JP5058016B2 - Non-condensable gas accumulation combustion prevention system - Google Patents

Non-condensable gas accumulation combustion prevention system Download PDF

Info

Publication number
JP5058016B2
JP5058016B2 JP2008031691A JP2008031691A JP5058016B2 JP 5058016 B2 JP5058016 B2 JP 5058016B2 JP 2008031691 A JP2008031691 A JP 2008031691A JP 2008031691 A JP2008031691 A JP 2008031691A JP 5058016 B2 JP5058016 B2 JP 5058016B2
Authority
JP
Japan
Prior art keywords
gas
pipe
condensable gas
valve
condensable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008031691A
Other languages
Japanese (ja)
Other versions
JP2009192298A (en
Inventor
敏嗣 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008031691A priority Critical patent/JP5058016B2/en
Publication of JP2009192298A publication Critical patent/JP2009192298A/en
Application granted granted Critical
Publication of JP5058016B2 publication Critical patent/JP5058016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は原子力発電所の非凝縮性ガスが蓄積される可能性のある部位に適用される非凝縮性ガス蓄積燃焼防止システムに関する。   The present invention relates to a non-condensable gas accumulation combustion prevention system applied to a portion of a nuclear power plant where non-condensable gas may be accumulated.

原子力発電所内は、原子炉格納容器内に原子炉圧力容器が収容される。この原子炉圧力容器内の原子炉冷却水は、炉心での核反応に伴う中性子照射により加熱されて気液二層流になる一方、この冷却水の一部が分解して水素ガスおよび酸素ガスが生成される。また、場合によっては燃料棒より漏洩する微量なクリプトン、キセノン等の放射性希ガス等が存在する。このため、原子力発電所には、これら水素ガス、酸素ガス、クリプトン、キセノン等の非凝縮性ガスを処理するために気体廃棄物処理系が設けられる。   In the nuclear power plant, the reactor pressure vessel is accommodated in the reactor containment vessel. The reactor cooling water in the reactor pressure vessel is heated by neutron irradiation accompanying the nuclear reaction in the reactor core and becomes a gas-liquid two-layer flow. On the other hand, a part of the cooling water is decomposed to generate hydrogen gas and oxygen gas. Is generated. In some cases, a small amount of radioactive noble gas such as krypton or xenon leaks from the fuel rod. For this reason, the nuclear power plant is provided with a gas waste treatment system for treating non-condensable gases such as hydrogen gas, oxygen gas, krypton, and xenon.

一方、原子炉圧力容器内で発生した蒸気は主蒸気(原子炉主蒸気)となり、主蒸気系を通り蒸気タービンに送られ、この蒸気タービンで仕事をして発電機を駆動させる。この主蒸気系を構成する主蒸気管には原子炉の安全性などを考慮した流れのない行止まり枝管(分岐管)が分岐されている。この行止まり枝管は1つの原子力プラント当り何百ラインも存在する。さらに、原子炉圧力容器の頂部から原子炉圧力容器ベント系や原子炉圧力容器ヘッドスプレイ系等の原子炉圧力容器頂部ベント設備が設けられる。   On the other hand, the steam generated in the reactor pressure vessel becomes main steam (reactor main steam), is sent to the steam turbine through the main steam system, and the steam turbine works to drive the generator. The main steam pipe constituting the main steam system is branched with a dead-end branch pipe (branch pipe) having no flow considering the safety of the nuclear reactor. This dead end branch has hundreds of lines per nuclear plant. Furthermore, a reactor pressure vessel top vent facility such as a reactor pressure vessel vent system and a reactor pressure vessel head spray system is provided from the top of the reactor pressure vessel.

原子炉主蒸気には、放射性分解により生成された可燃性の非凝縮性ガスが含まれており、この非凝縮性ガスは主蒸気系を流れる原子炉主蒸気とともに流動する。原子炉主蒸気を内包する主蒸気配管や容器に立ち上がり枝管や立ち上がり分岐部のような滞溜部が存在すると、この滞溜部が非凝縮性ガスのガス蓄積可能箇所となり非凝縮性ガスが蓄積される。蓄積された非凝縮性ガスに何らかの原因で着火することで急速燃焼する例が報告されている。   The reactor main steam contains a combustible non-condensable gas generated by radioactive decomposition, and this non-condensable gas flows together with the reactor main steam flowing through the main steam system. If there is a stagnant part such as a rising branch pipe or rising branch part in the main steam pipe or vessel containing the reactor main steam, this stagnant part becomes a place where non-condensable gas can accumulate, and the non-condensable gas is Accumulated. An example of rapid combustion by igniting the accumulated non-condensable gas for some reason has been reported.

図9は、非凝縮性ガス蓄積のメカニズムを説明するものである。一般に、原子炉主蒸気を内包する主蒸気配管(母管)または容器(以下、「配管(母管)」という。)1とそこから分岐する立ち上がり枝管2に設けられた仕切り弁3にて隔離される空間(ガス蓄積可能箇所)4に、非凝縮性ガス5が蓄積される可能性が高い。母管(配管)1には原子炉主蒸気が流れている。枝管2は仕切り弁3で仕切られて行き止まりになっていることから、流入した原子炉主蒸気は放熱により凝縮されて水になる。そうすると非凝縮性ガス5は枝管2内に残され、蒸気より比重の軽い非凝縮性ガス5は枝管立ち上がり部に順次蓄積されることが知られている(例えば、特許文献1参照)。
特開2004−12145号公報
FIG. 9 explains the mechanism of non-condensable gas accumulation. In general, a main steam pipe (mother pipe) or container (hereinafter referred to as “pipe (mother pipe)”) 1 containing the reactor main steam and a gate valve 3 provided on a rising branch pipe 2 branched therefrom. There is a high possibility that the non-condensable gas 5 is accumulated in the space 4 (location where gas can be accumulated). Reactor main steam flows through the mother pipe (pipe) 1. Since the branch pipe 2 is partitioned by the gate valve 3 and has a dead end, the inflowing reactor main steam is condensed by heat radiation to become water. Then, it is known that the non-condensable gas 5 is left in the branch pipe 2 and the non-condensable gas 5 having a specific gravity lighter than that of the vapor is sequentially accumulated at the branch pipe rising portion (see, for example, Patent Document 1).
JP 2004-12145 A

原子力発電所において、原子炉主蒸気を内包する母管(配管)1から分岐する枝管2のうち、立上り枝管のようなガス蓄積可能箇所4に、非凝縮性ガス5が滞溜していき、滞溜した非凝縮性ガス5が何らかの原因により着火燃焼する可能性がある。   In a nuclear power plant, a non-condensable gas 5 stagnates in a gas accumulation location 4 such as a rising branch pipe among branch pipes 2 branched from a main pipe (piping) 1 containing a reactor main steam. The stagnant non-condensable gas 5 may be ignited and burned for some reason.

非凝縮性ガス5への着火燃焼を未然にかつ確実に防止するために、非凝縮性ガス5の発生を抑止したり、非凝縮性ガス5のガス蓄積を防止したり、ガス蓄積可能箇所4を燃焼環境条件としない条件を構築する必要がある。   In order to prevent the non-condensable gas 5 from being ignited and burned in advance, the generation of the non-condensable gas 5 is suppressed, the gas accumulation of the non-condensable gas 5 is prevented, or the gas accumulation location 4 It is necessary to construct conditions that do not make the combustion environment conditions.

特許文献1は仕切り弁3の弁体にベント孔を設ける発明が開示されているが、仕切り弁3自体への加工を必要とするため弁および弁機能保護の観点から課題がある。   Patent Document 1 discloses an invention in which a vent hole is provided in the valve body of the gate valve 3, but there is a problem from the viewpoint of protecting the valve and the valve function because it requires processing into the gate valve 3 itself.

本発明はこれらの課題を解決するために、非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止し、原子力発電所内機器や配管の健全性を確保し、信頼性を向上させた非凝縮性ガス蓄積燃焼防止システムを提供することを目的とする。   In order to solve these problems, the present invention prevents non-condensable gas from accumulating and burning in advance, ensures the soundness of nuclear power plant equipment and piping, and improves the reliability. An object is to provide a gas accumulation combustion prevention system.

上述の課題を解決するため本発明では、原子力発電所の非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に設けられた開閉弁の上流側と下流側とを接続するバイパス配管と、前記バイパス配管の途中に設けられたバイパス配管開閉弁と、を備え、前記ガス蓄積可能箇所の配管材料に、このガス蓄積可能箇所以外の配管材料よりも熱伝導率の低い材料を使用し、前記ガス蓄積可能箇所に磁場発生装置を配置して、前記非凝縮性ガスに含まれる酸素ガスの常磁性を利用して前記非凝縮性ガスを流動させることを特徴とする非凝縮性ガス蓄積燃焼防止システムを提供する。 In order to solve the above-described problems, in the present invention, a bypass pipe that connects the upstream side and the downstream side of the on-off valve provided in the gas accumulation-possible location where the non-condensable gas of the nuclear power plant may stay, A bypass pipe opening / closing valve provided in the middle of the bypass pipe, and using a material having lower thermal conductivity than the pipe material other than the gas accumulable location, as the pipe material of the gas accumulable location , Non-condensable gas accumulation combustion prevention characterized in that a magnetic field generator is disposed at a gas accumulable location and the non-condensable gas flows using the paramagnetism of oxygen gas contained in the non-condensable gas. Provide a system.

本発明によれば、非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止し、原子力発電所内機器や配管の健全性を確保し、信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the accumulation combustion of noncondensable gas can be prevented beforehand and reliably, the soundness of the apparatus and piping in a nuclear power station can be ensured, and reliability can be improved.

本発明に係る非凝縮性ガス蓄積燃焼防止システムの実施の形態について添付図面を参照して説明する。   Embodiments of a non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to the accompanying drawings.

[第1の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第1実施形態について、図1から図2を参照して説明する。
[First Embodiment]
A first embodiment of a non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIGS.

図1は、本発明に係る非凝縮性ガス蓄積燃焼防止システムを備えた沸騰水型原子力プラント10の概略的な系統図を示す。   FIG. 1 shows a schematic system diagram of a boiling water nuclear plant 10 equipped with a non-condensable gas accumulation combustion prevention system according to the present invention.

沸騰水型原子力プラント10は、原子炉格納容器11内に原子炉圧力容器12を格納している。この原子炉格納容器11内は原子炉圧力容器12周りがドライウェル13として構成される。原子炉圧力容器12内には炉心14が格納される。この炉心14は炉水としての原子炉冷却水15に浸漬される。原子炉圧力容器12の下部には原子炉冷却水15を貯えた液相部(炉心下部プレナム)が成形される一方、この液相部の上方には気相部(炉心上部プレナム)16が形成される。   The boiling water nuclear power plant 10 stores a reactor pressure vessel 12 in a reactor containment vessel 11. In the reactor containment vessel 11, the periphery of the reactor pressure vessel 12 is configured as a dry well 13. A reactor core 14 is stored in the reactor pressure vessel 12. The core 14 is immersed in reactor cooling water 15 as reactor water. A liquid phase part (reactor lower plenum) storing reactor cooling water 15 is formed at the lower part of the reactor pressure vessel 12, and a gas phase part (upper core plenum) 16 is formed above the liquid phase part. Is done.

原子炉圧力容器12内の原子炉冷却水15は、炉心14を通る際に核反応により発生する熱で加熱されて蒸気化される。この発生した気液二層流の原子炉水蒸気は原子炉圧力容器12内で気水分離されて乾燥された後、主蒸気系17を通り蒸気タービン18に送られる。原子炉水蒸気は蒸気タービン18で仕事をして発電機(図示省略)を駆動させる。主蒸気系17を構成する主蒸気管17aには原子炉格納容器11の上流側および下流側に原子炉格納容器11内を隔離可能に主蒸気隔離弁19a、19bがそれぞれ設けられる。蒸気タービン18で仕事をして膨張した原子炉水蒸気は復水器(図示省略)で凝縮された後、原子炉復水・給水系を通り原子炉圧力容器12内に再び還流される。   The reactor cooling water 15 in the reactor pressure vessel 12 is heated and vaporized by heat generated by a nuclear reaction when passing through the core 14. The generated gas-liquid two-layer reactor water vapor is separated into steam and water in the reactor pressure vessel 12 and dried, and then sent to the steam turbine 18 through the main steam system 17. The reactor steam works in the steam turbine 18 to drive a generator (not shown). Main steam isolation valves 19a and 19b are provided on the main steam pipe 17a constituting the main steam system 17 so as to isolate the inside of the reactor containment vessel 11 upstream and downstream of the reactor containment vessel 11, respectively. The reactor water vapor that has expanded by working in the steam turbine 18 is condensed in a condenser (not shown) and then recirculated into the reactor pressure vessel 12 through the reactor condensate / feed water system.

また、沸騰水型原子力プラント10の原子炉圧力容器12には原子炉圧力容器頂部ベント設備20が設けられる。このベント設備20は原子炉圧力容器ベント系21と、原子炉圧力容器ヘッドスプレイ系22から分岐された分岐ベント系23とを備える。   The reactor pressure vessel 12 of the boiling water nuclear plant 10 is provided with a reactor pressure vessel top vent facility 20. The vent facility 20 includes a reactor pressure vessel vent system 21 and a branch vent system 23 branched from the reactor pressure vessel head spray system 22.

原子炉圧力容器ベント系21は、原子炉圧力容器12の頂部に接続される原子炉圧力容器ベント配管25を有する。この原子炉圧力容器ベント配管25は原子炉圧力容器12の頂部に形成された原子炉圧力容器ヘッドベントノズル26に接続される一方、途中に開閉弁として遠隔操作される電動弁27が設けられる。電動弁27の下流側は主蒸気管17aに原子炉格納容器11内の主蒸気隔離弁19aの上流側で接続される。   The reactor pressure vessel vent system 21 has a reactor pressure vessel vent pipe 25 connected to the top of the reactor pressure vessel 12. The reactor pressure vessel vent pipe 25 is connected to a reactor pressure vessel head vent nozzle 26 formed at the top of the reactor pressure vessel 12, and an electric valve 27 that is remotely operated as an on-off valve is provided in the middle. The downstream side of the electric valve 27 is connected to the main steam pipe 17a on the upstream side of the main steam isolation valve 19a in the reactor containment vessel 11.

また、分岐ベント系23は、原子炉圧力容器ヘッドスプレイ配管28の逆止弁または注入弁30下流側から分岐されたベント分岐配管31を備える。このベント分岐配管31には遠隔操作弁としての電動弁(開閉弁)33が設けられる。この電動弁33の下流側は原子炉圧力容器ベント系21の原子炉圧力容器ベント配管25に電動弁27の上流側で接続される。ベント分岐配管31の分岐部は、逆止弁30下流側から立ち上がるように、原子炉圧力容器ヘッドスプレイ配管28の頂部位置に設けられる。ベント分岐配管31の分岐部は逆止弁30にできるだけ近い位置に設けられる。   Further, the branch vent system 23 includes a vent branch pipe 31 branched from the check valve of the reactor pressure vessel head spray pipe 28 or the downstream side of the injection valve 30. The vent branch pipe 31 is provided with an electric valve (open / close valve) 33 as a remote control valve. The downstream side of the electric valve 33 is connected to the reactor pressure vessel vent pipe 25 of the reactor pressure vessel vent system 21 on the upstream side of the electric valve 27. The branch portion of the vent branch pipe 31 is provided at the top position of the reactor pressure vessel head spray pipe 28 so as to rise from the downstream side of the check valve 30. The branch portion of the vent branch pipe 31 is provided at a position as close as possible to the check valve 30.

さらに、原子炉圧力容器ヘッドスプレイ系22は、原子炉圧力容器ヘッドスプレイ配管28が原子炉圧力容器12の頂部に設けられた原子炉圧力容器ヘッドスプレイノズル35に接続される。原子炉圧力容器ヘッドスプレイ系22の原子炉圧力容器ヘッドスプレイ配管28は原子炉隔離時冷却設備38の冷却水注入配管を兼ねるようにしてもよい。この原子炉隔離時冷却設備38は、沸騰水型原子炉の停止時に原子炉圧力容器12の上部ドームの残圧を下げるために、停止時冷却系の冷却水を利用して原子炉圧力容器12の気相部16を冷却する設備である。   Further, the reactor pressure vessel head spray system 22 is connected to a reactor pressure vessel head spray nozzle 35 provided at the top of the reactor pressure vessel 12 with a reactor pressure vessel head spray pipe 28. The reactor pressure vessel head spray piping 28 of the reactor pressure vessel head spray system 22 may also serve as the cooling water injection piping of the reactor isolation cooling equipment 38. The reactor isolation cooling facility 38 uses the cooling water in the shutdown cooling system to reduce the residual pressure in the upper dome of the reactor pressure vessel 12 when the boiling water reactor is shut down. This is a facility for cooling the gas phase portion 16 of the gas.

一方、原子炉圧力容器ヘッドスプレイ系22の原子炉圧力容器ヘッドスプレイ配管28には、逆止弁(注入弁)30および原子炉格納容器隔離弁39a、39bが途中に設けられる。原子炉格納容器隔離弁39a、39bは原子炉格納容器11の内側と外側にそれぞれ設置されて原子炉運転時には通常閉塞されている。   On the other hand, the reactor pressure vessel head spray piping 28 of the reactor pressure vessel head spray system 22 is provided with a check valve (injection valve) 30 and reactor containment isolation valves 39a and 39b in the middle. The reactor containment isolation valves 39a and 39b are installed inside and outside the reactor containment vessel 11, respectively, and are normally closed during the operation of the reactor.

ところで、原子炉圧力容器頂部ベント設備20を構成する原子炉圧力容器ベント系21と原子炉圧力容器ヘッドスプレイ系22を利用した分岐ベント系23とは協働作用し、原子炉圧力容器12廻りで非凝縮性ガスのガス蓄積可能箇所40から非凝縮性ガスを導出し、主蒸気管17aに排出できる。   By the way, the reactor pressure vessel vent system 21 constituting the reactor pressure vessel top vent facility 20 and the branch vent system 23 using the reactor pressure vessel head spray system 22 cooperate to operate around the reactor pressure vessel 12. The non-condensable gas can be derived from the non-condensable gas accumulation location 40 and discharged to the main steam pipe 17a.

原子炉圧力容器12の頂部に原子炉圧力容器ベント系21と原子炉圧力容器ヘッドスプレイ系22を利用した分岐ベント系23とを設けて協働作用をさせることで、原子力発電所の通常運転時に、原子炉圧力容器12内の頂部付近に蓄積する可能性のあるガス蓄積可能箇所40の酸素ガス、水素ガスおよびクリプトン、キセノンの放射性希ガス等の非凝縮性ガスを主蒸気管17a側に円滑かつスムーズに排出することができる。すなわち、原子炉圧力容器12の頂部付近廻りに非凝縮性ガスが蓄積するのを未然にかつ確実に防止する。   By providing the reactor pressure vessel vent system 21 and the branch vent system 23 using the reactor pressure vessel head spray system 22 at the top of the reactor pressure vessel 12 and causing them to cooperate, during normal operation of the nuclear power plant The non-condensable gas such as oxygen gas, hydrogen gas, krypton, and xenon radioactive noble gas at the gas accumulating location 40 that may accumulate near the top of the reactor pressure vessel 12 is smoothly supplied to the main steam pipe 17a side. And it can be discharged smoothly. That is, the non-condensable gas is prevented from being accumulated around the top of the reactor pressure vessel 12 without fail.

なお、図1において、分岐ベント系23のベント分岐配管31を主蒸気管17aに直接接続するようにしてもよく、また、電動弁33の代りにオリフィスを設けたり、電動弁33の上流側にオリフィスを設けたりしてもよい。   In FIG. 1, the vent branch pipe 31 of the branch vent system 23 may be directly connected to the main steam pipe 17 a, or an orifice may be provided instead of the motor-operated valve 33, or on the upstream side of the motor-operated valve 33. Orifices may be provided.

ところで、原子炉圧力容器12内に発生した主蒸気を蒸気タービン18に案内する主蒸気系17には、主蒸気管17aから多数の分岐管43が分岐されている。例えば、原子炉隔離時冷却系、非常用安全弁系、タービンバイパス系等が分岐されている。分岐管43は主蒸気系17以外にも存在し、1つの原子力プラント当りの何百ラインも存在する。   By the way, in the main steam system 17 for guiding the main steam generated in the reactor pressure vessel 12 to the steam turbine 18, a number of branch pipes 43 are branched from the main steam pipe 17a. For example, a reactor isolation cooling system, an emergency safety valve system, a turbine bypass system, and the like are branched. The branch pipe 43 exists in addition to the main steam system 17, and there are hundreds of lines per one nuclear power plant.

そして、分岐管43の中には、図2に示すように、主蒸気管等の母管44から分岐して立ち上がる行止まり枝管(分岐管)45が存在する。枝管45には仕切弁あるいは止め弁としての開閉弁46が設けられ、この開閉弁46により母管44および枝管45内を周囲から隔離している。   In the branch pipe 43, as shown in FIG. 2, there is a dead end branch pipe (branch pipe) 45 that branches off from the main pipe 44 such as a main steam pipe. The branch pipe 45 is provided with an open / close valve 46 as a gate valve or a stop valve, and the open / close valve 46 isolates the mother pipe 44 and the branch pipe 45 from the surroundings.

母管44から分岐して立ち上がる行止まり枝管45内には、非凝縮性ガス47が蓄積する可能性のあるガス蓄積可能箇所50が形成される。この枝管45には開閉弁46の上下流をバイパスするバイパス配管53が設けられる。このバイパス配管53は枝管45に比べて小径の配管である。また、バイパス配管53の途中には仕切弁あるいは止め弁としてのバイパス配管開閉弁54が設けられ非凝縮性ガス蓄積燃焼防止システム55が構成される。   In the dead end branch pipe 45 that branches off from the mother pipe 44 and rises, a gas accumulation capable location 50 where the non-condensable gas 47 may accumulate is formed. The branch pipe 45 is provided with a bypass pipe 53 that bypasses the upstream and downstream of the on-off valve 46. The bypass pipe 53 is a pipe having a smaller diameter than the branch pipe 45. A bypass piping on / off valve 54 as a gate valve or a stop valve is provided in the middle of the bypass piping 53 to constitute a non-condensable gas accumulation combustion prevention system 55.

このように構成された非凝縮性ガス蓄積燃焼防止システム55は、開閉弁46の上下流の圧力差でガス蓄積可能箇所50の蒸気を常時通気することが可能であり、原子炉水蒸気の凝縮による非凝縮性ガス47の蓄積を防止できる。   The non-condensable gas accumulation combustion prevention system 55 configured as described above can constantly vent the vapor in the gas accumulation location 50 by the pressure difference between the upstream and downstream of the on-off valve 46, and is based on the condensation of the reactor water vapor. Accumulation of non-condensable gas 47 can be prevented.

次に、沸騰水型原子力プラント10で発生した非凝縮性ガスの処理について説明する。   Next, treatment of non-condensable gas generated in the boiling water nuclear power plant 10 will be described.

沸騰水型原子力プラント10の運転により、原子炉圧力容器12内で中性子照射を受け、冷却水の分解により発生した水素ガス、酸素ガス等の非凝縮性ガスは、原子炉主蒸気とともに主蒸気系17を通り蒸気タービン18に送られる。蒸気タービン18に送られた主蒸気はここで仕事をして発電機(図示省略)を駆動させる一方、蒸気タービン18に主蒸気と共に送られた非凝縮性ガスは続いて復水器に案内され、この復水器から気体廃棄物処理系(図示省略)に送られて処理される。   Non-condensable gases such as hydrogen gas and oxygen gas generated by neutron irradiation in the reactor pressure vessel 12 by the operation of the boiling water nuclear power plant 10 and decomposition of the cooling water are combined with the main steam system along with the reactor main steam. 17 is sent to the steam turbine 18. The main steam sent to the steam turbine 18 works here to drive a generator (not shown), while the non-condensable gas sent to the steam turbine 18 together with the main steam is subsequently guided to the condenser. The condenser is sent to a gas waste treatment system (not shown) for processing.

ところで、沸騰水型原子力プラント10の運転中には、図2に示される主蒸気管等の母管44内にも主蒸気が流される(原子炉蒸気流)。図2の配管接続構造では、母管44から立ち上がる行止まり枝管45が接続されるために、母管44から分岐された枝管45内にも主蒸気の一部が流入する。枝管45内に流入した蒸気は周囲の配管等へ放熱して凝縮しようとする。   By the way, during the operation of the boiling water nuclear power plant 10, the main steam is also caused to flow in the mother pipe 44 such as the main steam pipe shown in FIG. 2 (reactor steam flow). In the pipe connection structure of FIG. 2, since the dead end branch pipe 45 rising from the mother pipe 44 is connected, part of the main steam also flows into the branch pipe 45 branched from the mother pipe 44. The steam that has flowed into the branch pipe 45 tends to dissipate heat to the surrounding piping and the like to condense.

しかし、図2に示された非凝縮性ガス蓄積燃焼防止システム55では、母管44から分岐される立ち上がり枝管45にバイパス配管53が設けられ、このバイパス配管53にバイパス配管開閉弁54が備えられて開閉弁46の上下流の圧力差でガス蓄積可能箇所50の蒸気を常時通気することが可能であり、原子炉水蒸気の凝縮による非凝縮性ガス47の蓄積を防止できる。   However, in the non-condensable gas accumulation combustion prevention system 55 shown in FIG. 2, a bypass pipe 53 is provided in the rising branch pipe 45 branched from the mother pipe 44, and the bypass pipe on / off valve 54 is provided in the bypass pipe 53. Thus, it is possible to constantly vent the vapor of the gas accumulation location 50 by the pressure difference between the upstream and downstream of the on-off valve 46, and the accumulation of the non-condensable gas 47 due to the condensation of the reactor water vapor can be prevented.

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することがないので、ガス蓄積可能箇所50の非凝縮性ガス47の発生量を大幅に減少、抑制することができる。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積するのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, since the vapor flowing into the gas accumulable location 50 is not condensed and liquefied, the generation amount of the non-condensable gas 47 at the gas accumulatable location 50 can be greatly reduced and suppressed. For this reason, it is possible to effectively and effectively prevent non-condensable gas from accumulating in the gas accumulable location 50, and to prevent the occurrence of combustion due to gas accumulation of non-condensable gas in advance. A high non-condensable gas accumulation combustion prevention system can be provided.

[第2の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第2実施形態について、図3を参照して説明する。
[Second Embodiment]
A second embodiment of the non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIG.

本実施形態において第1実施形態の非凝縮性ガス蓄積燃焼防止システムと同じ構成には同一の符号を付し、重複する説明は省略する。   In this embodiment, the same code | symbol is attached | subjected to the same structure as the non-condensable gas accumulation combustion prevention system of 1st Embodiment, and the overlapping description is abbreviate | omitted.

図3に示すように母管44から分岐して立ち上がる行止まり枝管45内には、非凝縮性ガス47が蓄積する可能性のあるガス蓄積可能箇所50が形成される。このガス蓄積可能箇所50の枝管45には開閉弁46の上下流をバイパスするバイパス配管53が設けられる。このバイパス配管53は枝管45に比べて小径の配管である。また、バイパス配管53の途中には原子炉水蒸気の流量を調整するバイパス配管オリフィス57が設けられ非凝縮性ガス蓄積燃焼防止システム55Aが構成される。このバイパス配管オリフィス57は、例えば溶接式のオリフィスを使用することでリークポテンシャルの増加を抑えることができる。   As shown in FIG. 3, in the dead end branch 45 that branches off from the mother pipe 44 and rises, a gas accumulation potential 50 in which the noncondensable gas 47 may accumulate is formed. A bypass pipe 53 that bypasses the upstream and downstream of the on-off valve 46 is provided in the branch pipe 45 of the gas accumulating location 50. The bypass pipe 53 is a pipe having a smaller diameter than the branch pipe 45. A bypass piping orifice 57 for adjusting the flow rate of the reactor water vapor is provided in the middle of the bypass piping 53 to constitute a non-condensable gas accumulation combustion prevention system 55A. The bypass piping orifice 57 can suppress an increase in leak potential by using, for example, a welding-type orifice.

このように構成された非凝縮性ガス蓄積燃焼防止システム55Aは、開閉弁46の上下流の圧力差でガス蓄積可能箇所50の蒸気を流量調整しつつ常時通気することが可能であり、原子炉水蒸気の凝縮による非凝縮性ガス47の蓄積を防止できる。   The non-condensable gas accumulation combustion prevention system 55A configured as described above can always ventilate the vapor of the gas accumulation location 50 by adjusting the flow rate by the pressure difference between the upstream and downstream of the on-off valve 46. Accumulation of non-condensable gas 47 due to condensation of water vapor can be prevented.

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することがないので、ガス蓄積可能箇所50の非凝縮性ガス47の発生量を大幅に減少、抑制することができる。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積するのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, since the vapor flowing into the gas accumulable location 50 is not condensed and liquefied, the generation amount of the non-condensable gas 47 at the gas accumulatable location 50 can be greatly reduced and suppressed. For this reason, it is possible to effectively and effectively prevent non-condensable gas from accumulating in the gas accumulable location 50, and to prevent the occurrence of combustion due to gas accumulation of non-condensable gas in advance. A high non-condensable gas accumulation combustion prevention system can be provided.

[第3の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第3実施形態について、図4を参照して説明する。
[Third Embodiment]
A third embodiment of the non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIG.

本実施形態において第1実施形態の非凝縮性ガス蓄積燃焼防止システムと同じ構成には同一の符号を付し、重複する説明は省略する。   In this embodiment, the same code | symbol is attached | subjected to the same structure as the non-condensable gas accumulation combustion prevention system of 1st Embodiment, and the overlapping description is abbreviate | omitted.

図4に示すように、母管44から分岐して立ち上がる行止まり枝管45に開閉弁46を設け、この開閉弁46の弁上流側が、非凝縮性ガス47の蓄積可能なガス蓄積可能箇所50として構成される。この枝管45の開閉弁46の弁上流側の配管部分のうちガス蓄積可能箇所50が構成される範囲Aの枝管45の配管材料は熱伝導率の低い材料が使用されて非凝縮性ガス蓄積燃焼防止システム55Bが構成される。   As shown in FIG. 4, an open / close valve 46 is provided in a dead end branch pipe 45 that branches off from the main pipe 44, and the gas upstream side of the open / close valve 46 has a gas accumulation location 50 where non-condensable gas 47 can be accumulated. Configured as The piping material of the branch pipe 45 in the range A in which the gas accumulating portion 50 is configured among the pipe upstream side of the on-off valve 46 of the branch pipe 45 is made of a material having low thermal conductivity, so that non-condensable gas is used. An accumulated combustion prevention system 55B is configured.

このように構成された非凝縮性ガス蓄積燃焼防止システム55Bは、枝管45のうち熱伝導率の低い材料で構成される範囲Aの配管部分では、配管を伝わる蒸気からの熱の移動(蒸気の放熱)を低減できる。   In the non-condensable gas accumulation combustion prevention system 55B configured in this way, in the pipe portion of the range A constituted by the material having low thermal conductivity in the branch pipe 45, the heat transfer from the steam transmitted through the pipe (steam Heat dissipation).

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮を抑制できるので、ガス蓄積可能箇所50の非凝縮性ガス47の発生量を大幅に減少、抑制することができる。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積するのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, since the vapor | steam which flowed into the gas accumulation possible location 50 can suppress condensation, the generation amount of the non-condensable gas 47 of the gas accumulation possible location 50 can be reduced and suppressed significantly. For this reason, it is possible to effectively and effectively prevent non-condensable gas from accumulating in the gas accumulable location 50, and to prevent the occurrence of combustion due to gas accumulation of non-condensable gas in advance. A high non-condensable gas accumulation combustion prevention system can be provided.

[第4の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第4実施形態について、図5を参照して説明する。
[Fourth Embodiment]
A fourth embodiment of the non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIG.

本実施形態において第1実施形態の非凝縮性ガス蓄積燃焼防止システムと同じ構成には同一の符号を付し、重複する説明は省略する。   In this embodiment, the same code | symbol is attached | subjected to the same structure as the non-condensable gas accumulation combustion prevention system of 1st Embodiment, and the overlapping description is abbreviate | omitted.

図5に示すように、母管44から分岐して立ち上がる行止まり枝管45内には、非凝縮性ガス47が蓄積する可能性のあるガス蓄積可能箇所50が形成される。この枝管45の配管外部であり、かつガス蓄積可能箇所50の近傍に磁場発生装置59が設けられ非凝縮性ガス蓄積燃焼防止システム55Cが構成される。   As shown in FIG. 5, in the dead end branch 45 that branches off from the mother pipe 44 and rises, a gas accumulation capable location 50 in which the noncondensable gas 47 may accumulate is formed. A magnetic field generator 59 is provided outside the branch pipe 45 and in the vicinity of the gas storage location 50 to form a non-condensable gas storage combustion prevention system 55C.

なお、この枝管45の開閉弁46の弁上流側の配管部分のうちガス蓄積可能箇所50が構成される範囲の枝管45の配管材料は熱伝導率の低い材料を使用することもできる。   In addition, the piping material of the branch pipe 45 in the range where the gas accumulating portion 50 is configured in the pipe upstream side of the on-off valve 46 of the branch pipe 45 may be a material having low thermal conductivity.

このように構成された非凝縮性ガス蓄積燃焼防止システム55Cは、配管外部から磁場発生装置59により被凝縮性ガス47に磁場を与えることで非凝縮性ガス47に含まれる酸素ガスの常磁性を利用して、配管内部の非凝縮性ガス47に含まれる酸素ガスを対流させて、酸素ガスが混合している非凝縮性ガス47に流れを生じさせて、母管44の対流範囲に到達させることで、母管44側へ非凝縮性ガス47を排出できる。   The non-condensable gas accumulation combustion prevention system 55C configured as described above provides the paramagnetism of the oxygen gas contained in the non-condensable gas 47 by applying a magnetic field to the condensable gas 47 by the magnetic field generator 59 from the outside of the pipe. The oxygen gas contained in the non-condensable gas 47 inside the pipe is convected to cause a flow in the non-condensable gas 47 mixed with the oxygen gas and reach the convection range of the mother pipe 44. Thus, the non-condensable gas 47 can be discharged to the mother pipe 44 side.

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することで、ガス蓄積可能箇所50に非凝縮性ガス47が発生しても、この非凝縮性ガス47を母管44へ排出できる。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積するのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, even if the non-condensable gas 47 is generated at the gas accumulable portion 50 by condensing and liquefying the vapor flowing into the gas accumulable portion 50, the non-condensable gas 47 can be discharged to the mother pipe 44. . For this reason, it is possible to effectively and effectively prevent non-condensable gas from accumulating in the gas accumulable location 50, and to prevent the occurrence of combustion due to gas accumulation of non-condensable gas in advance. A high non-condensable gas accumulation combustion prevention system can be provided.

[第5の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第5実施形態について、図6および図7を参照して説明する。
[Fifth Embodiment]
A fifth embodiment of the non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIGS.

本実施形態において第1実施形態の非凝縮性ガス蓄積燃焼防止システムと同じ構成には同一の符号を付し、重複する説明は省略する。   In this embodiment, the same code | symbol is attached | subjected to the same structure as the non-condensable gas accumulation combustion prevention system of 1st Embodiment, and the overlapping description is abbreviate | omitted.

非凝縮性ガス蓄積燃焼防止システム55Dは、枝管45に設けられた開閉弁55に改良を施したものである。   The non-condensable gas accumulation combustion prevention system 55 </ b> D is an improvement of the on-off valve 55 provided in the branch pipe 45.

図6に示すように、母管44から分岐して立ち上がる行止まり枝管45に開閉弁46Aを設け、この開閉弁46Aの弁上流側が、非凝縮性ガス47の蓄積可能なガス蓄積可能箇所50として構成される。図7に示すように、この開閉弁46Aは弁ケーシング61内に収容される弁体62を備え、この弁体62の開閉を弁操作部63により弁棒64を介して行なう。この開閉弁46Aの弁体62の弁上流側には、触媒65が設けられて非凝縮性ガス蓄積燃焼防止システム55Dが構成される。   As shown in FIG. 6, an opening / closing valve 46 </ b> A is provided in a dead end branch pipe 45 that branches off from the mother pipe 44 and the upstream side of the opening / closing valve 46 </ b> A has a gas accumulation location 50 where non-condensable gas 47 can be accumulated. Configured as As shown in FIG. 7, the on-off valve 46 </ b> A includes a valve body 62 housed in a valve casing 61, and the valve body 62 is opened and closed via a valve rod 64 by a valve operating portion 63. A catalyst 65 is provided on the valve upstream side of the valve body 62 of the on-off valve 46A to constitute a non-condensable gas accumulation combustion prevention system 55D.

なお、この枝管45の開閉弁46Aの弁上流側の配管部分のうちガス蓄積可能箇所50が構成される範囲の枝管45の配管材料は、このガス蓄積可能箇所50以外の配管材料よりも熱伝導率の低い材料を使用することもできる。   In addition, the piping material of the branch pipe 45 in the range in which the gas accumulating location 50 is configured in the piping upstream side of the on-off valve 46A of the branch pipe 45 is more than the piping material other than the gas accumulating location 50. A material having a low thermal conductivity can also be used.

この触媒65により、ガス蓄積可能箇所50に蓄積した非凝縮性ガス47に含まれる水素ガスと酸素ガスとを反応・結合させ水に戻すことで、高濃度の非凝縮性ガス47の蓄積を抑制できる。この触媒65には白金等の触媒を使用できる。   By this catalyst 65, the hydrogen gas and the oxygen gas contained in the non-condensable gas 47 accumulated in the gas accumulating location 50 are reacted and combined to return to water, thereby suppressing the accumulation of the high-concentration non-condensable gas 47. it can. The catalyst 65 can be a catalyst such as platinum.

なお、非凝縮性ガス47が蓄積する可能性のある配管部へ触媒65を設けるに際して触媒65の保守のために配管をフランジ構造とする等の対応が必要になるが、本実施形態であれば、開閉弁46A自体が定検時等に保守を要するものであるため、開閉弁46Aの保守に併せて触媒65を保守することができ、配管側のリークポテンシャル増加等の影響はない。   It should be noted that when the catalyst 65 is provided in the piping portion where the non-condensable gas 47 may accumulate, it is necessary to take measures such as making the piping a flange structure for maintenance of the catalyst 65. Since the on-off valve 46A itself requires maintenance at the time of regular inspection or the like, the catalyst 65 can be maintained along with the maintenance of the on-off valve 46A, and there is no influence such as an increase in leak potential on the piping side.

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することで、ガス蓄積可能箇所50に非凝縮性ガス47が発生しても、この非凝縮性ガス47を触媒65により非凝縮性ガス47に含まれる水素ガスや酸素ガスが急速燃焼することはない。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積するのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, even if the non-condensable gas 47 is generated in the gas accumulable portion 50 by condensing and liquefying the vapor flowing into the gas accumulable portion 50, the non-condensable gas 47 is made non-condensable by the catalyst 65. Hydrogen gas or oxygen gas contained in the gas 47 does not burn rapidly. For this reason, it is possible to effectively and effectively prevent non-condensable gas from accumulating in the gas accumulable location 50, and to prevent the occurrence of combustion due to gas accumulation of non-condensable gas in advance. A high non-condensable gas accumulation combustion prevention system can be provided.

[第6の実施形態]
本発明に係る非凝縮性ガス蓄積燃焼防止システムの第6実施形態について、図8を参照して説明する。
[Sixth Embodiment]
A sixth embodiment of the non-condensable gas accumulation combustion prevention system according to the present invention will be described with reference to FIG.

本実施形態において第3実施形態および第4実施形態の非凝縮性ガス蓄積燃焼防止システムと同じ構成には同一の符号を付し、重複する説明は省略する。   In the present embodiment, the same components as those of the non-condensable gas accumulation combustion prevention system of the third embodiment and the fourth embodiment are denoted by the same reference numerals, and redundant description is omitted.

図8に示すように、母管44から分岐して立ち上がる行止まり枝管45Aに開閉弁46を設け、この開閉弁46の弁上流側が、非凝縮性ガス47の蓄積可能なガス蓄積可能箇所50として構成される。この枝管45Aの開閉弁46の弁上流側の配管部分は、母管44から分岐して立ち上がる立ち上がり配管部分67と、この立ち上がり部とエルボで接続される略水平配管部68と、この略水平配管部とエルボで接続され、かつ水平レベルが下側に位置するトラップ配管部69とで構成される。このトラップ配管部69は、枝管45に流入した蒸気の凝縮水または別に設けた水の補給系(図示省略)により水で満たされて非凝縮性ガス蓄積燃焼防止システム55Eが構成される。   As shown in FIG. 8, an opening / closing valve 46 is provided in a closing branch pipe 45 </ b> A that branches off from the mother pipe 44, and the upstream side of the opening / closing valve 46 has a gas accumulation location 50 where non-condensable gas 47 can be accumulated. Configured as A pipe part upstream of the on-off valve 46 of the branch pipe 45A is a rising pipe part 67 that branches off from the main pipe 44 and rises, a substantially horizontal pipe part 68 that is connected to the rising part by an elbow, and this substantially horizontal pipe part. It is comprised by the piping part and the trap piping part 69 which is connected by the elbow and whose horizontal level is located below. The trap pipe section 69 is filled with water by condensed water of steam flowing into the branch pipe 45 or a water replenishment system (not shown) provided separately, thereby forming a non-condensable gas accumulation combustion prevention system 55E.

この枝管45Aの開閉弁46の弁上流側の配管部分は、直管部材とエルボ部材とを溶接などの固着方法で構成することも、一体の配管を曲げ成形等の成形加工で構成することも可能である。   The pipe portion on the upstream side of the on-off valve 46 of the branch pipe 45A may be formed by fixing the straight pipe member and the elbow member by a fixing method such as welding or by forming the integrated pipe by a forming process such as bending. Is also possible.

なお、この枝管45の開閉弁46の弁上流側の配管部分のうちガス蓄積可能箇所50が構成される範囲の枝管45の略水平配管部68の配管材料は熱伝導率の低い材料を使用することもできる。また、この枝管45の配管外部であり、かつガス蓄積可能箇所50の近傍に磁場発生装置59を設けることもできる。   In addition, the piping material of the substantially horizontal piping portion 68 of the branch pipe 45 in the range where the gas accumulating location 50 is configured in the pipe upstream side of the on-off valve 46 of the branch pipe 45 is made of a material having low thermal conductivity. It can also be used. In addition, a magnetic field generator 59 can be provided outside the branch pipe 45 and in the vicinity of the gas storage location 50.

このように構成された非凝縮性ガス蓄積燃焼防止システム55Eは、開閉弁46の弁体内部に非凝縮性ガス47が侵入することを防止できる。   The non-condensable gas accumulation combustion prevention system 55E configured as described above can prevent the non-condensable gas 47 from entering the valve body of the on-off valve 46.

したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することで、ガス蓄積可能箇所50に非凝縮性ガス47が発生しても、この非凝縮性ガス47に含まれる水素ガスや酸素ガスが開閉弁46の弁体内部に流入・蓄積して開閉弁46の操作に伴い発火エネルギーが印加されて急速燃焼することはない。また、開閉弁46が逆止弁の場合は、非凝縮性ガス47が逆止弁のシートパスにより逆止弁の上流側(枝管45Aの下流側)へ漏洩する恐れを排除し、非凝縮性ガス47の蓄積範囲の拡大を抑制できる。このため、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガス蓄積燃焼防止システムを提供できる。   Therefore, even if the non-condensable gas 47 is generated in the gas accumulable portion 50 by condensing and liquefying the vapor flowing into the gas accumulable portion 50, hydrogen gas or oxygen contained in the non-condensable gas 47 is generated. Gas does not flow into and accumulate in the valve body of the on-off valve 46, and ignition energy is applied in accordance with the operation of the on-off valve 46 so that rapid combustion does not occur. Further, when the on-off valve 46 is a check valve, the possibility of non-condensable gas 47 leaking to the upstream side of the check valve (downstream of the branch pipe 45A) by the seat path of the check valve is eliminated, and non-condensing is performed. Expansion of the accumulation range of the property gas 47 can be suppressed. Therefore, it is possible to reliably prevent the occurrence of combustion due to gas accumulation of non-condensable gas, and to provide a highly reliable non-condensable gas accumulation combustion prevention system.

本発明に係る非凝縮性ガス蓄積燃焼防止システムを備えた沸騰水型原子力プラントを概略的に示す系統図。1 is a system diagram schematically showing a boiling water nuclear power plant equipped with a non-condensable gas accumulation combustion prevention system according to the present invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第1実施形態を示す図。The figure which shows 1st Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第2実施形態を示す図。The figure which shows 2nd Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第3実施形態を示す図。The figure which shows 3rd Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第4実施形態を示す図。The figure which shows 4th Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第5実施形態を示す図。The figure which shows 5th Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第5実施形態の枝管に設けられた開閉弁の概略を示す配管軸方向縦断面図。The pipe axial direction longitudinal cross-sectional view which shows the outline of the on-off valve provided in the branch pipe of 5th Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 本発明に係る非凝縮性ガス蓄積燃焼防止システムの第6実施形態を示す図。The figure which shows 6th Embodiment of the non-condensable gas accumulation combustion prevention system which concerns on this invention. 従来の母管から分岐して立ち上がる配管接続構造を示す図。The figure which shows the piping connection structure which branches off from the conventional mother pipe and stands up.

符号の説明Explanation of symbols

1、44 母管
2、45、45A 枝管
3、46、46A 開閉弁
5、47 非凝縮性ガス
4、50 ガス蓄積可能箇所
10 沸騰水型原子力プラント
11 原子炉格納容器
12 原子炉圧力容器
13 ドライウェル
14 炉心
15 原子炉冷却水(液相部)
16 気相部
17 主蒸気系
17a 主蒸気管
18 蒸気タービン
19a、19b 主蒸気隔離弁
20 原子炉圧力容器ベント設備
21 原子炉圧力容器ベント系
22 原子炉圧力容器ヘッドスプレイ系
23 分岐ベント系
25 原子炉圧力容器ベント配管
27、33 電動弁(遠隔操作弁)
28 原子炉圧力容器ヘッドスプレイ配管
30 逆止弁
31 ベント分岐配管
38 原子炉隔離時冷却設備
39a、39b 原子炉格納容器隔離弁
40 ガス蓄積可能箇所
43 分岐管
53 バイパス配管
54 バイパス配管開閉弁
55、55A、55B、55C、55D、55E 非凝縮性ガス蓄積燃焼防止システム
57 バイパス配管オリフィス
59 磁場発生装置
61 弁ケーシング
62 弁体
63 弁操作部
64 弁棒
65 触媒
67 立ち上がり配管部分
68 略水平配管部
69 トラップ配管部
1, 44 Mother pipe 2, 45, 45A Branch pipe 3, 46, 46A On-off valve 5, 47 Non-condensable gas 4, 50 Gas storage location 10 Boiling water nuclear plant 11 Reactor containment vessel 12 Reactor pressure vessel 13 Drywell 14 Core 15 Reactor cooling water (liquid phase part)
16 Gas phase section 17 Main steam system 17a Main steam pipe 18 Steam turbine 19a, 19b Main steam isolation valve 20 Reactor pressure vessel vent facility 21 Reactor pressure vessel vent system 22 Reactor pressure vessel head spray system 23 Branch vent system 25 atoms Furnace pressure vessel vent piping 27, 33 Electric valve (remote control valve)
28 Reactor pressure vessel head spray piping 30 Check valve 31 Vent branch piping 38 Reactor isolation cooling equipment 39a, 39b Reactor containment isolation valve 40 Gas accumulation location 43 Branch pipe 53 Bypass pipe 54 Bypass pipe on / off valve 55, 55A, 55B, 55C, 55D, 55E Non-condensable gas accumulation combustion prevention system 57 Bypass piping orifice 59 Magnetic field generator 61 Valve casing 62 Valve body 63 Valve operation section 64 Valve rod 65 Catalyst 67 Rising piping section 68 Substantially horizontal piping section 69 Trap piping section

Claims (3)

原子力発電所の非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に設けられた開閉弁の上流側と下流側とを接続するバイパス配管と、
前記バイパス配管の途中に設けられたバイパス配管開閉弁と、を備え、
前記ガス蓄積可能箇所の配管材料に、このガス蓄積可能箇所以外の配管材料よりも熱伝導率の低い材料を使用し、
前記ガス蓄積可能箇所に磁場発生装置を配置して、前記非凝縮性ガスに含まれる酸素ガスの常磁性を利用して前記非凝縮性ガスを流動させることを特徴とする非凝縮性ガス蓄積燃焼防止システム。
A bypass pipe that connects the upstream side and the downstream side of the on-off valve provided in a gas accumulation-possible location where the non-condensable gas of the nuclear power plant may accumulate,
A bypass pipe opening / closing valve provided in the middle of the bypass pipe,
Use a material having a lower thermal conductivity than the piping material other than the gas accumulating location, to the piping material of the gas accumulating location,
By placing a magnetic field generator to the gas accumulation possible locations, the non-condensable gas by using the paramagnetic oxygen gas contained you characterized by flowing the said non-condensable gas non-condensable gases accumulate Combustion prevention system.
前記ガス蓄積可能箇所に設けられた開閉弁の弁体のガス蓄積可能箇所側に触媒を設けたことを特徴とする請求項1に記載の非凝縮性ガス蓄積燃焼防止システム。 The non-condensable gas accumulation combustion prevention system according to claim 1, wherein a catalyst is provided on a gas accumulating location side of a valve body of an on-off valve provided at the gas accumulating location. 前記開閉弁のガス蓄積可能箇所側の配管の一部を前記配管の他の部分よりも水平レベルが低い位置に構成して、前記他の部分よりも水平レベルが低い位置の配管部分に水を満たすことを特徴とする請求項1または2に記載の非凝縮性ガス蓄積燃焼防止システム。 A part of the pipe on the gas accumulating location side of the on-off valve is configured at a position where the horizontal level is lower than the other part of the pipe, and water is supplied to the pipe part at a position where the horizontal level is lower than the other part. The non-condensable gas accumulation combustion prevention system according to claim 1 or 2 , characterized by satisfying.
JP2008031691A 2008-02-13 2008-02-13 Non-condensable gas accumulation combustion prevention system Active JP5058016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031691A JP5058016B2 (en) 2008-02-13 2008-02-13 Non-condensable gas accumulation combustion prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031691A JP5058016B2 (en) 2008-02-13 2008-02-13 Non-condensable gas accumulation combustion prevention system

Publications (2)

Publication Number Publication Date
JP2009192298A JP2009192298A (en) 2009-08-27
JP5058016B2 true JP5058016B2 (en) 2012-10-24

Family

ID=41074457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031691A Active JP5058016B2 (en) 2008-02-13 2008-02-13 Non-condensable gas accumulation combustion prevention system

Country Status (1)

Country Link
JP (1) JP5058016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479001B1 (en) 2013-06-11 2015-01-05 한국원자력연구원 Gas removal system of a passive residual heat removal system
CZ308421B6 (en) * 2018-09-07 2020-08-12 Ĺ KODA JS a.s. Method of discharging a steam-gas mixture of at least one non-condensable gas, in particular hydrogen, and steam from pressure system technology and the device for carrying out this method
JP7390233B2 (en) 2020-03-30 2023-12-01 三菱重工業株式会社 Gas flow accelerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109091A (en) * 1997-10-07 1999-04-23 Hitachi Ltd Instrumentation pipe system of nuclear power plant
JP2000292590A (en) * 1999-04-02 2000-10-20 Toshiba Corp Condensible medium circulating plant and its water quality control method
JP2004012145A (en) * 2002-06-03 2004-01-15 Toshiba Corp Cumulative combustion preventing system for noncondensing gas

Also Published As

Publication number Publication date
JP2009192298A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5517357B2 (en) Passive emergency water supply system
JP5911762B2 (en) Nuclear plant and static containment cooling system
US11756698B2 (en) Passive emergency feedwater system
JP2014513280A (en) Energy core cooling system for pressurized water reactors
Zheng et al. Water-ingress analysis for the 200áMWe pebble-bed modular high temperature gas-cooled reactor
US9583221B2 (en) Integrated emergency core cooling system condenser for pressurized water reactor
JP5058016B2 (en) Non-condensable gas accumulation combustion prevention system
US20130129034A1 (en) Hydrogen venting device for cooling water of nuclear reactors
KR101224024B1 (en) Passive containment cooling system using passive auxiliary feed-water system and irwst
JP5295859B2 (en) Reactor pressure vessel head spray system
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
KR19980029457A (en) Passive secondary side condensation system of pressurized water reactor
JP4434436B2 (en) Operation method of boiling water nuclear power plant
JP4131914B2 (en) Reactor pressure vessel top vent facility
JP2004012145A (en) Cumulative combustion preventing system for noncondensing gas
JP4533670B2 (en) Boiling water reactor facilities
KR101224026B1 (en) Passive residual heat removal system using passive auxiliary feed-water system for pressurized water reactor
JP2012230032A (en) Cooling device for reactor containment vessel
JP2008122419A (en) Prevention system of accumulated combustion of noncondensable gas
JP2006097543A (en) Pressure release device for low-pressure steam piping system in power generation plant
JP2003329794A (en) Vent device for top of reactor pressure vessel
JP2013253874A (en) Nuclear power plant and containment vessel pressure reduction and cooling mechanism
JP2012233728A (en) Nuclear power plant and nitrogen gas supply method therefor
JP2012229959A (en) Nuclear power plant
JP2021085716A (en) Hydrogen processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5058016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3