JP5055648B2 - Voltage controlled crystal oscillator - Google Patents

Voltage controlled crystal oscillator Download PDF

Info

Publication number
JP5055648B2
JP5055648B2 JP2006250373A JP2006250373A JP5055648B2 JP 5055648 B2 JP5055648 B2 JP 5055648B2 JP 2006250373 A JP2006250373 A JP 2006250373A JP 2006250373 A JP2006250373 A JP 2006250373A JP 5055648 B2 JP5055648 B2 JP 5055648B2
Authority
JP
Japan
Prior art keywords
terminal
voltage
crystal oscillator
oscillation
variable capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006250373A
Other languages
Japanese (ja)
Other versions
JP2008072553A (en
Inventor
活也 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2006250373A priority Critical patent/JP5055648B2/en
Publication of JP2008072553A publication Critical patent/JP2008072553A/en
Application granted granted Critical
Publication of JP5055648B2 publication Critical patent/JP5055648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、周波数制御電圧を印加して発振周波数を制御する電圧制御水晶発振器に関するものである。   The present invention relates to a voltage controlled crystal oscillator that applies a frequency control voltage to control an oscillation frequency.

従来の電圧制御水晶発振器(VCXO:Voltage Controlled Xtal Oscillator)は、例えば、図7に示すように、直流カット容量103、104の一方の端子が反転増幅器101の入力端子と出力端子に各々接続され、他方の端子が水晶振動子102の両側の端子にそれぞれ接続されている(特許文献1参照)。この特許文献1では、水晶振動子102を圧電振動子として説明している。電圧可変容量素子107、108のそれぞれ一方の端子は、直流カット容量103、104の他方の端子と水晶振動子102の両側の各端子にそれぞれ接続されている。電圧可変容量素子107、108の他方の端子は、接地電位(GND)に接続されている。また、反転増幅器101は、その入出力端子間に帰還抵抗109を並列接続している。周波数制御電圧は、バイアス抵抗106を介して、水晶振動子102の一方の端子と直流カット容量104の他方の端子との接続部と電圧可変容量素子108の一方の端子間に入力され、また、バイアス抵抗105を介して、水晶振動子102の他方の端子と直流カット容量103の他方の端子との接続部と電圧可変容量素子107の一方の端子間に入力される。この電圧水晶発振器は、回路面積を増大させずに周波数可変幅を従来より改善している。   In a conventional voltage controlled crystal oscillator (VCXO), for example, as shown in FIG. 7, one terminal of DC cut capacitors 103 and 104 is connected to an input terminal and an output terminal of an inverting amplifier 101, respectively. The other terminal is connected to the terminals on both sides of the crystal unit 102 (see Patent Document 1). In this patent document 1, the quartz crystal vibrator 102 is described as a piezoelectric vibrator. One terminal of each of the voltage variable capacitance elements 107 and 108 is connected to the other terminal of the DC cut capacitors 103 and 104 and each terminal on both sides of the crystal unit 102. The other terminals of the voltage variable capacitance elements 107 and 108 are connected to the ground potential (GND). The inverting amplifier 101 has a feedback resistor 109 connected in parallel between its input and output terminals. The frequency control voltage is input via a bias resistor 106 between a connection portion between one terminal of the crystal unit 102 and the other terminal of the DC cut capacitor 104 and one terminal of the voltage variable capacitance element 108. The voltage is input between the connection between the other terminal of the crystal unit 102 and the other terminal of the DC cut capacitor 103 and one terminal of the voltage variable capacitor 107 through the bias resistor 105. This voltage crystal oscillator has an improved frequency variable width as compared with the conventional one without increasing the circuit area.

電圧制御水晶発振器を構成する水晶発振回路は、水晶振動子が負荷容量との間で共振ループを形成し、反転増幅器が前記共振ループでの損失を補うことによって発振の継続が行われるものである。図7の回路における共振ループは、水晶振動子102と直流カット容量103、104と電圧可変容量素子107、108を結んだループであり、これら容量の直列接続に寄生容量を加えたものがこの発振回路における負荷容量となる。   The crystal oscillation circuit constituting the voltage controlled crystal oscillator is one in which the crystal resonator forms a resonance loop with the load capacitance, and the inverting amplifier compensates for the loss in the resonance loop to continue the oscillation. . The resonance loop in the circuit of FIG. 7 is a loop connecting the crystal resonator 102, the DC cut capacitors 103 and 104, and the voltage variable capacitance elements 107 and 108, and this oscillation is obtained by adding a parasitic capacitance to the series connection of these capacitors. This is the load capacity in the circuit.

この電圧制御水晶発振器の周波数制御電圧VC(V)と周波数変化量Δf(ppm)との関係は、図2の特性線aおよび図4の特性線bで示される。図2の特性線aは、通常、静電気放電(ESD)からICやデバイスを保護するために設けられる保護素子(図示しない)を備えた電圧制御水晶発振器の周波数制御電圧と周波数変化量との関係を示しており、周波数制御電圧VCが高くなると周波数の変化量ΔfはVCに比例して大きくなるが、周波数制御電圧VCが電源電圧(この例では3V)付近になると、印加する周波数制御電圧VCを変化させても周波数変化の生じない平坦な部分が存在する。これは、周波数制御電圧VCを上げていくと、電圧可変容量素子の電気特性により容量値が小さくなって発振振幅が大きくなり、VDD側の保護素子(保護ダイオード)のアノードに電源電圧より高い電圧がかかって保護素子に順方向電流が流れ、電圧可変容量素子のカソード側に実際にかかる電圧が周波数制御電圧VCより低くなるために起こる。   The relationship between the frequency control voltage VC (V) and the frequency change Δf (ppm) of this voltage controlled crystal oscillator is shown by the characteristic line a in FIG. 2 and the characteristic line b in FIG. A characteristic line “a” in FIG. 2 indicates a relationship between a frequency control voltage and a frequency change amount of a voltage controlled crystal oscillator provided with a protection element (not shown) that is usually provided to protect an IC or a device from electrostatic discharge (ESD). As the frequency control voltage VC increases, the frequency change Δf increases in proportion to VC. However, when the frequency control voltage VC is near the power supply voltage (3 V in this example), the frequency control voltage VC to be applied is shown. There is a flat portion where the frequency does not change even if is changed. This is because when the frequency control voltage VC is increased, the capacitance value decreases due to the electrical characteristics of the voltage variable capacitance element, the oscillation amplitude increases, and the anode of the protection element (protection diode) on the VDD side has a voltage higher than the power supply voltage. This occurs because a forward current flows through the protection element and the voltage actually applied to the cathode side of the voltage variable capacitance element becomes lower than the frequency control voltage VC.

一方、特性線bは、前述の保護素子を備えておらず、周波数制御電圧VCが0V付近ですでに発振振幅が大きい場合の電圧制御水晶発振器の周波数制御電圧と周波数変化量との関係を示しており、周波数制御電圧VCが0V付近では、電圧可変容量素子が保護素子として働いて順方向電流が流れ、電圧可変容量素子のカソード側にかかる電圧が周波数制御電圧VCより高くなるために、印加する周波数制御電圧VCを変化させても周波数変化の生じない平坦な部分が存在する。電圧制御水晶発振器は、周波数制御電圧に応じて正確に周波数が変化する必要がある。つまり、図2及び図4に示す特性線が直線であることが好ましい。
特開2002−26660号公報
On the other hand, the characteristic line b shows the relationship between the frequency control voltage of the voltage controlled crystal oscillator and the amount of frequency change when the above-described protection element is not provided and the oscillation amplitude is already large when the frequency control voltage VC is around 0V. When the frequency control voltage VC is around 0 V, the voltage variable capacitance element acts as a protection element and a forward current flows, and the voltage applied to the cathode side of the voltage variable capacitance element is higher than the frequency control voltage VC. Even if the frequency control voltage VC to be changed is changed, there is a flat portion where the frequency does not change. The voltage controlled crystal oscillator needs to change the frequency accurately according to the frequency control voltage. That is, the characteristic lines shown in FIGS. 2 and 4 are preferably straight lines.
JP 2002-26660 A

本発明は、このような事情によりなされたものであり、発振周波数の電圧制御特性の直線性を確保することにより、発振周波数の的確な電圧制御を可能にする電圧制御水晶発振器を提供する。   The present invention has been made under such circumstances, and provides a voltage controlled crystal oscillator that enables accurate voltage control of the oscillation frequency by ensuring the linearity of the voltage control characteristic of the oscillation frequency.

また、本発明の電圧制御水晶発振器の一態様は、反転増幅器と、水晶振動子と、一方の端子が前記反転増幅器の入力端子に接続され、他方の端子が前記水晶振動子の第1の端子に接続された第1の直流カット容量と、一方の端子が前記反転増幅器の出力端子に接続され、他方の端子が前記水晶振動子の第2の端子に接続された第2の直流カット容量と、制御電圧入力端子と、一方の端子が前記第1の端子に接続され、他方の端子が接地電位に接続された第1の電圧可変容量素子と、一方の端子が前記第2の端子に接続され、他方の端子が前記接地電位に接続された第2の電圧可変容量素子と、前記第1の端子と前記第1の電圧可変容量素子の一方の端子との間に一端が接続され、他端が前記制御電圧入力端子に接続された第1のバイアス抵抗と、前記第2の端子と前記第2の電圧可変容量素子の一方の端子との間に一端が接続され、他端が前記制御電圧入力端子に接続された第2のバイアス抵抗とを具備し、前記第1の電圧可変容量素子の一方の端子と電源電位間に第1の発振特性調整用抵抗を設け、前記第2の電圧可変容量素子の一方の端子と電源電位間に第2の発振特性調整用抵抗を設けたことを特徴としている。   According to one aspect of the voltage controlled crystal oscillator of the present invention, an inverting amplifier, a crystal resonator, one terminal is connected to an input terminal of the inverting amplifier, and the other terminal is a first terminal of the crystal resonator. And a first DC cut capacitor connected to the output terminal of the inverting amplifier and a second DC cut capacitor connected to the second terminal of the crystal resonator. A control voltage input terminal; one terminal connected to the first terminal; the other terminal connected to a ground potential; and one terminal connected to the second terminal. One end of the second voltage variable capacitance element, the other terminal of which is connected to the ground potential, and the first terminal and one terminal of the first voltage variable capacitance element. A first bias resistor having an end connected to the control voltage input terminal A second bias resistor having one end connected between the second terminal and one terminal of the second voltage variable capacitance element and the other end connected to the control voltage input terminal; A first oscillation characteristic adjusting resistor is provided between one terminal of the first voltage variable capacitance element and a power supply potential, and a second oscillation characteristic is provided between the one terminal of the second voltage variable capacitance element and the power supply potential. An adjustment resistor is provided.

前記第1及び第2の発振特性調整用抵抗は、複数の分割抵抗から構成され、これら分割抵抗の各々の両端子間には、前記各々の分割抵抗に対して並列に接続されたスイッチを有し、前記スイッチによって前記第1及び第2の発振特性調整用抵抗の抵抗値を制御するようにしてもよい。前記第1及び第2のバイアス抵抗は、複数の分割抵抗から構成され、これら分割抵抗の各々の両端子間には、前記各々の分割抵抗に対して並列に接続されたスイッチを有し、前記スイッチによって前記第1及び第2のバイアス抵抗の抵抗値を制御するようにしてもよい。   The first and second oscillation characteristic adjusting resistors are composed of a plurality of divided resistors, and a switch connected in parallel to each of the divided resistors is provided between both terminals of the divided resistors. The resistance values of the first and second oscillation characteristic adjusting resistors may be controlled by the switch. The first and second bias resistors are composed of a plurality of divided resistors, and a switch connected in parallel to each of the divided resistors is provided between both terminals of the divided resistors, The resistance values of the first and second bias resistors may be controlled by a switch.

本発明は、電圧制御水晶発振器に発振特性調整用抵抗を挿入することにより、発振周波数の電圧制御特性の直線性を確保することができ、発振周波数の的確な電圧制御を可能にすることができる。   The present invention can ensure the linearity of the voltage control characteristic of the oscillation frequency by inserting a resistor for adjusting the oscillation characteristic into the voltage controlled crystal oscillator, thereby enabling accurate voltage control of the oscillation frequency. .

以下、実施例を参照して発明の実施の形態を説明する。   Hereinafter, embodiments of the invention will be described with reference to examples.

まず、図1及び図2を参照して実施例1を説明する。
図1は、この実施例を説明する電圧制御水晶発振器の回路図、図2は、図1の電圧制御水晶発振器の発振特性を説明する周波数変化量−周波数制御電圧の関係を示す特性図である。この実施例の電圧制御水晶発振器において、図1に示すように、第1の直流カット容量4の一方の端子が反転増幅器1の入力端子に接続され、第2の直流カット容量3の一方の端子が反転増幅器1の出力端子に接続され、第1の直流カット容量4の他方の端子が水晶振動子2の第1の端子に接続され、第2の直流カット容量3の他方の端子が水晶振動子2の第2の端子に接続されている。第1の電圧可変容量素子8の一方の端子は、第1の直流カット容量4の他方の端子と水晶振動子2の第1の端子が接続された接続部(第1の接続部)に接続されている。第2の電圧可変容量素子7の一方の端子は、第2の直流カット容量3の他方の端子と水晶振動子2の第2の端子が接続された接続部(第2の接続部)に接続されている。第1の電圧可変容量素子8及び第2の電圧可変容量素子7の他方の端子は、接地電位(VSS)に接続されている。反転増幅器1は、その入出力端子間に帰還抵抗9を並列接続している。
First, Embodiment 1 will be described with reference to FIGS.
FIG. 1 is a circuit diagram of a voltage controlled crystal oscillator for explaining this embodiment, and FIG. 2 is a characteristic diagram showing the relationship between the frequency variation and the frequency control voltage for explaining the oscillation characteristics of the voltage controlled crystal oscillator of FIG. . In the voltage controlled crystal oscillator of this embodiment, as shown in FIG. 1, one terminal of the first DC cut capacitor 4 is connected to the input terminal of the inverting amplifier 1, and one terminal of the second DC cut capacitor 3 is connected. Is connected to the output terminal of the inverting amplifier 1, the other terminal of the first DC cut capacitor 4 is connected to the first terminal of the crystal resonator 2, and the other terminal of the second DC cut capacitor 3 is crystal oscillation. The second terminal of the child 2 is connected. One terminal of the first voltage variable capacitance element 8 is connected to a connection portion (first connection portion) in which the other terminal of the first DC cut capacitor 4 and the first terminal of the crystal unit 2 are connected. Has been. One terminal of the second voltage variable capacitance element 7 is connected to a connection portion (second connection portion) in which the other terminal of the second DC cut capacitor 3 and the second terminal of the crystal resonator 2 are connected. Has been. The other terminals of the first voltage variable capacitor 8 and the second voltage variable capacitor 7 are connected to the ground potential (VSS). The inverting amplifier 1 has a feedback resistor 9 connected in parallel between its input and output terminals.

周波数制御電圧が印加される制御電圧入力端子12は、第1のバイアス抵抗6を介して、水晶振動子2の第1の端子と第1の直流カット容量4の他方の端子との接続部(第1の接続部)と第1の電圧制御可変容量素子8の一方の端子間に接続され、また、第2のバイアス抵抗5を介して、水晶振動子2の第2の端子と第2の直流カット容量3の他方の端子との接続部(第2の接続部)と第2の電圧可変容量素子7の一方の端子間に接続されている。   The control voltage input terminal 12 to which the frequency control voltage is applied is connected to the first terminal of the crystal resonator 2 and the other terminal of the first DC cut capacitor 4 via the first bias resistor 6 ( A first connecting portion) and one terminal of the first voltage control variable capacitance element 8, and the second terminal of the crystal resonator 2 and the second terminal are connected via the second bias resistor 5. The DC cut capacitor 3 is connected between a connection portion (second connection portion) with the other terminal and one terminal of the second voltage variable capacitance element 7.

この電圧制御水晶発振器が前述した従来のものと異なる点は、発振特性調整用抵抗が組み込まれていることである。発振特性調整用抵抗は、第1の電圧可変容量素子8及び第2の電圧可変容量素子7にそれぞれ並列接続されている。第1の発振特性調整用抵抗(R1)11は、一端が第1の電圧可変容量素子8の一方の端子(カソード)に接続され、他端が接地電位(VSS)に接続されている。第2の発振特性調整用抵抗(R2)10は、一端が第2の電圧可変容量素子7の一方の端子(カソード)に接続され、他端が接地電位(VSS)に接続されている。
This voltage controlled crystal oscillator is different from the conventional one described above in that an oscillation characteristic adjusting resistor is incorporated. The oscillation characteristic adjusting resistors are connected in parallel to the first voltage variable capacitance element 8 and the second voltage variable capacitance element 7, respectively. The first oscillation characteristic adjusting resistor (R1) 11 has one end connected to one terminal (cathode) of the first voltage variable capacitance element 8 and the other end connected to the ground potential (VSS). The second oscillation characteristic adjusting resistor (R2) 10 has one end connected to one terminal (cathode) of the second voltage variable capacitance element 7 and the other end connected to the ground potential (VSS).

この電圧制御水晶発振器の制御電圧入力端子12に印加される周波数制御電圧VC(V)と発振周波数変化量Δf(ppm)との関係は、図2に示す通りである。図2の縦軸は、発振周波数変化量Δf(ppm)を表し、横軸は、周波数制御電圧VC(V)を表している。この実施例では、例えば、第1の発振特性調整用抵抗11及び第2の発振特性調整用抵抗10は、各750kΩであり、第1のバイアス抵抗6及び第2のバイアス抵抗5は、各150kΩである。図2の特性線aは、従来の電圧制御水晶発振器の周波数特性を示し、特性線Aは、この電圧制御水晶発振器に第1の発振特性調整用抵抗11及び第2の発振特性調整用抵抗10を付加したこの実施例の電圧制御水晶発振器の周波数特性を示している。   The relationship between the frequency control voltage VC (V) applied to the control voltage input terminal 12 of the voltage controlled crystal oscillator and the oscillation frequency variation Δf (ppm) is as shown in FIG. The vertical axis in FIG. 2 represents the oscillation frequency change amount Δf (ppm), and the horizontal axis represents the frequency control voltage VC (V). In this embodiment, for example, the first oscillation characteristic adjusting resistor 11 and the second oscillation characteristic adjusting resistor 10 are each 750 kΩ, and the first bias resistor 6 and the second bias resistor 5 are each 150 kΩ. It is. The characteristic line a in FIG. 2 shows the frequency characteristics of the conventional voltage controlled crystal oscillator, and the characteristic line A shows the first oscillation characteristic adjusting resistor 11 and the second oscillation characteristic adjusting resistor 10 in the voltage controlled crystal oscillator. The frequency characteristics of the voltage controlled crystal oscillator of this embodiment to which is added are shown.

周波数制御電圧により発振周波数を変化させたときに、従来の電圧制御水晶発振器は、制御電圧入力端子に印加する制御電圧を上げていくと発振振幅が大きくなり、ESDを抑制するために水晶振動子接続端子に設けられた電源電圧(VDD)側の保護素子(保護ダイオード、図示しない)のアノードに電源電圧より高い電圧がかかって保護素子に順方向電流が流れ、電圧可変容量素子のカソード側に実際にかかる電圧が周波数制御電圧VCより低くなるため、印加する周波数制御電圧VCが電源電圧付近では周波数可変量が減少し、特性線aは平坦になる。そこで、本発明の本実施例では、発振特性調整用抵抗を付加することによりVDD側保護ダイオードがオンする電圧以下まで電圧可変容量素子に掛かる電圧を減少させることができるので、周波数可変量の印加制御電圧に対する直線性が維持される。   When the oscillation frequency is changed by the frequency control voltage, the conventional voltage controlled crystal oscillator increases the oscillation amplitude when the control voltage applied to the control voltage input terminal is increased, and the crystal oscillator is used to suppress ESD. A voltage higher than the power supply voltage is applied to the anode of the protection element (protection diode, not shown) on the power supply voltage (VDD) side provided at the connection terminal, and a forward current flows through the protection element, and the voltage variable capacitance element has a cathode side. Since the voltage actually applied is lower than the frequency control voltage VC, the frequency variable amount decreases when the applied frequency control voltage VC is near the power supply voltage, and the characteristic line a becomes flat. Therefore, in this embodiment of the present invention, by adding the oscillation characteristic adjusting resistor, the voltage applied to the voltage variable capacitance element can be reduced to a voltage equal to or lower than the voltage at which the VDD side protection diode is turned on. Linearity with respect to the control voltage is maintained.

制御電圧印加による周波数変化の特性は、発振特性調整用抵抗値あるいはバイアス抵抗/発振特性調整用抵抗の比により決まる。例えば、バイアス抵抗が150kΩで発振特性調整用抵抗が750kΩの場合は、図2の特性線Aに示す直線性の特性を示す。発振特性調整用抵抗がもっと小さく、例えば、50kΩ程度になれば、図2の特性線Cのように周波数変化の割合が小さくなる。このように、電圧制御水晶発振器の特性によって適宜発振特性調整用抵抗値を選択することによって、所望の特性を有する電圧制御水晶発振器が得られる。   The characteristic of the frequency change due to the application of the control voltage is determined by the oscillation characteristic adjustment resistance value or the bias resistance / oscillation characteristic adjustment resistance ratio. For example, when the bias resistance is 150 kΩ and the oscillation characteristic adjusting resistance is 750 kΩ, the linearity characteristic indicated by the characteristic line A in FIG. If the resistance for adjusting the oscillation characteristics is smaller, for example, about 50 kΩ, the frequency change rate becomes small as shown by the characteristic line C in FIG. Thus, by appropriately selecting the oscillation characteristic adjusting resistance value according to the characteristics of the voltage controlled crystal oscillator, a voltage controlled crystal oscillator having desired characteristics can be obtained.

以上のように、この実施例では電圧可変容量素子に並列接続した発振特性調整用抵抗を用いることにより、発振周波数の電圧制御特性の直線性を確保することができ、発振周波数の的確な電圧制御を可能にすることができる。
なお、図1に示した電圧制御水晶発振器は、反転増幅器の入出力いずれの側にも電圧可変容量素子を設けた構造であるが、本発明は、どちらか片側を固定容量とした構成も可能であり、この場合には当然電圧可変容量素子がある側のみに発振特性調整用抵抗を設ければよい。
As described above, in this embodiment, by using the oscillation characteristic adjusting resistor connected in parallel to the voltage variable capacitance element, the linearity of the voltage control characteristic of the oscillation frequency can be ensured, and the accurate voltage control of the oscillation frequency can be ensured. Can be made possible.
The voltage controlled crystal oscillator shown in FIG. 1 has a structure in which a voltage variable capacitance element is provided on either side of the input / output of the inverting amplifier. However, the present invention can be configured with a fixed capacitor on either side. In this case, of course, an oscillation characteristic adjusting resistor may be provided only on the side where the voltage variable capacitance element is present.

次に、図3及び図4を参照して実施例2を説明する。
図3は、この実施例を説明する電圧制御水晶発振器の回路図、図4は、図3の電圧制御水晶発振器の発振特性を説明する周波数変化量−周波数制御電圧の関係を示す特性図である。この実施例の電圧制御水晶発振器において、図3に示すように、第1の直流カット容量24の一方の端子が反転増幅器21の入力端子に接続され、第2の直流カット容量23の一方の端子が反転増幅器21の出力端子に接続され、第1の直流カット容量24の他方の端子が水晶振動子22の第1の端子に接続され、第2の直流カット容量23の他方の端子が水晶振動子22の第2の端子に接続されている。第1の電圧可変容量素子28の一方の端子は、第1の直流カット容量24の他方の端子と水晶振動子22の第1の端子とが接続された接続部(第1の接続部)に接続されている。第2の電圧可変容量素子27の一方の端子は、第2の直流カット容量23の他方の端子と水晶振動子22の第2の端子とが接続された接続部(第2の接続部)に接続されている。第1の電圧可変容量素子28及び第2の電圧可変容量素子27の他方の端子は、接地電位(VSS)に接続されている。反転増幅器21は、その入出力端子間に帰還抵抗29を並列接続している。
Next, Embodiment 2 will be described with reference to FIGS.
FIG. 3 is a circuit diagram of the voltage controlled crystal oscillator for explaining this embodiment, and FIG. 4 is a characteristic diagram showing the relationship between the frequency variation and the frequency control voltage for explaining the oscillation characteristics of the voltage controlled crystal oscillator of FIG. . In the voltage controlled crystal oscillator of this embodiment, as shown in FIG. 3, one terminal of the first DC cut capacitor 24 is connected to the input terminal of the inverting amplifier 21, and one terminal of the second DC cut capacitor 23. Is connected to the output terminal of the inverting amplifier 21, the other terminal of the first DC cut capacitor 24 is connected to the first terminal of the crystal resonator 22, and the other terminal of the second DC cut capacitor 23 is the crystal vibration. The second terminal of the child 22 is connected. One terminal of the first voltage variable capacitance element 28 is connected to a connection portion (first connection portion) where the other terminal of the first DC cut capacitor 24 and the first terminal of the crystal resonator 22 are connected. It is connected. One terminal of the second voltage variable capacitance element 27 is connected to a connection portion (second connection portion) where the other terminal of the second DC cut capacitor 23 and the second terminal of the crystal resonator 22 are connected. It is connected. The other terminals of the first voltage variable capacitor 28 and the second voltage variable capacitor 27 are connected to the ground potential (VSS). The inverting amplifier 21 has a feedback resistor 29 connected in parallel between its input and output terminals.

周波数制御電圧が印加される制御電圧入力端子32は、第1のバイアス抵抗26を介して、水晶振動子22の第1の端子と第1の直流カット容量24の他方の端子との接続部(第1の接続部)と第1の電圧制御可変容量素子28の一方の端子間に接続され、また、第2のバイアス抵抗25を介して、水晶振動子22の第2の端子と第2の直流カット容量23の他方の端子との接続部(第2の接続部)と第2の電圧可変容量素子27の一方の端子間に接続されている。   The control voltage input terminal 32 to which the frequency control voltage is applied is connected to the first terminal of the crystal resonator 22 and the other terminal of the first DC cut capacitor 24 via the first bias resistor 26 ( The first connection portion) and one terminal of the first voltage control variable capacitance element 28, and the second terminal of the crystal resonator 22 and the second voltage are connected via the second bias resistor 25. The DC cut capacitor 23 is connected between a connection portion (second connection portion) with the other terminal and one terminal of the second voltage variable capacitance element 27.

この電圧制御水晶発振器は、発振特性調整用抵抗が組み込まれているが、実施例1とは接続構成が異なっている。第1の発振特性調整用抵抗(R3)31は、一端が第1の電圧可変容量素子28の一方の端子に接続され、他端が電源電位(VDD)に接続されている。第2の発振特性調整用抵抗(R4)30は、一端が第2の電圧可変容量素子27の一方の端子に接続され、他端が電源電位(VDD)に接続されている。 This voltage controlled crystal oscillator incorporates an oscillation characteristic adjusting resistor, but the connection configuration is different from that of the first embodiment. The first oscillation characteristic adjusting resistor (R3) 31 has one end connected to one terminal of the first voltage variable capacitor 28 and the other end connected to the power supply potential (VDD). The second oscillation characteristic adjusting resistor (R4) 30 has one end connected to one terminal of the second voltage variable capacitance element 27 and the other end connected to the power supply potential (VDD).

この電圧制御水晶発振器の制御電圧入力端子32に印加される周波数制御電圧VC(V)と発振周波数変化量Δf(ppm)との関係は、図4の特性線Bに示す通りである。図4の縦軸は、発振周波数変化量Δf(ppm)を表し、横軸は、周波数制御電圧VC(V)を表している。この実施例では、例えば、第1の発振特性調整用抵抗31及び第2の発振特性調整用抵抗30は、各750kΩであり、第1のバイアス抵抗26及び第2のバイアス抵抗25は、各150kΩである。図4の特性線bは、従来の電圧制御水晶発振器の周波数特性を示している。
特性線bは、従来の電圧制御水晶発振器において、前述の保護素子を備えておらず、周波数制御電圧VCが0V付近ですでに発振振幅が大きい場合の周波数制御電圧と周波数変化量との関係を示しており、周波数制御電圧VCが0V付近では、電圧可変容量素子が保護素子として働いて順方向電流が流れ、電圧可変容量素子のカソード側にかかる電圧が周波数制御電圧VCより高くなるために、周波数可変量が減少し、特性線bは平坦になる。
そこで、本発明の本実施例2によれば、前述した第1の発振特性調整用抵抗および第2の発振特性調整用抵抗を付加することにより電圧可変容量素子に掛かる電圧が増加するので、電圧可変容量素子に順方向電流が流れなくなって周波数可変量の印加制御電圧に対する直線性を確保することができる。
The relationship between the frequency control voltage VC (V) applied to the control voltage input terminal 32 of the voltage controlled crystal oscillator and the oscillation frequency variation Δf (ppm) is as shown by the characteristic line B in FIG. The vertical axis in FIG. 4 represents the oscillation frequency change Δf (ppm), and the horizontal axis represents the frequency control voltage VC (V). In this embodiment, for example, the first oscillation characteristic adjusting resistor 31 and the second oscillation characteristic adjusting resistor 30 are each 750 kΩ, and the first bias resistor 26 and the second bias resistor 25 are each 150 kΩ. It is. The characteristic line b in FIG. 4 shows the frequency characteristic of the conventional voltage controlled crystal oscillator.
The characteristic line b shows the relationship between the frequency control voltage and the amount of change in frequency when the oscillation voltage is already large when the frequency control voltage VC is near 0 V in the conventional voltage-controlled crystal oscillator without the above-described protection element. As shown in the figure, when the frequency control voltage VC is around 0 V, the voltage variable capacitance element acts as a protection element, a forward current flows, and the voltage applied to the cathode side of the voltage variable capacitance element becomes higher than the frequency control voltage VC. The frequency variable amount decreases and the characteristic line b becomes flat.
Therefore, according to the second embodiment of the present invention, the voltage applied to the voltage variable capacitance element is increased by adding the first oscillation characteristic adjusting resistor and the second oscillation characteristic adjusting resistor described above. The forward current no longer flows through the variable capacitance element, and linearity with respect to the applied control voltage with a variable amount of frequency can be ensured.

制御電圧印加による周波数変化の特性は、発振特性調整用抵抗値あるいはバイアス抵抗/発振特性調整用抵抗の比により決まる。例えば、バイアス抵抗が150kΩで発振特性調整用抵抗が750kΩの場合は、図4の特性線Bに示す直線性の特性を示す。発振特性調整用抵抗がもっと小さくなれば周波数変化の割合が小さくなる。このように、電圧制御水晶発振器の特性によって適宜発振特性調整用抵抗値を選択することによって、所望の特性を有する電圧制御水晶発振器が得られる。 The characteristic of the frequency change due to the application of the control voltage is determined by the oscillation characteristic adjustment resistance value or the bias resistance / oscillation characteristic adjustment resistance ratio. For example, when the bias resistance is 150 kΩ and the oscillation characteristic adjusting resistance is 750 kΩ, the linearity characteristic shown by the characteristic line B in FIG. 4 is shown. If the oscillation characteristic adjusting resistor is further reduced, the frequency change rate is reduced. Thus, by appropriately selecting the oscillation characteristic adjusting resistance value according to the characteristics of the voltage controlled crystal oscillator, a voltage controlled crystal oscillator having desired characteristics can be obtained.

以上のように、この実施例では電圧可変容量素子の一方の端子と電源電位間に接続された発振特性調整用抵抗を用いることにより、発振周波数の電圧制御特性の直線性を確保することができ、発振周波数の的確な電圧制御を可能にすることができる。
なお、図3に示した電圧制御水晶発振器は、反転増幅器の入出力いずれの側にも電圧可変容量素子を設けた構造であるが、本発明は、どちらか片側を固定容量とした構成も可能であり、この場合には当然電圧可変容量素子がある側のみに発振特性調整用抵抗を設ければよい。
As described above, in this embodiment, the linearity of the oscillation frequency voltage control characteristic can be ensured by using the oscillation characteristic adjusting resistor connected between one terminal of the voltage variable capacitance element and the power supply potential. Therefore, accurate voltage control of the oscillation frequency can be made possible.
The voltage controlled crystal oscillator shown in FIG. 3 has a structure in which a voltage variable capacitance element is provided on either input or output side of the inverting amplifier. However, in the present invention, a configuration in which one side is a fixed capacitor is also possible. In this case, of course, an oscillation characteristic adjusting resistor may be provided only on the side where the voltage variable capacitance element is present.

次に、図5を参照して実施例3を説明する。
図5は、この実施例に係る電圧制御水晶発振器の基本構成に含まれる発振特性調整用抵抗を含む部分回路図である。この実施例は、図1の電圧制御水晶発振器の変形例である。すなわち、図5の電圧制御水晶発振器は、発振特性調整用抵抗を複数の分割抵抗で構成し、抵抗値を可変にすることに特徴がある。この電圧制御水晶発振器は、水晶振動子40、反転増幅器33、直流カット容量34、制御電圧入力端子35、バイアス抵抗36、発振特性調整用抵抗37及び電圧可変容量素子39を備えている。制御電圧入力端子35には直列にバイアス抵抗36を介して電圧可変容量素子39が接続され、電圧可変容量素子39に並列に発振特性調整用抵抗37が接続される。発振特性調整用抵抗37は、一端が電圧可変容量素子39の一方の端子に接続され、他端が接地されている。水晶振動子40は、反転増幅器33に直流カット容量34を介して接続され、また、電圧可変容量素子39の一方の端子に接続されている。
Next, Example 3 will be described with reference to FIG.
FIG. 5 is a partial circuit diagram including an oscillation characteristic adjusting resistor included in the basic configuration of the voltage controlled crystal oscillator according to this embodiment. This embodiment is a modification of the voltage controlled crystal oscillator of FIG. That is, the voltage controlled crystal oscillator of FIG. 5 is characterized in that the oscillation characteristic adjusting resistor is configured by a plurality of divided resistors and the resistance value is variable. This voltage controlled crystal oscillator includes a crystal resonator 40, an inverting amplifier 33, a DC cut capacitor 34, a control voltage input terminal 35, a bias resistor 36, an oscillation characteristic adjusting resistor 37, and a voltage variable capacitance element 39. A voltage variable capacitance element 39 is connected in series to the control voltage input terminal 35 via a bias resistor 36, and an oscillation characteristic adjusting resistor 37 is connected in parallel to the voltage variable capacitance element 39. The oscillation characteristic adjusting resistor 37 has one end connected to one terminal of the voltage variable capacitance element 39 and the other end grounded. The crystal resonator 40 is connected to the inverting amplifier 33 via the DC cut capacitor 34 and is connected to one terminal of the voltage variable capacitor 39.

この発振特性調整用抵抗37は、例えば、スイッチ38を有する分割抵抗R5、R6及びR12と分割抵抗R11とからなる。スイッチ38は、スイッチSW1、SW2、SW3およびSW4から構成されている。各分割抵抗R5、R6及びR12には、夫々スイッチSW2、SW3、SW1が各分割抵抗に対して並列に接続され、これら各スイッチのオン/オフ操作により各分割抵抗が発振回路から接離するようになっている。また、スイッチSW4は、そのオフ操作により発振特性調整用抵抗37そのものを発振回路から外すように構成されており、この構成は図7に示す従来の電圧制御水晶発振器となる。   The oscillation characteristic adjusting resistor 37 includes, for example, divided resistors R5, R6, and R12 having a switch 38 and a divided resistor R11. The switch 38 includes switches SW1, SW2, SW3, and SW4. Switches SW2, SW3, and SW1 are connected in parallel to the respective divided resistors R5, R6, and R12, and the respective divided resistors are connected to and separated from the oscillation circuit by the on / off operation of these switches. It has become. Further, the switch SW4 is configured to remove the oscillation characteristic adjusting resistor 37 itself from the oscillation circuit by turning off the switch SW4, and this configuration is the conventional voltage controlled crystal oscillator shown in FIG.

以上のように、この実施例では電圧可変容量素子に並列接続された発振特性調整用抵抗を複数の分割抵抗で構成し、各分割抵抗に備えられたスイッチを制御することで発振特性調整用抵抗値を可変可能とすることにより、バイアス抵抗と相俟って水晶振動子の特性に応じた好適な発振周波数の電圧制御特性を得ることができる。 As described above, in this embodiment, the oscillation characteristic adjusting resistor connected in parallel to the voltage variable capacitance element is constituted by a plurality of divided resistors, and the oscillation characteristic adjusting resistor is controlled by controlling the switch provided in each divided resistor. By making the value variable, it is possible to obtain a voltage control characteristic of a suitable oscillation frequency according to the characteristic of the crystal resonator in combination with the bias resistor.

次に、図6を参照して実施例4を説明する。
図6は、この実施例に係る電圧制御水晶発振器の基本構成に含まれるバイアス抵抗を含む部分回路図である。この実施例は、実施例3と同様に、図1の電圧制御水晶発振器の変形例である。すなわち、図6の電圧制御水晶発振器は、バイアス抵抗を複数の分割抵抗で構成し、抵抗値を可変にすることに特徴がある。この電圧制御水晶発振器は、水晶振動子41、反転増幅器43、直流カット容量44、制御電圧入力端子45、バイアス抵抗46、発振特性調整用抵抗47及び電圧可変容量素子49を備えている。制御電圧入力端子45には直列にバイアス抵抗46を介して電圧可変容量素子49が接続され、電圧可変容量素子49に並列に発振特性調整用抵抗47が接続されている。発振特性調整用抵抗47は、一端が電圧可変容量素子49の一方の端子に接続され、他端が接地されている。水晶振動子41は、反転増幅器43に直流カット容量44を介して接続され、また、電圧可変容量素子49の一方の端子に接続されている。
Next, Embodiment 4 will be described with reference to FIG.
FIG. 6 is a partial circuit diagram including a bias resistor included in the basic configuration of the voltage controlled crystal oscillator according to this embodiment. This embodiment is a modification of the voltage controlled crystal oscillator of FIG. That is, the voltage controlled crystal oscillator of FIG. 6 is characterized in that the bias resistor is constituted by a plurality of divided resistors and the resistance value is variable. The voltage controlled crystal oscillator includes a crystal resonator 41, an inverting amplifier 43, a DC cut capacitor 44, a control voltage input terminal 45, a bias resistor 46, an oscillation characteristic adjusting resistor 47, and a voltage variable capacitor element 49. A voltage variable capacitance element 49 is connected in series to the control voltage input terminal 45 via a bias resistor 46, and an oscillation characteristic adjusting resistor 47 is connected in parallel to the voltage variable capacitance element 49. The oscillation characteristic adjusting resistor 47 has one end connected to one terminal of the voltage variable capacitance element 49 and the other end grounded. The crystal resonator 41 is connected to the inverting amplifier 43 via the DC cut capacitor 44 and is connected to one terminal of the voltage variable capacitance element 49.

このバイアス抵抗46は、例えば、スイッチ48を有する分割抵抗R8、R9及びR10と分割抵抗R13とからなる。スイッチ48は、スイッチSW5、SW6およびSW7から構成されている。各分割抵抗R8、R9及びR10には、夫々スイッチSW5、SW6、SW7が各分割抵抗に対して並列に接続され、これら各スイッチのオン/オフ操作により各分割抵抗が発振回路から接離するようになっている。バイアス抵抗46は、例えば、R8=50Ω、R9=50Ω、R10=50Ω及びR12=50Ωとすると、スイッチ48のオン/オフ操作を組合せることにより50Ω〜200Ωの可変の抵抗値を得ることができる。   The bias resistor 46 includes, for example, divided resistors R8, R9, and R10 having a switch 48 and a divided resistor R13. The switch 48 includes switches SW5, SW6, and SW7. Switches SW5, SW6 and SW7 are connected in parallel to the respective divided resistors R8, R9 and R10, and the respective divided resistors are connected to and separated from the oscillation circuit by the on / off operation of these switches. It has become. For example, when the bias resistor 46 has R8 = 50Ω, R9 = 50Ω, R10 = 50Ω, and R12 = 50Ω, a variable resistance value of 50Ω to 200Ω can be obtained by combining the ON / OFF operation of the switch 48. .

以上のように、この実施例ではバイアス抵抗を複数の分割抵抗で構成し、各分割抵抗に備えられたスイッチを制御することでバイアス抵抗値を可変可能とすることにより、発振特性調整用抵抗と相俟って、水晶振動子の特性に応じた好適な発振周波数の電圧制御特性を得ることができる。また、この実施例の電圧制御水晶発振器は、実施例3で示した複数の分割抵抗および複数のスイッチによって構成される発振特性調整用抵抗を備えた電圧制御水晶発振器に適用してもよい。   As described above, in this embodiment, the bias resistor is configured by a plurality of divided resistors, and the bias resistance value can be varied by controlling a switch provided in each divided resistor. In combination, it is possible to obtain voltage control characteristics with a suitable oscillation frequency according to the characteristics of the crystal resonator. The voltage-controlled crystal oscillator of this embodiment may be applied to the voltage-controlled crystal oscillator including the oscillation characteristic adjusting resistor configured by a plurality of division resistors and a plurality of switches shown in the third embodiment.

本発明の実施例1に係る電圧制御水晶発振器の基本構成を示す回路図。1 is a circuit diagram showing a basic configuration of a voltage controlled crystal oscillator according to Embodiment 1 of the present invention. 図1の電圧制御水晶発振器の発振特性を説明する周波数変化量−周波数制御電圧の関係を示す特性図。The characteristic view which shows the relationship of the frequency variation-frequency control voltage explaining the oscillation characteristic of the voltage control crystal oscillator of FIG. 本発明の実施例2に係る電圧制御水晶発振器の基本構成を示す回路図。FIG. 5 is a circuit diagram showing a basic configuration of a voltage controlled crystal oscillator according to a second embodiment of the invention. 図3の電圧制御水晶発振器の発振特性を説明する周波数変化量−周波数制御電圧の関係を示す特性図。FIG. 4 is a characteristic diagram illustrating a relationship between a frequency change amount and a frequency control voltage for explaining oscillation characteristics of the voltage controlled crystal oscillator of FIG. 3. 本発明の実施例3に係る電圧制御水晶発振器の基本構成に含まれる発振特性調整用抵抗を含む部分回路図。FIG. 10 is a partial circuit diagram including an oscillation characteristic adjusting resistor included in the basic configuration of the voltage controlled crystal oscillator according to the third embodiment of the present invention. 本発明の実施例4に係る電圧制御水晶発振器の基本構成に含まれるバイアス抵抗を含む部分回路図。FIG. 9 is a partial circuit diagram including a bias resistor included in the basic configuration of the voltage controlled crystal oscillator according to the fourth embodiment of the present invention. 従来の電圧制御水晶発振器の基本構成を示す回路図。The circuit diagram which shows the basic composition of the conventional voltage control crystal oscillator.

符号の説明Explanation of symbols

1、21、33、43・・・反転増幅器
2、22、40、41・・・水晶振動子
3、4、23、24、34、44・・・直流カット容量
5、6、25、26、36、46・・・バイアス抵抗
7、8、27、28、39、49・・・電圧可変容量素子
9、29・・・帰還抵抗
10、11、30、31、37、47・・・発振特性調整用抵抗
12、32、35、45・・・制御電圧入力端子
38、48・・・スイッチ
1, 2, 33, 43... Inverting amplifier 2, 22, 40, 41... Crystal resonator 3, 4, 23, 24, 34, 44... DC cut capacity 5, 6, 25, 26, 36, 46... Bias resistor 7, 8, 27, 28, 39, 49... Voltage variable capacitance element 9, 29... Feedback resistor 10, 11, 30, 31, 37, 47. Adjustment resistor 12, 32, 35, 45 ... Control voltage input terminal 38, 48 ... Switch

Claims (3)

反転増幅器と、水晶振動子と、一方の端子が前記反転増幅器の入力端子に接続され、他方の端子が前記水晶振動子の第1の端子に接続された第1の直流カット容量と、一方の端子が前記反転増幅器の出力端子に接続され、他方の端子が前記水晶振動子の第2の端子に接続された第2の直流カット容量と、制御電圧入力端子と、一方の端子が前記第1の端子に接続され、他方の端子が接地電位に接続された第1の電圧可変容量素子と、一方の端子が前記第2の端子に接続され、他方の端子が前記接地電位に接続された第2の電圧可変容量素子と、前記第1の端子と前記第1の電圧可変容量素子の一方の端子との間に一端が接続され、他端が前記制御電圧入力端子に接続された第1のバイアス抵抗と、前記第2の端子と前記第2の電圧可変容量素子の一方の端子との間に一端が接続され、他端が前記制御電圧入力端子に接続された第2のバイアス抵抗とを具備し、前記第1の電圧可変容量素子の一方の端子と電源電位間に第1の発振特性調整用抵抗を設け、前記第2の電圧可変容量素子の一方の端子と電源電位間に第2の発振特性調整用抵抗を設けたことを特徴とする電圧制御水晶発振器。 An inverting amplifier, a crystal resonator, one terminal connected to the input terminal of the inverting amplifier, and the other terminal connected to the first terminal of the crystal resonator, A second DC cut capacitor having a terminal connected to the output terminal of the inverting amplifier and the other terminal connected to the second terminal of the crystal resonator, a control voltage input terminal, and one terminal being the first terminal A first voltage variable capacitor having a second terminal connected to the ground potential, a first terminal connected to the second terminal, and a second terminal connected to the ground potential. One of the first voltage variable capacitance element, the first terminal and one terminal of the first voltage variable capacitance element, and the other end connected to the control voltage input terminal. A bias resistor; the second terminal; and the second voltage variable capacitance element. And a second bias resistor having one end connected to the control voltage input terminal and the other end connected to the control voltage input terminal. One terminal of the first voltage variable capacitance element and a power supply potential A voltage controlled crystal oscillator characterized in that a first oscillation characteristic adjusting resistor is provided between them, and a second oscillation characteristic adjusting resistor is provided between one terminal of the second voltage variable capacitance element and a power supply potential. . 前記第1及び第2の発振特性調整用抵抗は、複数の分割抵抗から構成され、これら分割抵抗の各々の両端子間には、前記各々の分割抵抗に対して並列に接続されたスイッチを有し、前記スイッチによって前記第1及び第2の発振特性調整用抵抗の抵抗値を制御することを特徴とする請求項1に記載の電圧制御水晶発振器。 The first and second oscillation characteristic adjusting resistors are composed of a plurality of divided resistors, and a switch connected in parallel to each of the divided resistors is provided between both terminals of the divided resistors. 2. The voltage controlled crystal oscillator according to claim 1 , wherein resistance values of the first and second oscillation characteristic adjusting resistors are controlled by the switch. 前記第1及び第2のバイアス抵抗は、複数の分割抵抗から構成され、これら分割抵抗の各々の両端子間には、前記各々の分割抵抗に対して並列に接続されたスイッチを有し、前記スイッチによって前記第1及び第2のバイアス抵抗の抵抗値を制御することを特徴とする請求項1乃至請求項のいずれか1項に記載の電圧制御水晶発振器。 The first and second bias resistors are composed of a plurality of divided resistors, and a switch connected in parallel to each of the divided resistors is provided between both terminals of the divided resistors, 3. The voltage controlled crystal oscillator according to claim 1, wherein resistance values of the first and second bias resistors are controlled by a switch.
JP2006250373A 2006-09-15 2006-09-15 Voltage controlled crystal oscillator Active JP5055648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250373A JP5055648B2 (en) 2006-09-15 2006-09-15 Voltage controlled crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250373A JP5055648B2 (en) 2006-09-15 2006-09-15 Voltage controlled crystal oscillator

Publications (2)

Publication Number Publication Date
JP2008072553A JP2008072553A (en) 2008-03-27
JP5055648B2 true JP5055648B2 (en) 2012-10-24

Family

ID=39293721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250373A Active JP5055648B2 (en) 2006-09-15 2006-09-15 Voltage controlled crystal oscillator

Country Status (1)

Country Link
JP (1) JP5055648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129028B2 (en) * 2008-06-02 2013-01-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit and oscillation circuit
JP7234656B2 (en) * 2019-01-29 2023-03-08 セイコーエプソン株式会社 Oscillation circuits, oscillators, electronic devices and moving bodies

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214313A (en) * 1989-02-15 1990-08-27 Matsushita Electric Ind Co Ltd Frequency adjusting circuit
JPH0412708U (en) * 1990-05-21 1992-01-31
JPH04179306A (en) * 1990-11-14 1992-06-26 Canon Inc Voltage controlled oscillation circuit
JPH0645826A (en) * 1992-04-20 1994-02-18 Nec Corp Voltage controlled oscillator
JPH08340214A (en) * 1995-06-14 1996-12-24 Meidensha Corp Crystal oscillator circuit
JPH09298422A (en) * 1996-05-08 1997-11-18 Toyo Commun Equip Co Ltd Tco circuit
JPH10215120A (en) * 1997-01-30 1998-08-11 Meidensha Corp Quartz oscillation circuit
JP2000165144A (en) * 1998-09-22 2000-06-16 Citizen Watch Co Ltd Voltage controlled piezoelectric oscillator
JP2000307348A (en) * 1999-04-20 2000-11-02 Citizen Watch Co Ltd Oscillator circuit provided with frequency adjustment mechanism
JP2001102867A (en) * 1999-07-23 2001-04-13 Interchip Kk Oscillation control circuit
JP2006086679A (en) * 2004-09-15 2006-03-30 Epson Toyocom Corp Voltage controlled piezoelectric oscillator

Also Published As

Publication number Publication date
JP2008072553A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US7986194B2 (en) Oscillator
EP0352695B1 (en) Quartz crystal oscillator with temperature-compensated frequency characteristics
JP2010103881A (en) Crystal oscillator
JP5055648B2 (en) Voltage controlled crystal oscillator
JP3998233B2 (en) Oscillation circuit and integrated circuit for oscillation
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
JP2008211763A (en) Piezoelectric oscillator
JP2007103985A (en) Crystal oscillator
JP5098979B2 (en) Piezoelectric oscillator
JP2002026658A (en) Quartz oscillator circuit
JP2014007678A (en) Oscillator
JP4428124B2 (en) Temperature compensated oscillator
JP2005094147A (en) Oscillation circuit
JP2009124530A (en) Piezoelectric oscillator
JP2010183366A (en) Temperature compensated oscillation circuit
JP2009141512A (en) Voltage-controlled oscillation circuit
JP5060416B2 (en) Oscillator
JP6180846B2 (en) Crystal oscillator
JP6358053B2 (en) Oscillator and method for adjusting oscillation frequency of the oscillator
JP2008252768A (en) Crystal oscillator
JP2001068932A (en) Voltage controlled oscillator
JPH09232868A (en) Temperature compensated crystal oscillator
JP3319901B2 (en) Piezoelectric oscillation circuit
JP2009141459A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250