組成物のその他の成分としては、減水剤、高性能減水剤、高性能AE減水剤〔以下、高性能減水剤と高性能AE減水剤をまとめて高性能(AE)減水剤と表記する〕を含有することが好ましい。本発明の(A)成分は、水硬性組成物用の減水剤や高性能(AE)減水剤として知られている成分との相溶性に優れる。減水剤としては、リグニンスルホン酸塩が挙げられる。また、高性能(AE)減水剤としては、メラミン系ホルムアルデヒド縮合物、ナフタレン系ホルムアルデヒド縮合物、下記(B)成分、下記(C)成分が挙げられる。なかでも、(B)成分及び/又は(C)成分を含有することが好ましい。更に、高性能(AE)減水剤として、(C)成分を含有することが好ましい。   Other components of the additive composition for hydraulic composition of the present invention include water reducing agents, high performance water reducing agents, high performance AE water reducing agents (hereinafter, high performance water reducing agents and high performance AE water reducing agents are collectively It is preferable to contain (AE). The component (A) of the present invention is excellent in compatibility with components known as water reducing agents for hydraulic compositions and high performance (AE) water reducing agents. A lignin sulfonate is mentioned as a water reducing agent. Moreover, as a high performance (AE) water reducing agent, a melamine type formaldehyde condensate, a naphthalene type formaldehyde condensate, the following (B) component, and the following (C) component are mentioned. Especially, it is preferable to contain (B) component and / or (C) component. Furthermore, it is preferable to contain (C) component as a high performance (AE) water reducing agent.

高性能(AE)減水剤中にB成分とC成分を含有する場合、(B)成分と(C)成分の重量比が有効分換算で(B):(C)=1:100〜70:100、好ましくは10:100〜60:100、さらに好ましくは20:100〜50:100、より好ましくは30:100〜45:100である。   When the B component and the C component are contained in the high performance (AE) water reducing agent, the weight ratio of the (B) component and the (C) component is (B) :( C) = 1: 100 to 70: 100, preferably 10: 100 to 60: 100, more preferably 20: 100 to 50: 100, more preferably 30: 100 to 45: 100.

<(B)成分>
(B)成分は、下記化合物(1)、(2)及び(3)からなる群より選ばれる1種以上の共重合体である。本発明の水硬性組成物用添加剤組成物は、間接的(単位水量減)および直接的(収縮低減剤の添加)に乾燥収縮低減効果を相乗的に高めるといった観点から、更に(B)成分を併用することが好ましい。
<(B) component>
The component (B) is at least one copolymer selected from the group consisting of the following compounds (1), (2) and (3). The additive composition for hydraulic composition of the present invention further comprises component (B) from the viewpoint of synergistically enhancing the effect of reducing drying shrinkage indirectly (reduction in unit water amount) and directly (addition of shrinkage reducing agent). It is preferable to use together.

<化合物(1)>
下記一般式(B1)で示されるアルケニルエーテル誘導体と、下記一般式(B3)で示される単量体との共重合体またはその塩
1b(A1O)n12b (B1)
(式中、R1bは炭素数2〜4のアルケニル基、B1Oは炭素数2又は3のオキシアルキレン基、n1はA1Oの平均付加モル数であり、2〜200の数、R2bは炭素数1〜3のアルキル基を表す。)
<Compound (1)>
A copolymer of an alkenyl ether derivative represented by the following general formula (B1) and a monomer represented by the following general formula (B3) or a salt thereof R 1b (A 1 O) n1 R 2b (B1)
(In the formula, R 1b is an alkenyl group having 2 to 4 carbon atoms, B 1 O is an oxyalkylene group having 2 or 3 carbon atoms, n1 is an average added mole number of A 1 O, a number of 2 to 200, R 2b represents an alkyl group having 1 to 3 carbon atoms.)

Figure 0005422233
Figure 0005422233

〔式中、R5b〜R7bは、それぞれ独立に水素原子、メチル基または、(CH2p2COOM2、M1及びM2は、それぞれ独立に水素原子又は陽イオン、p2は0〜2の数を表す。〕 [Wherein, R 5b to R 7b are each independently a hydrogen atom, a methyl group, or (CH 2 ) p2 COOM 2 , M 1 and M 2 are each independently a hydrogen atom or a cation, and p 2 is 0 to 2 Represents the number of ]

<化合物(2)>
下記一般式(B2)で表される単量体(i)と、前記一般式(B3)及び下記一般式(B4)で表される化合物から選ばれる1種以上の単量体(ii)とを構成単位として含み、それらのモル比が(ii)/(i)=70/30〜95/5である共重合体。
<Compound (2)>
A monomer (i) represented by the following general formula (B2), one or more monomers (ii) selected from the compounds represented by the above general formula (B3) and the following general formula (B4); As a constituent unit, and a molar ratio thereof is (ii) / (i) = 70/30 to 95/5.

Figure 0005422233
Figure 0005422233

(式中、R3b及びR4bは、それぞれ独立に水素原子又はメチル基、p1は0〜2の数、A2Oは炭素数2又は3のオキシアルキレン基、n2はA2Oの平均付加モル数であり、100〜300の数、X1は水素原子又は炭素数1〜3のアルキル基を表す。) Wherein R 3b and R 4b are each independently a hydrogen atom or a methyl group, p1 is a number from 0 to 2, A 2 O is an oxyalkylene group having 2 or 3 carbon atoms, and n2 is an average addition of A 2 O. Number of moles, 100 to 300, X 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

Figure 0005422233
Figure 0005422233

(式中、R8bは水素原子又はメチル基、Yは水素原子又は陽イオンを表す。) (In the formula, R 8b represents a hydrogen atom or a methyl group, and Y represents a hydrogen atom or a cation.)

<化合物(3)>
下記一般式(B5)で表される単量体(iii)と、前記一般式(B3)及び前記一般式(B4)で表される化合物から選ばれる1種以上の単量体(ii)とを構成単位として含み、それらのモル比が(ii)/(iii)=60/40〜90/10である共重合体。
<Compound (3)>
A monomer (iii) represented by the following general formula (B5), and one or more monomers (ii) selected from the compounds represented by the general formula (B3) and the general formula (B4); As a constituent unit, and a molar ratio thereof is (ii) / (iii) = 60/40 to 90/10.

Figure 0005422233
Figure 0005422233

(式中、R9b及びR10bは、それぞれ独立に水素原子又はメチル基、p3は0〜2の数、A3Oは炭素数2又は3のオキシアルキレン基、n3はA3Oの平均付加モル数であり、2〜90の数、X2は水素原子又は炭素数1〜3のアルキル基を表す。) (Wherein R 9b and R 10b are each independently a hydrogen atom or a methyl group, p3 is a number from 0 to 2, A 3 O is an oxyalkylene group having 2 or 3 carbon atoms, and n3 is an average addition of A 3 O. Number of moles, a number of 2 to 90, and X 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

〔化合物(1)〕
本発明の化合物(1)を構成するアルケニルエーテル誘導体の一般式(B1)に於いて、R1bで示される炭素数2〜4のアルケニル基として好ましくは、ビニル基、アリル基、メタリル基等であるが、アリル基が汎用的でありより好ましい。A1Oは、オキシエチレン基又はオキシプロピレン基であり、これら両方の基であってもよい。付加形態は単独、ランダム、ブロック又は交互のいずれでもよい。好ましくはオキシエチレン基である。R2bは炭素数1〜3のアルキル基であり、メチル基、エチル基、プロピル基が挙げられ、中でもメチル基が好ましい。
[Compound (1)]
In the general formula (B1) of the alkenyl ether derivative constituting the compound (1) of the present invention, the alkenyl group having 2 to 4 carbon atoms represented by R 1b is preferably a vinyl group, an allyl group, a methallyl group, or the like. However, an allyl group is more general and more preferable. A 1 O is an oxyethylene group or an oxypropylene group, and may be both of these groups. The additional form may be single, random, block, or alternating. An oxyethylene group is preferred. R 2b is an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. Among them, a methyl group is preferable.

アルキレンオキシドの平均付加モル数n1は、2〜200の範囲であり、フレッシュコンクリートの流動性付与と低粘性付与の観点から、2〜90が好ましく、10〜70がより好ましく、10〜50が更に好ましい。   The average number of added moles n1 of alkylene oxide is in the range of 2 to 200, preferably 2 to 90, more preferably 10 to 70, and more preferably 10 to 50, from the viewpoint of imparting fluidity and low viscosity to fresh concrete. preferable.

また、前記アルケニルエーテル誘導体は、一般式(B1)の範囲であれば、例えばA1Oがオキシエチレン基のみのものやオキシプロピレン基のみのもの等を、2種以上用いてもよい。 Further, the alkenyl ether derivatives, if the scope of the general formulas (B1), for example, the A 1 O is one of the only ones or oxypropylene groups alone oxyethylene group, or two or more may be used.

一般式(B3)で示される単量体としては、アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸系単量体、無水マレイン酸、マレイン酸、無水イタコン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸系単量体、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基を有していてもよいモノ、ジ、トリアルキルアンモニウム塩が好ましく、より好ましくはアクリル酸、メタクリル酸及びこれらのアルカリ金属塩である。   Monomers represented by formula (B3) include unsaturated monocarboxylic acid monomers such as acrylic acid, methacrylic acid, and crotonic acid, maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, and fumaric acid. Unsaturated dicarboxylic acid monomers such as these, or alkali metal salts, alkaline earth metal salts, ammonium salts, mono-, di-, and trialkylammonium salts optionally having a hydroxyl group are preferred, and acrylics are more preferred. Acid, methacrylic acid and alkali metal salts thereof.

本発明の化合物(1)は、これら一般式(B1)で表される単量体と一般式(B−3)で表される単量体との共重合体、好ましくはモル比が、一般式(B1)の単量体/一般式(B3)の単量体=25/75〜50/50である共重合体又はその塩である。一般式(B3)の単量体がマレイン酸の場合は無水物であってもよい。かかる化合物(1)の製造方法としては、特開平2−163108号、特開平5−345647号記載の方法等が挙げられる。   The compound (1) of the present invention is a copolymer of the monomer represented by the general formula (B1) and the monomer represented by the general formula (B-3), preferably in a molar ratio of Monomer of formula (B1) / monomer of general formula (B3) = a copolymer of 25/75 to 50/50 or a salt thereof. When the monomer of the general formula (B3) is maleic acid, an anhydride may be used. Examples of the method for producing the compound (1) include methods described in JP-A-2-163108 and JP-A-5-345647.

また、化合物(1)の好ましい重量平均分子量は、フレッシュコンクリートの安定した流動性付与の観点から、3000〜30万、更には5000〜10万である。   Moreover, the preferable weight average molecular weight of a compound (1) is 3000-300,000, Furthermore, 5000-100,000 from a viewpoint of the stable fluidity | liquidity provision of fresh concrete.

化合物(1)の一例として、マリアリムEKM、マリアリムAKM(以上、日本油脂社製)やスーパー200(電気化学社製)が挙げられる。   As an example of the compound (1), Marialim EKM, Marialim AKM (manufactured by Nippon Oil & Fats Co., Ltd.) and Super 200 (Electrochemical Co., Ltd.) can be mentioned.

〔化合物(2)〕
本発明の化合物(2)は、炭素数2又は3のアルキレンオキシドを平均付加モル数で100〜300モル付加した前記一般式(B2)で表される単量体(i)と、前記一般式(B3)及び/又は(B4)、好ましくは一般式(B3)で表される単量体(ii)とを、(ii)/(i)=70/30〜95/5のモル比で共重合して得られる。フレッシュコンクリートの安定した初期流動性付与の観点から、単量体(i)におけるアルキレンオキシドの平均付加モル数n2は100〜300の範囲であり、100〜250が好ましく、100〜200が更に好ましく、100〜150がより更に好ましい。なお、化合物(2)を得るための単量体において、n2が異なる複数の単量体(i)を用いる場合は、全単量体(i)のn2の平均値が100〜300の範囲にあるように組成を調整する。例えば、2種の単量体(i)を用いる場合、一方はn2=100〜290、他方はn2’=100〜300で、n2≠n2’かつn2’≧n2+10であることが好ましく、n2’≧n2+30であることがより好ましく、n2’≧n2+50であることがより更に好ましい。更に、本発明の効果を損なわない範囲で、n2が90超100未満の単量体を併用することもできる。
[Compound (2)]
The compound (2) of the present invention includes a monomer (i) represented by the general formula (B2) obtained by adding 100 to 300 moles of an average number of moles of an alkylene oxide having 2 or 3 carbon atoms, and the general formula (B3) and / or (B4), preferably the monomer (ii) represented by the general formula (B3) at a molar ratio of (ii) / (i) = 70/30 to 95/5 Obtained by polymerization. From the viewpoint of imparting stable initial fluidity of fresh concrete, the average added mole number n2 of alkylene oxide in monomer (i) is in the range of 100 to 300, preferably 100 to 250, more preferably 100 to 200, 100-150 is still more preferable. In addition, in the monomer for obtaining a compound (2), when using several monomer (i) from which n2 differs, the average value of n2 of all the monomers (i) is in the range of 100-300. Adjust the composition to be. For example, when two types of monomers (i) are used, one is n2 = 100 to 290, the other is n2 ′ = 100 to 300, preferably n2 ≠ n2 ′ and n2 ′ ≧ n2 + 10, and n2 ′ It is more preferable that ≧ n2 + 30, and it is even more preferable that n2 ′ ≧ n2 + 50. Furthermore, a monomer having n2 of more than 90 and less than 100 can be used in combination as long as the effects of the present invention are not impaired.

一般式(B2)で表される単量体(i)としては、メトキシポリエチレングリコール、メトキシポリプロピレングリコール、エトキシポリエチレンポリプロピレングリコール等の片末端アルキル基封鎖ポリアルキレングリコールと(メタ)アクリル酸とのエステル化物や、(メタ)アクリル酸へのエチレンオキシド(以下、EOという)及び/又はプロピレンオキシド(以下、POという)付加物が好ましく用いられる。付加形態は単独、ランダム、ブロック又は交互のいずれでもよい。より好ましくはメトキシポリエチレングリコールと(メタ)アクリル酸とのエステル化物であり、EO平均付加モル数が100〜200のメトキシポリエチレングリコールとメタクリル酸とのエステル化物が更に好ましい。   As the monomer (i) represented by the general formula (B2), an esterified product of a polyalkylene glycol with one-end alkyl group blocked such as methoxypolyethylene glycol, methoxypolypropylene glycol, ethoxypolyethylenepolypropyleneglycol and (meth) acrylic acid In addition, an adduct of ethylene oxide (hereinafter referred to as EO) and / or propylene oxide (hereinafter referred to as PO) to (meth) acrylic acid is preferably used. The additional form may be single, random, block, or alternating. More preferably, it is an esterified product of methoxypolyethylene glycol and (meth) acrylic acid, and an esterified product of methoxypolyethylene glycol and methacrylic acid having an EO average addition mole number of 100 to 200 is more preferable.

一般式(B3)で示される単量体としては、前記化合物(1)で挙げたものが使用できる。好ましい単量体は前記化合物(1)で示したものと同じである。   As the monomer represented by the general formula (B3), those mentioned in the compound (1) can be used. Preferred monomers are the same as those shown for the compound (1).

一般式(B4)で示される単量体としては、アリルスルホン酸、メタリルスルホン酸、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキルアンモニウム塩が使用される。   Examples of the monomer represented by the general formula (B4) include allyl sulfonic acid, methallyl sulfonic acid, or an alkali metal salt, alkaline earth metal salt, ammonium salt, or mono- or di-substituted in which a hydroxyl group may be substituted. Trialkylammonium salts are used.

好ましくは、化合物(2)は、前記一般式(B2)で表される単量体(i)と、一般式(B3)及び(B4)で表される単量体の1種以上(ii)とを合わせて50重量%以上、更には80〜100重量%、より更には100重量%含有する単量体混合物を重合して得られる。   Preferably, the compound (2) is a monomer (i) represented by the general formula (B2) and one or more monomers (ii) represented by the general formulas (B3) and (B4). And a monomer mixture containing 50% by weight or more, more preferably 80 to 100% by weight, and still more 100% by weight.

化合物(2)を構成する一般式(B2)の単量体(i)と、一般式(B3)及び/又は一般式(B4)の単量体(ii)は、(ii)/(i)=70/30〜95/5のモル比で共重合され、フレッシュコンクリートの安定した初期流動性付与の観点から、(ii)/(i)で、好ましくは75/25〜95/5、より好ましくは80/20〜95/5、より更に好ましくは85/15〜95/5のモル比で共重合される。   The monomer (i) of the general formula (B2) constituting the compound (2) and the monomer (ii) of the general formula (B3) and / or the general formula (B4) are represented by (ii) / (i) = Copolymerized at a molar ratio of 70/30 to 95/5, and (ii) / (i), preferably 75/25 to 95/5, more preferably from the viewpoint of imparting stable initial fluidity of fresh concrete Is copolymerized at a molar ratio of 80/20 to 95/5, more preferably 85/15 to 95/5.

化合物(2)の重量平均分子量は、フレッシュコンクリートの安定した初期流動性付与の観点から、5000〜500000の範囲が好ましく、20000〜100000の範囲がより好ましく、30000〜85000の範囲が更に好ましい。重量平均分子量はゲルパーミエーションクロマトグラフィ法(標準物質ポリスチレンスルホン酸ナトリウム換算)による。   The weight average molecular weight of the compound (2) is preferably in the range of 5,000 to 500,000, more preferably in the range of 20,000 to 100,000, and still more preferably in the range of 30,000 to 85,000 from the viewpoint of imparting stable initial fluidity of the fresh concrete. The weight average molecular weight is determined by gel permeation chromatography (in terms of standard substance sodium polystyrene sulfonate).

化合物(2)は公知の方法で製造できる。例えば、特開平7−223852号公報、特開平4−209737号公報、特開昭58−74552号公報の溶液重合法が挙げられ、水や炭素数1〜4の低級アルコール中、過硫酸アンモニウム、過酸化水素等の重合開始剤存在下、必要なら亜硫酸水素ナトリウムやメルカプトエタノール等を添加し、50〜100℃で0.5〜10時間反応させればよい。   Compound (2) can be produced by a known method. Examples thereof include solution polymerization methods described in JP-A-7-223852, JP-A-4-209737, and JP-A-58-74552. In water and lower alcohols having 1 to 4 carbon atoms, ammonium persulfate, In the presence of a polymerization initiator such as hydrogen oxide, sodium bisulfite, mercaptoethanol or the like may be added if necessary and reacted at 50 to 100 ° C. for 0.5 to 10 hours.

化合物(2)の原料として他の共重合可能なモノマーを併用でき、具体的には、アクリロニトリル、(メタ)アクリル酸アルキル(炭素数1〜12)エステル、(メタ)アクリルアミド、スチレン、スチレンスルホン酸等が挙げられる。   Other copolymerizable monomers can be used in combination as a raw material for the compound (2). Specifically, acrylonitrile, alkyl (meth) acrylate (C1-12) ester, (meth) acrylamide, styrene, styrene sulfonic acid Etc.

〔化合物(3)〕
本発明の化合物(3)は、炭素数2又は3のアルキレンオキシドを平均付加モル数で2〜90モル付加した前記一般式(B5)で表される単量体(iii)と、前記一般式(B3)及び/又は(B4)、好ましくは一般式(B3)で表される単量体(ii)とを、(ii)/(iii)=60/40〜90/10のモル比で共重合して得られる。フレッシュコンクリートの安定した流動性付与と流動保持性付与の観点から、単量体(iii)におけるアルキレンオキシドの平均付加モル数n3は2〜90の範囲であり、5〜70が好ましく、5〜50が更に好ましく、5〜40がより更に好ましい。なお、化合物(3)を得るための単量体混合物において、n3が異なる複数の単量体(iii)を用いる場合は、全単量体(iii)のn3の平均値が2〜90の範囲にあるように組成を調整する。例えば、2種の単量体(iii)を用いる場合、一方はn3=2〜87、他方はn3’=2〜90で、n3≠n3’かつn3’≧n3+3であることが好ましく、n3’≧n3+5であることがより好ましく、n3’≧n3+10であることがより更に好ましい。更に、本発明の効果を損なわない範囲で、n3が90超100未満の単量体を併用することもできる。
[Compound (3)]
The compound (3) of the present invention includes a monomer (iii) represented by the general formula (B5) obtained by adding 2 to 90 moles of an average number of moles of an alkylene oxide having 2 or 3 carbon atoms, and the general formula (B3) and / or (B4), preferably the monomer (ii) represented by the general formula (B3), at a molar ratio of (ii) / (iii) = 60/40 to 90/10 Obtained by polymerization. From the viewpoint of imparting stable fluidity and fluidity retention of fresh concrete, the average added mole number n3 of alkylene oxide in the monomer (iii) is in the range of 2 to 90, preferably 5 to 70, and 5 to 50. Is more preferable, and 5 to 40 is even more preferable. In the monomer mixture for obtaining the compound (3), when a plurality of monomers (iii) having different n3 are used, the average value of n3 of all the monomers (iii) is in the range of 2 to 90. The composition is adjusted to For example, when two types of monomers (iii) are used, it is preferable that one is n3 = 2 to 87, the other is n3 ′ = 2 to 90, n3 ≠ n3 ′ and n3 ′ ≧ n3 + 3, and n3 ′ ≧ n3 + 5 is more preferable, and n3 ′ ≧ n3 + 10 is still more preferable. Further, a monomer having n3 of more than 90 and less than 100 can be used in combination as long as the effects of the present invention are not impaired.

一般式(B5)で表される単量体(iii)としては、メトキシポリエチレングリコール、メトキシポリプロピレングリコール、エトキシポリエチレンポリプロピレングリコール等の片末端アルキル基封鎖ポリアルキレングリコールと(メタ)アクリル酸とのエステル化物や、(メタ)アクリル酸へのEO及び/又はPO付加物が好ましく用いられる。付加形態は単独、ランダム、ブロック又は交互のいずれでもよい。より好ましくはメトキシポリエチレングリコールと(メタ)アクリル酸とのエステル化物である。なかでも、水/水硬性粉体比が15重量%以下の場合、初期分散性と粘性の観点から、EO平均付加モル数が2〜90のメトキシポリエチレングリコールとアクリル酸とのエステル化物が更に好ましい。   As the monomer (iii) represented by the general formula (B5), an esterified product of a polyalkylene glycol having a single-end alkyl group blocked such as methoxypolyethylene glycol, methoxypolypropylene glycol or ethoxypolyethylenepolypropyleneglycol and (meth) acrylic acid Alternatively, an EO and / or PO adduct to (meth) acrylic acid is preferably used. The additional form may be single, random, block, or alternating. More preferred is an esterified product of methoxypolyethylene glycol and (meth) acrylic acid. In particular, when the water / hydraulic powder ratio is 15% by weight or less, an esterified product of methoxypolyethylene glycol having an EO average addition mole number of 2 to 90 and acrylic acid is more preferable from the viewpoint of initial dispersibility and viscosity. .

一般式(B3)で示される単量体及び一般式(B4)で示される単量体としては、前記化合物(1)、(2)で挙げたものが使用できる。好ましい単量体は前記化合物(1)、(2)で示したものと同じである。   As the monomer represented by the general formula (B3) and the monomer represented by the general formula (B4), those exemplified in the compounds (1) and (2) can be used. Preferred monomers are the same as those shown for the compounds (1) and (2).

好ましくは、化合物(3)は、前記一般式(B5)で表される単量体(iii)と、一般式(B3)及び(B4)で表される単量体の1種以上(ii)とを合わせて50重量%以上、更には80〜100重量%、より更に100重量%含有する単量体混合物を重合して得られる。   Preferably, the compound (3) is a monomer (iii) represented by the general formula (B5) and one or more monomers (ii) represented by the general formulas (B3) and (B4). And a monomer mixture containing 50% by weight or more, more preferably 80 to 100% by weight, and still more 100% by weight.

化合物(3)を構成する一般式(B5)の単量体(iii)と、一般式(B3)及び/又は一般式(B4)の単量体(ii)は、(ii)/(iii)=60/40〜90/10のモル比で共重合され、フレッシュコンクリートの安定した流動保持性付与の観点から、(ii)/(iii)で、好ましくは65/35〜90/10、より好ましくは65/35〜85/15、より更に好ましくは65/35〜80/20のモル比で共重合される。   The monomer (iii) of the general formula (B5) constituting the compound (3) and the monomer (ii) of the general formula (B3) and / or the general formula (B4) are represented by (ii) / (iii) = Copolymerized at a molar ratio of 60/40 to 90/10, and (ii) / (iii), preferably 65/35 to 90/10, more preferably from the viewpoint of imparting stable fluidity retention of fresh concrete Is copolymerized in a molar ratio of 65/35 to 85/15, more preferably 65/35 to 80/20.

化合物(3)の重量平均分子量は、フレッシュコンクリートの流動性の点より5000〜500000の範囲が良く、20000〜100000、更に30000〜85000の範囲がフレッシュコンクリートの流動性により更に優れる。重量平均分子量はゲルパーミエーションクロマトグラフィ法(標準物質ポリスチレンスルホン酸ナトリウム換算)による。   The weight average molecular weight of the compound (3) is preferably in the range of 5,000 to 500,000 from the viewpoint of the fluidity of fresh concrete, and in the range of 20,000 to 100,000 and further in the range of 30,000 to 85,000 is more excellent due to the fluidity of fresh concrete. The weight average molecular weight is determined by gel permeation chromatography (in terms of standard substance sodium polystyrene sulfonate).

化合物(3)は公知の方法で製造できる。例えば、特開平7−223852号公報、特開平4−209737号公報、特開昭58−74552号公報の溶液重合法が挙げられ、水や炭素数1〜4の低級アルコール中、過硫酸アンモニウム、過酸化水素等の重合開始剤存在下、必要なら亜硫酸水素ナトリウムやメルカプトエタノール等を添加し、50〜100℃で0.5〜10時間反応させればよい。   Compound (3) can be produced by a known method. Examples thereof include solution polymerization methods described in JP-A-7-223852, JP-A-4-209737, and JP-A-58-74552. In water and lower alcohols having 1 to 4 carbon atoms, ammonium persulfate, In the presence of a polymerization initiator such as hydrogen oxide, sodium bisulfite, mercaptoethanol or the like may be added if necessary and reacted at 50 to 100 ° C. for 0.5 to 10 hours.

化合物(3)の原料として他の共重合可能なモノマーを併用でき、具体的には、アクリロニトリル、(メタ)アクリル酸アルキル(炭素数1〜12)エステル、(メタ)アクリルアミド、スチレン、スチレンスルホン酸等が挙げられる。   As a raw material for the compound (3), other copolymerizable monomers can be used in combination. Specifically, acrylonitrile, alkyl (meth) acrylate (1 to 12 carbon atoms) ester, (meth) acrylamide, styrene, styrene sulfonic acid Etc.

<(C)成分>
(C)成分は、下記一般式(C1)で表される単量体C1と、下記一般式(C2)で表される単量体C2と、下記一般式(C3)で表される単量体C3とを、pH7以下で共重合して得られるリン酸エステル系共重合体の1種以上である。本発明の水硬性組成物用添加剤組成物は、粘性低減効果と硬化体の強度を更に向上させる観点から、更に(C)成分を併用することが好ましい。
<(C) component>
Component (C) is a monomer C1 represented by the following general formula (C1), a monomer C2 represented by the following general formula (C2), and a single monomer represented by the following general formula (C3) It is 1 or more types of the phosphate ester type | system | group copolymer obtained by copolymerizing the body C3 at pH 7 or less. The additive composition for hydraulic composition of the present invention preferably further uses component (C) from the viewpoint of further improving the viscosity reducing effect and the strength of the cured product.

Figure 0005422233
Figure 0005422233

〔式中、R1c及びR2cは、それぞれ水素原子又はメチル基、R3cは水素原子又は−COO(AO)n3、AOは炭素数2〜4のオキシアルキレン基又はオキシスチレン基、nはAOの平均付加モル数であり、3〜200の数、X3は水素原子又は炭素数1〜18のアルキル基を表す。〕 [Wherein, R 1c and R 2c are each a hydrogen atom or a methyl group, R 3c is a hydrogen atom or —COO (AO) n X 3 , AO is an oxyalkylene group or oxystyrene group having 2 to 4 carbon atoms, n Is an average added mole number of AO, a number of 3 to 200, and X 3 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms. ]

Figure 0005422233
Figure 0005422233

(式中、R4cは水素原子又はメチル基、OR5cは炭素数2〜12のオキシアルキレン基、m5はOR5cの平均付加モル数であり、1〜30の数、M3は水素原子又は陽イオンを表す。) (In the formula, R 4c is a hydrogen atom or a methyl group, OR 5c is an oxyalkylene group having 2 to 12 carbon atoms, m5 is an average number of added moles of OR 5c, a number of 1 to 30, and M 3 is a hydrogen atom or Represents a cation.)

Figure 0005422233
Figure 0005422233

(式中、R6c及びR8cは、それぞれ水素原子又はメチル基、OR7c及びOR9cは、それぞれ炭素数2〜12のオキシアルキレン基、m6及びm7は、それぞれOR7c及びOR9cの平均付加モル数であり、独立に1〜30の数、M4は水素原子又は陽イオンを表す。) (Wherein R 6c and R 8c are each a hydrogen atom or a methyl group, OR 7c and OR 9c are each an oxyalkylene group having 2 to 12 carbon atoms, and m6 and m7 are average additions of OR 7c and OR 9c respectively. The number of moles is independently a number of 1 to 30, and M 4 represents a hydrogen atom or a cation.)

[単量体C1]
単量体C1について、一般式(C1)中のR3cは水素原子が好ましく、AOは炭素数2〜4のオキシアルキレン基が好ましく、オキシエチレン基(以下、EO基という)を含むことがより好ましく、EO基が70モル%以上、更に80モル%以上、更に90モル%以上、より更にAOの全てがEO基であることが好ましい。また、X3は水素原子又は炭素数1〜18、更に1〜12、更に1〜4、更に1又は2のアルキル基が好ましく、メチル基がより好ましい。具体的には、ω−メトキシポリオキシアルキレンメタクリル酸エステル、ω−メトキシポリオキシアルキレンアクリル酸エステル等を挙げることができ、ω−メトキシポリオキシアルキレンメタクリル酸エステルがより好ましい。ここで、(C1)式中のnは、重合体の水硬性組成物に対する分散性と粘性付与効果の点で、3〜200であり、好ましくは4〜120である。また、平均n個の繰り返し単位中にAOが異なるもので、ランダム付加又はブロック付加又はこれらの混在を含むものであっても良い。AOは、EO基以外にもオキシプロピレン基等を含むことができる。
[Monomer C1]
Regarding the monomer C1, R 3c in the general formula (C1) is preferably a hydrogen atom, and AO is preferably an oxyalkylene group having 2 to 4 carbon atoms, and more preferably includes an oxyethylene group (hereinafter referred to as an EO group). Preferably, the EO group is 70 mol% or more, more preferably 80 mol% or more, further 90 mol% or more, and even more preferably all of AO are EO groups. X 3 is preferably a hydrogen atom or an alkyl group having 1 to 18, more preferably 1 to 12, further 1 to 4, and further 1 or 2 carbon atoms, and more preferably a methyl group. Specific examples include ω-methoxypolyoxyalkylene methacrylate and ω-methoxypolyoxyalkylene acrylate, and ω-methoxypolyoxyalkylene methacrylate is more preferable. Here, n in the formula (C1) is 3 to 200, preferably 4 to 120, in terms of dispersibility of the polymer in the hydraulic composition and the effect of imparting viscosity. In addition, AO is different among n repeating units on average, and random addition, block addition, or a mixture thereof may be included. AO can contain an oxypropylene group in addition to the EO group.

[単量体C2]
単量体C2としては、リン酸モノ(2−ヒドロキシエチル)メタクリル酸エステル、リン酸モノ(2−ヒドロキシエチル)アクリル酸エステル、ポリアルキレングリコールモノ(メタ)アクリレートアシッドリン酸エステル等が挙げられる。中でも、製造の容易さ及び製造物の品質安定性の観点から、リン酸モノ(2−ヒドロキシエチル)メタクリル酸エステルが好ましい。
[Monomer C2]
Examples of the monomer C2 include phosphoric acid mono (2-hydroxyethyl) methacrylic acid ester, phosphoric acid mono (2-hydroxyethyl) acrylic acid ester, polyalkylene glycol mono (meth) acrylate acid phosphoric acid ester, and the like. Of these, mono (2-hydroxyethyl) methacrylic acid phosphate is preferable from the viewpoint of ease of production and product quality stability.

[単量体C3]
単量体C3としては、リン酸ジ−〔(2−ヒドロキシエチル)メタクリル酸〕エステル、リン酸ジ−〔(2−ヒドロキシエチル)アクリル酸〕エステル等が挙げられる。中でも、製造の容易さ及び製造物の品質安定性の観点から、リン酸ジ−〔(2−ヒドロキシエチル)メタクリル酸〕エステルが好ましい。
[Monomer C3]
Examples of the monomer C3 include phosphoric acid di-[(2-hydroxyethyl) methacrylic acid] ester, phosphoric acid di-[(2-hydroxyethyl) acrylic acid] ester, and the like. Among these, di-[(2-hydroxyethyl) methacrylic acid] ester phosphate is preferable from the viewpoint of ease of production and quality stability of the product.

単量体C2及び単量体C3の何れも、これらの化合物のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルキルアンモニウム塩などであっても良い。   Any of the monomer C2 and the monomer C3 may be an alkali metal salt, alkaline earth metal salt, ammonium salt, alkylammonium salt or the like of these compounds.

単量体C2のm5並びに単量体C3のm6及びm7は、それぞれ1〜20が好ましく、1〜10が更に好ましく、1〜5がより好ましい。   As for m5 of monomer C2 and m6 and m7 of monomer C3, 1-20 are respectively preferable, 1-10 are still more preferable, and 1-5 are more preferable.

単量体C2及び単量体C3として、これらを含む混合単量体を用いることができる。すなわち、モノエステル体とジエステル体とを含む市販品を使用することができ、例えば、ホスマーM、ホスマーPE、ホスマーP(以上、ユニケミカル)、JAMP514、JAMP514P、JMP100(以上、城北化学)、ライトエステルP−1M、ライトアクリレートP−1A(以上、共栄社化学)、MR200(大八化学)、カヤマー(日本化薬)、Ethyleneglycol methacrylate phosphate(アルドリッチ試薬)などとして入手できる。   As the monomer C2 and the monomer C3, a mixed monomer containing these can be used. That is, a commercially available product containing a monoester form and a diester form can be used. For example, Phosmer M, Phosmer PE, Phosmer P (above, Unichemical), JAMP514, JAMP514P, JMP100 (above, Johoku Chemical), Wright Ester P-1M, light acrylate P-1A (Kyoeisha Chemical), MR200 (Daihachi Chemical), Kayamar (Nippon Kayaku), Ethyleneglycol methacrylate phosphate (Aldrich reagent), etc. can be obtained.

本発明の(C)成分のリン酸エステル系重合体は、重量平均分子量(Mw)が10,000〜150,000であることが好ましい。また、Mw/Mnが1.0〜2.6であることが好ましい。ここでMnは数平均分子量である。分散効果の発現や粘性低減効果の観点から、Mwが10,000以上が好ましく、より好ましくは12,000以上、更に好ましくは13,000以上、更に好ましくは14,000以上、更により好ましくは15,000以上で、架橋による高分子量化、ゲル化の抑制や性能面では分散効果や粘性低減効果の観点から、150,000以下が好ましく、より好ましくは130,000以下、更に好ましくは120,000以下、更に好ましくは110,000以下、より更に好ましくは100,000以下であり、従って、前記両者の観点から、好ましくは12,000〜130,000、より好ましくは13,000〜120,000、更に好ましくは14,000〜110,000、より更に好ましくは15,000〜100,000である。この範囲のMwを有し、かつMw/Mnが1.0〜2.6であることが好ましい。ここに、Mw/Mnの値は分散度であり、1に近いほど分子量分布が単分散に近づき、1から離れる(大きくなる)ほど分子量分布が広くなることを意味する。   The phosphate ester polymer of component (C) of the present invention preferably has a weight average molecular weight (Mw) of 10,000 to 150,000. Moreover, it is preferable that Mw / Mn is 1.0-2.6. Here, Mn is the number average molecular weight. Mw is preferably 10,000 or more, more preferably 12,000 or more, still more preferably 13,000 or more, still more preferably 14,000 or more, and even more preferably 15 from the viewpoint of expression of the dispersion effect and viscosity reduction effect. 15,000 or less, preferably 150,000 or less, more preferably 130,000 or less, and still more preferably 120,000 from the viewpoints of high molecular weight by crosslinking, suppression of gelation, and performance in terms of dispersion effect and viscosity reduction effect. Or less, more preferably 110,000 or less, still more preferably 100,000 or less. Therefore, from the viewpoints of the both, preferably 12,000 to 130,000, more preferably 13,000 to 120,000, More preferably, 14,000 to 110,000, still more preferably 15,000 to 100,000. A. It is preferable to have Mw in this range and Mw / Mn is 1.0 to 2.6. Here, the value of Mw / Mn is the degree of dispersion. The closer the value is to 1, the closer the molecular weight distribution is to the monodispersion, and the farther from 1 (the larger) the wider the molecular weight distribution.

上記のようなMw/Mn値を持つ本発明のリン酸エステル系重合体は、ジエステル構造に基づく分岐構造を有する重合体でありながら、分子量分布が非常に狭いという大きな特徴がある。このような本発明のリン酸エステル系重合体は後述する製造方法により好適に製造できる。   The phosphate ester polymer of the present invention having the Mw / Mn value as described above is a polymer having a branched structure based on a diester structure, but has a great feature that the molecular weight distribution is very narrow. Such a phosphoric ester polymer of the present invention can be suitably produced by a production method described later.

上記のような本発明のリン酸エステル系重合体のMw/Mnは、実用的な製造容易性、分散性、粘性低減効果、及び材料、温度に対する汎用性を確保する観点から、1.0以上であり、分散性及び粘性低減効を両立する観点から、2.6以下であり、好ましくは2.4以下、より好ましくは2.2以下、更に好ましくは2.0以下、より更に好ましくは1.8以下であり、前記2点を総合した観点から、好ましくは1.0〜2.4、より好ましくは1.0〜2.2、更に好ましくは1.0〜2.0、より更に好ましくは1.0〜1.8である。   Mw / Mn of the phosphoric ester polymer of the present invention as described above is 1.0 or more from the viewpoint of ensuring practical production ease, dispersibility, viscosity reduction effect, and versatility with respect to materials and temperature. From the viewpoint of achieving both a dispersibility and a viscosity reducing effect, it is 2.6 or less, preferably 2.4 or less, more preferably 2.2 or less, still more preferably 2.0 or less, and even more preferably 1 From the viewpoint of combining the above two points, it is preferably 1.0 to 2.4, more preferably 1.0 to 2.2, still more preferably 1.0 to 2.0, and still more preferably. Is 1.0 to 1.8.

本発明のリン酸エステル系重合体のMw及びMnは、特開2006−52381号公報記載のゲルパーミエーションクロマトグラフィー(GPC)法で測定されたものである。なお、本発明におけるリン酸エステル系重合体のMw/Mnは、該重合体のピークに基づいて算出されたものとする。   Mw and Mn of the phosphate ester polymer of the present invention are those measured by gel permeation chromatography (GPC) method described in JP-A-2006-52381. In addition, Mw / Mn of the phosphate ester type polymer in the present invention is calculated based on the peak of the polymer.

上記のようなMw/Mnを満たすリン酸エステル系重合体は、ジエステル体である単量体C3による架橋を抑制することにより適度な分岐構造となり、分子内に密に吸着基が存在する構造を形成するものと考えられる。また分散度Mw/Mnを所定範囲に抑制することで同一サイズの分子が単分散した系に近づくため、吸着対象物質(例えばセメント粒子)に対する吸着量も多くすることが可能と考えられる。この両者を満足することで、セメント粒子等の吸着対象物質に密にパッキングすることが可能となり、分散性と粘性低減効果の両立に有効であると推定している。   The phosphate ester polymer satisfying Mw / Mn as described above has an appropriate branched structure by suppressing cross-linking by the monomer C3 which is a diester, and has a structure in which adsorbing groups are densely present in the molecule. It is thought to form. Further, since the degree of dispersion Mw / Mn is controlled within a predetermined range, it approaches a system in which molecules of the same size are monodispersed, so that it is considered possible to increase the amount of adsorption on the adsorption target substance (for example, cement particles). Satisfying both of these conditions makes it possible to densely pack the substance to be adsorbed, such as cement particles, and is estimated to be effective in achieving both a dispersibility and a viscosity reducing effect.

また、上記条件でのGPC法で得られる分子量分布を示すチャートのパターンにおいて、分子量10万以上の面積が当該チャート全体の面積の5%以下であることが、分散性(必要添加量低減)や粘性低減効果の点でより好ましい。   Further, in the chart pattern showing the molecular weight distribution obtained by the GPC method under the above conditions, the area having a molecular weight of 100,000 or more is 5% or less of the total area of the chart, so that dispersibility (required addition amount reduction) It is more preferable in terms of the viscosity reducing effect.

なお、本発明のリン酸エステル系重合体は、下記条件の1H−NMRにより、単量体由来の二重結合が消失していることから、単量体C1、C2及びC3にそれぞれ由来する構成単位を有することが示唆される。
1H−NMR条件]
水に溶解した重合体を減圧乾燥したものを3〜4重量%の濃度で重メタノールに溶解し、1H−NMRを測定する。二重結合の残存率は、5.5〜6.2ppmの積分値により測定される。なお、1H−NMRの測定は、Varian社製「Mercury 400 NMR」を用い、データポイント数42052、測定範囲6410.3Hz、パルス幅4.5μs、パルス待ち時間10s、測定温度25.0℃の条件で行った。
In addition, the phosphate ester polymer of the present invention is derived from monomers C1, C2, and C3, respectively, because the double bond derived from the monomer has disappeared by 1 H-NMR under the following conditions. It is suggested to have a structural unit.
[ 1 H-NMR conditions]
A polymer dissolved in water and dried under reduced pressure is dissolved in deuterated methanol at a concentration of 3 to 4% by weight, and 1 H-NMR is measured. The residual rate of double bonds is measured by an integrated value of 5.5 to 6.2 ppm. In addition, the measurement of 1 H-NMR uses “Mercury 400 NMR” manufactured by Varian, the number of data points is 42052, the measurement range is 6410.3 Hz, the pulse width is 4.5 μs, the pulse waiting time is 10 s, and the measurement temperature is 25.0 ° C. Performed under conditions.

すなわち、上記のようなMw/Mn値を持つリン酸エステル系重合体は、その構成単位として、単量体C1由来の構成単位、単量体C2由来の構成単位及び単量体C3由来の構成単位を含む。これらの構成単位は、単量体C1、C2、及びC3のエチレン性不飽和結合が開裂して付加重合することにより重合体中に取り込まれた各単量体由来の構成単位である。重合体中のこれら構成単位の比率は、仕込み比率に依存し、共重合に用いる単量体が単量体C1〜C3のみの場合、各構成単位のモル比は、単量体の仕込みモル比とほぼ一致すると考えられる。   That is, the phosphate ester-based polymer having the Mw / Mn value as described above has, as its constituent units, constituent units derived from monomer C1, constituent units derived from monomer C2, and constituents derived from monomer C3. Includes units. These structural units are structural units derived from the respective monomers incorporated into the polymer by cleavage of the ethylenically unsaturated bonds of the monomers C1, C2, and C3 and addition polymerization. The ratio of these structural units in the polymer depends on the charging ratio, and when the monomers used for copolymerization are only the monomers C1 to C3, the molar ratio of each structural unit is the charged molar ratio of the monomers. It is thought that it is almost the same.

[リン酸エステル系重合体の製造方法]
上記本発明のリン酸エステル系重合体は、公知の方法で製造することができる。例えば、特開2006−52381号公報に記載の方法が挙げられる。即ち、記本発明のリン酸エステル系重合体は、単量体C1と、単量体C2と、単量体C3とを、pH7以下で共重合するリン酸エステル系重合体の製造方法によって製造することができる。また、単量体C2及び単量体C3を含有する混合単量体を用いることが好ましい。
[Method for producing phosphate ester polymer]
The phosphate ester polymer of the present invention can be produced by a known method. For example, a method described in JP 2006-52381 A can be mentioned. That is, the phosphate ester polymer of the present invention is produced by a phosphate ester polymer production method in which the monomer C1, the monomer C2, and the monomer C3 are copolymerized at a pH of 7 or less. can do. Moreover, it is preferable to use the mixed monomer containing the monomer C2 and the monomer C3.

本発明に係るリン酸エステル系重合体は、前記一般式(C1)で表されるオキシアルキレン基を有する単量体C1と、リン酸基を有する前記一般式(C2)で表される単量体C2と、前記一般式(C3)で表される単量体C3とを共重合して得られる重合物である。   The phosphate ester polymer according to the present invention includes a monomer C1 having an oxyalkylene group represented by the general formula (C1) and a single monomer represented by the general formula (C2) having a phosphate group. It is a polymer obtained by copolymerizing the body C2 and the monomer C3 represented by the general formula (C3).

単量体C1〜C3の好ましいものはそれぞれ前記の通りであり、また前記した市販品や反応生成物を使用することもできる。   The preferable thing of the monomers C1-C3 is as above-mentioned, respectively, and the above-mentioned commercial item and reaction product can also be used.

単量体の共重合に際しては、単量体C1と、単量体C2、C3とのモル比は、単量体C1/(単量体C2+単量体C3)=5/95〜95/5、更に、10/90〜90/10が好ましい。また、単量体C1と単量体C2と単量体C3のモル比は、単量体C1/単量体C2/単量体C3=5〜95/3〜90/1〜80/、更に5〜96/3〜80/1〜60(ただし合計は100である)が好ましい。なお、単量体C2と単量体C3については、酸型の化合物に基づきモル比やモル%を算出するものとする(以下、同様)。   In the copolymerization of the monomers, the molar ratio between the monomer C1 and the monomers C2 and C3 is such that the monomer C1 / (monomer C2 + monomer C3) = 5/95 to 95/5. Furthermore, 10/90 to 90/10 are preferable. The molar ratio of monomer C1, monomer C2 and monomer C3 is as follows: monomer C1 / monomer C2 / monomer C3 = 5 to 95/3 to 90/1 to 80 / 5 to 96/3 to 80/1 to 60 (however, the total is 100) is preferable. In addition, about the monomer C2 and the monomer C3, a molar ratio and mol% shall be calculated based on an acid type compound (hereinafter the same).

また、本発明では、反応に用いる全単量体中、単量体C3の比率を1〜60モル%、更に1〜30モル%とすることができる。
また、単量体C2と単量体C3のモル比を、単量体C2/単量体C3=99/1〜4/96、更に99/1〜5/95とすることができる。
Moreover, in this invention, the ratio of the monomer C3 can be 1-60 mol% in the all monomers used for reaction, Furthermore, it can be 1-30 mol%.
Moreover, the molar ratio of the monomer C2 and the monomer C3 can be set to monomer C2 / monomer C3 = 99/1 to 4/96, and further 99/1 to 5/95.

反応系の単量体C1、C2、C3及び共重合可能なその他の単量体の総量は、5〜80重量%が好ましく、10〜65重量%がより好ましく、20〜50重量%がより更に好ましい。   The total amount of the monomers C1, C2, C3 and other copolymerizable monomers in the reaction system is preferably 5 to 80% by weight, more preferably 10 to 65% by weight, still more preferably 20 to 50% by weight. preferable.

本発明では(C)成分は、練り上がり速度の観点から、単量体C1の割合が単量体の総量中50モル%以下の共重合体であることが好ましい。   In the present invention, the component (C) is preferably a copolymer in which the proportion of the monomer C1 is 50 mol% or less in the total amount of monomers from the viewpoint of kneading speed.

上記(B)成分、(C)成分は、(A)成分とは別に水硬性組成物に添加することができる。また、(B)成分及び/又は(C)成分はこれらを含有する高性能減水剤として、(A)成分を含有する本発明の水硬性組成物用添加剤と併用してもよい。   The component (B) and the component (C) can be added to the hydraulic composition separately from the component (A). Moreover, you may use together (B) component and / or (C) component with the additive for hydraulic compositions of this invention containing (A) component as a high performance water reducing agent containing these.

また、上記(B)成分、(C)成分は、本発明の水硬性組成物用添加剤組成物中に配合できる。よって、上記(A)成分と(B)成分とから、(A)成分及び(B)成分を含有する水硬性組成物用の1液型添加剤組成物(以下、本発明の水硬性組成物用の1液型添加剤組成物ということもある)を得ることができる。   Moreover, the said (B) component and (C) component can be mix | blended in the additive composition for hydraulic compositions of this invention. Therefore, from the component (A) and the component (B), a one-component additive composition for a hydraulic composition containing the component (A) and the component (B) (hereinafter, the hydraulic composition of the present invention). 1-component additive composition).

本発明の水硬性組成物用の1液型添加剤組成物において、(A)成分の含有量は、収縮低減効果および使用時の添加量の観点から5重量%以上が好ましく、また、製品の均一安定化の観点から95重量%以下が好ましい。従って、5〜95重量%が好ましく、更に好ましくは10〜70重量%、更により好ましくは20〜60重量%、より更に好ましくは30〜50重量%である。   In the one-component additive composition for a hydraulic composition of the present invention, the content of the component (A) is preferably 5% by weight or more from the viewpoint of shrinkage reduction effect and the amount added during use. From the viewpoint of uniform stabilization, it is preferably 95% by weight or less. Accordingly, it is preferably 5 to 95% by weight, more preferably 10 to 70% by weight, still more preferably 20 to 60% by weight, and still more preferably 30 to 50% by weight.

また、本発明の水硬性組成物用の1液型添加剤組成物において、(B)成分の合計含有量は、モルタル粘性の低下の観点から、2重量%以上が好ましく、また、製品の均一安定化の観点から50重量%以下が好ましい。従って、2〜50重量%が好ましく、更に好ましくは3〜40重量%、より好ましくは4〜35重量%である。   In the one-component additive composition for a hydraulic composition of the present invention, the total content of the component (B) is preferably 2% by weight or more from the viewpoint of lowering the mortar viscosity, and the product is uniform. From the viewpoint of stabilization, 50% by weight or less is preferable. Therefore, 2 to 50% by weight is preferable, further preferably 3 to 40% by weight, and more preferably 4 to 35% by weight.

フレッシュコンクリートの作業性の観点から、(B)成分は化合物(3)を含むことが好ましい。なかでも、化合物(3)の単独及び化合物(3)と化合物(2)の併用が好ましい。化合物(3)を化合物(1)又は化合物(2)と併用する場合は、(B)成分中、化合物(3)が50重量%以上、更に50〜95重量%、より更に70〜90重量%であることが好ましい。また、化合物(2)は、フレッシュコンクリートの練上がり速度、フレッシュコンクリートの早強性と低粘性の両立の観点から、(B)成分中、1〜40重量%、更に5〜30重量%、より更に10〜20重量%が好ましい。   From the viewpoint of workability of fresh concrete, the component (B) preferably contains the compound (3). Of these, the compound (3) alone and the combined use of the compound (3) and the compound (2) are preferable. When the compound (3) is used in combination with the compound (1) or the compound (2), the compound (3) in the component (B) is 50% by weight or more, further 50 to 95% by weight, and further 70 to 90% by weight. It is preferable that Moreover, compound (2) is 1 to 40 weight% in (B) component from a viewpoint of coexistence of the quick-strength of fresh concrete, the early strength of fresh concrete, and low viscosity, Furthermore, 5 to 30 weight%, Furthermore, 10 to 20% by weight is preferable.

また、本発明の水硬性組成物用の1液型添加剤組成物では、(A)成分の総量と(B)成分の総量の重量比(B)/(A)が5/95〜50/50である事が好ましく、更に好ましくは7/93〜45/50、更により好ましくは10/90〜40/60、より更に好ましくは20/80〜35/65である。   In the one-component additive composition for a hydraulic composition of the present invention, the weight ratio (B) / (A) of the total amount of the component (A) to the total amount of the component (B) is 5/95 to 50 / It is preferably 50, more preferably 7/93 to 45/50, still more preferably 10/90 to 40/60, and still more preferably 20/80 to 35/65.

また、本発明の水硬性組成物用の1液型添加剤組成物では、(A)成分と(B)成分の合計含有量が10〜100重量%である事が好ましく、更に好ましくは10〜80重量%、より好ましくは20〜70重量%、より更に好ましくは30〜60重量%である。   In the one-component additive composition for a hydraulic composition of the present invention, the total content of the component (A) and the component (B) is preferably 10 to 100% by weight, more preferably 10 to 10% by weight. 80% by weight, more preferably 20 to 70% by weight, still more preferably 30 to 60% by weight.

本発明の水硬性組成物用の1液型添加剤組成物は液状組成物であり、残部は例えば水である。本発明の水硬性組成物用の1液型添加剤組成物は、(B)成分が(A)成分と相溶性が良く、これらを含む水溶液が極端な粘度上昇を生じることもないので扱いやすい1液型の組成物となる。本発明の水硬性組成物用の1液型添加剤組成物は、透明な組成物として得ることができ、更には、5〜40℃での静置保存で3ヶ月以上透明で均一な状態を維持できる。   The one-component additive composition for the hydraulic composition of the present invention is a liquid composition, and the balance is, for example, water. In the one-component additive composition for hydraulic compositions of the present invention, the component (B) is compatible with the component (A), and an aqueous solution containing these components does not cause an extreme increase in viscosity, so that it is easy to handle. A one-component composition is obtained. The one-component additive composition for the hydraulic composition of the present invention can be obtained as a transparent composition, and further, it is transparent and uniform for 3 months or more by standing at 5 to 40 ° C. Can be maintained.

また、本発明の水硬性組成物用の1液型添加剤組成物は、更に(C)成分を含有することができる。本発明の水硬性組成物用の1液型添加剤組成物において、(C)成分の合計含有量は、良好な作業性確保の観点から、3〜30重量%が好ましく、5〜25重量%がより好ましい。(C)成分を含有する場合、本発明の水硬性組成物用の1液型添加剤組成物において、(B)成分と(C)成分の合計含有量は有効分換算で3〜30重量%、更に5〜25重量%が好ましい。その場合、(B)成分と(C)成分の重量比は、有効分換算で(B):(C)=1:100〜70:100が好ましく、更に好ましくは10:100〜60:100、より好ましくは20:100〜50:100、より更に好ましくは30:100〜45:100である。   Moreover, the one-pack type additive composition for hydraulic compositions of this invention can contain (C) component further. In the one-component additive composition for the hydraulic composition of the present invention, the total content of the component (C) is preferably 3 to 30% by weight, and 5 to 25% by weight from the viewpoint of ensuring good workability. Is more preferable. In the case of containing the component (C), in the one-component additive composition for the hydraulic composition of the present invention, the total content of the component (B) and the component (C) is 3 to 30% by weight in terms of an effective component. Further, 5 to 25% by weight is preferable. In that case, the weight ratio of the component (B) to the component (C) is preferably (B) :( C) = 1: 100 to 70: 100, more preferably 10: 100 to 60: 100, in terms of effective component. More preferably, it is 20: 100-50: 100, More preferably, it is 30: 100-45: 100.

本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、収縮低減効果と1液性の保持の観点から、水硬性粉体に対して、(A)成分(有効分)が0.01〜2重量%の割合で使用されることが好ましく、更に好ましくは0.1〜1.0重量%、より好ましくは0.2〜0.5重量%である。   The additive for a hydraulic composition of the present invention, for example, a one-component additive composition for a hydraulic composition, has a (A ) The component (effective component) is preferably used in a proportion of 0.01 to 2% by weight, more preferably 0.1 to 1.0% by weight, more preferably 0.2 to 0.5% by weight. is there.

また、本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、流動性と1液性の保持の観点から、水硬性粉体に対して、(B)成分(有効分)が0.01〜5重量%の割合で使用されることが好ましく、更に好ましくは0.1〜2.5重量%、より好ましくは0.1〜1.0重量%である。   Moreover, the additive for hydraulic compositions of the present invention, for example, the one-component additive composition for hydraulic compositions, is based on the hydraulic powder from the viewpoint of fluidity and one-component retention. B) Component (effective part) is preferably used in a proportion of 0.01 to 5% by weight, more preferably 0.1 to 2.5% by weight, more preferably 0.1 to 1.0% by weight. It is.

(A)成分(有効分)のコンクリート1m3当りの添加量は、水/水硬性粉体比や、使用する骨材の種類や量によって適宜調整すれば良いが、好ましくは0.5〜10kg/m3、さらに好ましくは1〜8kg/m3、より好ましくは1.5〜6kg/m3である。 The amount of (A) component (effective component) added per 1 m 3 of concrete may be appropriately adjusted depending on the water / hydraulic powder ratio and the type and amount of aggregate used, but preferably 0.5 to 10 kg. / M 3 , more preferably 1 to 8 kg / m 3 , more preferably 1.5 to 6 kg / m 3 .

本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、1液性の保持と流動性の観点から、水硬性粉体に対して、(A)成分(有効分)と(B)成分(有効分)の合計で0.1〜10重量%の割合で使用されることが好ましく、更に好ましくは0.2〜5重量%、より好ましくは0.2〜3重量%である。   The additive for a hydraulic composition of the present invention, for example, a one-component additive composition for a hydraulic composition, is based on (A) the hydraulic powder from the viewpoint of maintaining the one-component property and fluidity. It is preferably used in a proportion of 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, more preferably 0.8% by weight in total of the component (effective part) and the component (B) (effective part). 2 to 3% by weight.

また、本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物が(C)成分を含有する場合、(C)成分(有効分)は、1液性の保持と流動性の観点から、水硬性粉体に対して、0.01〜3.0重量%の割合で使用されることが好ましく、更に好ましくは0.05〜1.5重量%、より好ましくは0.1〜0.5重量%である。   Moreover, when the additive for hydraulic compositions of the present invention, for example, the one-component additive composition for hydraulic compositions contains the component (C), the component (C) (effective component) is a one-component. From the viewpoint of retention and fluidity, it is preferably used in a proportion of 0.01 to 3.0% by weight, more preferably 0.05 to 1.5% by weight, and more preferably to the hydraulic powder. Preferably it is 0.1 to 0.5 weight%.

本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、1液性の保持と流動性の観点から、水硬性粉体に対して、(A)成分(有効分)、(B)成分(有効分)及び(C)成分(有効分)の合計〔(A)+(B)+(C)〕で0.1〜10.0重量%の割合で使用されることが好ましく、更に好ましくは0.2〜5.0重量%、より好ましくは0.2〜2.5重量%である。   The additive for a hydraulic composition of the present invention, for example, a one-component additive composition for a hydraulic composition, is based on (A) the hydraulic powder from the viewpoint of maintaining the one-component property and fluidity. The ratio of 0.1 to 10.0% by weight in the sum of (component (effective)), (B) component (effective) and (C) component (effective) [(A) + (B) + (C)] It is preferably used in an amount of 0.2 to 5.0% by weight, more preferably 0.2 to 2.5% by weight.

本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、各種セメントを始めとし、水和反応によって硬化性を示すあらゆる無機系の水硬性粉体に使用することができる。   The additive for hydraulic compositions of the present invention, for example, a one-component additive composition for hydraulic compositions, can be applied to various inorganic hydraulic powders that exhibit curability by hydration reaction, including various cements. Can be used.

セメントとして、普通ポルトランドセメント、中庸熱セメント、早強ポルトランドセメント、超早強ポルトランドセメント、エコセメント(例えばJIS R5214等)が挙げられる。セメント以外の水硬性粉体として、高炉スラグ、フライアッシュ、シリカヒューム等が含まれてよく、また、非水硬性の石灰石微粉末等が含まれていてよい。セメントと混合されたシリカヒュームセメント(例えば、商品名として太平洋セメント製SFPC,宇部三菱セメント製SFC,SFCS等)や高炉セメント(A種、B種、C種)を用いてもよい。   Examples of the cement include ordinary Portland cement, moderately-heated cement, early-strength Portland cement, ultra-early-strength Portland cement, and eco-cement (for example, JIS R5214). As hydraulic powder other than cement, blast furnace slag, fly ash, silica fume and the like may be included, and non-hydraulic limestone fine powder and the like may be included. Silica fume cement mixed with cement (for example, SFPC made by Taiheiyo Cement, SFC, SFCS made by Ube Mitsubishi Cement, etc.) and blast furnace cement (Type A, Type B, Type C) may be used.

本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、その他の添加剤(材)を含有することもできる。例えば、樹脂石鹸、飽和もしくは不飽和脂肪酸、ヒドロキシステアリン酸ナトリウム、ラウリルサルフェート、アルキルベンゼンスルホン酸(塩)、アルカンスルホネート、ポリオキシアルキレンアルキル(フェニル)エーテル、ポリオキシアルキレンアルキル(フェニル)エーテル硫酸エステル(塩)、ポリオキシアルキレンアルキル(フェニル)エーテルリン酸エステル(塩)、蛋白質材料、アルケニルコハク酸、α−オレフィンスルホネート等のAE剤;グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸、クエン酸等のオキシカルボン酸系、デキストリン、単糖類、オリゴ糖類、多糖類等の糖系、糖アルコール系等の遅延剤;起泡剤;増粘剤;珪砂;AE減水剤;塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム、臭化カルシウム、沃化カルシウム等の可溶性カルシウム塩、塩化鉄、塩化マグネシウム等の塩化物等、硫酸塩、水酸化カリウム、水酸化ナトリウム、炭酸塩、チオ硫酸塩、蟻酸(塩)、アルカノールアミン等の早強剤又は促進剤;発泡剤;樹脂酸(塩)、脂肪酸エステル、油脂、シリコーン、パラフィン、アスファルト、ワックス等の防水剤;高炉スラグ;流動化剤;ジメチルポリシロキサン系、ポリアルキレングリコール脂肪酸エステル系、鉱油系、油脂系、オキシアルキレン系、アルコール系、アミド系等の消泡剤;防泡剤;フライアッシュ;メラミンスルホン酸ホルマリン縮合物系、アミノスルホン酸系等の高性能減水剤;シリカヒューム;亜硝酸塩、燐酸塩、酸化亜鉛等の防錆剤;メチルセルロース、ヒドロキシエチルセルロース等のセルロース系、β−1,3−グルカン、キサンタンガム等の天然物系、ポリアクリル酸アミド、ポリエチレングリコール、オレイルアルコールのEO付加物もしくはこれとビニルシクロヘキセンジエポキシドとの反応物等の合成系等の水溶性高分子;(メタ)アクリル酸アルキル等の高分子エマルジョンが挙げられる。   The additive for hydraulic compositions of the present invention, for example, the one-pack type additive composition for hydraulic compositions, can also contain other additives (materials). For example, resin soap, saturated or unsaturated fatty acid, sodium hydroxystearate, lauryl sulfate, alkylbenzene sulfonic acid (salt), alkane sulfonate, polyoxyalkylene alkyl (phenyl) ether, polyoxyalkylene alkyl (phenyl) ether sulfate (salt) ), Polyoxyalkylene alkyl (phenyl) ether phosphates (salts), protein materials, AE agents such as alkenyl succinic acid and α-olefin sulfonate; oxy such as gluconic acid, glucoheptonic acid, alabonic acid, malic acid, citric acid Delayers such as carboxylic acids, dextrins, monosaccharides, oligosaccharides, polysaccharides, etc .; foaming agents; thickeners; silica sand; AE water reducing agents; calcium chloride, calcium nitrite, calcium nitrate , Cal bromide Soluble calcium salts such as um, calcium iodide, chlorides such as iron chloride and magnesium chloride, sulfates, potassium hydroxide, sodium hydroxide, carbonates, thiosulfates, formic acid (salts), alkanolamines, etc. Strongening agent or accelerator; foaming agent; waterproofing agent such as resin acid (salt), fatty acid ester, oil, fat, silicone, paraffin, asphalt, wax; blast furnace slag; fluidizing agent; dimethylpolysiloxane, polyalkylene glycol fatty acid ester Anti-foaming agents such as mineral oils, fats and oils, oxyalkylenes, alcohols and amides; antifoaming agents; fly ash; high-performance water reducing agents such as melamine sulfonic acid formalin condensates and aminosulfonic acids; silica fume Rust preventives such as nitrite, phosphate, zinc oxide; cellulose such as methylcellulose and hydroxyethylcellulose; Water, natural product systems such as β-1,3-glucan, xanthan gum, synthetic systems such as polyacrylic acid amide, polyethylene glycol, EO adduct of oleyl alcohol or a reaction product of this with vinylcyclohexene diepoxide Polymer emulsions such as alkyl (meth) acrylates.

また、本発明の水硬性組成物用添加剤、例えば水硬性組成物用の1液型添加剤組成物は、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、地盤改良用、グラウト用、寒中用等の種々のコンクリートの何れの分野においても有用である。   Further, the additive for hydraulic compositions of the present invention, for example, a one-component additive composition for hydraulic compositions, is used in the field of ready-mixed concrete, concrete vibration products, for self-leveling, for refractories, for plasters, It is useful in any field of various concrete such as gypsum slurry, lightweight or heavy concrete, AE, repair, pre-packed, trayy, ground improvement, grout, and cold.

<水硬性組成物用添加剤組成物の製造方法>
本発明の水硬性組成物用添加剤組成物は、一般式(1)中のnが3である化合物を90〜99重量%含有する混合物に炭素数2〜8のアルキレンオキシドを付加する工程を有する水硬性組成物用添加剤組成物の製造方法(以下、製法1という)より得ることができる。
<Method for producing additive composition for hydraulic composition>
The additive composition for hydraulic compositions of the present invention comprises a step of adding an alkylene oxide having 2 to 8 carbon atoms to a mixture containing 90 to 99% by weight of a compound wherein n is 3 in the general formula (1). It can be obtained from a method for producing an additive composition for hydraulic composition (hereinafter referred to as production method 1).

製法1において、一般式(1)中のnが3である化合物を90〜99重量%含有する混合物は、炭素数2〜8のアルキレンオキシドを付加した後、蒸留による分離精製により得ることができる。一般式(1)中のnが3である化合物を90〜99重量%含有する混合物1モル当たり1〜4モル、更に1〜2モルの炭素数2〜8のアルキレンオキシドを付加することが好ましい。   In the production method 1, a mixture containing 90 to 99% by weight of the compound in which n is 3 in the general formula (1) can be obtained by separation and purification by distillation after adding an alkylene oxide having 2 to 8 carbon atoms. . It is preferable to add 1 to 4 moles, and further 1 to 2 moles of an alkylene oxide having 2 to 8 carbon atoms per mole of a mixture containing 90 to 99% by weight of the compound in which n is 3 in the general formula (1). .

製法1の一例として、一般式(1)中のR1が炭素数4のアルキル基、Aがエチレン基、nが3、R2が水素原子である化合物を含有する混合物に、炭素数2のEOを付加する場合について説明する。 As an example of the production method 1, a mixture containing a compound in which R 1 in the general formula (1) is an alkyl group having 4 carbon atoms, A is an ethylene group, n is 3, and R 2 is a hydrogen atom is added to a mixture having 2 carbon atoms. A case where EO is added will be described.

攪拌機付き反応容器にブタノールの所定量とKOHの所定量を仕込み、窒素で容器内を充分に置換した後、所定圧力下で昇温する。目標温度になったら、EOを徐々に仕込み、圧力をあげながら所定圧力下でEOの所定量(ブタノールに対して3モル)を仕込む。その後、所定温度で圧力の低下が収まるまで熟成反応を行う。所定温度まで冷却し、中和した後、反応容器から抜き出す。この反応品の5%水溶液のpH、及びGCによるEO付加物分布(付加モル数nの化合物の含有量、以下、EO分布ということもある)の分析を行い、数値を確認する。更に、水酸基価を測定しnの平均値を確認する。精留塔を取り付けたヘルツフラスコに反応中和品の所定量を仕込み、還流比、真空度、温度等を所定条件としてブタノール(nが0の化合物)、次いでEO1モル付加物(nが1の化合物)、次いでEO2モル付加物(nが2の化合物)を除去した後、EO3モル付加物(nが3の化合物)を蒸留分離する。GCにてEO3モル付加物の分布分析を行い、該化合物の含有量が90〜99重量%である場合はそのまま使用し、そうでない場合は、該化合物の含有量が90〜99重量%になるまで低付加モル品の除去を繰り返す。   A predetermined amount of butanol and a predetermined amount of KOH are charged into a reaction vessel equipped with a stirrer, and after the inside of the vessel is sufficiently substituted with nitrogen, the temperature is raised under a predetermined pressure. When the target temperature is reached, EO is gradually charged, and a predetermined amount of EO (3 mol with respect to butanol) is charged under a predetermined pressure while increasing the pressure. Thereafter, an aging reaction is carried out at a predetermined temperature until the pressure drop ceases. After cooling to a predetermined temperature and neutralizing, it is withdrawn from the reaction vessel. Analyze the pH of the 5% aqueous solution of this reaction product and the EO adduct distribution by GC (content of compound having an addition mole number n, hereinafter sometimes referred to as EO distribution), and confirm the numerical value. Furthermore, a hydroxyl value is measured and the average value of n is confirmed. A Hertzian flask equipped with a rectifying column is charged with a predetermined amount of a reaction neutralized product, butanol (a compound with n = 0), and then an EO 1 molar adduct (n = 1) under predetermined conditions such as reflux ratio, degree of vacuum, and temperature. Compound) and then the EO2 molar adduct (compound where n is 2) are removed, and then the EO3 molar adduct (compound where n is 3) are distilled off. The distribution analysis of the EO3 molar adduct is conducted by GC. If the content of the compound is 90 to 99% by weight, the compound is used as it is; otherwise, the content of the compound is 90 to 99% by weight. Repeat the removal of the low addition mole product until.

次いで、攪拌機付き反応容器に前記混合物の所定量とKOHフレークの所定量を仕込み、窒素で容器内を充に置換した後、所定圧力下で昇温する。目標温度になったら、EOを徐々に仕込み、圧力をあげながら所定圧力下でEOの所定量を仕込む。その後、所定温度で圧力の低下が収まるまで熟成反応を行う。所定温度まで冷却し、中和した後、反応容器から抜き出す。この反応品の5%水溶液のpH、GCによるEO分布の分析を行い、数値を確認する。更に、水酸基価を測定しnの平均値を確認する。   Next, a predetermined amount of the mixture and a predetermined amount of KOH flakes are charged into a reaction vessel equipped with a stirrer, and after the inside of the vessel is replaced with nitrogen, the temperature is raised under a predetermined pressure. When the target temperature is reached, EO is gradually charged, and a predetermined amount of EO is charged under a predetermined pressure while increasing the pressure. Thereafter, an aging reaction is carried out at a predetermined temperature until the pressure drop ceases. After cooling to a predetermined temperature and neutralizing, it is withdrawn from the reaction vessel. The pH of a 5% aqueous solution of this reaction product is analyzed for EO distribution by GC, and the numerical value is confirmed. Furthermore, a hydroxyl value is measured and the average value of n is confirmed.

このようにして得られた反応生成物は、本発明の(A)成分としてそのまま使用できるが、必要に応じて組成を調整してもよい。   The reaction product thus obtained can be used as it is as the component (A) of the present invention, but the composition may be adjusted as necessary.

また、本発明の水硬性組成物用添加剤組成物は、炭素数1〜22のアルコールに炭素数2〜8のアルキレンオキシドを付加する工程と、該工程により得られた反応生成物中の一般式(1)中のnが3以下の化合物を低減する工程とを有する、水硬性組成物用添加剤組成物の製造方法(以下、製法2という)より得ることができる。   Moreover, the additive composition for hydraulic compositions of the present invention comprises a step of adding an alkylene oxide having 2 to 8 carbon atoms to an alcohol having 1 to 22 carbon atoms, and a general reaction product obtained by the step. It can be obtained from a method for producing an additive composition for a hydraulic composition (hereinafter referred to as production method 2), which comprises a step of reducing a compound wherein n in formula (1) is 3 or less.

製法2において、炭素数1〜22のアルコールに炭素数2〜8のアルキレンオキシドを付加する方法は、水酸化カリウム等のアルカリ触媒の存在下、所定圧力、所定温度の条件で反応させる方法が挙げられる。その際、炭素数2〜8のアルキレンオキシドは、アルコールが1価の場合、該アルコール1モルあたり、1〜10モルが好ましく、1〜5モルがより好ましく、2〜3モルが更に好ましい。また、工程により得られた反応生成物中の一般式(1)中のnが3以下の化合物を低減する方法としては、該反応生成物を、減圧下(例えば13.3〜1.33kPa)、所定温度で一定時間還流する方法が挙げられ、低減の対象となる化合物に応じて条件を変えて行うことが好ましい。例えば、圧力及び温度を条件を段階的に変更して、nが0、1、2、3を逐次留去することができる。   In production method 2, a method of adding an alkylene oxide having 2 to 8 carbon atoms to an alcohol having 1 to 22 carbon atoms is a method in which the reaction is performed under the conditions of a predetermined pressure and a predetermined temperature in the presence of an alkali catalyst such as potassium hydroxide. It is done. In that case, when the alcohol is monovalent, the alkylene oxide having 2 to 8 carbon atoms is preferably 1 to 10 mol, more preferably 1 to 5 mol, and still more preferably 2 to 3 mol per mol of the alcohol. Moreover, as a method of reducing the compound in which n in general formula (1) in the reaction product obtained by the process is 3 or less, the reaction product is reduced under reduced pressure (for example, 13.3 to 1.33 kPa). And a method of refluxing at a predetermined temperature for a predetermined time, and it is preferable to carry out by changing the conditions according to the compound to be reduced. For example, the pressure and temperature can be changed in stages, and n can be sequentially distilled off from 0, 1, 2, and 3.

製法2の一例として、炭素数4のアルコール(ブタノール)に炭素数2のEOを付加する場合について説明する。   As an example of production method 2, a case where EO having 2 carbon atoms is added to alcohol having 4 carbon atoms (butanol) will be described.

攪拌機付き反応容器にブタノールの所定量とKOHの所定量を仕込み、窒素で容器内を充分に置換した後、所定圧力下で昇温する。目標温度になったら、EOを徐々に仕込み、圧力をあげながら所定圧力下でEOの所定量(ブタノールに対して3モル)を仕込む。その後、所定温度で圧力の低下が収まるまで熟成反応を行った。所定温度まで冷却し、中和した後、反応容器から抜き出す。この反応品の5%水溶液のpH、及びGCによるEO分布の分析を行い、数値を確認する。更に、水酸基価を測定しnの平均値を確認する。精留塔を取り付けたヘルツフラスコに反応中和品の所定量を仕込み、還流比、真空度、温度等を所定条件としてブタノール(nが0の化合物)、次いでEO1モル付加物(nが1の化合物)、次いでEO2モル付加物(nが2の化合物)を除去した後、EO3モル付加物(nが3の化合物)を蒸留除去する。その後、還流比、真空度等を変更して蒸留しEO4、5モル付加物を含む混合物を得る。この混合物のGCによるEO分布の分析を行い、数値を確認する。更に、水酸基価を測定しnの平均値を確認する。   A predetermined amount of butanol and a predetermined amount of KOH are charged into a reaction vessel equipped with a stirrer, and after the inside of the vessel is sufficiently substituted with nitrogen, the temperature is raised under a predetermined pressure. When the target temperature is reached, EO is gradually charged, and a predetermined amount of EO (3 mol with respect to butanol) is charged under a predetermined pressure while increasing the pressure. Thereafter, an aging reaction was performed at a predetermined temperature until the pressure drop was subsided. After cooling to a predetermined temperature and neutralizing, it is withdrawn from the reaction vessel. Analyze pH of 5% aqueous solution of this reaction product and EO distribution by GC to confirm the numerical value. Furthermore, a hydroxyl value is measured and the average value of n is confirmed. A Hertzian flask equipped with a rectifying column is charged with a predetermined amount of a reaction neutralized product, butanol (a compound with n = 0), and then an EO 1 molar adduct (n = 1) under predetermined conditions such as reflux ratio, degree of vacuum, and temperature. Compound) and then the EO2 molar adduct (compound where n is 2) and then the EO3 molar adduct (compound where n is 3) are distilled off. Thereafter, the mixture is distilled while changing the reflux ratio, the degree of vacuum, etc. to obtain a mixture containing EO4, 5 mol adduct. The mixture is analyzed for EO distribution by GC to confirm the numerical value. Furthermore, a hydroxyl value is measured and the average value of n is confirmed.

<水硬性組成物の製造方法>
本発明の水硬性組成物用添加剤組成物は、水硬性粉体と水とを含有する水硬性組成物の製造に用いられる。本発明の製造方法では、本発明の水硬性組成物用添加剤組成物と、水硬性粉体と、水とを混合するが、その混合方法、混合装置などは公知の手段を採用できる。また、水硬性粉体、水、本発明の添加剤組成物の使用量は、水硬性組成物の用途、組成などに応じて、好ましくは前記した範囲で、適宜選定できる。
<Method for producing hydraulic composition>
The additive composition for a hydraulic composition of the present invention is used for producing a hydraulic composition containing a hydraulic powder and water. In the production method of the present invention, the additive composition for hydraulic composition of the present invention, the hydraulic powder, and water are mixed, and the mixing method, mixing device, and the like can employ known means. Moreover, the usage-amount of hydraulic powder, water, and the additive composition of this invention can be suitably selected in the above-mentioned range preferably according to the use of a hydraulic composition, a composition, etc.

本発明により製造される水硬性組成物は、水及び水硬性粉体(セメント)を含有する、ペースト、モルタル、コンクリート等であるが、骨材を含有してもよい。骨材として細骨材や粗骨材等が挙げられ、細骨材は山砂、陸砂、川砂、砕砂が好ましく、粗骨材は山砂利、陸砂利、川砂利、砕石が好ましい。用途によっては、軽量骨材を使用してもよい。なお、骨材の用語は、「コンクリート総覧」(1998年6月10日、技術書院発行)による。   The hydraulic composition produced by the present invention is a paste, mortar, concrete or the like containing water and hydraulic powder (cement), but may contain aggregate. Examples of the aggregate include fine aggregate and coarse aggregate. The fine aggregate is preferably mountain sand, land sand, river sand and crushed sand, and the coarse aggregate is preferably mountain gravel, land gravel, river gravel and crushed stone. Depending on the application, lightweight aggregates may be used. The term “aggregate” is based on “Concrete Overview” (published on June 10, 1998, published by Technical Shoin).

該水硬性組成物は、セメントの水和反応に必要な水量を維持しつつ、より高強度で施工可能なコンクリートを製造する観点から、水/水硬性粉体比〔スラリー中の水と水硬性粉体の重量百分率(重量%)、通常W/Pと略記されるが、粉体がセメントの場合、W/Cと略記される。〕10〜60重量%であり、更に15〜55重量%、更に20〜53重量%、更に30〜50重量%、より更に40〜50重量%であることができる。   The hydraulic composition has a water / hydraulic powder ratio [water and hydraulic properties in slurry from the viewpoint of producing concrete that can be constructed with higher strength while maintaining the amount of water necessary for the hydration reaction of cement. The percentage by weight (% by weight) of the powder, usually abbreviated as W / P, but abbreviated as W / C when the powder is cement. ] 10 to 60% by weight, further 15 to 55% by weight, further 20 to 53% by weight, further 30 to 50% by weight, and further 40 to 50% by weight.

本発明の水硬性組成物において、水硬性粉体の単位量は、好ましくは250〜2000kg/m3、より好ましくは270〜1500kg/m3、さらに好ましくは300〜1000kg/m3、特に好ましくは300〜400kg/m3である。 In the hydraulic composition of the present invention, the unit amount of the hydraulic powder is preferably 250 to 2000 kg / m 3 , more preferably 270 to 1500 kg / m 3 , still more preferably 300 to 1000 kg / m 3 , particularly preferably. 300 to 400 kg / m 3 .

また、本発明の水硬性組成物において、水の単位量は、好ましくは120〜190kg/m3、好ましくは150〜185kg/m3、さらに好ましくは160〜175kg/m3である。 In the hydraulic composition of the present invention, the unit amount of water is preferably 120 to 190 kg / m 3 , preferably 150 to 185 kg / m 3 , more preferably 160 to 175 kg / m 3 .

本発明の水硬性組成物は、硬化体が火炎等に曝され加熱された時の爆裂防止の観点から、合成繊維等の繊維を含有することが好ましい。繊維は、例えば100℃で軟化又は溶融することで体積減少又は分解・揮発する長さが6〜50mm、直径が5〜500μmの合成繊維が挙げられる。硬化体が加熱された際には、硬化体に含有された繊維が体積減少又は分解・揮発することで硬化体の膨張による歪を緩和し、硬化体の爆裂を防止することができる。合成繊維としては、ポリアセタール繊維、ナイロン繊維、アラミド繊維、ポリエステル繊維、アクリル繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維等の合繊繊維、レーヨン繊維等の再生繊維が挙げられ、中でもポリアセタール繊維が好ましい。繊維は、80N/mm2以上の高強度コンクリートを得る観点から、水硬性組成物に対して0.01〜5.0体積%、更に0.05〜3.5体積%、より更に0.1〜3.5体積%用いることが好ましい。 The hydraulic composition of the present invention preferably contains fibers such as synthetic fibers from the viewpoint of preventing explosion when the cured body is exposed to a flame or the like and heated. Examples of the fiber include synthetic fibers having a length of 6 to 50 mm in which the volume decreases or decomposes and volatilizes by being softened or melted at 100 ° C. and a diameter of 5 to 500 μm. When the cured body is heated, the fiber contained in the cured body is reduced in volume or decomposed and volatilized, so that distortion due to expansion of the cured body can be alleviated and explosion of the cured body can be prevented. Examples of synthetic fibers include polyacetal fibers, nylon fibers, aramid fibers, polyester fibers, acrylic fibers, vinylon fibers, synthetic fibers such as polypropylene fibers and polyethylene fibers, and regenerated fibers such as rayon fibers. Of these, polyacetal fibers are preferred. From the viewpoint of obtaining high-strength concrete of 80 N / mm 2 or more, the fiber is 0.01 to 5.0% by volume, more preferably 0.05 to 3.5% by volume, and still more preferably 0.1% to the hydraulic composition. It is preferable to use ~ 3.5% by volume.

繊維を混入するタイミングは、配合毎に製造されるコンクリートのフレッシュ性状を考慮し、適宜、決めれば良いが、効率良く高い流動性を得るという観点から、粗骨材を投入する前の練り上がったモルタルに投入するのが好ましい。   The timing of mixing the fibers may be determined appropriately in consideration of the fresh properties of the concrete produced for each compounding, but from the viewpoint of obtaining high fluidity efficiently, it was kneaded before adding the coarse aggregate. It is preferable to put into mortar.

本発明の水硬性組成物は、水硬性組成物の乾燥収縮や硬化後の強度を維持しつつ自己収縮を抑制する観点から、膨張材を含有することが好ましい。膨張材は、JIS A 6202に制定されているものを使用できる。具体的には、カルシウムスルホアルミネートを主成分とする膨張材及び生石灰を主成分とする膨張材から選ばれる膨張材が挙げられる。膨張材は水硬性粉体(例えばセメント)100重量部に対して1〜30重量部、更に3〜20重量部、より更に5〜15重量部用いることが好ましい。水硬性組成物の製造の際、膨張材は、水硬性粉体(例えばセメント)と一緒に投入されるのが好ましい。   The hydraulic composition of the present invention preferably contains an expansion material from the viewpoint of suppressing self-shrinkage while maintaining the drying shrinkage and the strength after curing of the hydraulic composition. As the inflatable material, those defined in JIS A 6202 can be used. Specifically, the expansion material chosen from the expansion material which has calcium sulfoaluminate as a main component, and the expansion material which has quicklime as a main component is mentioned. The expansion material is preferably used in an amount of 1 to 30 parts by weight, further 3 to 20 parts by weight, and further 5 to 15 parts by weight with respect to 100 parts by weight of the hydraulic powder (for example, cement). In the production of the hydraulic composition, the expansion material is preferably added together with the hydraulic powder (for example, cement).

<水硬性組成物用添加剤組成物>
(1)(A)成分及び比較混合物
(A)成分及び比較混合物として、以下の製造例A−1〜A−14で得られた混合物A−1〜A−14を用いた。
<Additive composition for hydraulic composition>
(1) Component (A) and Comparative Mixture As the component (A) and the comparative mixture, the mixtures A-1 to A-14 obtained in the following Production Examples A-1 to A-14 were used.

〔製造例A−1〕(混合物A−1の製造)
攪拌機付きステンレス鋼製6L反応容器にブタノール1824.4gとKOHフレーク3.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO2168.5gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸3.7gで中和した後、反応容器から抜き出した。この反応品の5%水溶液はpH=6.5であった。GCにてEO分布の分析を行った結果、n〔一般式(1)中のn、以下同様〕が3以下の化合物の合計は76.5面積%、nが4〜10の化合物の合計は23.2面積%、nが11以上の化合物の合計は0.3面積%であった(EO平均付加モル数2.3)。精留塔を取り付けたガラス製5Lヘルツフラスコに反応品3.5kgを仕込み、還流比=5、真空度13.3kPa(100torr)、温度約58℃でブタノールを、温度約110℃でnが1の化合物を、温度約160℃でnが2の化合物を、温度約190℃でnが3の化合物を除去した。その後、還流比=2、真空度1.33kPa(10torr)に変更し残渣10%を残して蒸留を行い混合物A−1を得た。蒸留品(混合物A−1)をGCにてEO分布の分析を行った結果を表1に示す。混合物A−1は、n〔一般式(1)中のn、以下同様〕が3以下の化合物の含有量が1.5面積%、nが4、5の化合物の含有量が98.5面積%、nが6以上の化合物の含有量が0面積%であった(水酸基価216.6mgKOH/g、水酸基価によるEO平均付加モル数4.2)。ここで、水酸基価は、試料1gをアセチル化し、水酸基と結合した酢酸を中和するのに必要な水酸化カリウムのmg数を測定した(以下同様)。
[Production Example A-1] (Production of Mixture A-1)
A stainless steel 6L reaction vessel equipped with a stirrer was charged with 1824.4 g of butanol and 3.4 g of KOH flakes, and after sufficiently replacing the inside of the vessel with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 2168.5 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 3.7 g of acetic acid, it was extracted from the reaction vessel. The 5% aqueous solution of this reaction product had a pH of 6.5. As a result of analyzing the EO distribution by GC, the sum of compounds having n [n in general formula (1), the same applies hereinafter] of 3 or less is 76.5% by area, and the sum of compounds having n of 4 to 10 is The total of the compounds having 23.2 area% and n of 11 or more was 0.3 area% (EO average added mole number 2.3). A glass 5 L Hertz flask equipped with a rectifying column was charged with 3.5 kg of the reaction product, reflux ratio = 5, vacuum degree 13.3 kPa (100 torr), butanol at a temperature of about 58 ° C., n at 1 at a temperature of about 110 ° C. The compound in which n was 2 at a temperature of about 160 ° C. and the compound in which n was 3 at a temperature of about 190 ° C. were removed. Thereafter, the reflux ratio was changed to 2 and the degree of vacuum was changed to 1.33 kPa (10 torr), and distillation was performed leaving 10% of the residue to obtain a mixture A-1. Table 1 shows the results of analyzing the EO distribution of the distilled product (mixture A-1) by GC. In the mixture A-1, the content of the compound having n [n in the general formula (1), the same applies hereinafter] of 3 or less is 1.5 area%, and the content of the compound having n is 4 or 5 is 98.5 area. %, The content of the compound having n of 6 or more was 0 area% (hydroxyl value 216.6 mgKOH / g, EO average added mole number 4.2 by hydroxyl value). Here, the hydroxyl value was obtained by acetylating 1 g of a sample and measuring the number of mg of potassium hydroxide necessary for neutralizing acetic acid bonded to the hydroxyl group (the same applies hereinafter).

〔製造例A−2〕(混合物A−2の製造)
攪拌機付きステンレス鋼製0.5L反応容器に、製造例A−1で混合物A−1の製造過程で精留により分離したnが3の化合物(混合物A−6)100gとKOHフレーク0.07gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力を上げながら最大圧力:0.4MPaでEO42.7gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.07gで中和した後、反応容器から抜き出し、混合物A−2を得た。この混合物A−2の5%水溶液はpH=6.2であった。混合物A−2は、nが3以下の化合物の含有量が13.5面積%、nが4〜10の化合物の合計が86.4面積%、nが11以上の化合物の含有量が0.1面積%であった(水酸基価193.5mgKOH/g、水酸基価によるEO平均付加モル数4.9)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-2] (Production of Mixture A-2)
In a 0.5 L reaction vessel made of stainless steel with a stirrer, 100 g of a compound with 3 n (mixture A-6) and 0.07 g of KOH flakes separated by rectification in the production process of mixture A-1 in Production Example A-1. After charging and sufficiently replacing the inside of the container with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 42.7 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.07 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-2. The 5% aqueous solution of this mixture A-2 had pH = 6.2. In the mixture A-2, the content of the compound having n of 3 or less was 13.5 area%, the total of the compounds having n of 4 to 10 was 86.4 area%, and the content of the compound having n of 11 or more was 0.00. It was 1 area% (hydroxyl value 193.5 mgKOH / g, EO average addition mole number 4.9 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−3〕(混合物A−3の製造)
攪拌機付きステンレス鋼製0.5L反応容器に、製造例A−1で混合物A−1の製造過程で精留により分離したnが3の化合物100gとKOHフレーク0.07gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO64.1gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.07gで中和した後、反応容器から抜き出し、混合物A−3を得た。この混合物A−3の5%水溶液はpH=6.2であった。混合物A−3は、nが3以下の化合物の含有量が6.0面積%、nが4〜10の化合物の合計が91.4面積%、nが11以上の化合物の含有量が2.6面積%であった(水酸基価168.6mgKOH/g、水酸基価によるEO平均付加モル数5.9)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-3] (Production of Mixture A-3)
In a stainless steel 0.5 L reaction vessel equipped with a stirrer, 100 g of a compound of n 3 and 0.07 g of KOH flakes separated by rectification in the production process of the mixture A-1 in Production Example A-1 were charged, and the vessel was filled with nitrogen After sufficiently replacing the temperature, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 64.1 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.07 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-3. The 5% aqueous solution of this mixture A-3 had pH = 6.2. In the mixture A-3, the content of the compound having n of 3 or less is 6.0 area%, the total of the compounds having n of 4 to 10 is 91.4 area%, and the content of the compound having n of 11 or more is 2. 6 area% (hydroxyl value 168.6 mgKOH / g, EO average addition mole number 5.9 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−4〕(混合物A−4の製造)
攪拌機付きステンレス鋼製0.5L反応容器に、製造例A−1で混合物A−1の製造過程で精留により分離したnが3の化合物100gとKOHフレーク0.07gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO106.8gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.07gで中和した後、反応容器から抜き出し、混合物A−4を得た。この混合物A−4の5%水溶液はpH=6.2であった。混合物A−4は、nが3以下の化合物の含有量が0.8面積%、nが4〜10の化合物の合計が83.4面積%、nが11以上の化合物の含有量が15.8面積%であった(水酸基価135.9mgKOH/g、水酸基価によるEO平均付加モル数7.7)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-4] (Production of Mixture A-4)
In a stainless steel 0.5 L reaction vessel equipped with a stirrer, 100 g of a compound of n 3 and 0.07 g of KOH flakes separated by rectification in the production process of Mixture A-1 in Production Example A-1 and 0.07 g of KOH flakes were charged, and the vessel was filled with nitrogen. After sufficiently replacing the temperature, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and 106.8 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.07 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-4. The 5% aqueous solution of this mixture A-4 had a pH of 6.2. In the mixture A-4, the content of compounds having n of 3 or less was 0.8 area%, the total of compounds having n of 4 to 10 was 83.4 area%, and the content of compounds having n of 11 or more was 15. It was 8 area% (hydroxyl value 135.9 mgKOH / g, EO average addition mole number 7.7 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−5〕(混合物A−5の製造)
攪拌機付きステンレス鋼製6L反応容器にブタノール1824.4gとKOHフレーク3.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO2168.5gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸3.7gで中和した後、反応容器から抜き出した。この反応品の5%水溶液はpH=6.5であった。GCにてEO分布の分析を行った結果、nが3以下の化合物の合計は76.5面積%、nが4〜10の化合物の合計は23.2面積%、nが11以上の化合物の合計は0.3面積%であった(EO平均付加モル数2.3)。精留塔を取り付けたガラス製5Lヘルツフラスコに反応品3.5kgを仕込み、還流比=5、真空度13.3kPa(100torr)、温度約58℃でブタノールを、温度約110℃でnが1の化合物を除去した後、温度160℃でnが2の化合物を蒸留分離し、混合物A−5を得た。混合物A−5は、nが3以下の化合物の含有量が100面積%であり、nが1の化合物の含有量が0.6面積%、nが2の化合物の含有量が99.0面積%、nが3の化合物の含有量が0.4面積%であった(水酸基価345.2mgKOH/g、水酸基価によるEO平均付加モル数2.0)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-5] (Production of Mixture A-5)
A stainless steel 6L reaction vessel equipped with a stirrer was charged with 1824.4 g of butanol and 3.4 g of KOH flakes, and after sufficiently replacing the inside of the vessel with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 2168.5 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 3.7 g of acetic acid, it was extracted from the reaction vessel. The 5% aqueous solution of this reaction product had a pH of 6.5. As a result of analyzing the EO distribution by GC, the total of compounds with n of 3 or less was 76.5 area%, the total of compounds with n of 4 to 10 was 23.2 area%, and n was 11 or more. The total was 0.3 area% (EO average added mole number 2.3). A glass 5 L Hertz flask equipped with a rectifying column was charged with 3.5 kg of the reaction product, reflux ratio = 5, vacuum degree 13.3 kPa (100 torr), butanol at a temperature of about 58 ° C., n at 1 at a temperature of about 110 ° C. Then, the compound having n = 2 was separated by distillation at a temperature of 160 ° C. to obtain a mixture A-5. In the mixture A-5, the content of the compound having n of 3 or less is 100 area%, the content of the compound in which n is 1 is 0.6 area%, and the content of the compound in which n is 2 is 99.0 area %, And the content of the compound having n of 3 was 0.4 area% (hydroxyl value 345.2 mgKOH / g, EO average added mole number 2.0 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−6〕(混合物A−6の製造)
攪拌機付きステンレス鋼製6L反応容器にブタノール1824.4gとKOHフレーク3.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO2168.5gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸3.7gで中和した後、反応容器から抜き出した。この反応品の5%水溶液はpH=6.5であった。GCにてEO分布の分析を行った結果、nが3以下の化合物の合計は76.5%、nが4〜10の化合物の合計は23.2%、n11以上の化合物の合計は0.3%であった(EO平均付加モル数2.3)。精留塔を取り付けたガラス製5Lヘルツフラスコに反応品3.5kgを仕込み、還流比=5、真空度13.3kPa(100torr)、温度約58℃でブタノールを、温度約110℃でnが1の化合物を、温度約160℃でnが2の化合物を除去した後、温度約190℃でnが3の化合物を蒸留分離し、混合物A−6を得た。混合物A−6は、nが3以下の化合物の含有量が99.5面積%であり、nが2の化合物の含有量が1.5面積%、nが3の化合物の含有量が98.0面積%、nが4の化合物の含有量が0.5面積%であった(水酸基価273.9mgKOH/g、水酸基価によるEO平均付加モル数3.0)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-6] (Production of Mixture A-6)
A stainless steel 6L reaction vessel equipped with a stirrer was charged with 1824.4 g of butanol and 3.4 g of KOH flakes, and after sufficiently replacing the inside of the vessel with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 2168.5 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 3.7 g of acetic acid, it was extracted from the reaction vessel. The 5% aqueous solution of this reaction product had a pH of 6.5. As a result of analyzing the EO distribution by GC, the total of compounds having n of 3 or less was 76.5%, the total of compounds having n of 4 to 10 was 23.2%, and the total of compounds having n11 or more was 0.00. 3% (EO average added mole number 2.3). A glass 5 L Hertz flask equipped with a rectifying column was charged with 3.5 kg of the reaction product, reflux ratio = 5, vacuum degree 13.3 kPa (100 torr), butanol at a temperature of about 58 ° C., n at 1 at a temperature of about 110 ° C. After removing the compound with n of 2 at a temperature of about 160 ° C., the compound with n of 3 was distilled off at a temperature of about 190 ° C. to obtain a mixture A-6. In the mixture A-6, the content of the compound having n of 3 or less is 99.5 area%, the content of the compound in which n is 2 is 1.5 area%, and the content of the compound in which n is 3 is 98. The content of the compound having 0 area% and n of 4 was 0.5 area% (hydroxyl value 273.9 mgKOH / g, EO average added mole number 3.0 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−7〕(混合物A−7の製造)
攪拌機付きステンレス鋼製6L反応容器にブタノール1824.4gとKOHフレーク3.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO2168.5gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸3.7gで中和した後、反応容器から抜き出し、混合物A−7を得た。この混合物A−7の5%水溶液はpH=6.5であった。混合物A−7は、nが3以下の化合物の含有量が76.6面積%、nが4〜10の化合物の含有量が23.1面積%、nが11以上の化合物の含有量が0.3面積%であった(水酸基価363.2mgKOH/g、水酸基価によるEO平均付加モル数1.8)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-7] (Production of Mixture A-7)
A stainless steel 6L reaction vessel equipped with a stirrer was charged with 1824.4 g of butanol and 3.4 g of KOH flakes, and after sufficiently replacing the inside of the vessel with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and while increasing the pressure, 2168.5 g of EO was charged at a maximum pressure of 0.4 MPa. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 3.7 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-7. The 5% aqueous solution of this mixture A-7 had a pH of 6.5. In the mixture A-7, the content of the compound having n of 3 or less is 76.6 area%, the content of the compound having n of 4 to 10 is 23.1 area%, and the content of the compound having n of 11 or more is 0 3 area% (hydroxyl value 363.2 mgKOH / g, EO average added mole number 1.8 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−8〕(混合物A−8の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール358.8gとKOHフレーク0.7gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO639.8gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.7gで中和した後、反応容器から抜き出し、混合物A−8を得た。この混合物A−8の5%水溶液はpH=6.2であった。混合物A−8は、nが3以下の化合物の含有量が54.7面積%、nが4〜10の化合物の含有量が43.6面積%、nが11以上の化合物の含有量が1.7面積%であった(水酸基価268.1mgKOH/g、水酸基価によるEO平均付加モル数3.1)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-8] (Production of Mixture A-8)
358.8 g of butanol and 0.7 g of KOH flakes were charged in a stainless steel 2 L reaction vessel equipped with a stirrer, and the inside of the vessel was sufficiently replaced with nitrogen, followed by heating at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and 639.8 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.7 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-8. The 5% aqueous solution of this mixture A-8 had a pH = 6.2. In the mixture A-8, the content of the compound having n of 3 or less was 54.7 area%, the content of the compound having n of 4 to 10 was 43.6 area%, and the content of the compound having n of 11 or more was 1 0.7 area% (hydroxyl value 268.1 mgKOH / g, EO average addition mole number 3.1 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−9〕(混合物A−9の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール295.8gとKOHフレーク0.6gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO703.1gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.6gで中和した後、反応容器から抜き出し、混合物A−9を得た。この混合物A−9の5%水溶液はpH=6.3であった。混合物A−9は、nが3以下の化合物の含有量が41.7面積%、nが4〜10の化合物の含有量が54.8面積%、nが11以上の化合物の含有量が3.5面積%であった(水酸基価220.4mgKOH/g、水酸基価によるEO平均付加モル数4.1)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-9] (Production of Mixture A-9)
A stainless steel 2 L reaction vessel equipped with a stirrer was charged with 295.8 g of butanol and 0.6 g of KOH flakes, and after the inside of the vessel was sufficiently replaced with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and EO703.1 g was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.6 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-9. The 5% aqueous solution of this mixture A-9 had a pH of 6.3. In the mixture A-9, the content of a compound having n of 3 or less is 41.7 area%, the content of a compound having n of 4 to 10 is 54.8 area%, and the content of a compound having n of 11 or more is 3 It was 0.5 area% (hydroxyl value 220.4 mgKOH / g, EO average addition mole number 4.1 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−10〕(混合物A−10の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール218.8gとKOHフレーク0.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO780.3gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.4gで中和した後、反応容器から抜き出し、混合物A−10を得た。この混合物A−10の5%水溶液はpH=6.1であった。混合物A−10は、nが3以下の化合物の含有量が21.1面積%、nが4〜10の化合物の含有量が67.2面積%、nが11以上の化合物の含有量が11.7面積%であった(水酸基価161.7mgKOH/g、水酸基価によるEO平均付加モル数6.2)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-10] (Production of Mixture A-10)
218.8 g of butanol and 0.4 g of KOH flakes were charged in a stainless steel 2 L reaction vessel equipped with a stirrer, and after the inside of the vessel was sufficiently replaced with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually added, and 780.3 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.4 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-10. The 5% aqueous solution of this mixture A-10 had a pH of 6.1. In the mixture A-10, the content of the compound having n of 3 or less is 21.1 area%, the content of the compound having n of 4 to 10 is 67.2 area%, and the content of the compound having n of 11 or more is 11 0.7 area% (hydroxyl value 161.7 mgKOH / g, EO average addition mole number 6.2 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−11〕(混合物A−11の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール173.6gとKOHフレーク0.4gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO825.5gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.4gで中和した後、反応容器から抜き出し、混合物A−11を得た。この混合物A−11の5%水溶液はpH=6.6であった。混合物A−11は、nが3以下の化合物の含有量が10.1面積%、nが4〜10の化合物の含有量が64.6面積%、nが11以上の化合物の含有量が25.3面積%であった(水酸基価131.0mgKOH/g、水酸基価によるEO平均付加モル数8.0)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-11] (Production of Mixture A-11)
A stainless steel 2 L reaction vessel equipped with a stirrer was charged with 173.6 g of butanol and 0.4 g of KOH flakes, and after the inside of the vessel was sufficiently replaced with nitrogen, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and 825.5 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.4 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-11. The 5% aqueous solution of this mixture A-11 had pH = 6.6. In the mixture A-11, the content of the compound having n of 3 or less is 10.1 area%, the content of the compound having n of 4 to 10 is 64.6 area%, and the content of the compound having n of 11 or more is 25. It was 3 area% (hydroxyl value 131.0 mgKOH / g, EO average addition mole number 8.0 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−12〕(混合物A−12の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール143.9gとKOHフレーク0.5gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO855.0gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.5gで中和した後、反応容器から抜き出し、混合物A−12を得た。この混合物A−12の5%水溶液はpH=6.3であった。混合物A−12は、nが3以下の化合物の含有量が6.4面積%、nが4〜10の化合物の含有量が56.6面積%、nが11以上の化合物の含有量が37.0面積%であった(水酸基価110.8mgKOH/g、水酸基価によるEO平均付加モル数9.8)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-12] (Production of Mixture A-12)
143.9 g of butanol and 0.5 g of KOH flakes were charged in a stainless steel 2 L reaction vessel equipped with a stirrer, and the temperature inside the vessel was sufficiently replaced with nitrogen, followed by heating at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually added, and 855.0 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.5 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-12. The 5% aqueous solution of this mixture A-12 had a pH of 6.3. In the mixture A-12, the content of the compound having n of 3 or less was 6.4 area%, the content of the compound having n of 4 to 10 was 56.6 area%, and the content of the compound having n of 11 or more was 37. It was 0.0 area% (hydroxyl value 110.8 mgKOH / g, EO average addition mole number 9.8 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−13〕(混合物A−13の製造)
攪拌機付きステンレス鋼製2L反応容器にブタノール77.5gとKOHフレーク0.6gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO921.3gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.6gで中和した後、反応容器から抜き出し、混合物A−13を得た。この混合物A−13の5%水溶液はpH=6.5であった。混合物A−13は、nが3以下の化合物の含有量が0.6面積%、nが4〜10の化合物の含有量が17.2面積%、nが11以上の化合物の含有量が82.2面積%であった(水酸基価60.5mgKOH/g、水酸基価によるEO平均付加モル数19.4)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-13] (Production of Mixture A-13)
77.5 g of butanol and 0.6 g of KOH flakes were charged into a stainless steel 2 L reaction vessel equipped with a stirrer, and the inside of the vessel was sufficiently replaced with nitrogen, followed by heating at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually charged, and 921.3 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.6 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-13. The 5% aqueous solution of this mixture A-13 had a pH of 6.5. In the mixture A-13, the content of the compound having n of 3 or less is 0.6 area%, the content of the compound having n of 4 to 10 is 17.2 area%, and the content of the compound having n of 11 or more is 82 0.2% by area (hydroxyl value 60.5 mgKOH / g, EO average added mole number 19.4 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

〔製造例A−14〕(混合物A−14の製造)
攪拌機付きステンレス鋼製0.5L反応容器に、製造例A−1で混合物A−1の製造過程で精留により分離したnが3の化合物60gとKOHフレーク0.05gを仕込み、窒素で容器内を充分に置換した後0.02MPaで昇温した。135℃になったら、EOを徐々に仕込み、圧力をあげながら最大圧力:0.4MPaでEO89.7gを仕込んだ。その後、135℃で圧力の低下が収まるまで熟成反応を行った。温度60℃まで冷却し、酢酸0.05gで中和した後、反応容器から抜き出し、混合物A−4を得た。この混合物A−4の5%水溶液はpH=6.2であった。混合物A−4は、nが3の化合物の含有量が0.1面積%、nが4〜10の化合物の合計が58.0面積%、nが11以上の化合物の含有量が41.9面積%であった(水酸基価113.1mgKOH/g、水酸基価によるEO平均付加モル数9.6)。GCにてEO分布の分析を行った結果を表1に示す。
[Production Example A-14] (Production of Mixture A-14)
In a stainless steel 0.5 L reaction vessel with a stirrer, 60 g of a compound of n = 3 and 0.05 g of KOH flakes separated by rectification in the production process of mixture A-1 in Production Example A-1 were charged, and the vessel was filled with nitrogen. After sufficiently replacing the temperature, the temperature was raised at 0.02 MPa. When the temperature reached 135 ° C., EO was gradually added, and 89.7 g of EO was charged at a maximum pressure of 0.4 MPa while increasing the pressure. Thereafter, an aging reaction was carried out at 135 ° C. until the pressure drop ceased. After cooling to a temperature of 60 ° C. and neutralizing with 0.05 g of acetic acid, the mixture was extracted from the reaction vessel to obtain a mixture A-4. The 5% aqueous solution of this mixture A-4 had a pH of 6.2. In the mixture A-4, the content of the compound where n is 3 is 0.1 area%, the total of the compounds where n is 4 to 10 is 58.0 area%, and the content of the compound where n is 11 or more is 41.9. It was area% (hydroxyl value 113.1 mgKOH / g, EO average addition mole number 9.6 by hydroxyl value). Table 1 shows the results of EO distribution analysis by GC.

上記で得られた(A)成分及び比較混合物について、水酸基価によるEO平均付加モル数、及び付加モル数ごとの化合物の分布(EO分布)を表1に示した。なお、nが11以上の化合物の面積%は、GCチャートの総面積(100面積%)から、nが1〜10の化合物の合計面積(合計面積%)を差し引いて求めた。   Regarding the component (A) and the comparative mixture obtained above, Table 1 shows the EO average addition mole number based on the hydroxyl value and the compound distribution (EO distribution) for each addition mole number. The area% of compounds having n of 11 or more was determined by subtracting the total area (total area%) of compounds having n of 1 to 10 from the total area (100 area%) of the GC chart.

Figure 0005422233
Figure 0005422233

なお、(A)成分及び比較混合物のEO分布は、次のGC条件に従い測定したものであり、面積%は本分析方法で得られるGCチャートに基づいて算出したものである。また、本発明におけるGC測定の面積%の値は記録計の設定により、シリンジの洗浄に用いた溶媒のピークおよびそれより低沸点側のピークの面積はカウントしないようにしたときの値である。
[GC分析法]
1. 2ml蓋付サンプル菅にサンプル一滴を採取する。
2. TMS(トリメチルシリルエーテル)化剤1mlを加え、1分程度十分に振る。
3. 液を1μフィルターで濾過した後、以下条件でGC分析を行う。
<GC条件>
機器(本体):HP−6890(ヒュ−レットパッカード社製)
オーブン:初期温度:40℃ 初期時間:5min
昇温速度:5.0℃/minで150℃まで
昇温速度:10.0℃/minで350℃まで
最高温度:350℃ 12min保持
カラム:キャピラリーカラム frontier UA−1 15.0m×250.0μm
注入量:1.0μl
In addition, EO distribution of (A) component and a comparison mixture was measured according to the following GC conditions, and area% was computed based on GC chart obtained by this analysis method. Further, the area% value of GC measurement in the present invention is a value when the area of the peak of the solvent used for washing the syringe and the peak on the lower boiling point side thereof is not counted by setting the recorder.
[GC analysis method]
1. Take a drop of sample into a 2 ml lidded sample bottle.
2. Add 1 ml of TMS (trimethylsilyl ether) agent and shake well for about 1 minute.
3. After filtering the liquid with a 1 μ filter, GC analysis is performed under the following conditions.
<GC conditions>
Device (main unit): HP-6890 (manufactured by Hewlett-Packard Company)
Oven: Initial temperature: 40 ° C Initial time: 5 min
Temperature increase rate: up to 150 ° C at 5.0 ° C / min
Temperature increase rate: Up to 350 ° C at 10.0 ° C / min
Maximum temperature: 350 ° C., 12 min Holding column: Capillary column frontier UA-1 15.0 m × 250.0 μm
Injection volume: 1.0 μl

<高性能減水剤>
(1)(B)成分
(B)成分として、以下の製造例B−1〜B−2で得られた共重合体B−1〜B−2を用いた。
<High performance water reducing agent>
(1) Component (B) As the component (B), copolymers B-1 to B-2 obtained in the following Production Examples B-1 to B-2 were used.

〔製造例B−1〕(共重合体B−1の製造)
撹拌機付きガラス製反応容器(四つ口フラスコ)に水281.4g仕込み、撹拌しながら窒素置換をし、窒素雰囲気中で80℃まで昇温した。ω−メトキシポリエチレングリコールメタクリレート(EO平均付加モル数120)336.5gとメタクリル酸22.2gと2−メルカプトエタノール1.89gを水238.2gに溶解したものと過硫酸アンモニウム3.68gを水45gに溶解したものの二者をそれぞれ1.5時間かけて滴下した。引き続き、過硫酸アンモニウム1.47gを水15gに溶解したものを30分かけて滴下し、その後1時間同温度(80℃)で熟成した。熟成終了後に48%水酸化ナトリウム18.7gで中和し、共重合体B−1を得た。(重量平均分子量79000)
[Production Example B-1] (Production of Copolymer B-1)
A glass reaction vessel (four-necked flask) equipped with a stirrer was charged with 281.4 g of water, purged with nitrogen while stirring, and heated to 80 ° C. in a nitrogen atmosphere. ω-methoxypolyethyleneglycol methacrylate (EO average addition mole number 120) 336.5 g, methacrylic acid 22.2 g, 2-mercaptoethanol 1.89 g dissolved in water 238.2 g and ammonium persulfate 3.68 g in water 45 g The two dissolved ones were added dropwise over 1.5 hours. Subsequently, a solution prepared by dissolving 1.47 g of ammonium persulfate in 15 g of water was added dropwise over 30 minutes, and then aged at the same temperature (80 ° C.) for 1 hour. After completion of the aging, the mixture was neutralized with 18.7 g of 48% sodium hydroxide to obtain a copolymer B-1. (Weight average molecular weight 79000)

〔製造例B−2〕(共重合体B−2の製造)
特開平7−223852号公報の製造例記載の方法に準じて製造した。
[Production Example B-2] (Production of Copolymer B-2)
It was produced in accordance with the method described in the production example of JP-A-7-223852.

上記で得られた(B)成分を表2にまとめた。   The component (B) obtained above is summarized in Table 2.

Figure 0005422233
Figure 0005422233

表中、EOはエチレンオキシドの略であり、かっこ内の数字は平均付加モル数である。   In the table, EO is an abbreviation for ethylene oxide, and the numbers in parentheses are the average number of moles added.

(2)(C)成分
(C)成分として、以下の製造例C−1〜C−2で得られた共重合体C−1〜C−2を用いた。
(2) Component (C) As the component (C), copolymers C-1 to C-2 obtained in the following Production Examples C-1 to C-2 were used.

〔製造例C−1〕(共重合体C−1の製造)
撹拌機付きガラス製反応容器(四つ口フラスコ)に水366gを仕込み、撹拌しながら窒素置換をし、窒素雰囲気中で80℃まで昇温した。ω−メトキシポリエチレングリコールモノメタクリレート(EOの平均付加モル数23)450g(有効分60.8%、水分35%)とリン酸モノ(2−ヒドロキシエチル)メタクリル酸エステルとリン酸ジ−〔(2−ヒドロキシエチル)メタクリル酸〕エステルの混合物であるリン酸エステル化物(C’)71.6gと3−メルカプトプロピオン酸4.5gを混合したものと過硫酸アンモニウム.8.4gを水48gに溶解したものの2者を、それぞれ1.5時間かけて滴下した。1時間の熟成後、過硫酸アンモニウム1.8gを水10gに溶解したものを30分かけて滴下し、その後1.5時間同温度(80℃)で熟成した。熟成終了後に32%水酸化ナトリウム水溶液44.4gで中和し、重量平均分子量35000の共重合体C−1を得た。(単量体重合pH:1.0、反応率100%)
[Production Example C-1] (Production of Copolymer C-1)
366 g of water was charged into a glass reaction vessel (four-necked flask) equipped with a stirrer, and was purged with nitrogen while stirring, and the temperature was raised to 80 ° C. in a nitrogen atmosphere. 450 g of ω-methoxypolyethyleneglycol monomethacrylate (average number of moles of EO added 23) (effective content 60.8%, moisture 35%), mono (2-hydroxyethyl) methacrylic acid ester and di-[(2 -Hydroxyethyl) methacrylic acid] ester mixture (C ′) 71.6 g and 3-mercaptopropionic acid 4.5 g mixed with ammonium persulfate. Two of 8.4 g dissolved in 48 g of water were added dropwise over 1.5 hours. After aging for 1 hour, 1.8 g of ammonium persulfate dissolved in 10 g of water was added dropwise over 30 minutes, and then aging was carried out at the same temperature (80 ° C.) for 1.5 hours. After completion of aging, the mixture was neutralized with 44.4 g of a 32% aqueous sodium hydroxide solution to obtain a copolymer C-1 having a weight average molecular weight of 35,000. (Monomer polymerization pH: 1.0, reaction rate 100%)

なお、本製造例で使用したリン酸エステル化物(C’)は次の製法により得られたものである。反応容器中にメタクリル酸2−ヒドロキシエチル200gと85%リン酸(H3PO4)36.0gを仕込み、5酸化2リン(無水リン酸)(P25)89.1gを温度が60℃を超えないように冷却しながら徐々に添加した。終了後、反応温度を80℃に設定し、6時間反応させ、冷却後、リン酸エステル化物(C’)を得た。 The phosphoric acid ester (C ′) used in this production example was obtained by the following production method. A reaction vessel was charged with 200 g of 2-hydroxyethyl methacrylate and 36.0 g of 85% phosphoric acid (H 3 PO 4 ), and 89.1 g of phosphorous pentoxide (anhydrous phosphoric acid) (P 2 O 5 ) at a temperature of 60 The solution was gradually added while cooling so as not to exceed ° C. After completion, the reaction temperature was set to 80 ° C., the reaction was performed for 6 hours, and after cooling, phosphoric acid ester (C ′) was obtained.

〔製造例C−2〕(共重合体C−2の製造)
撹拌機付きガラス製反応容器(四つ口フラスコ)に水381gを仕込み、撹拌しながら窒素置換をし、窒素雰囲気中で80℃まで昇温した。ω−メトキシポリエチレングリコールモノメタクリレート(EOの平均付加モル数23)520g(有効分60.8%、水分35%)とリン酸モノ(2−ヒドロキシエチル)メタクリル酸エステルとリン酸ジ−〔(2−ヒドロキシエチル)メタクリル酸〕エステルの混合物であるリン酸エステル化物(C’)〔製造例C−1と同じもの〕28.6gと3−メルカプトプロピオン酸2.8gを混合したものと過硫酸アンモニウム.7.2gを水41gに溶解したものの2者を、それぞれ1.5時間かけて滴下した。1時間の熟成後、過硫酸アンモニウム1.6gを水9gに溶解したものを30分かけて滴下し、その後1.5時間同温度(80℃)で熟成した。熟成終了後に32%水酸化ナトリウム水溶液17.7gで中和し、重量平均分子量36000の共重合体C−2を得た。(単量体重合pH:1.1、反応率100%)
[Production Example C-2] (Production of Copolymer C-2)
A glass reaction vessel (four-necked flask) with a stirrer was charged with 381 g of water, purged with nitrogen while stirring, and heated to 80 ° C. in a nitrogen atmosphere. 520 g of ω-methoxypolyethyleneglycol monomethacrylate (average number of moles of EO added: 23) (effective content: 60.8%, moisture: 35%), mono (2-hydroxyethyl) methacrylate and di-[(2 -Hydroxyethyl) methacrylic acid] phosphoric ester (C ') which is a mixture of ester (same as Production Example C-1) and 22.8 g of 3-mercaptopropionic acid mixed with 2.8 g of ammonium persulfate. Two of 7.2 g dissolved in 41 g of water were added dropwise over 1.5 hours. After aging for 1 hour, 1.6 g of ammonium persulfate dissolved in 9 g of water was added dropwise over 30 minutes, and then aging was carried out at the same temperature (80 ° C.) for 1.5 hours. After completion of aging, the mixture was neutralized with 17.7 g of a 32% aqueous sodium hydroxide solution to obtain a copolymer C-2 having a weight average molecular weight of 36000. (Monomer polymerization pH: 1.1, reaction rate 100%)

上記で得られた(C)成分を表3にまとめた。   The components (C) obtained above are summarized in Table 3.

Figure 0005422233
Figure 0005422233

(3)高性能減水剤の組成等
上記(B)成分、(C)成分を下記表4の比率で配合し、高性能減水剤の有効分23重量%水溶液を調製し、コンクリート評価に使用した。
(3) Composition of high performance water reducing agent, etc. The above components (B) and (C) were blended in the ratios shown in Table 4 below to prepare an effective 23% by weight aqueous solution of the high performance water reducing agent and used for concrete evaluation. .

Figure 0005422233
Figure 0005422233

<コンクリートの調製及び評価> <Preparation and evaluation of concrete>

Figure 0005422233
Figure 0005422233

水(W):水道水
セメント(C):普通ポルトランドセメント(市販品 密度:3.16g/cm3
細骨材(S1):京都府城陽産山砂(密度:2.56g/m3)(FM:2.73)
細骨材(S2):揖斐川産粗砂(密度:2.60g/cm3)(FM:2.66)
粗骨材(G):砂利(密度:2.61g/cm3)(FM:6.87)
W/C:(W/C)×100(重量%)
S/a:〔(S1+S2)/(S1+S2+G)〕×100(体積%)
Water (W): Tap water Cement (C): Ordinary Portland cement (commercially available density: 3.16 g / cm 3 )
Fine aggregate (S1): Mountain sand from Joyo, Kyoto (Density: 2.56 g / m 3 ) (FM: 2.73)
Fine aggregate (S2): Yodogawa coarse sand (density: 2.60 g / cm 3 ) (FM: 2.66)
Coarse aggregate (G): gravel (density: 2.61 g / cm 3 ) (FM: 6.87)
W / C: (W / C) × 100 (% by weight)
S / a: [(S1 + S2) / (S1 + S2 + G)] × 100 (volume%)

表5に示す配合条件で、100Lの強制二軸ミキサーを用いて、セメント(C)、細骨材(S)、粗骨材(G)を投入し空練りを10秒行い、目標スランプ17±1cm、目標空気量3.0〜6.0%となるように空気連行剤(主成分は、ポリオキシエチレンラウリルエーテル硫酸塩)及び消泡剤(主成分は脂肪酸エステル)と23重量%高性能減水剤水溶液を含む練り水(これら添加成分と水の合計をWとする)を加え、90秒間混練りした。空気連行剤は、セメント重量に対し0.002重量%を練り水に添加した。また、消泡剤は(A)成分中に0.1重量%配合した。尚、このコンクリートをベースコンクリートとした(表6の比較例1)。次に、ベースコンクリートの練水に(A)成分を添加〔空気連行剤、消泡剤、高性能減水剤、(A)成分と水の合計をW〕することで、ベースコンクリートの流動性、空気連行性、乾燥収縮性、凍結融解抵抗性に与える影響を評価した。これらコンクリートは、以下に示す試験法に従って、スランプ、空気量、乾燥収縮、凍結融解抵抗性の測定を行った。また、以下に示す試験法に従って(A)成分の臭気を評価した。評価結果を表6に示した。   Cement (C), fine aggregate (S), and coarse aggregate (G) were added using a 100 L forced biaxial mixer under the blending conditions shown in Table 5, and kneaded for 10 seconds. Air-entraining agent (main component is polyoxyethylene lauryl ether sulfate) and antifoaming agent (main component is fatty acid ester) and 23% by weight high performance so that the target air volume is 3.0 to 6.0%. Kneading water containing a water reducing agent aqueous solution (the total amount of these additive components and water is W) was added and kneaded for 90 seconds. The air entraining agent was added to the kneading water in an amount of 0.002% by weight based on the cement weight. Moreover, 0.1 weight% of antifoamers were mix | blended in (A) component. This concrete was used as base concrete (Comparative Example 1 in Table 6). Next, by adding the component (A) to the base concrete mixing water (air entraining agent, antifoaming agent, high-performance water reducing agent, (A) the sum of the component and water W), the fluidity of the base concrete, The effects on air entrainment, drying shrinkage, and freeze-thaw resistance were evaluated. These concretes were measured for slump, air content, drying shrinkage, and freeze-thaw resistance according to the following test methods. Moreover, the odor of the component (A) was evaluated according to the test method shown below. The evaluation results are shown in Table 6.

なお、(A)成分の添加量はコンクリート配合の単位量で1.5kg/m3とし、23重量%高性能減水剤水溶液の添加量はセメント重量に対して0.75重量%とした。 The addition amount of the component (A) was 1.5 kg / m 3 as a unit amount of the concrete blend, and the addition amount of the 23 wt% high-performance water reducing agent aqueous solution was 0.75 wt% with respect to the cement weight.

(1)流動性評価
スランプをJIS−A1101に準拠して測定し、流動性評価とした。
(2)空気連行性評価
空気量をJIS−A1128に準拠して測定した。
(3)乾燥収縮性評価
乾燥収縮をJIS−A1129(コンタクトゲージ法)に準拠して測定した。すなわち、100mm×100mm×400mmの供試体を作製し、温度20℃±1℃、湿度60%の恒温恒湿の部屋に保存し、材齢56日の長さ変化率(×10-6)を測定した。長さ変化率が小さいほど、乾燥収縮が小さい事を示す。この評価では、長さ変化率が680(×10-6)以下であることが好ましい。
(4)凍結融解抵抗性評価
凍結融解抵抗性をJIS−A1148に準拠して測定した。すなわち、100×100×400mmの供試体を作製し、材齢28日まで水中養生し、その後、試験を開始した。試験内容は、供試体の中心部温度が5℃から−18℃に下がり、また−18℃から5℃に上がるものとし、これを300回繰り返した。この時の相対動弾性係数が60%以上を凍結融解抵抗性に優れるもの「A」とし、60%未満を凍結融解抵抗性に劣るもの「B」であると判断した。
(5)臭気評価
臭気について熟練された1名のパネラーによる官能評価を行った。すなわち、100mlガラス製スクリュー管に(A)成分を50ml入れ、キャップをした後、スクリュー管のキャップを外し、スクリュー管の入り口部分の臭いを嗅いで、以下の基準で評価する。なお、表6の高性能減水剤は、臭気の問題がないため、1液型とする場合も(A)成分の臭気に問題が無ければ良好な製品が得られる。
特異臭なし:A
特異臭あり:B
強い特異臭あり:C
(1) Fluidity evaluation Slumps were measured in accordance with JIS-A1101 to obtain fluidity evaluation.
(2) Air entrainment evaluation The amount of air was measured according to JIS-A1128.
(3) Drying shrinkage evaluation Drying shrinkage was measured according to JIS-A1129 (contact gauge method). That is, a specimen of 100 mm × 100 mm × 400 mm was prepared and stored in a constant temperature and humidity room at a temperature of 20 ° C. ± 1 ° C. and a humidity of 60%, and the length change rate (× 10 −6 ) of the material age 56 days. It was measured. It shows that drying shrinkage is so small that a rate of length change is small. In this evaluation, the length change rate is preferably 680 (× 10 −6 ) or less.
(4) Freeze-thaw resistance evaluation Freeze-thaw resistance was measured according to JIS-A1148. That is, a 100 × 100 × 400 mm specimen was prepared and cured in water until age 28, after which the test was started. The test contents were such that the center temperature of the specimen decreased from 5 ° C. to −18 ° C. and increased from −18 ° C. to 5 ° C., and this was repeated 300 times. At this time, the relative kinematic modulus of 60% or more was determined to be “A” having excellent freeze-thaw resistance, and less than 60% was determined to be “B” having inferior freeze-thaw resistance.
(5) Odor evaluation Sensory evaluation was performed by one panelist skilled in odor. That is, 50 ml of the component (A) is put into a 100 ml glass screw tube, capped, the cap of the screw tube is removed, and the smell at the entrance of the screw tube is smelled and evaluated according to the following criteria. In addition, since the high performance water reducing agent of Table 6 does not have a problem of odor, a good product can be obtained if there is no problem in the odor of the component (A) even when it is a one-pack type.
No specific odor: A
Peculiar odor: B
Strong peculiar odor: C

Figure 0005422233
Figure 0005422233

表6の結果から、本発明の(A)成分を用いた場合は、目標スランプ値、空気量において、長さ変化率が小さく、凍結融解抵抗性に優れたコンクリートを製造できることがわかる。また、本発明の(A)成分は臭気にも優れている。従って、本発明の水硬性組成物用添加剤組成物は、臭気の問題が無く、コンクリートに複数の優れた物性を同時に付与することができるものである。一方、本発明の(A)成分を用いない比較例1〜14では、臭気と、複数の優れた物性の付与とを、両立することができない。   From the results of Table 6, it can be seen that, when the component (A) of the present invention is used, concrete having a small rate of change in length and excellent freeze-thaw resistance can be produced at the target slump value and air amount. The component (A) of the present invention is also excellent in odor. Therefore, the additive composition for hydraulic composition of the present invention has no problem of odor and can simultaneously impart a plurality of excellent physical properties to concrete. On the other hand, in Comparative Examples 1 to 14 that do not use the component (A) of the present invention, it is impossible to achieve both odor and imparting a plurality of excellent physical properties.

しかも、(A)成分の構造においてEO平均付加モル数が同等でも、例えば、本発明品のA−1(EO平均付加モル数4.2)を用いた実施例1と、比較品のA−9(EO平均付加モル数が4.1)を用いた比較例6とを比べると、比較例6では、長さ変化率が大きくなり、凍結融解抵抗性と臭気にも劣るものとなり、本発明の効果が得られないことがわかる。また、比較例7(EO平均付加モル数6.2のA−10を使用)は、実施例3(EO平均付加モル数5.9のA−3を使用)と同等のEO平均付加モル数の化合物を用いたものであるが、実施例3と比べて長さ変化率が大きくなり、凍結融解抵抗性にも劣るものとなる。更に、比較例8(EO平均付加モル数8.0のA−11を使用)は、実施例4(EO平均付加モル数7.7のA−4を使用)と同等の平均付加モル数の化合物を用いたものであるが、実施例4と比べて長さ変化率が大きくなる。つまり、(A)成分の構造を有する化合物について、EO平均付加モル数が同程度でもEO分布により効果の発現には大きな相違が生じることが本発明により明らかとなった。よって、本発明で規定する(A)成分についてのEO分布は技術的意義があるものである。   Moreover, even if the EO average addition mole number is the same in the structure of the component (A), for example, Example 1 using A-1 (EO average addition mole number 4.2) of the product of the present invention and A- When compared with Comparative Example 6 using 9 (EO average added mole number is 4.1), Comparative Example 6 has a large rate of change in length and is inferior in freeze-thaw resistance and odor. It can be seen that the effect of is not obtained. Further, Comparative Example 7 (using A-10 having an EO average addition mole number of 6.2) is equivalent to EO average addition mole number being equivalent to Example 3 (using A-3 having an EO average addition mole number of 5.9). However, the rate of change in length is larger than that of Example 3, and the freeze-thaw resistance is inferior. Further, Comparative Example 8 (using A-11 having an EO average addition mole number of 8.0) has an average addition mole number equivalent to that of Example 4 (using A-4 having an EO average addition mole number of 7.7). Although a compound is used, the length change rate is larger than that in Example 4. In other words, it was revealed by the present invention that the compound having the structure of component (A) has a great difference in the effect due to the EO distribution even when the EO average added mole number is about the same. Therefore, the EO distribution for the component (A) defined in the present invention is technically significant.

なお、表6の実施例1〜7の組み合わせで、(A)成分36重量%、高性能減水剤14重量%、水50重量%を含有する水硬性組成物用の1液型添加剤組成物を調製し、20℃で3ヶ月保存したところ、いずれも、透明で均一な状態を維持した。   A one-component additive composition for a hydraulic composition containing 36% by weight of component (A), 14% by weight of high-performance water reducing agent, and 50% by weight of water in combination with Examples 1 to 7 in Table 6. Were prepared and stored at 20 ° C. for 3 months, all maintained a transparent and uniform state.

Claims (6)

下記一般式(1)で表される化合物の混合物を含有する水硬性組成物用添加剤組成物であって、
前記混合物の水酸基価によるnの平均値が3〜12であり、
ガスクロマトグラフィーによって求めた前記混合物中のnが3以下の化合物の含有量が0〜15面積%であり、且つ、
ガスクロマトグラフィーによって求めた前記混合物中のnが11以上の化合物の含有量が0〜20面積%である、
水硬性組成物用添加剤組成物。
1−O−(AO)n−R2 (1)
(式中、R1及びR2は、それぞれ水素原子又は炭素原子数アルキル基であり、Aは炭素数2〜のアルキレン基であり、nはAOの付加モル数であり、0以上の整数である。ただし、R1及びR2が同時に水素原子である場合及び同時にアルキル基である場合を除く。)
An additive composition for a hydraulic composition containing a mixture of compounds represented by the following general formula (1),
The average value of n according to the hydroxyl value of the mixture is 3 to 12,
The content of the compound having n of 3 or less in the mixture determined by gas chromatography is 0 to 15 area%, and
The content of the compound having n of 11 or more in the mixture determined by gas chromatography is 0 to 20 area%.
Additive composition for hydraulic composition.
R 1 —O— (AO) n —R 2 (1)
(In the formula, R 1 and R 2 are each a hydrogen atom or an alkyl group having 2 to 6 carbon atoms, A is an alkylene group having 2 to 4 carbon atoms, and n is the added mole number of AO. (It is an integer of 0 or more, except when R 1 and R 2 are hydrogen atoms at the same time and when they are simultaneously alkyl groups.)
ガスクロマトグラフィーによって求めた前記混合物中のnが4〜8の化合物の含有量が50〜99面積%である、請求項1記載の水硬性組成物用添加剤組成物。   The additive composition for hydraulic compositions according to claim 1, wherein the content of the compound having n of 4 to 8 in the mixture determined by gas chromatography is 50 to 99 area%. 前記混合物を3〜100重量%含有する請求項1又は2記載の水硬性組成物用添加剤組成物。   The additive composition for hydraulic compositions according to claim 1 or 2, comprising 3 to 100% by weight of the mixture. 一般式(1)中のRR in general formula (1) 11 及びRAnd R 22 の一方が水素原子であり、他方が炭素原子数4のアルキル基である、請求項1〜3の何れか1項記載の水硬性組成物用添加剤組成物。The additive composition for hydraulic compositions according to any one of claims 1 to 3, wherein one of the above is a hydrogen atom and the other is an alkyl group having 4 carbon atoms. 請求項1〜の何れか1項記載の水硬性組成物用添加剤組成物の製造方法であって、一般式(1)中のnが3である化合物を90〜99重量%含有する混合物に炭素数2〜のアルキレンオキシドを付加する工程を有する、水硬性組成物用添加剤組成物の製造方法。 It is a manufacturing method of the additive composition for hydraulic compositions in any one of Claims 1-4 , Comprising: The mixture containing 90-99weight% of the compound whose n in General formula (1) is 3 a step of adding an alkylene oxide with carbon number 2-4, the method for producing a hydraulic composition additive composition. 請求項1〜の何れか1項記載の水硬性組成物用添加剤組成物の製造方法であって、炭素数のアルコールに炭素数2〜のアルキレンオキシドを付加する工程と、該工程により得られた反応生成物中の一般式(1)中のnが3以下の化合物を低減する工程とを有する、水硬性組成物用添加剤組成物の製造方法。 A process of claim 1 any one for hydraulic compositions additive composition according to 4, comprising the steps of adding the alkylene oxide from 2 4 carbon atoms in the alcohol having 2 to 6 carbon atoms, The manufacturing method of the additive composition for hydraulic compositions which has the process of reducing the compound whose n in General formula (1) in the reaction product obtained by this process is 3 or less.
JP2009065437A 2009-03-18 2009-03-18 Additive composition for hydraulic composition Active JP5422233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065437A JP5422233B2 (en) 2009-03-18 2009-03-18 Additive composition for hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065437A JP5422233B2 (en) 2009-03-18 2009-03-18 Additive composition for hydraulic composition

Publications (2)

Publication Number Publication Date
JP2010215462A JP2010215462A (en) 2010-09-30
JP5422233B2 true JP5422233B2 (en) 2014-02-19

Family

ID=42974721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065437A Active JP5422233B2 (en) 2009-03-18 2009-03-18 Additive composition for hydraulic composition

Country Status (1)

Country Link
JP (1) JP5422233B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091050B2 (en) * 2011-02-09 2017-03-08 株式会社日本触媒 Shrinkage reducing agent for hydraulic materials
JP5788744B2 (en) * 2011-09-02 2015-10-07 株式会社安藤・間 Repair method for underground structures
JP7049755B2 (en) * 2015-07-06 2022-04-07 株式会社大林組 Concrete and how to make concrete
JP7103648B2 (en) * 2019-03-12 2022-07-20 竹本油脂株式会社 Shrinkage reducer and hydraulic composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145054A (en) * 1981-02-26 1982-09-07 Sanyo Chemical Ind Ltd Cement shrinkage reducing agent
JP2004091259A (en) * 2002-08-30 2004-03-25 Kajima Corp Cement blend and method for using the same
JP2005132687A (en) * 2003-10-31 2005-05-26 Sanyo Chem Ind Ltd Shrinkage-reducing agent for cement and cement composition using the same
JP4330131B2 (en) * 2003-11-10 2009-09-16 鹿島建設株式会社 Shrinkage reducing agent for cement compound and cement compound containing the same
JP4772004B2 (en) * 2006-07-27 2011-09-14 日本製紙ケミカル株式会社 One-component cement additive composition and cement composition having both shrinkage reducing function and water reducing function

Also Published As

Publication number Publication date
JP2010215462A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
KR101324266B1 (en) Dispersing agent for hydraulic composition
JP4883757B2 (en) AE concrete manufacturing method and AE concrete
JP6202916B2 (en) Blast furnace slag-containing cement slurry composition and method for preparing soil cement slurry using the same
JP2008273766A (en) Shrinkage-reducing ae (air-entrained) concrete composition
JP5351638B2 (en) Early strength agent for hydraulic composition
TW201311605A (en) Poly(carboxylic acid)-based polymer for hydraulic material additive
JP5422233B2 (en) Additive composition for hydraulic composition
JP5351472B2 (en) Hydraulic composition for ultra high strength concrete
JP5058098B2 (en) Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering
JP5312900B2 (en) Additive composition for hydraulic composition
JP5351506B2 (en) Additive composition for hydraulic composition
JP5305746B2 (en) Hydraulic composition
JP6955967B2 (en) Blast furnace slag-containing cement slurry composition and method for preparing soil cement slurry using the same
JP5351473B2 (en) Hydraulic composition for ultra high strength concrete
JP5676238B2 (en) Dispersant composition for hydraulic composition
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP5100366B2 (en) Admixture for hydraulic composition
JP2018509489A (en) Novel copolymers as water reducing agents in hydraulic compositions
JP4368781B2 (en) Hydraulic powder dispersion polymer
JP5135099B2 (en) Early strength agent for hydraulic composition
JP5311891B2 (en) Additive composition for hydraulic composition
JP2020147454A (en) Admixture for hydraulic composition
JP7099767B1 (en) Admixture for hydraulic composition and hydraulic composition
JP6362531B2 (en) Hydraulic composition
KR101648255B1 (en) Copolymer for cement admixture, method for preparing the same, and cement composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5422233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250