JP2003329794A - Vent device for top of reactor pressure vessel - Google Patents

Vent device for top of reactor pressure vessel

Info

Publication number
JP2003329794A
JP2003329794A JP2002135838A JP2002135838A JP2003329794A JP 2003329794 A JP2003329794 A JP 2003329794A JP 2002135838 A JP2002135838 A JP 2002135838A JP 2002135838 A JP2002135838 A JP 2002135838A JP 2003329794 A JP2003329794 A JP 2003329794A
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor pressure
vent
reactor
rpv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002135838A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
雄司 山本
Yukiji Arata
超次 荒田
Akio Shioiri
章夫 塩入
Michitomo Kuroda
理知 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002135838A priority Critical patent/JP2003329794A/en
Publication of JP2003329794A publication Critical patent/JP2003329794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vent device for a top of a reactor pressure vessel which enables highly reliable safe operation by effectively and surely preventing accumulation of a non-condensible gas around the top of the reactor pressure vessel. <P>SOLUTION: The vent device 20 for the top of the reactor pressure vessel comprises a head spray system 31 of the reactor pressure vessel for feeding cooling water to a head spray nozzle 36 of the reactor pressure vessel disposed in an upper part of the reactor pressure vessel 22 and a vent system 30 of the reactor pressure vessel for guiding the non-condensible gas produced during operation of a reactor to a main steam pipe. The head spray system 31 of the reactor pressure vessel is provided with a branch vent system 32 branched from a reactor pressure vessel 22 side of a check valve 39 provided on a head spray pipe 38 of the reactor pressure vessel. The branch vent system 32 is provided with a vent branch pipe 40 branched from the head spray pipe 38 of the reactor pressure vessel. The vent branch pipe 40 has a downstream side thereof connected to a vent pipe 33 of the system 30 and an orifice 41 provided halfway of the vent branch pipe 40. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉圧力容器内
に存在する非凝縮性ガスを処理する原子力発電所の原子
炉圧力容器頂部ベント設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor pressure vessel top vent facility for treating non-condensable gases present in the reactor pressure vessel.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子力プラント(以
下、BWRプラントという。)は、図3に示すように原
子炉格納容器(以下、PCVという。)1内に原子炉圧
力容器(以下、RPVという。)2が格納され、このR
PV2の頂部廻りに気体処理設備が設けられる。RPV
2内には炉心3が収容される一方、この炉心3は原子炉
冷却水4で浸漬されている。RPV2内に原子炉冷却水
4が貯溜された液相部とこの液相部上方の気相部5とに
区画される。
2. Description of the Related Art Generally, a boiling water nuclear power plant (hereinafter referred to as a BWR plant) has a reactor pressure vessel (hereinafter referred to as RPV) inside a reactor containment vessel (hereinafter referred to as PCV) 1 as shown in FIG. 2) is stored and this R
A gas treatment facility is provided around the top of PV2. RPV
A reactor core 3 is housed in the reactor 2, while the reactor core 3 is immersed in the reactor cooling water 4. The RPV 2 is divided into a liquid phase part in which the reactor cooling water 4 is stored and a gas phase part 5 above the liquid phase part.

【0003】RPV2内の原子炉冷却水4中には、炉心
3での核反応に伴う中性子照射により、冷却水4から分
解生成される水素ガスおよび酸素ガスあるいは、場合に
よっては燃料棒より微量に漏洩するKr,Xe等の放射
性希ガス等の非凝縮ガスが存在する。このため、非凝縮
性ガスを処理する気体廃棄物処理系(図示せず)がBW
Rプラントに設けられる。
In the reactor cooling water 4 in the RPV 2, hydrogen gas and oxygen gas, which are decomposed and produced from the cooling water 4 by neutron irradiation accompanying the nuclear reaction in the core 3, or, in some cases, a trace amount from the fuel rods are produced. There are leaking non-condensable gases such as radioactive noble gases such as Kr and Xe. For this reason, the gas waste treatment system (not shown) for treating the non-condensable gas is BW.
It is installed in the R plant.

【0004】BWRプラントの通常運転時、RPV2内
で発生する非凝縮性ガスは、RPV2から蒸気タービン
Tに接続される主蒸気管6を経て案内され、蒸気タービ
ンTを経て復水器に導かれた後、この復水器に設けられ
た気体廃棄物処理系で処理される。主蒸気管6には、P
CV(原子炉格納容器)1の上流側および下流側に主蒸
気隔離弁7a,7bがそれぞれ設けられる。
During normal operation of the BWR plant, the non-condensable gas generated in the RPV 2 is guided from the RPV 2 via the main steam pipe 6 connected to the steam turbine T, and is guided to the condenser via the steam turbine T. After that, it is treated in the gaseous waste treatment system provided in this condenser. The main steam pipe 6 has P
Main steam isolation valves 7a and 7b are provided on the upstream side and the downstream side of the CV (reactor containment vessel) 1, respectively.

【0005】また、RPV2の頂部には原子炉圧力容器
ベント配管(以下、RPVベント配管という。)8が備
えられる。RPVベント配管8は電動弁9を経て主蒸気
管6に、主蒸気隔離弁7aの上流側で接続され、原子炉
圧力容器ベント系(以下、RPVベント系)10が構成
される。このRPVベント系10は、RPV2内に蓄積
する可能性のある非凝縮性ガスを、RPV2の頂部より
排出し、主蒸気管6内を通る主蒸気に合流せしめてい
る。
A reactor pressure vessel vent pipe (hereinafter referred to as RPV vent pipe) 8 is provided on the top of the RPV 2. The RPV vent pipe 8 is connected to the main steam pipe 6 via the motor-operated valve 9 on the upstream side of the main steam isolation valve 7a to form a reactor pressure vessel vent system (hereinafter, RPV vent system) 10. The RPV vent system 10 discharges the non-condensable gas that may accumulate in the RPV 2 from the top of the RPV 2 and joins the main steam passing through the main steam pipe 6.

【0006】さらに、BWRプラントの運転を停止さ
せ、RPV2を冷却する際、蒸気相となっているRPV
2内の気相部5を冷却するために、RPV2の上部に冷
却水を供給する原子炉圧力容器ヘッドスプレイ系(以
下、RPVヘッドスプレイ系という。)11が設けられ
る。このRPVヘッドスプレイ系11のRPVヘッドス
プレイ配管12には、逆止弁13とPCV1の内外近傍
の原子炉格納容器(PCV)隔離弁14a,14bとが
それぞれ設けられる。
Furthermore, when the operation of the BWR plant is stopped and the RPV2 is cooled, the RPV in the vapor phase is cooled.
A reactor pressure vessel head spray system (hereinafter referred to as an RPV head spray system) 11 that supplies cooling water to the upper portion of the RPV 2 is provided to cool the gas phase portion 5 in the RPV 2. The RPV head spray pipe 12 of the RPV head spray system 11 is provided with a check valve 13 and reactor containment (PCV) isolation valves 14a and 14b near the inside and outside of the PCV 1, respectively.

【0007】沸騰水型原子炉の停止時に、RPVヘッド
スプレイ配管12から冷却水を逆止弁13を経てRPV
2内に散水し、RPV2内のドーム上部を冷却してい
る。
When the boiling water reactor is stopped, cooling water is supplied from the RPV head spray pipe 12 through the check valve 13 to the RPV.
2 is sprinkled with water to cool the upper part of the dome in RPV2.

【0008】[0008]

【発明が解決しようとする課題】沸騰水型原子炉の通常
運転時に、RPV2内で発生する非凝縮性ガスは、基本
的には主蒸気管6、蒸気タービンTを経て復水器から気
体廃棄物処理系に移送され、この気体廃棄物処理系で処
理される。RPV2内上部に蓄積された非凝縮性ガス
も、RPVベント系10により主蒸気管6内に排出し、
RPV2上部への非凝縮性ガスの蓄積防止を配慮した設
計となっている。
The non-condensable gas generated in the RPV 2 during the normal operation of the boiling water reactor is basically a gas discharged from the condenser through the main steam pipe 6 and the steam turbine T. It is transferred to the waste treatment system and treated in this gaseous waste treatment system. The non-condensable gas accumulated in the upper part of the RPV 2 is also discharged into the main steam pipe 6 by the RPV vent system 10,
The design is designed to prevent the accumulation of non-condensable gas above the RPV2.

【0009】しかし、RPV2の頂部に接続されるRP
Vヘッドスプレイ系11には、非凝縮性ガスの蓄積を確
実に防止するための対応はとられていない。RPV2の
頂部廻りでも、非凝縮性ガスの蓄積防止を確実に行なう
ためには、多少でも非凝縮性ガスの蓄積の可能性のある
部分のガス蓄積自体を未然に防止することは、原子力発
電プラントの安定運転を確実にし、信頼性の高い運転を
行なう上で重要である。
However, the RP connected to the top of the RPV2
The V head spray system 11 does not take any measures to reliably prevent the accumulation of non-condensable gas. In order to surely prevent the accumulation of non-condensable gas even around the top of the RPV2, it is necessary to prevent the gas accumulation itself in a portion where the non-condensable gas may be accumulated to some extent. This is important for ensuring stable operation and reliable operation.

【0010】一方、沸騰水型原子炉の通常運転時に、R
PV2内で発生する非凝縮性ガスの主成分である水素ガ
スや酸素ガスは、配管立上り部に蓄積される、との知見
がある。この観点からも、RPV2の頂部で非凝縮性ガ
スが多少でも蓄積する可能性のある部位のガス蓄積を未
然にかつ確実に防止することが、強く望まれている。
On the other hand, during normal operation of the boiling water reactor, R
It is known that hydrogen gas and oxygen gas, which are the main components of the non-condensable gas generated in PV2, are accumulated at the rising portion of the pipe. From this point of view as well, it is strongly desired to prevent gas accumulation in the top of the RPV2 where there is a possibility that some non-condensable gas may accumulate, in advance.

【0011】本発明は、上述した事情を考慮してなされ
たもので、原子炉圧力容器の頂部付近廻りへの非凝縮性
ガスの蓄積を効率よくかつ確実に防止し、信頼性の高い
安定運転を行なうことができる原子炉圧力容器頂部ベン
ト設備を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and efficiently and reliably prevents the accumulation of non-condensable gas around the top of the reactor pressure vessel, and ensures reliable and stable operation. It is an object of the present invention to provide a reactor pressure vessel top venting device capable of performing the above.

【0012】本発明の他の目的は、通常運転時に原子炉
圧力容器の頂部付近廻りへの非凝縮性ガスの蓄積を未然
にかつ確実に防止するとともに原子炉隔離時冷却設備の
動作時における冷却機能を充分に維持できる原子炉圧力
容器頂部ベント設備を提供するにある。
Another object of the present invention is to prevent the non-condensable gas from accumulating around the top of the reactor pressure vessel during normal operation, and to surely prevent the non-condensable gas from being accumulated during operation of the reactor isolation cooling system. It is to provide a venting equipment at the top of a reactor pressure vessel that can sufficiently maintain its function.

【0013】本発明の別の目的は、従来の原子炉圧力容
器ベント系では原子炉圧力容器廻りから非凝縮性ガスの
排気処理が困難な非凝縮性ガス蓄積部位から、非凝縮性
ガスを効率よく有効的に排気処理し、非凝縮性ガスの蓄
積を防止した原子炉圧力容器頂部ベント設備を提供する
にある。
Another object of the present invention is to efficiently remove the non-condensable gas from the non-condensable gas accumulation portion where it is difficult to exhaust the non-condensable gas from around the reactor pressure vessel in the conventional reactor pressure vessel vent system. It is an object of the present invention to provide a vent facility at the top of a reactor pressure vessel that effectively and effectively exhausts gas and prevents the accumulation of non-condensable gas.

【0014】[0014]

【課題を解決するための手段】本発明に係る原子炉圧力
容器頂部ベント設備は、上述した課題を解決するため
に、請求項1に記載したように、原子炉圧力容器上部の
原子炉圧力容器ヘッドスプレイノズルに冷却水を供給す
る原子炉圧力容器ヘッドスプレイ系と、原子炉運転時に
発生する非凝縮性ガスを主蒸気管に導く原子炉圧力容器
ベント系とを備えた原子炉圧力容器において、前記原子
炉圧力容器ヘッドスプレイ系には、原子炉圧力容器ヘッ
ドスプレイ配管上に設けられた逆止弁の原子炉圧力容器
側から分岐される分岐ベント系を備え、この分岐ベント
系は原子炉圧力容器ヘッドスプレイ配管から分岐される
ベント分岐配管を備え、この分岐配管は下流側が原子炉
圧力容器ベント系の原子炉圧力容器ベント配管に接続さ
れる一方、上記ベント分岐配管の途中にオリフィスを設
けたものである。
In order to solve the above-mentioned problems, the reactor pressure vessel top venting equipment according to the present invention is, as set forth in claim 1, a reactor pressure vessel above a reactor pressure vessel. In a reactor pressure vessel having a reactor pressure vessel head spray system for supplying cooling water to a head spray nozzle and a reactor pressure vessel vent system for guiding a non-condensable gas generated during a reactor operation to a main steam pipe, The reactor pressure vessel head spray system includes a branch vent system branched from the reactor pressure vessel side of the check valve provided on the reactor pressure vessel head spray pipe, and the branch vent system is a reactor pressure vessel. A vent branch pipe branched from the vessel head spray pipe is provided, and the downstream side of this branch pipe is connected to the reactor pressure vessel vent pipe of the reactor pressure vessel vent system. In the middle of the branch pipe is provided with a orifice.

【0015】また、上述した課題を解決するために、本
発明に係る原子炉圧力容器頂部ベント設備は、請求項2
に記載したように、前記分岐ベント系は、前記ベント分
岐配管のオリフィス下流側に遠隔操作される開閉弁を設
けたものである。
In order to solve the above-mentioned problems, the venting equipment at the top of the reactor pressure vessel according to the present invention comprises:
As described above, in the branch vent system, an on-off valve that is remotely operated is provided downstream of the orifice of the vent branch pipe.

【0016】更に、上述した課題を解決するために、本
発明に係る原子炉圧力容器頂部ベント設備は、請求項3
に記載したように、前記原子炉圧力容器ヘッドスプレイ
系には、原子炉圧力容器ヘッドスプレイ配管の原子炉格
納容器内側および外側に原子炉格納容器隔離弁が備えら
れる一方、上記原子炉圧力容器ヘッドスプレイ配管は原
子炉隔離時冷却設備の注入配管を兼ねるように構成した
ものである。
Further, in order to solve the above-mentioned problems, the venting equipment at the top of the reactor pressure vessel according to the present invention comprises:
As described above, in the reactor pressure vessel head spray system, reactor containment vessel isolation valves are provided inside and outside the reactor containment vessel of the reactor pressure vessel head spray piping, while the reactor pressure vessel head is provided. The spray pipe is configured so as to also serve as the injection pipe of the cooling equipment for reactor isolation.

【0017】[0017]

【発明の実施の形態】本発明に係る原子炉圧力容器頂部
ベント設備の実施の形態について、添付図面を参照して
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a reactor pressure vessel top vent facility according to the present invention will be described with reference to the accompanying drawings.

【0018】図1は、本発明に係る原子炉圧力容器頂部
ベント設備の実施形態を示す概略的な系統図である。
FIG. 1 is a schematic system diagram showing an embodiment of a reactor pressure vessel top vent facility according to the present invention.

【0019】この原子炉圧力容器頂部ベント設備は全体
を符号20で示し、沸騰水型原子力プラント(BWRプ
ラント)の原子炉格納容器(以下、PCVという。)2
1と原子炉圧力容器(以下、RPVという。)22とで
区画されるドライウェル23に設置される。
This reactor pressure vessel top vent equipment is generally designated by reference numeral 20, and is a reactor containment vessel (hereinafter referred to as PCV) 2 of a boiling water nuclear power plant (BWR plant).
1 and a reactor pressure vessel (hereinafter referred to as RPV) 22 are installed in a dry well 23.

【0020】BWRプラントは、原子炉格納容器(PC
V)21内に原子炉圧力容器(RPV)22を格納して
おり、このRPV22内に炉心24を収納している。炉
心24は原子炉冷却水25に浸漬される。RPV22の
下部には原子炉冷却水24を貯えた液相部が成形される
一方、この液相部の上方にRPV22は気相部26が形
成される。
The BWR plant is a reactor containment vessel (PC
A reactor pressure vessel (RPV) 22 is housed in V) 21 and a reactor core 24 is housed in this RPV 22. The reactor core 24 is immersed in the reactor cooling water 25. A liquid phase portion storing the reactor cooling water 24 is formed in the lower portion of the RPV 22, while a gas phase portion 26 of the RPV 22 is formed above the liquid phase portion.

【0021】RPV22内の原子炉冷却水25は、炉心
24を通る際に、核反応による中性子照射を受けて加熱
され、蒸気化される。発生した蒸気はRPV22内で気
水分離され、乾燥された後、主蒸気管27を通って蒸気
タービン28に送られ、蒸気タービン28で仕事をし、
発電機(図示せず)を駆動させる。主蒸気管27には原
子炉格納容器21を介してその上流側および下流側に主
蒸気隔離弁29a,29bがそれぞれ設けられる。蒸気
タービン28で仕事をし、膨張した蒸気は復水器(図示
せず)で凝縮された後、原子炉復水・給水系を通ってR
PV22内に再び還流される。
The reactor cooling water 25 in the RPV 22 is heated and vaporized by receiving neutron irradiation by a nuclear reaction while passing through the core 24. The generated steam is separated into water and water in the RPV 22, dried, and then sent to the steam turbine 28 through the main steam pipe 27 to work in the steam turbine 28.
Drive a generator (not shown). The main steam pipe 27 is provided with main steam isolation valves 29 a and 29 b on the upstream side and the downstream side of the reactor containment vessel 21, respectively. The steam that has worked in the steam turbine 28 and has expanded is condensed in a condenser (not shown) and then passes through the reactor condensate / water supply system to R
It is returned to the PV 22 again.

【0022】また、BWRプラントの原子炉圧力容器
(RPV)22に備えられた原子炉圧力容器頂部ベント
設備20は、原子炉圧力容器(RPV)ベント系30
と、原子炉圧力容器ヘッドスプレイ系(以下、RPVヘ
ッドスプレイ系という。)31から分岐された分岐ベン
ト系32とを備える。
Further, the reactor pressure vessel top vent equipment 20 provided in the reactor pressure vessel (RPV) 22 of the BWR plant is a reactor pressure vessel (RPV) vent system 30.
And a branch vent system 32 branched from a reactor pressure vessel head spray system (hereinafter referred to as an RPV head spray system) 31.

【0023】RPVベント系30は、RPV22の頂部
に接続される原子炉圧力容器(RPV)ベント配管33
を有する。このRPVベント配管33はRPV22の頂
部に形成されたRPVヘッドベントノズル34に接続さ
れる一方、途中に開閉弁として遠隔操作される電動弁3
5が設けられる。電動弁35の下流側は主蒸気管27に
原子炉格納容器21内の主蒸気隔離弁29aの上流側で
接続される。
The RPV vent system 30 is a reactor pressure vessel (RPV) vent pipe 33 connected to the top of the RPV 22.
Have. The RPV vent pipe 33 is connected to an RPV head vent nozzle 34 formed on the top of the RPV 22, and on the other hand, an electric valve 3 which is remotely operated as an on-off valve.
5 are provided. The downstream side of the motor-operated valve 35 is connected to the main steam pipe 27 on the upstream side of the main steam isolation valve 29 a in the reactor containment vessel 21.

【0024】また、分岐ベント系32は、原子炉圧力容
器(RPV)ヘッドスプレイ配管38の逆止弁39下流
側から分岐されたベント分岐配管40を備える。このベ
ント分岐配管40には途中にオリフィス41が設けら
れ、オリフィス41の下流側がRPVベント系30のR
PVベント配管33に、遠隔操作される開閉弁としての
電動弁35の上流側で接続される。ベント分岐配管40
の分岐部は、逆止弁39下流側でRPVヘッドスプレイ
配管38の頂部位置に設けられる。ベント分岐配管40
の分岐部は逆止弁39にできるだけ近い位置に設けられ
る。
The branch vent system 32 also includes a vent branch pipe 40 branched from the check valve 39 downstream side of the reactor pressure vessel (RPV) head spray pipe 38. An orifice 41 is provided in the vent branch pipe 40, and the downstream side of the orifice 41 is the R of the RPV vent system 30.
It is connected to the PV vent pipe 33 on the upstream side of an electrically operated valve 35 as an on-off valve which is remotely operated. Bent branch pipe 40
Is provided at the top of the RPV head spray pipe 38 downstream of the check valve 39. Bent branch pipe 40
The branch portion of is provided at a position as close as possible to the check valve 39.

【0025】さらに、RPVヘッドスプレイ系31は、
RPVヘッドスプレイ配管38がRPV22の頂部に設
けられた原子炉圧力容器ヘッドスプレイノズル(以下、
RPVヘッドスプレイノズルという。)36に接続され
る。RPVヘッドスプレイ系31のRPVヘッドスプレ
イ配管38は原子炉隔離時冷却設備(以下、RCICと
いう。)43の冷却水注入配管を兼ねるようにしてもよ
い。RCIC43は沸騰水型原子炉の停止時にRPV2
2の上部ドームの残圧を下げるために停止時冷却系の冷
却水を利用してRPV22の気相部26を冷却する設備
である。
Further, the RPV head spray system 31 is
The RPV head spray pipe 38 is provided on the top of the RPV 22 and the reactor pressure vessel head spray nozzle (hereinafter,
It is called RPV head spray nozzle. ) 36. The RPV head spray pipe 38 of the RPV head spray system 31 may also serve as the cooling water injection pipe of the reactor isolation cooling facility (hereinafter referred to as RCIC) 43. RCIC43 is RPV2 when the boiling water reactor is shut down.
2 is equipment for cooling the gas phase portion 26 of the RPV 22 by using the cooling water of the cooling system at the time of stop in order to reduce the residual pressure of the upper dome.

【0026】一方、RPVヘッドスプレイ系31のRP
Vヘッドスプレイ配管38には、逆止弁39および原子
炉格納容器隔離弁(PCV隔離弁)44a,44bが途
中に設けられる。PCV隔離弁44a,44bは原子炉
格納容器21を介してその内側と外側にそれぞれ設置さ
れ、原子炉運転時には通常閉塞されている。
On the other hand, the RP of the RPV head spray system 31
The V head spray pipe 38 is provided with a check valve 39 and a reactor containment vessel isolation valve (PCV isolation valve) 44a, 44b on the way. The PCV isolation valves 44a and 44b are installed inside and outside the reactor containment vessel 21, respectively, and are normally closed during the operation of the reactor.

【0027】ところで、原子炉圧力容器頂部ベント設備
20を構成するRPVベント系30とRPVヘッドスプ
レイ系31を利用した分岐ベント系32とは協働作用し
て原子炉圧力容器22廻りで非凝縮性ガスの蓄積可能部
位から非凝縮性ガスを導出し、主蒸気管27に排出する
ようになっている。
By the way, the RPV vent system 30 and the branch vent system 32 using the RPV head spray system 31 constituting the reactor pressure vessel top vent equipment 20 work in cooperation with each other to non-condensate around the reactor pressure vessel 22. The non-condensable gas is led out from the gas accumulating portion and discharged to the main steam pipe 27.

【0028】原子炉圧力容器(RPV)22の頂部にR
PVベント系30とRPVヘッドスプレイ系31を利用
した分岐ベント系32とを設け、協働作用をさせること
で、原子力発電所の通常運転時に、RPV22内の頂部
付近に蓄積する可能性のある部位の酸素ガス、水素ガス
およびKr,Xeの放射性希ガス等の非凝縮性ガスを主
蒸気管27側に円滑かつスムーズに排出することがで
き、RPV22の頂部付近廻りに非凝縮性ガスが蓄積す
るのを未然にかつ確実に防止している。
R is provided on the top of the reactor pressure vessel (RPV) 22.
By providing the PV vent system 30 and the branch vent system 32 using the RPV head spray system 31 and allowing them to cooperate with each other, a portion that may accumulate near the top of the RPV 22 during normal operation of the nuclear power plant. The non-condensable gas such as oxygen gas, hydrogen gas and radioactive noble gas such as Kr and Xe can be smoothly and smoothly discharged to the main steam pipe 27 side, and the non-condensable gas is accumulated around the top of the RPV 22. To prevent this from happening.

【0029】次に、原子炉圧力容器頂部ベント設備20
の作用について説明する。
Next, the vent equipment 20 at the top of the reactor pressure vessel
The action of will be described.

【0030】この原子炉圧力容器頂部ベント設備20
は、BWRプラントの通常運転時には、主蒸気隔離弁2
9a,29bおよび電動弁35は開状態にセットされ、
PCV隔離弁44a,44bは閉状態にセットされる。
This reactor pressure vessel top venting equipment 20
Is the main steam isolation valve 2 during normal operation of the BWR plant.
9a, 29b and the motor operated valve 35 are set to the open state,
The PCV isolation valves 44a and 44b are set to the closed state.

【0031】原子炉の運転により、炉心24での核反応
に起因する原子炉冷却水25の放射線分解から水素ガス
および酸素ガスが分解生成される一方、場合によって炉
心装荷の燃料集合体の燃料棒より微量に漏洩する可能性
のあるKr,Xe等の放射性希ガスが存在する。これら
の水素ガス、酸素ガス、放射性希ガス等の非凝縮性ガス
は、原子力発電プラントの通常運転時に、RPV22内
で発生する。
When the reactor is operated, hydrogen gas and oxygen gas are decomposed and produced from the radiolysis of the reactor cooling water 25 caused by the nuclear reaction in the core 24, while the fuel rods of the fuel assemblies loaded in the core are sometimes generated. There is a radioactive noble gas such as Kr or Xe that may leak in a smaller amount. These non-condensable gases such as hydrogen gas, oxygen gas, and radioactive noble gas are generated in the RPV 22 during normal operation of the nuclear power plant.

【0032】発生した非凝縮性ガスの大部分はRPV2
2から主蒸気に混入して主蒸気管27を通り、蒸気ター
ビン28に案内される一方、蒸気タービン28から復水
器(図示せず)に排出され、この復水器に付設された気
体廃棄物処理系(図示せず)に案内されて処理される。
Most of the generated non-condensable gas is RPV2.
2 is mixed with the main steam through the main steam pipe 27, is guided to the steam turbine 28, and is discharged from the steam turbine 28 to a condenser (not shown), and the gas waste attached to this condenser is discharged. A material processing system (not shown) guides and processes.

【0033】BWRプラントの通常運転時には遠隔操作
される電動弁35は開状態にセットされているため、R
PVベント系30および分岐ベント系32は作動状態に
ある。このため、RPV22のヘッド部内やヘッド部廻
りの非凝縮性ガスはRPVベント系30のRPVベント
配管33やRPVヘッドスプレイ系31を利用した分岐
ベント系32のベント分岐配管40を通じて主蒸気管2
7に通じるベント流路が形成される。したがって、RP
V22のヘッド部付近、例えばRPV22のヘッド部内
やRPVベント系30の電動弁35上流側配管部、さら
にはRPVヘッドスプレイ系31の逆止弁39下流側配
管部に非凝縮性ガスが蓄積するのを未然にかつ確実に防
止できる。
During normal operation of the BWR plant, the motor-operated valve 35 that is remotely operated is set to the open state.
The PV vent system 30 and the branch vent system 32 are in operation. Therefore, the non-condensable gas in or around the head portion of the RPV 22 passes through the main steam pipe 2 through the RPV vent pipe 33 of the RPV vent system 30 and the vent branch pipe 40 of the branch vent system 32 using the RPV head spray system 31.
A vent channel leading to 7 is formed. Therefore, RP
Non-condensable gas accumulates in the vicinity of the head portion of the V22, for example, in the head portion of the RPV 22, the electric valve 35 upstream side piping portion of the RPV vent system 30, and the check valve 39 downstream side piping portion of the RPV head spray system 31. Can be prevented in advance.

【0034】また、BWRプラントの運転停止時には、
RPVベント系30の電動弁35が閉塞され、PCV隔
離弁44a,44bが開操作される。このPCV隔離弁
44a,44bの開操作により、停止時冷却系の冷却水
(例えばサプレッションチャンバ内の冷却水)の一部が
RPVヘッドスプレイ系31を通ってRPV22内に供
給されて、スプレイ冷却され、RPV22上部ドームの
残圧を下げている。
When the BWR plant is shut down,
The electric valve 35 of the RPV vent system 30 is closed, and the PCV isolation valves 44a and 44b are opened. By opening the PCV isolation valves 44a and 44b, a part of the cooling water for the stop cooling system (for example, cooling water in the suppression chamber) is supplied to the RPV 22 through the RPV head spray system 31 and spray-cooled. , The residual pressure of the RPV22 upper dome is lowered.

【0035】その際、RPVヘッドスプレイ系31から
分岐ベント系32が分岐されているが、RPVベント系
30の電動弁35が閉じられており、分岐ベント系32
のオリフィス41による絞り抵抗により、冷却水が主蒸
気管27側に流入するのを確実に防止でき、ほぼ全量が
RPV22内に有効的に供給される。
At this time, the branch vent system 32 is branched from the RPV head spray system 31, but the electric valve 35 of the RPV vent system 30 is closed, and the branch vent system 32 is closed.
Due to the throttling resistance of the orifice 41, it is possible to reliably prevent the cooling water from flowing into the main steam pipe 27 side, and almost the entire amount is effectively supplied into the RPV 22.

【0036】RPVヘッドスプレイ系31によるRPV
22のヘッドスプレイ時に、RPVベント配管33の電
動弁35を確実に閉鎖させるために、電動弁35の閉鎖
をPCV隔離弁44a,44bの開許可信号で行なうこ
ともできる。
RPV by RPV head spray system 31
In order to surely close the motor-operated valve 35 of the RPV vent pipe 33 during head spraying of 22, the motor-operated valve 35 can be closed by an opening permission signal of the PCV isolation valves 44a and 44b.

【0037】また、原子炉通常運転中に、RCIC43
が作動した場合、作動直後の冷却水の分岐ベント系32
への移行を、オリフィス41の絞り抵抗で極力防止する
ことで、RCIC43のRPVヘッドスプレイ配管38
を介した冷却水注入機能上も問題はない。
During normal reactor operation, RCIC43
When the valve operates, the branch vent system 32 for the cooling water immediately after the operation
The transfer resistance to the RPV head spray pipe 38 of the RCIC 43 is prevented by preventing the shift to the maximum by the throttling resistance of the orifice 41.
There is no problem with the cooling water injection function via the.

【0038】この原子炉圧力容器頂部ベント設備20に
よれば、原子力発電所の通常運転時に、従来のRPVベ
ント系30のみでは非凝縮性ガスを排出できず、非凝縮
性ガスの蓄積を防止できない部位、例えば、RPVヘッ
ドスプレイ系31の逆止弁39下流側配管部からの非凝
縮性ガスも確実に排出でき、そのRPVヘッドスプレイ
配管部へのガス蓄積を未然にかつ確実に防止できる。し
かも、RPVヘッドスプレイ系31の下流側配管部への
非凝縮性ガスの蓄積を防止しても、RCIC43の冷却
機能を損なうことがないので、信頼性の高い安定運転を
行なうことができる。
According to this reactor pressure vessel top vent equipment 20, the non-condensable gas cannot be discharged only by the conventional RPV vent system 30 during the normal operation of the nuclear power plant, and the accumulation of the non-condensable gas cannot be prevented. A non-condensable gas from a part, for example, the check valve 39 downstream side piping part of the RPV head spray system 31 can also be reliably discharged, and gas accumulation in the RPV head spray piping part can be prevented in advance. Moreover, even if the non-condensable gas is prevented from accumulating in the downstream piping of the RPV head spray system 31, the cooling function of the RCIC 43 is not impaired, so that reliable and stable operation can be performed.

【0039】図2は本発明に係る原子炉圧力容器頂部ベ
ント設備の第2実施形態を示す概略的な系統図である。
FIG. 2 is a schematic system diagram showing a second embodiment of the reactor pressure vessel top vent equipment according to the present invention.

【0040】この実施形態に示された原子炉圧力容器頂
部ベント設備20Aは、分岐ベント系45の構成を図1
に示す原子炉圧力容器頂部ベント設備20と基本的に異
にし、他の構成は実質的に異ならないので、同じ符号を
付して説明を省略する。
The reactor vent vessel top vent equipment 20A shown in this embodiment has a structure of a branch vent system 45 shown in FIG.
Since it is basically different from the reactor pressure vessel top vent equipment 20 shown in FIG. 3 and other configurations are substantially the same, the same reference numerals are given and description thereof will be omitted.

【0041】分岐ベント系45は、逆止弁39の下流側
から分岐されたベント分岐配管46を備えており、この
ベント分岐配管46の途中にはオリフィス41と遠隔操
作される開閉弁としての電動弁47が設けられる。オリ
フィス41は原子炉圧力容器ヘッドスプレイ系31から
の分岐部近くに設けられる一方、電動弁47はオリフィ
ス41下流側でこのオリフィス41近傍に設けられる。
The branch vent system 45 is provided with a vent branch pipe 46 branched from the downstream side of the check valve 39. The vent branch pipe 46 is provided with an orifice 41 and an electrically operated opening / closing valve in the middle thereof. A valve 47 is provided. The orifice 41 is provided near the branch from the reactor pressure vessel head spray system 31, while the electric valve 47 is provided downstream of the orifice 41 near the orifice 41.

【0042】次に、原子炉圧力容器頂部ベント設備20
Aの作用について説明する。
Next, the vent equipment 20 at the top of the reactor pressure vessel
The operation of A will be described.

【0043】この原子炉圧力容器頂部ベント設備20A
は、BWRプラントの通常運転時には、主蒸気隔離弁2
9a,29bおよび電動弁35,47は開状態にセット
され、PCV隔離弁44a,44bは閉状態にセットさ
れる。
This reactor pressure vessel top vent equipment 20A
Is the main steam isolation valve 2 during normal operation of the BWR plant.
9a, 29b and the motor-operated valves 35, 47 are set to the open state, and the PCV isolation valves 44a, 44b are set to the closed state.

【0044】原子炉の運転により、炉心23での核反応
に起因する原子炉冷却水25の放射線分解により水素ガ
スおよび酸素ガスが分解生成される一方、場合によって
炉心装荷の燃料集合体の燃料棒より微量に漏洩する可能
性のあるKr,Xe等の放射性希ガスが存在する。これ
らの水素ガス、酸素ガス、放射性希ガス等の非凝縮性ガ
スは、原子力発電プラントの通常運転時に、RPV22
内で発生する。
When the reactor is operated, hydrogen gas and oxygen gas are decomposed and produced by the radiolysis of the reactor cooling water 25 caused by the nuclear reaction in the core 23, while the hydrogen rods and the fuel rods of the fuel assembly loaded in the core may be generated. There is a radioactive noble gas such as Kr or Xe that may leak in a smaller amount. These non-condensable gases such as hydrogen gas, oxygen gas, radioactive noble gas, etc., are generated by the RPV22 during normal operation of the nuclear power plant.
Occurs within.

【0045】発生した非凝縮性ガスはRPV22から主
蒸気に混入して主蒸気管27を通って蒸気タービン28
に案内される一方、蒸気タービン28から復水器(図示
せず)に排出され、この復水器に付設された気体廃棄物
処理系(図示せず)に案内されて処理される。
The generated non-condensable gas is mixed with the main steam from the RPV 22, passes through the main steam pipe 27, and then the steam turbine 28.
On the other hand, it is discharged from the steam turbine 28 to a condenser (not shown) and is guided to a gas waste treatment system (not shown) attached to this condenser for treatment.

【0046】BWRプラントの通常運転時には遠隔操作
される電動弁35および47は開状態にセットされてい
るため、RPVベント系30および分岐ベント系45は
作動状態にある。このため、RPV22のヘッド部内や
ヘッド部廻りの非凝縮性ガスはRPVベント系30のR
PVベント配管33やRPVヘッドスプレイ系31を利
用した分岐ベント系45のベント分岐配管46を通じて
主蒸気管27に通じるベント流路が形成される。したが
って、RPV22のヘッド部付近、例えばRPV22の
ヘッド部内やRPVベント系30の電動弁35上流側配
管部、さらにはRPVヘッドスプレイ系31の逆止弁3
9下流側配管部に非凝縮性ガスが蓄積するのを未然にか
つ確実に防止できる。
During normal operation of the BWR plant, since the electrically operated valves 35 and 47 that are remotely operated are set to the open state, the RPV vent system 30 and the branch vent system 45 are in the operating state. Therefore, the non-condensable gas in and around the head portion of the RPV 22 is R of the RPV vent system 30.
A vent flow path communicating with the main steam pipe 27 is formed through the PV vent pipe 33 and the vent branch pipe 46 of the branch vent system 45 using the RPV head spray system 31. Therefore, in the vicinity of the head portion of the RPV 22, for example, in the head portion of the RPV 22, the electric valve 35 upstream piping portion of the RPV vent system 30, and the check valve 3 of the RPV head spray system 31.
9. It is possible to prevent the non-condensable gas from accumulating in the downstream piping portion before and surely.

【0047】また、BWRプラントの運転停止時には、
RPVベント系30の電動弁35および分岐ベント系4
5の電動弁47が閉塞され、PCV隔離弁44a,44
bが開操作される。このPCV隔離弁44a,44bの
開操作により、停止時冷却系の冷却水(例えばサプレッ
ションチャンバ内の冷却水)の一部がRPVヘッドスプ
レイ系31を通ってRPV22内に供給されてスプレイ
冷却され、RPV22上部ドームの残圧を下げている。
When the BWR plant is shut down,
Motorized valve 35 of RPV vent system 30 and branch vent system 4
5 is closed, and the PCV isolation valves 44a, 44 are closed.
b is opened. By opening the PCV isolation valves 44a and 44b, a part of the cooling water in the cooling system during stop (for example, cooling water in the suppression chamber) is supplied into the RPV 22 through the RPV head spray system 31 and spray-cooled. The residual pressure in the upper dome of the RPV22 is reduced.

【0048】その際、RPVヘッドスプレイ系31から
分岐ベント系45が分岐されているが、分岐ベント系4
5の電動弁47が閉じられているので、冷却水が主蒸気
管27側に流入するのを確実に防止でき、全量がRPV
22内に供給される。
At this time, the branch vent system 45 is branched from the RPV head spray system 31, but the branch vent system 4
Since the motor-operated valve 47 of No. 5 is closed, it is possible to reliably prevent the cooling water from flowing into the main steam pipe 27 side, and the total amount is RPV.
22 is supplied.

【0049】RPVヘッドスプレイ系31によるRPV
22のヘッドスプレイ時に、分岐ベント系45の電動弁
47およびRPVベント配管33の電動弁35を確実に
閉鎖させるために、電動弁35の閉鎖をPCV隔離弁4
4a,44bの開許可信号で行なうこともできる。
RPV by RPV head spray system 31
In order to surely close the motor-operated valve 47 of the branch vent system 45 and the motor-operated valve 35 of the RPV vent pipe 33 during the head spray of 22, the PCV isolation valve 4 is closed.
It is also possible to use the opening permission signals of 4a and 44b.

【0050】さらに、原子炉通常運転中に、RPVヘッ
ドスプレイ系31が作動した場合、作動直後の冷却水の
分岐ベント系45への移行を、オリフィス41の絞り抵
抗で極力防止するとともに、分岐ベント系45の電動弁
47およびRPVベント系30の電動弁35がRPVヘ
ッドスプレイ系31の起動による自動閉鎖信号aを受け
て閉鎖することで、RPVヘッドスプレイ系(RCIC
43)31のRPVヘッドスプレイ配管38を介した冷
却水注入機能上も問題はない。
Further, when the RPV head spray system 31 operates during normal reactor operation, the transfer of the cooling water to the branch vent system 45 immediately after the operation is prevented by the throttle resistance of the orifice 41 as much as possible, and the branch vent is also provided. The motor-operated valve 47 of the system 45 and the motor-operated valve 35 of the RPV vent system 30 are closed by receiving the automatic closing signal a by the activation of the RPV head spray system 31, and thereby the RPV head spray system (RCIC
43) There is no problem in the cooling water injection function via the RPV head spray pipe 38 of 31.

【0051】この原子炉圧力容器頂部ベント設備20A
によれば、BWRプラントの運転中、RPV22廻りで
従来のRPVベント系30の運転のみでは排出できない
部位の非凝縮性ガスの排出を円滑かつスムーズに行なう
ことができる。分岐ベント系45にオリフィス41や電
動弁47を設けることは、原子炉停止時の運用上も好ま
しい。
This reactor pressure vessel top vent equipment 20A
According to this, during the operation of the BWR plant, it is possible to smoothly and smoothly discharge the non-condensable gas around the RPV 22 in a portion that cannot be discharged only by the operation of the conventional RPV vent system 30. It is preferable to provide the branch vent system 45 with the orifice 41 and the motor-operated valve 47 in terms of operation when the reactor is stopped.

【0052】しかも、原子炉圧力容器頂部ベント設備2
0AはRPVヘッドスプレイ系31の下流側配管部から
の非凝縮性ガスを排出する構造を採用しても、RCIC
43の冷却機能を損なうことがないので、信頼性の高い
安定運転を行なうことができる。
Moreover, the venting equipment 2 at the top of the reactor pressure vessel
Even if 0A adopts a structure for discharging the non-condensable gas from the downstream piping of the RPV head spray system 31, the RCIC
Since the cooling function of 43 is not impaired, highly reliable and stable operation can be performed.

【0053】図2では、分岐ベント系45のベント分岐
配管46を、RPVベント系30の電動弁35の上流側
に接続した例を示したが、ベント分岐配管46は電動弁
35の下流側でRPVベント配管33に接続してもよ
く、また、主蒸気管27に直接接続してもよい。
Although FIG. 2 shows an example in which the vent branch pipe 46 of the branch vent system 45 is connected to the upstream side of the electric valve 35 of the RPV vent system 30, the vent branch pipe 46 is located downstream of the electric valve 35. It may be connected to the RPV vent pipe 33, or may be directly connected to the main steam pipe 27.

【0054】(その他の実施例)通常運転中のRCIC
43の起動信号後のRPVベント系30の電動弁35や
分岐ベント系45の電動弁47を遠隔手動操作にて閉鎖
することでRCIC43の注入機能はより一層向上す
る。
(Other Embodiments) RCIC in normal operation
By closing the electrically operated valve 35 of the RPV vent system 30 and the electrically operated valve 47 of the branch vent system 45 by a remote manual operation after the activation signal of 43, the injection function of the RCIC 43 is further improved.

【0055】[0055]

【発明の効果】本発明に係る原子炉圧力容器頂部ベント
設備においては、原子炉圧力容器ベント系と原子炉圧力
容器ヘッドスプレイ系を利用した分岐ベント系とによ
り、原子炉圧力容器頂部付近への非凝縮性ガスの蓄積を
効率よく確実に防止し、信頼性の高い安定運転を行なう
ことができる。
EFFECTS OF THE INVENTION In the reactor pressure vessel top vent equipment according to the present invention, a reactor pressure vessel vent system and a branch vent system utilizing a reactor pressure vessel head spray system are provided to the vicinity of the reactor pressure vessel top. Accumulation of non-condensable gas can be prevented efficiently and reliably, and reliable and stable operation can be performed.

【0056】また、原子炉圧力容器ヘッドスプレイ系を
原子炉隔離時冷却設備の注入配管と兼用させた場合で
も、原子炉通常運転時に原子炉圧力容器の頂部付近への
非凝縮性ガスの蓄積を原子炉圧力容器ベント系と分岐ベ
ント系の協働作用により未然にかつ確実に防止するとと
もに、原子炉隔離時冷却設備の動作時における注入冷却
機能を損なうことなく、注入冷却機能を充分に発揮、維
持することができる。
Even when the reactor pressure vessel head spray system is also used as the injection pipe of the reactor isolation cooling system, non-condensable gas is accumulated near the top of the reactor pressure vessel during normal operation of the reactor. By the cooperation of the reactor pressure vessel vent system and the branch vent system, it prevents it in advance and surely, and fully demonstrates the injection cooling function without impairing the injection cooling function during operation of the reactor isolation cooling system, Can be maintained.

【0057】さらに、原子炉圧力容器ベント系では排気
処理できない部位の非凝縮性ガスの排気処理を分岐ベン
ト系で効率よく、有効的に行なうことができ、原子炉圧
力容器頂部廻りに非凝縮性ガスが蓄積するのを未然にか
つ確実に防止できる。
Further, the exhaust treatment of the non-condensable gas in the portion which cannot be exhausted by the reactor pressure vessel vent system can be efficiently and effectively performed by the branch vent system, and the non-condensable gas around the top of the reactor pressure vessel can be treated. It is possible to prevent gas from accumulating in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉圧力容器頂部ベント設備の
実施形態を示す概略的な系統図。
FIG. 1 is a schematic system diagram showing an embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図2】本発明に係る原子炉圧力容器頂部ベント設備の
第2実施形態を示す系統図。
FIG. 2 is a system diagram showing a second embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図3】従来の原子力発電所の原子炉圧力容器頂部ベン
ト設備の概略的な系統図。
FIG. 3 is a schematic system diagram of a conventional reactor pressure vessel top vent facility of a nuclear power plant.

【符号の説明】[Explanation of symbols]

20 原子炉圧力容器頂部ベント設備 21 原子炉格納容器(PCV) 22 原子炉圧力容器(RPV) 23 ドライウェル 24 炉心 25 原子炉冷却水(液相部) 26 気相部(蒸気相部) 27 主蒸気管 28 蒸気タービン 29a,29b 主蒸気隔離弁 30 原子炉圧力容器ベント系(RPVベント系) 31 原子炉圧力容器ヘッドスプレイ系(RPVヘッド
スプレイ系) 32 分岐ベント系 33 原子炉圧力容器ベント配管(RPVベント配管) 34 原子炉圧力容器ヘッドベントノズル(RPVヘッ
ドベントノズル) 35 電動弁(遠隔操作弁) 36 原子炉圧力容器ヘッドスプレイノズル(RPVヘ
ッドスプレイノズル) 37 ドライウェル 38 原子炉圧力容器ヘッドスプレイ配管(RPVヘッ
ドスプレイ配管) 39 逆止弁 40 ベント分岐配管 41 オリフィス 43 原子炉隔離時冷却設備(RCIC) 44a,44b 原子炉格納容器隔離弁(PCV隔離
弁) 45 分岐ベント系 46 ベント分岐配管 47 電動弁(遠隔操作弁)
20 Reactor Pressure Vessel Top Vent Equipment 21 Reactor Containment Vessel (PCV) 22 Reactor Pressure Vessel (RPV) 23 Drywell 24 Reactor Core 25 Reactor Cooling Water (Liquid Phase) 26 Gas Phase (Vapor Phase) 27 Main Steam pipe 28 Steam turbines 29a, 29b Main steam isolation valve 30 Reactor pressure vessel vent system (RPV vent system) 31 Reactor pressure vessel head spray system (RPV head spray system) 32 Branch vent system 33 Reactor pressure vessel vent pipe ( RPV vent pipe) 34 Reactor pressure vessel head vent nozzle (RPV head vent nozzle) 35 Motorized valve (remote control valve) 36 Reactor pressure vessel head spray nozzle (RPV head spray nozzle) 37 Drywell 38 Reactor pressure vessel head spray Piping (RPV head spray piping) 39 Check valve 40 Vent branch arrangement 41 orifice 43 reactor core isolation cooling system (RCIC) 44a, 44b reactor containment isolation valve (PCV isolation valve) 45 branch vent system 46 bent branch pipe 47 the electric valve (remote control valves)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩入 章夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 黒田 理知 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akio Shioiri             8th Shinsugita Town, Isogo Ward, Yokohama City, Kanagawa Prefecture             Ceremony company Toshiba Yokohama office (72) Inventor Richi Kuroda             8th Shinsugita Town, Isogo Ward, Yokohama City, Kanagawa Prefecture             Ceremony company Toshiba Yokohama office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器上部の原子炉圧力容器ヘ
ッドスプレイノズルに冷却水を供給する原子炉圧力容器
ヘッドスプレイ系と、原子炉運転時に発生する非凝縮性
ガスを主蒸気管に導く原子炉圧力容器ベント系とを備え
た原子炉圧力容器において、 前記原子炉圧力容器ヘッドスプレイ系には、原子炉圧力
容器ヘッドスプレイ配管上に設けられた逆止弁の原子炉
圧力容器側から分岐される分岐ベント系を備え、この分
岐ベント系は原子炉圧力容器ヘッドスプレイ配管から分
岐されるベント分岐配管を備え、この分岐配管は下流側
が原子炉圧力容器ベント系の原子炉圧力容器ベント配管
に接続される一方、上記ベント分岐配管の途中にオリフ
ィスを設けたことを特徴とする原子炉圧力容器頂部ベン
ト設備。
1. A reactor pressure vessel head spray system for supplying cooling water to a reactor pressure vessel head spray nozzle above a reactor pressure vessel, and an atom for guiding a non-condensable gas generated during reactor operation to a main steam pipe. In a reactor pressure vessel with a reactor pressure vessel vent system, the reactor pressure vessel head spray system is branched from the reactor pressure vessel side of the check valve provided on the reactor pressure vessel head spray pipe. The branch vent system is provided with a vent branch pipe branched from the reactor pressure vessel head spray pipe, and this branch pipe is connected to the reactor pressure vessel vent pipe of the reactor pressure vessel vent system on the downstream side. On the other hand, the vent equipment at the top of the reactor pressure vessel is characterized in that an orifice is provided in the middle of the vent branch pipe.
【請求項2】 前記分岐ベント系は、前記ベント分岐配
管のオリフィス下流側に遠隔操作される開閉弁を設けた
請求項1記載の原子炉圧力容器頂部ベント設備。
2. The reactor vent vessel top vent facility according to claim 1, wherein the branch vent system is provided with an on-off valve which is remotely operated downstream of the orifice of the vent branch pipe.
【請求項3】 前記原子炉圧力容器ヘッドスプレイ系に
は、原子炉圧力容器ヘッドスプレイ配管の原子炉格納容
器内側および外側に原子炉格納容器隔離弁が備えられる
一方、上記原子炉圧力容器ヘッドスプレイ配管は原子炉
隔離時冷却設備の注入配管を兼ねるように構成した請求
項1に記載の原子炉圧力容器頂部ベント設備。
3. The reactor pressure vessel head spray system comprises reactor containment vessel isolation valves inside and outside the reactor containment vessel of the reactor pressure vessel head spray piping, while the reactor pressure vessel head spray system is provided. The reactor pressure vessel top vent equipment according to claim 1, wherein the piping is configured so as to also serve as an injection piping of the reactor isolation cooling equipment.
JP2002135838A 2002-05-10 2002-05-10 Vent device for top of reactor pressure vessel Pending JP2003329794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135838A JP2003329794A (en) 2002-05-10 2002-05-10 Vent device for top of reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135838A JP2003329794A (en) 2002-05-10 2002-05-10 Vent device for top of reactor pressure vessel

Publications (1)

Publication Number Publication Date
JP2003329794A true JP2003329794A (en) 2003-11-19

Family

ID=29698055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135838A Pending JP2003329794A (en) 2002-05-10 2002-05-10 Vent device for top of reactor pressure vessel

Country Status (1)

Country Link
JP (1) JP2003329794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266369A (en) * 2009-05-15 2010-11-25 Toshiba Corp Head spray system for reactor pressure vessel
CN103390435A (en) * 2013-07-30 2013-11-13 中广核工程有限公司 Exhaust device and method for pressure vessel of nuclear power plant reactor coolant system
CN106531242A (en) * 2016-12-06 2017-03-22 中广核工程有限公司 Online gas collecting and exhausting device and method for nuclear power station fluid system non-condensable gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266369A (en) * 2009-05-15 2010-11-25 Toshiba Corp Head spray system for reactor pressure vessel
CN103390435A (en) * 2013-07-30 2013-11-13 中广核工程有限公司 Exhaust device and method for pressure vessel of nuclear power plant reactor coolant system
CN106531242A (en) * 2016-12-06 2017-03-22 中广核工程有限公司 Online gas collecting and exhausting device and method for nuclear power station fluid system non-condensable gas

Similar Documents

Publication Publication Date Title
US20210151208A1 (en) Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
EP1298677A2 (en) A method of decontaminating by ozone and a device therefor
US5596613A (en) Pressure suppression containment system for boiling water reactor
JP2003329794A (en) Vent device for top of reactor pressure vessel
JP4131914B2 (en) Reactor pressure vessel top vent facility
JP5295859B2 (en) Reactor pressure vessel head spray system
JP5058016B2 (en) Non-condensable gas accumulation combustion prevention system
JPH0498198A (en) Core cooling facility for nuclear power plant
JP3213076B2 (en) Apparatus and method for low pressure coolant injection correction for boiling water reactors
JP4434436B2 (en) Operation method of boiling water nuclear power plant
JP2004012145A (en) Cumulative combustion preventing system for noncondensing gas
JP4086269B2 (en) Gas treatment facility and gas treatment method for nuclear power plant
JP4533670B2 (en) Boiling water reactor facilities
JPS6346397B2 (en)
JPH08201561A (en) Safety system reactor container
KR102414701B1 (en) Apparatus for reducing the release of Iodine to the atmosphere under severe accident
JP2008122419A (en) Prevention system of accumulated combustion of noncondensable gas
JP2023000744A (en) Radioactive material treatment device and reactor facility
JP7457617B2 (en) Reactor containment vent systems and nuclear power plants
KR102341217B1 (en) System for reducing the release of radioactive material to the atmosphere
JP2815424B2 (en) Radioactive gas waste treatment equipment
Kelly Overview of containment venting as an accident mitigation strategy in US light water reactors
JPS6247279B2 (en)
JPH01232294A (en) Spray system driven by storage container vent gas turbine
JPH07325193A (en) Radioactive gas waste processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909