JP2012230032A - Cooling device for reactor containment vessel - Google Patents

Cooling device for reactor containment vessel Download PDF

Info

Publication number
JP2012230032A
JP2012230032A JP2011099120A JP2011099120A JP2012230032A JP 2012230032 A JP2012230032 A JP 2012230032A JP 2011099120 A JP2011099120 A JP 2011099120A JP 2011099120 A JP2011099120 A JP 2011099120A JP 2012230032 A JP2012230032 A JP 2012230032A
Authority
JP
Japan
Prior art keywords
containment vessel
vessel cooling
cooling device
static
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011099120A
Other languages
Japanese (ja)
Inventor
Tomohisa Kurita
智久 栗田
Masato Yamada
雅人 山田
Mika Tawara
美香 田原
Yoshihiro Kojima
良洋 小島
Hideo Hirai
秀男 平井
Takuya Miyagawa
卓也 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011099120A priority Critical patent/JP2012230032A/en
Publication of JP2012230032A publication Critical patent/JP2012230032A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a passive cooling device for a reactor containment vessel, which can maintain pressure reduction and heat removal capabilities of a reactor and the reactor containment vessel over a long period.SOLUTION: A cooling device for a reactor containment vessel includes: a building 3 containing a reactor containment vessel 2; a static containment vessel cooling device 10 installed on a ground surface outside the building 3; a heat exchanger chamber 11 which is installed adjacent to the static containment vessel cooling device 10 and in which a heat exchanger 12 and a drain chamber 13 are arranged; a heat transfer pipe 18 of the heat exchanger 12, which is arranged at a lower part in the static containment vessel cooling device 10; a vapor release pipe 7 connecting the inside of the reactor containment vessel 2 to the heat exchanger 12; and a seawater introduction pipe 22 connected to a bottom of the static containment vessel cooling device 10 via a check valve 23. The heat transfer pipe 18 is positioned lower than a low water level at low tide.

Description

本発明は、原子炉格納容器の冷却装置に関し、特に、静的格納容器冷却装置を備えた原子炉格納容器の冷却装置に関する。   The present invention relates to a reactor containment vessel cooling apparatus, and more particularly, to a reactor containment vessel cooling apparatus including a static containment vessel cooling apparatus.

原子力プラントにおいて一次系配管の破断又は減圧弁の開放等により冷却材が原子炉格納容器内へ放出された場合、冷却材が減圧によって高温の蒸気となるため、原子炉格納容器内の圧力が上昇する。従来、圧力上昇を抑制し格納容器の健全性を確保するため、発生した蒸気を格納容器内の圧力抑制プールに誘導し凝縮させる方法や、格納容器上部から格納容器スプレイにより内部に散水し、蒸気を凝縮させる方法が知られている。これらの方法では、圧力抑制プールやスプレイ水へ蓄積された熱はポンプ等の動的機器により、熱交換器を介して最終的に外部へ放出されている。   When the coolant is released into the reactor containment vessel due to the breakage of the primary system piping or the opening of the pressure reducing valve in a nuclear power plant, the coolant becomes high-temperature steam due to decompression, so the pressure inside the reactor containment vessel rises. To do. Conventionally, in order to suppress the pressure rise and ensure the soundness of the containment vessel, the generated steam is guided to the pressure suppression pool in the containment vessel to condense, or the upper part of the containment vessel is sprayed into the containment vessel spray to A method for condensing the water is known. In these methods, heat accumulated in the pressure suppression pool and spray water is finally released to the outside through a heat exchanger by a dynamic device such as a pump.

近年、安全系の信頼性向上を図るために、格納容器内の圧力抑制方法についても、従来のような動的機器ではなく、格納容器の内部又は外部にアイソレーションコンデンサ(IC)や静的格納容器冷却系(PCCS)を設け、重力などの自然に存在する受動的な力を駆動力として格納容器の除熱を行う方法が提案されている(特許文献1、2)。   In recent years, in order to improve the reliability of safety systems, the pressure suppression method inside the containment vessel is not a dynamic device as in the past, but an isolation capacitor (IC) or static containment inside or outside the containment vessel. Methods have been proposed in which a container cooling system (PCCS) is provided to remove heat from the containment vessel using a naturally occurring passive force such as gravity as a driving force (Patent Documents 1 and 2).

特開平8−201559号公報JP-A-8-201559 特開2009−74980号公報JP 2009-74980 A

上述した従来の受動的な駆動力を利用した冷却装置において、アイソレーションコンデンサプールやPCCS冷却水は、満水状態で通常3日間程度の除熱能力を有する水量が確保されている。しかしながら、地震等による亀裂によって静的格納容器冷却系の冷却水が漏洩したり、除熱期間が長期化する場合追加の給水が必要となるが、その際、電源喪失等による給水設備の故障や、高放射線環境によるアクセス制限によって追加の給水が困難となる可能性がある。   In the cooling device using the conventional passive driving force described above, the isolation condenser pool and the PCCS cooling water have a sufficient amount of water having a heat removal capability of about three days in a full state. However, if the cooling water in the static containment vessel cooling system leaks due to a crack due to an earthquake or the like, or if the heat removal period is prolonged, additional water supply is required. Additional water supply may be difficult due to access restrictions due to high radiation environment.

その場合、格納容器内の除熱・減圧が困難になり格納容器内雰囲気の外部放出を余儀なくされたり(格納容器ベント)、原子炉内の残留熱の除去機能が失われる恐れがある。   In such a case, it is difficult to remove heat and reduce pressure in the containment vessel, and the atmosphere inside the containment vessel may be forced to be released to the outside (containment vessel vent), or the residual heat removal function in the nuclear reactor may be lost.

本発明は上記課題を解決するためになされたものであり、事故時において原子炉及び原子炉格納容器の減圧・除熱を長期にわたって行うことができる受動的な原子炉格納容器の冷却装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a passive reactor containment vessel cooling apparatus capable of performing depressurization and heat removal of the reactor and the containment vessel over a long period of time in the event of an accident. The purpose is to do.

上記課題を解決するため、本発明に係る原子炉格納容器の冷却装置は、原子炉格納容器を内包する建屋と、前記建屋の外部の地表面に設置された静的格納容器冷却装置と、前記静的格納容器冷却装置に隣接して設けられ内部に熱交換器とドレン室が配置された熱交換器室と、前記静的格納容器冷却装置内の下部に配置された前記熱交換器の伝熱管と、前記原子炉格納容器の内部と前記熱交換器とを接続する蒸気逃し管と、前記静的格納容器冷却装置の下部に逆止弁を介して接続された海水導入配管とを有する原子炉格納容器の冷却装置であって、前記伝熱管は干潮時の干潮水位よりも下方に位置することを特徴とする。   In order to solve the above problems, a reactor containment vessel cooling device according to the present invention includes a building containing the reactor containment vessel, a static containment vessel cooling device installed on the ground surface outside the building, A heat exchanger chamber that is provided adjacent to the static containment vessel cooling device and in which a heat exchanger and a drain chamber are arranged, and a heat exchanger that is arranged in the lower part of the static containment vessel cooling device. An atom having a heat pipe, a steam escape pipe connecting the inside of the reactor containment vessel and the heat exchanger, and a seawater introduction pipe connected to a lower part of the static containment vessel cooling device via a check valve A cooling apparatus for a furnace containment vessel, wherein the heat transfer tube is located below a low tide water level at low tide.

本発明によれば、海水及び重力等を利用した受動的な冷却システムにより原子炉格納容器及び圧力容器の減圧・除熱機能を長期にわたって維持することができる。また、静的格納容器冷却装置は地表面に設置されるので事故時において追加給水を容易に実施することができるとともに、高放射能環境下で追加給水が困難な場合でも、海水を利用した給水を自動的に継続することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pressure reduction and heat removal function of a reactor containment vessel and a pressure vessel can be maintained over a long period of time by the passive cooling system using seawater, gravity, etc. In addition, since the static containment vessel cooling device is installed on the ground surface, additional water supply can be easily performed in the event of an accident, and even when it is difficult to supply additional water in a highly radioactive environment, water supply using seawater is possible. Can continue automatically.

第1の実施形態に係る原子炉格納容器の冷却装置の全体構成図。The whole block diagram of the cooling device of the reactor containment vessel concerning a 1st embodiment. 第2の実施形態に係る原子炉格納容器の冷却装置の全体構成図。The whole block diagram of the reactor containment vessel cooling device according to the second embodiment. 第3の実施形態に係る原子炉格納容器の冷却装置主要部の構成図。The block diagram of the principal part of the cooling device of the reactor containment vessel which concerns on 3rd Embodiment. (a)は第4の実施形態に係る静的格納容器冷却装置の構成図、(b)及び(c)はその変形例を示す構成図。(A) is a block diagram of the static container cooling device which concerns on 4th Embodiment, (b) and (c) are the block diagrams which show the modification.

以下、本発明に係る原子炉格納容器の冷却装置の実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a reactor containment vessel cooling apparatus according to the present invention will be described with reference to the drawings.

[第1の実施形態]
本第1の実施形態に係る原子炉格納容器の冷却装置を図1及び図2により説明する。
(構成)
第1の実施形態に係る原子炉格納容器の冷却装置は、図1に示すように、圧力容器1と、圧力容器1の周囲に設けられた原子炉格納容器2と、原子炉格納容器2を内包する建屋3と、圧力抑制水が満たされた圧力抑制室4と、圧力容器1で発生した蒸気をタービン(図示せず)に導く主蒸気管5と、主蒸気管5に設けられた減圧弁9と、給水管6と、建屋3の外部の地表面に設置され内部に冷却水が満たされた静的格納容器冷却装置10と、熱交換器12とドレン室13が設置された熱交換器室11とから構成される。
[First Embodiment]
A reactor containment vessel cooling apparatus according to the first embodiment will be described with reference to FIGS.
(Constitution)
As shown in FIG. 1, the reactor containment vessel cooling apparatus according to the first embodiment includes a pressure vessel 1, a reactor containment vessel 2 provided around the pressure vessel 1, and a reactor containment vessel 2. The building 3 to be included, the pressure suppression chamber 4 filled with pressure suppression water, the main steam pipe 5 for guiding the steam generated in the pressure vessel 1 to a turbine (not shown), and the decompression provided in the main steam pipe 5 Heat exchange with a valve 9, a water supply pipe 6, a static containment vessel cooling device 10 installed on the ground surface outside the building 3 and filled with cooling water, a heat exchanger 12 and a drain chamber 13 It is comprised from the chamber 11.

原子炉格納容器2の内部と熱交換器12は蒸気逃し管7により接続され、ドレン室13は逆止弁を介して例えば給水管6に接続され、緊急時にドレン室13内のドレン水を圧力容器1に給水できるように構成されている。   The inside of the containment vessel 2 and the heat exchanger 12 are connected by a steam escape pipe 7, and the drain chamber 13 is connected to, for example, a water supply pipe 6 through a check valve, and the drain water in the drain chamber 13 is pressurized in an emergency. It is comprised so that water can be supplied to the container 1.

静的格納容器冷却装置10の下部は海水導入配管22が接続されており、逆止弁23、開閉弁24、異物除去フィルタ40を介して海水に通じている。なお、この逆止弁23は海から静的格納容器冷却装置10方向のみ開動作する構成としている。   A seawater introduction pipe 22 is connected to the lower part of the static containment vessel cooling apparatus 10 and communicates with seawater via a check valve 23, an on-off valve 24, and a foreign matter removal filter 40. The check valve 23 is configured to open only in the direction of the static containment container cooling device 10 from the sea.

また、静的格納容器冷却装置10には冷却水を補給するための給水口26と、放射性物質を捕捉するフィルタ21を介して静的格納容器冷却装置10内の蒸気を外部へ排出する排出管20が設置されている。また、静的格納容器冷却装置10の下部には熱交換器12の伝熱管18が複数本配置され、蒸気逃し管7を介して導入された蒸気を凝縮し、凝縮したドレン水はドレン室13に導かれる。   Further, the static containment vessel cooling apparatus 10 is provided with a water supply port 26 for replenishing cooling water, and a discharge pipe for discharging the steam in the static containment vessel cooling apparatus 10 to the outside through a filter 21 for capturing radioactive substances. 20 is installed. In addition, a plurality of heat transfer tubes 18 of the heat exchanger 12 are arranged in the lower part of the static containment vessel cooling apparatus 10 to condense the steam introduced through the steam escape tube 7, and the condensed drain water is discharged into the drain chamber 13. Led to.

伝熱管18は、静的格納容器冷却装置10内に海水が導入された場合、海水の干潮水位LLよりも下方に位置するように静的格納容器冷却装置10内の下部に配置されている。
また、静的格納容器冷却装置10、及び熱交換器12とドレン室13が設置された熱交換器室11はいずれも気密の放射線遮蔽体から構成されている。
When seawater is introduced into the static containment vessel cooling apparatus 10, the heat transfer tube 18 is disposed at the lower part of the static containment vessel cooling apparatus 10 so as to be positioned below the low tide level LL of the seawater.
In addition, the static containment vessel cooling apparatus 10 and the heat exchanger chamber 11 in which the heat exchanger 12 and the drain chamber 13 are installed are all formed of an airtight radiation shield.

なお、図1の例では静的格納容器冷却装置10は半地下構造であるが、伝熱管18が干潮水位LLよりも下方に位置するのであれば、全部を地下構造物又は地上構造物としてもよい。また、海水導入配管22に設けられた開閉弁24は省略可能である。   In the example of FIG. 1, the static containment vessel cooling apparatus 10 has a semi-underground structure. However, if the heat transfer pipe 18 is located below the low tide water level LL, the entire structure may be an underground structure or an above-ground structure. Good. Further, the on-off valve 24 provided in the seawater introduction pipe 22 can be omitted.

(作用)
このように構成された原子炉格納容器の冷却装置において、事故時に減圧弁9や開放弁(図示せず)等を介して原子炉格納容器2内に冷却材が放出され圧力が上昇した場合、原子炉格納容器2内の蒸気は圧力抑制室4に導かれ凝縮する。やがて圧力抑制室4の水温が飽和温度に達すると圧力抑制機能を喪失し、代わって静的格納容器冷却装置11が機能しはじめ、原子炉格納容器2内の蒸気を蒸気逃し管7を介して熱交換器12及び伝熱管18に導き蒸気を凝縮する。
これにより原子炉格納容器2内を減圧・除熱し、蒸気を直接外部に放出する事態(格納容器ベント)を防止する。
(Function)
In the reactor containment vessel cooling apparatus configured as described above, when the coolant is discharged into the reactor containment vessel 2 through the pressure reducing valve 9 or the release valve (not shown) in the event of an accident, the pressure rises. The steam in the reactor containment vessel 2 is led to the pressure suppression chamber 4 and condensed. Eventually, when the water temperature in the pressure suppression chamber 4 reaches the saturation temperature, the pressure suppression function is lost, and instead, the static containment vessel cooling device 11 begins to function, and the steam in the reactor containment vessel 2 passes through the steam escape pipe 7. The steam is led to the heat exchanger 12 and the heat transfer pipe 18 to condense the steam.
As a result, the reactor containment vessel 2 is depressurized and heat-removed, and a situation in which steam is directly released to the outside (a containment vessel vent) is prevented.

静的格納容器冷却装置10には通常真水からなる冷却水が満たされているが、亀裂等によって冷却水が漏洩したり、除熱期間が長期化する場合には、冷却水の水位低下に応じて図示しない給水設備(給水車又は給水タンク等)から追加の冷却水を給水口26を介して補充する。
ドレン室13に貯留されたドレン水は重力によって給水管6等を介して圧力容器1内に注入され原子炉の残留熱を除去する。
The static containment vessel cooling device 10 is usually filled with cooling water consisting of fresh water. However, if the cooling water leaks due to cracks or the like, or if the heat removal period is prolonged, the level of the cooling water is reduced. Then, additional cooling water is replenished through a water supply port 26 from a water supply facility (not shown) such as a water supply vehicle or a water supply tank.
The drain water stored in the drain chamber 13 is injected into the pressure vessel 1 by gravity through the water supply pipe 6 and the like to remove residual heat of the reactor.

このように、静的格納容器冷却装置10は地表面に設置されるので事故時において追加給水を容易に実施することが可能となる。
なお、ドレン水は給水管6に限らず、高圧又は低圧炉心注水系等の配管に接続してもよい。
Thus, since the static containment vessel cooling apparatus 10 is installed on the ground surface, it becomes possible to easily perform additional water supply in the event of an accident.
The drain water is not limited to the water supply pipe 6 and may be connected to a pipe such as a high-pressure or low-pressure core water injection system.

一方、建屋3の周辺が高放射線環境によってアクセスが困難となったり、外部の給水タンク(図示せず)が破損して追加の給水が困難になった場合、静的格納容器冷却装置10内の冷却水の水位が低下する。そして、逆止弁23が水頭差により開となり、海水が海水導入配管22を介して静的格納容器冷却装置10内に流入する。その際、静的格納容器冷却装置10内の伝熱管18は干潮時であっても干潮水位LLの下方にあるので、蒸気逃し管7から導入された蒸気を継続して減圧・凝縮することができる。   On the other hand, if the surroundings of the building 3 are difficult to access due to a high radiation environment, or if an external water supply tank (not shown) is damaged and additional water supply becomes difficult, Cooling water level decreases. Then, the check valve 23 is opened due to the water head difference, and the seawater flows into the static containment vessel cooling apparatus 10 through the seawater introduction pipe 22. At that time, since the heat transfer pipe 18 in the static containment vessel cooling device 10 is below the low tide water level LL even at low tide, the steam introduced from the steam escape pipe 7 can be continuously decompressed and condensed. it can.

また、逆止弁23や海水導入配管22のメンテナンス作業等のために開閉弁24を海水導入配管22に設置してもよい。その際、開閉弁24は遠隔操作又は手動で開閉弁駆動部25により開又は閉とされる。   Further, the open / close valve 24 may be installed in the seawater introduction pipe 22 for maintenance work of the check valve 23 and the seawater introduction pipe 22 or the like. At that time, the on-off valve 24 is opened or closed by the on-off valve driving unit 25 by remote operation or manually.

さらに、通常時、静的格納容器冷却装置10内を真水で満たしておく場合には、通常時に開閉弁24を閉止状態とし、静的格納容器冷却装置10内の冷却水水位の低下を検出し、真水の追加の給水が困難になった場合に開動作するように開閉弁24を操作してもよい。   Furthermore, when the inside of the static containment vessel cooling apparatus 10 is filled with fresh water during normal times, the on-off valve 24 is closed during normal times, and a decrease in the cooling water level in the static containment vessel cooling apparatus 10 is detected. The on-off valve 24 may be operated so as to open when additional water supply of fresh water becomes difficult.

また、静的格納容器冷却装置10は地表面に設置されるので、海水が満潮水位FLのときも、海水が静的格納容器冷却装置10から溢れることはない。また、仮に、津波又は高潮等で海水面が地表面よりも上昇した場合、海水は静的格納容器冷却装置10から排出管20を介して外部に放出されるが、原子炉格納容器の除熱機能に影響を与えることはない。   Moreover, since the static containment vessel cooling device 10 is installed on the ground surface, the seawater does not overflow from the static containment vessel cooling device 10 even when the seawater is at the high tide level FL. In addition, if the sea level rises above the ground surface due to a tsunami or storm surge, the sea water is released to the outside from the static containment vessel cooling device 10 through the discharge pipe 20, but the heat removal of the reactor containment vessel Does not affect functionality.

また、静的格納容器冷却装置10内の冷却材は熱交換により高温になり蒸気が発生するが、蒸気は放射性物質を捕捉するフィルタ21を介して排出管20から外部へ放出される。また、排出管20の先端は外部から雨水や異物が混入しないように例えば逆U字構造または両端開放管の側部を排出管20の先端と接続しているシュノーケル形(図示せず)としている。   Further, the coolant in the static containment vessel cooling apparatus 10 becomes high temperature due to heat exchange and generates steam, but the steam is discharged to the outside from the discharge pipe 20 through the filter 21 that captures the radioactive substance. In addition, the tip of the discharge pipe 20 has, for example, an inverted U-shaped structure or a snorkel shape (not shown) in which the side portions of both ends of the open pipe are connected to the tip of the discharge pipe 20 so that rainwater and foreign matters do not enter from the outside. .

(効果)
以上説明したように、本実施形態によれば、重力及び海水を利用した受動的な冷却システムにより原子炉格納容器及び圧力容器の減圧・除熱機能を長期にわたって維持することができる。また、静的格納容器冷却装置は地表面に設置されるので事故時において追加給水を容易に実施することができるとともに、追加給水が困難な場合でも海水を利用した給水を自動的に継続することができる。また、ドレン室に貯留されたドレン水を圧力容器の冷却水として継続的に供給することができる。
(effect)
As described above, according to the present embodiment, the pressure reduction / heat removal function of the reactor containment vessel and the pressure vessel can be maintained over a long period of time by the passive cooling system using gravity and seawater. In addition, since the static containment vessel cooling device is installed on the ground surface, additional water supply can be easily performed in the event of an accident, and even when additional water supply is difficult, water supply using seawater is automatically continued. Can do. Further, the drain water stored in the drain chamber can be continuously supplied as cooling water for the pressure vessel.

さらに、本実施形態の静的格納容器冷却装置は新設のみならず既存の原子力プラントにも大規模な工事を必要とせずに付設することが可能であり、原子力プラントの安全性、信頼性を高めることができる。   Furthermore, the static containment vessel cooling apparatus of the present embodiment can be installed not only in a new installation but also in an existing nuclear power plant without requiring a large-scale construction, thereby improving the safety and reliability of the nuclear power plant. be able to.

[第2の実施形態]
第2の実施形態に係る原子炉格納容器の冷却装置を図2により説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
A reactor containment vessel cooling apparatus according to a second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as the said embodiment, and the overlapping description is abbreviate | omitted.

上記第1の実施形態ではドレン室13のドレン水は重力により原子炉圧力容器1に給水可能であるが、本第2の実施形態の圧力容器1は地表面よりも高い位置にあり、給水に重力を利用できないのでドレン水を非常用電源で駆動されるポンプ15により原子炉圧力容器1に給水する構成としている。   In the first embodiment, the drain water in the drain chamber 13 can be supplied to the reactor pressure vessel 1 by gravity, but the pressure vessel 1 of the second embodiment is at a position higher than the ground surface and is used for water supply. Since gravity cannot be used, drain water is supplied to the reactor pressure vessel 1 by a pump 15 driven by an emergency power source.

本第2の実施形態において、ポンプ15が設置されたポンプ室14は熱交換器室11に隣接して設置されている。ポンプ15はディーゼル発電機又はバッテリ等の非常用電源(図示せず)によって駆動される。非常用電源はポンプ室14内又は周囲の適切な場所に設置される。   In the second embodiment, the pump chamber 14 in which the pump 15 is installed is installed adjacent to the heat exchanger chamber 11. The pump 15 is driven by an emergency power source (not shown) such as a diesel generator or a battery. The emergency power source is installed in an appropriate place in or around the pump chamber 14.

このように構成された冷却装置において、静的格納容器冷却装置10は事故時において第1の実施形態と同様に作用する。そして、ドレン室13に貯留されたドレン水は非常用電源により駆動されるポンプ15によって原子炉圧力容器1内に給水される。   In the cooling device configured as described above, the static containment vessel cooling device 10 operates in the same manner as in the first embodiment in the event of an accident. The drain water stored in the drain chamber 13 is supplied into the reactor pressure vessel 1 by a pump 15 driven by an emergency power source.

本第2の実施形態によれば、上記第1の実施形態の効果に加え、ドレン水の給水に重力を利用できない場合であっても、非常用電源によってドレン水を原子炉圧力容器に注入し圧力容器の除熱を長期にわたって継続することができる。   According to the second embodiment, in addition to the effects of the first embodiment, even when gravity cannot be used for supplying drain water, the drain water is injected into the reactor pressure vessel by the emergency power source. Heat removal from the pressure vessel can be continued for a long time.

[第3の実施形態]
第3の実施形態に係る原子炉格納容器の冷却装置を図3により説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
本第3の実施形態では、ポンプ15の駆動源として静的格納容器冷却装置10から放出される蒸気により発電する小型の蒸気タービンを用いることを特徴としている。
[Third Embodiment]
A reactor containment vessel cooling apparatus according to a third embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as the said embodiment, and the overlapping description is abbreviate | omitted.
The third embodiment is characterized in that a small steam turbine that generates electric power using steam discharged from the static containment vessel cooling apparatus 10 is used as a drive source of the pump 15.

本実施形態において、蒸気タービン31は静的格納容器冷却装置10に隣接して設置されたタービン室30内に配置され、静的格納容器冷却装置10から放出される蒸気を蒸気排出管32を介して蒸気タービン31に導き、この蒸気タービン31の回転軸に連結された発電機(図示せず)によって発生した電力を、ケーブル34を介してポンプ15に供給してポンプ15を駆動する。また、蒸気タービン31で凝縮した水は配管33を介して静的格納容器冷却装置10に戻されるとともに、非凝縮ガスはフィルタ21、排出管36を介して外部に排出される。   In the present embodiment, the steam turbine 31 is disposed in a turbine chamber 30 installed adjacent to the static containment vessel cooling apparatus 10, and the steam released from the static containment vessel cooling apparatus 10 is passed through the steam discharge pipe 32. Then, the electric power generated by a generator (not shown) connected to the rotating shaft of the steam turbine 31 is supplied to the pump 15 via the cable 34 to drive the pump 15. Further, the water condensed in the steam turbine 31 is returned to the static containment vessel cooling apparatus 10 through the pipe 33, and the non-condensed gas is discharged to the outside through the filter 21 and the discharge pipe 36.

本第3の実施形態によれば、上記第2の実施形態の効果に加え、静的格納容器冷却装置10からの放出蒸気を利用することにより、外部電源を用いずにドレン水を原子炉圧力容器に注入し原子炉圧力容器の除熱を長期にわたって継続することができる。   According to the third embodiment, in addition to the effects of the second embodiment, by using the discharge steam from the static containment vessel cooling apparatus 10, the drain water is supplied to the reactor pressure without using an external power source. It can be injected into the vessel and heat removal from the reactor pressure vessel can be continued for a long time.

[第4の実施形態]
第4の実施形態に係る原子炉格納容器の冷却装置を図4(a)〜(c)により説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
本第4の実施形態は、海水導入配管22に逆止弁23を設ける代わりに、フロートにより開閉する開閉弁を設けたことを特徴としている。
[Fourth Embodiment]
A reactor containment vessel cooling apparatus according to a fourth embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as the said embodiment, and the overlapping description is abbreviate | omitted.
The fourth embodiment is characterized in that, instead of providing the check valve 23 in the seawater introduction pipe 22, an open / close valve that opens and closes by a float is provided.

図4(a)において、静的格納容器冷却装置10の内部には、上端にフロート51、下端に閉止部52が取り付けられた開閉ロッド50が配置されている。
このように構成された本実施形態において、水位が通常時の場合は開閉ロッド50の閉止部は閉止位置にあり、海水が静的格納容器冷却装置10の内部に流入するのを阻止する。
In FIG. 4A, an open / close rod 50 having a float 51 at the upper end and a closing portion 52 attached at the lower end is arranged inside the static containment vessel cooling apparatus 10.
In the present embodiment configured as described above, when the water level is normal, the closing portion of the opening / closing rod 50 is in the closing position, and the seawater is prevented from flowing into the static containment vessel cooling apparatus 10.

一方、静的格納容器冷却装置10内の冷却材の水位が下がった場合には、開閉ロッド50が降下して閉止部が開放位置に移動し海水の流入を許容する。   On the other hand, when the water level of the coolant in the static containment vessel cooling device 10 is lowered, the opening / closing rod 50 is lowered and the closing portion is moved to the open position to allow the inflow of seawater.

図4(b)の変形例では、開閉ロッド50にラッチ部53を設け、水位の低下にともない閉止部52が開放位置に移動した後、ラッチ部53はその状態を保つように機能し、海水が安定して静的格納容器冷却装置10内に流入することを可能とする。   In the modification of FIG. 4B, a latch portion 53 is provided on the opening / closing rod 50. After the closing portion 52 moves to the open position as the water level decreases, the latch portion 53 functions to maintain that state. Can stably flow into the static containment vessel cooling apparatus 10.

図4(c)は閉止部の変形例で、開閉ロッド50に海水導入配管22の出口を開閉する平板状の閉止部54を設けている。   FIG. 4C is a modification of the closing portion, and the opening / closing rod 50 is provided with a flat closing portion 54 that opens and closes the outlet of the seawater introduction pipe 22.

本第4の実施形態によれば、静的格納容器冷却装置10内の冷却材の水位に連動して動作する開閉弁を用いることにより、水位低下時に海水を静的格納容器冷却装置10内に確実に導入することができる。   According to the fourth embodiment, by using an on-off valve that operates in conjunction with the coolant level in the static containment vessel cooling apparatus 10, seawater is contained in the static containment vessel cooling apparatus 10 when the water level drops. It can be surely introduced.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組合せ、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, combinations, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…原子炉圧力容器、2…原子炉格納容器、3…建屋、4…圧力抑制室、5…主蒸気管、6…給水管、7…蒸気逃し管、10…静的格納容器冷却装置、11…熱交換器室、12…熱交換器、13…ドレン室、14…ポンプ室、15…ポンプ、18…伝熱管、19…配管、20…排出管、21…フィルタ、22…海水導入配管、23…逆止弁、24…開閉弁、25…開閉弁駆動部、30…タービン室、31…小型蒸気タービン、32…蒸気排出管、33…配管、34…ケーブル、35…フィルタ、36…排出管、40…異物除去フィルタ、50…開閉ロッド、51…フロート、52,54…閉止部、53…ラッチ部。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor containment vessel, 3 ... Building, 4 ... Pressure suppression chamber, 5 ... Main steam pipe, 6 ... Water supply pipe, 7 ... Steam escape pipe, 10 ... Static containment vessel cooling device, DESCRIPTION OF SYMBOLS 11 ... Heat exchanger chamber, 12 ... Heat exchanger, 13 ... Drain chamber, 14 ... Pump chamber, 15 ... Pump, 18 ... Heat transfer pipe, 19 ... Piping, 20 ... Exhaust pipe, 21 ... Filter, 22 ... Seawater introduction piping , 23 ... Check valve, 24 ... Open / close valve, 25 ... Open / close valve drive unit, 30 ... Turbine chamber, 31 ... Small steam turbine, 32 ... Steam discharge pipe, 33 ... Pipe, 34 ... Cable, 35 ... Filter, 36 ... Discharge pipe, 40 ... foreign matter removal filter, 50 ... open / close rod, 51 ... float, 52, 54 ... closing part, 53 ... latch part.

Claims (8)

原子炉格納容器を内包する建屋と、前記建屋の外部の地表面に設置された静的格納容器冷却装置と、前記静的格納容器冷却装置に隣接して設けられ内部に熱交換器とドレン室が配置された熱交換器室と、前記静的格納容器冷却装置内の下部に配置された前記熱交換器の伝熱管と、前記原子炉格納容器の内部と前記熱交換器とを接続する蒸気逃し管と、前記静的格納容器冷却装置の下部に逆止弁を介して接続された海水導入配管とを有する原子炉格納容器の冷却装置であって、
前記伝熱管は干潮時の干潮水位よりも下方に位置することを特徴とする原子炉格納容器の冷却装置。
A building containing the reactor containment vessel, a static containment vessel cooling device installed on the ground surface outside the building, a heat exchanger and a drain chamber provided adjacent to the static containment vessel cooling device A heat exchanger chamber disposed in the static containment vessel cooling device, a heat transfer tube of the heat exchanger disposed in a lower part of the static containment vessel cooling device, and steam connecting the inside of the reactor containment vessel and the heat exchanger A reactor containment vessel cooling apparatus having an escape pipe and a seawater introduction pipe connected to a lower part of the static containment vessel cooling apparatus via a check valve,
The reactor containment vessel cooling apparatus, wherein the heat transfer tube is located below a low tide water level at low tide.
前記ドレン室のドレン水を重力によって原子炉圧力容器に給水することを特徴とする請求項1記載の原子炉格納容器の冷却装置。   2. The reactor containment vessel cooling apparatus according to claim 1, wherein the drain water in the drain chamber is supplied to the reactor pressure vessel by gravity. 前記ドレン室に隣接してポンプ室を設け、前記ポンプ室のポンプによりドレン水を圧力容器に給水することを特徴とする請求項1記載の原子炉格納容器の冷却装置。   2. The reactor containment vessel cooling apparatus according to claim 1, wherein a pump chamber is provided adjacent to the drain chamber, and drain water is supplied to the pressure vessel by a pump in the pump chamber. 前記ポンプを非常用電源によって駆動することを特徴とする請求項3記載の原子炉格納容器の冷却装置。   4. The reactor containment vessel cooling apparatus according to claim 3, wherein the pump is driven by an emergency power source. 前記静的格納容器冷却装置に隣接してタービン室を設け、前記静的格納容器冷却装置から放出される蒸気によってタービン室内のタービンを駆動し、当該タービンによって生成された電力によって前記ポンプを駆動することを特徴とする請求項3記載の原子炉格納容器の冷却装置。   A turbine chamber is provided adjacent to the static containment vessel cooling device, a turbine in the turbine chamber is driven by steam discharged from the static containment vessel cooling device, and the pump is driven by electric power generated by the turbine. The reactor containment vessel cooling apparatus according to claim 3. 前記逆止弁に代えて、上端にフロートを有し、下端に前記海水導入配管からの海水の流入を阻止又は許容する閉止部を有する開閉ロッドを前記静的格納容器冷却装置内に配置したことを特徴とする請求項1乃至5いずれかに記載の原子炉格納容器の冷却装置。   Instead of the check valve, an open / close rod having a float at the upper end and a closing portion at the lower end for blocking or allowing the inflow of seawater from the seawater introduction pipe is disposed in the static containment vessel cooling device. The reactor containment vessel cooling apparatus according to any one of claims 1 to 5. 前記開閉ロッドの移動をラッチするラッチ部を当該開閉ロッドに設けたことを特徴とする請求項6記載の原子炉格納容器の冷却装置。   7. The reactor containment vessel cooling apparatus according to claim 6, wherein a latch portion for latching movement of the open / close rod is provided in the open / close rod. 前記海水導入配管に開閉弁を設けたことを特徴とする請求項1乃至7いずれかに記載の原子炉格納容器の冷却装置。   The reactor containment vessel cooling apparatus according to any one of claims 1 to 7, wherein an opening / closing valve is provided in the seawater introduction pipe.
JP2011099120A 2011-04-27 2011-04-27 Cooling device for reactor containment vessel Withdrawn JP2012230032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099120A JP2012230032A (en) 2011-04-27 2011-04-27 Cooling device for reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099120A JP2012230032A (en) 2011-04-27 2011-04-27 Cooling device for reactor containment vessel

Publications (1)

Publication Number Publication Date
JP2012230032A true JP2012230032A (en) 2012-11-22

Family

ID=47431686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099120A Withdrawn JP2012230032A (en) 2011-04-27 2011-04-27 Cooling device for reactor containment vessel

Country Status (1)

Country Link
JP (1) JP2012230032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545938A (en) * 2017-08-25 2018-01-05 中国舰船研究设计中心 One kind is used for the nuclear power platform intergration engineered safety system that floats
CN111986824A (en) * 2020-09-02 2020-11-24 中船重工湖北海洋核能有限公司 Passive residual heat removal system suitable for floating nuclear power station
KR20210125204A (en) * 2020-04-08 2021-10-18 한국원자력연구원 Passive Colling System for Nuclear Reactor having Anti-Sticking System for Shell and Method for Operating the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545938A (en) * 2017-08-25 2018-01-05 中国舰船研究设计中心 One kind is used for the nuclear power platform intergration engineered safety system that floats
CN107545938B (en) * 2017-08-25 2019-07-23 中国舰船研究设计中心 One kind is for the nuclear power platform intergration engineered safety system that floats
KR20210125204A (en) * 2020-04-08 2021-10-18 한국원자력연구원 Passive Colling System for Nuclear Reactor having Anti-Sticking System for Shell and Method for Operating the Same
KR102341084B1 (en) * 2020-04-08 2021-12-20 한국원자력연구원 Passive Colling System for Nuclear Reactor having Anti-Sticking System for Shell and Method for Operating the Same
CN111986824A (en) * 2020-09-02 2020-11-24 中船重工湖北海洋核能有限公司 Passive residual heat removal system suitable for floating nuclear power station

Similar Documents

Publication Publication Date Title
JP5911762B2 (en) Nuclear plant and static containment cooling system
US10290379B2 (en) Passive containment cooling and filtered venting system, and nuclear power plant
JP4592773B2 (en) Static cooling decompression system and pressurized water nuclear plant
JP5006178B2 (en) Reactor containment vessel and nuclear power plant using the same
JP6071404B2 (en) Nuclear plant and static containment cooling system
JP2010085282A (en) Nuclear power plant of pressurized water type
CN102956275A (en) Pressurized water reactor with compact passive safety systems
US9773575B2 (en) Passive filtration of air egressing from nuclear containment
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
JP4908561B2 (en) Reactor containment vessel and nuclear power plant using the same
JP2018136172A (en) Emergency core cooling system and boiling-water nuclear power plant using the same
JP6632081B2 (en) Containment vessel drain system
JP2012230032A (en) Cooling device for reactor containment vessel
JP5279325B2 (en) Hybrid safety system for boiling water reactors
JP2012230085A (en) Nuclear power plant
JP2012230033A (en) Cooling device for reactor containment vessel
EP2966651A1 (en) Nuclear power plant and remodeling method therefor
JP2014178142A (en) Reactor containment vessel cooling system and cooling method
JP7223745B2 (en) Depressurization and coolant injection system for a highly simplified boiling water reactor
JP6242690B2 (en) Intake equipment for nuclear power plants
JP2014106106A (en) Nuclear reactor installation and nuclear reactor pressure reduction facility for the same
JP2015135299A (en) Vent filter system arrangement
JP2012098172A (en) Drain method for atomic power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701