JP2008252768A - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP2008252768A
JP2008252768A JP2007094487A JP2007094487A JP2008252768A JP 2008252768 A JP2008252768 A JP 2008252768A JP 2007094487 A JP2007094487 A JP 2007094487A JP 2007094487 A JP2007094487 A JP 2007094487A JP 2008252768 A JP2008252768 A JP 2008252768A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
capacitance
voltage variable
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007094487A
Other languages
Japanese (ja)
Inventor
Satokatsu Nakamura
里克 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2007094487A priority Critical patent/JP2008252768A/en
Publication of JP2008252768A publication Critical patent/JP2008252768A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in a conventional oscillation circuit, fixed large capacitance is required between voltage variable capacitance and a power supply voltage, thus hindering reduction in size, and large parasitic capacitance is inserted in parallel with the voltage variable capacitance, thus making it difficult to obtain a wide frequency variable range. <P>SOLUTION: A feedback resistance, an inverted amplification circuit, and a crystal oscillator are connected in parallel. Connection points of both an input and an output of the inverted amplification circuit are grounded via direct-current cut capacitance and load capacitance. Further, the connection points of both the input and the output of the direct-current cut capacitance and the load capacitance are connected via the voltage variable capacitance. Frequency adjustment is performed by applying a control signal between both ends of the voltage variable capacitance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、負荷容量の一部として電圧可変容量を備え、この電圧可変容量に制御信号を印加することによって周波数制御が可能な水晶発振器に関する。   The present invention relates to a crystal oscillator including a voltage variable capacitor as a part of a load capacitor and capable of frequency control by applying a control signal to the voltage variable capacitor.

水晶振動子と発振回路を単一のパッケージに収めた水晶発振器はその高安定性やサイズの小ささにより広範な分野の電子機器の信号源として用いられている。   A crystal oscillator in which a crystal resonator and an oscillation circuit are housed in a single package is used as a signal source for a wide range of electronic devices due to its high stability and small size.

水晶発振器のうち、負荷容量の一部として電圧可変容量を備え、この電圧可変容量に加える制御電圧を変化させることで発振周波数を制御する機構を持つものがあり、制御の目的により電圧制御水晶発振器(以下VCXOと略)や温度補償水晶発振器(以下TCXOと略)と呼ばれる。   Some crystal oscillators have a voltage variable capacitor as part of the load capacitance and have a mechanism for controlling the oscillation frequency by changing the control voltage applied to the voltage variable capacitor. Depending on the purpose of the control, the voltage controlled crystal oscillator (Hereinafter abbreviated as VCXO) and temperature compensated crystal oscillator (hereinafter abbreviated as TCXO).

VCXOは電圧可変容量に印加する制御電圧をユーザーが外部から印加するタイプの発振器であり、有線・無線通信におけるクロックリカバリー等の用途に多く用いられている。またTCXOは水晶振動子の周波数温度特性を補償する制御信号を電圧可変容量に与えることによって、広い温度範囲で出力信号の周波数を略一定に保つようにした発振器であり、携帯電話の信号源として多く用いられている。またこれら両方の特性を備えた発振器(VC−TCXO)も製品化されている。   The VCXO is a type of oscillator in which a user applies a control voltage applied to a voltage variable capacitor from the outside, and is frequently used for applications such as clock recovery in wired / wireless communication. The TCXO is an oscillator that keeps the frequency of the output signal substantially constant over a wide temperature range by giving the voltage variable capacitor a control signal that compensates the frequency-temperature characteristics of the crystal unit. Many are used. An oscillator (VC-TCXO) having both of these characteristics has also been commercialized.

水晶発振回路において負荷容量の容量値を変えることで発振周波数が変化することは良く知られているが、VCXOやTCXOはこの負荷容量の一部に電圧可変容量を用い、この電圧可変容量に制御電圧を印加することで周波数の制御を行う。電圧可変容量としてはバリキャップダイオードやMOS可変容量等があり、いずれも素子両端の電圧差によって容量値が変化する特徴を持っている。   Although it is well known that the oscillation frequency changes by changing the capacitance value of the load capacitance in a crystal oscillation circuit, VCXO and TCXO use a voltage variable capacitor as a part of this load capacitance, and control this voltage variable capacitance. The frequency is controlled by applying a voltage. As the voltage variable capacitor, there are a varicap diode, a MOS variable capacitor, and the like, all of which have a feature that the capacitance value changes due to a voltage difference between both ends of the element.

電圧可変容量の特性は半導体のプロセスによって決まるため、容量が大きく変化する電圧範囲がTCXO内で使用する電圧範囲と一致しないケースがあり、その場合十分な容量可変幅が得られないという課題があった。   Since the characteristics of the voltage variable capacitance are determined by the semiconductor process, there is a case where the voltage range in which the capacitance changes greatly does not match the voltage range used in the TCXO. In this case, there is a problem that a sufficient capacitance variable width cannot be obtained. It was.

このような課題を解決するべく可変容量に印加する電圧範囲を自由に設定できるようにした水晶発振器が提案されている(特許文献1参照)。その基本構成を図5に示す。帰還抵抗503と反転増幅回路502と水晶振動子501とを並列に接続し、その入出力両側の接続点をそれぞれ直流カット容量504および505と電圧可変容量512および513を介して接続し、さらにその接続点を安定化容量514を介して接地した構成になっている。
特開平11−17114号公報
In order to solve such a problem, a crystal oscillator has been proposed in which a voltage range applied to a variable capacitor can be set freely (see Patent Document 1). The basic configuration is shown in FIG. The feedback resistor 503, the inverting amplifier circuit 502, and the crystal resonator 501 are connected in parallel, and the connection points on both sides of the input / output are connected via the DC cut capacitors 504 and 505 and the voltage variable capacitors 512 and 513, respectively. The connection point is grounded via the stabilization capacitor 514.
Japanese Patent Laid-Open No. 11-17114

図5の回路では、従来電圧可変容量の片側からのみ印加していた制御信号を、可変容量512および513の両側から印加できる構成としたことにより、電圧可変容量512および513に印加可能な電圧範囲が広がり、電圧可変容量の最適電圧に合せて、印加電圧範囲を選択することが可能になっている。   In the circuit of FIG. 5, a voltage range that can be applied to the voltage variable capacitors 512 and 513 is obtained by adopting a configuration in which the control signal that has been applied only from one side of the conventional voltage variable capacitor can be applied from both sides of the variable capacitors 512 and 513. The applied voltage range can be selected in accordance with the optimum voltage of the voltage variable capacitor.

TCXOでは温度による周波数偏差補正制御信号の他に、常温周波数偏差補正が求められる場合があり、さらに前記したVC−TCXOでは外部入力周波数調整信号が求められる。このように複数の制御信号が必要な用途では、制御信号入力1,2,3に異なった制御信号を印加することができるので複数の制御信号を加算する回路を設けなくてもよいという利点もある。   In TCXO, in addition to the frequency deviation correction control signal due to temperature, room temperature frequency deviation correction may be required, and in addition, the VC-TCXO described above requires an external input frequency adjustment signal. In such applications that require a plurality of control signals, different control signals can be applied to the control signal inputs 1, 2, and 3. Therefore, there is an advantage that it is not necessary to provide a circuit for adding the plurality of control signals. is there.

ただし図5の回路では、理論上は制御信号入力1,2、3に別々の制御信号を印加することも可能であるが、実際は入力側と出力側の合成容量値に大きな差がついてしまうと発振が不安定になる等の弊害が生じるため、制御信号入力1と2には同一の制御信号を印加することが一般的である。例えば制御信号入力1および2に対して温度補正信号を入力し、制御信号入力3に対しては外部入力周波数調整信号と常温周波数偏差補正の合成信号を入力するといった使われ方が多くなされる。   However, in the circuit of FIG. 5, it is theoretically possible to apply different control signals to the control signal inputs 1, 2, and 3, but in reality, if there is a large difference between the combined capacitance values on the input side and the output side, Since adverse effects such as unstable oscillation occur, the same control signal is generally applied to the control signal inputs 1 and 2. For example, a temperature correction signal is input to the control signal inputs 1 and 2, and an external input frequency adjustment signal and a combined signal of normal temperature frequency deviation correction are input to the control signal input 3.

しかし特許文献1の構成には以下のような欠点がある。まずひとつは電圧可変容量512および513とGND間に大きな容量値の安定化容量514が必要になることである。発振起動時に、反転増幅回路502が十分な増幅率を発揮するためには発振ループは交流的に低インピーダンスで接地されている必要があり、そのために安定化容量514として大きな容量が必要になる。近年VCXOやTCXOの回路は集積回路化され、パッケージサイズの小型化に貢献しているが、このような大きな容量を集積回路内に作りこまなければならないことは小型化に対して大きな負担となる。   However, the configuration of Patent Document 1 has the following drawbacks. One is that a stabilizing capacitor 514 having a large capacitance value is required between the voltage variable capacitors 512 and 513 and GND. In order for the inverting amplifier circuit 502 to exhibit a sufficient amplification factor at the time of oscillation start-up, the oscillation loop needs to be grounded with a low impedance in terms of alternating current, and thus a large capacity is required as the stabilization capacitor 514. In recent years, VCXO and TCXO circuits have been integrated and contributed to the reduction in package size. However, the fact that such a large capacity must be built in the integrated circuit is a great burden for miniaturization. .

またVCXOやTCXOではなるべく大きな周波数可変範囲を得るために、電圧可変容量が寄生容量の影響を受けにくい回路構成が望まれるが、図5の回路では反転増幅回路502の入出力容量や水晶振動子501接続端子容量等の大きな寄生容量が電圧化変容量512および513に並列に挿入されてしまう構成のため、負荷容量全体の容量可変幅が制限され、大きな周波数可変幅を得ることが難しいという課題もある。   In addition, in order to obtain a frequency variable range as large as possible in VCXO and TCXO, a circuit configuration in which the voltage variable capacitance is not easily affected by the parasitic capacitance is desired. In the circuit of FIG. Since a large parasitic capacitance such as the 501 connection terminal capacitance is inserted in parallel with the voltage variable capacitors 512 and 513, the variable variable width of the entire load capacitor is limited, and it is difficult to obtain a large variable frequency width. There is also.

上記問題を解決するため本発明の水晶発振器は、少なくとも水晶振動子と発振回路から構成され、前記発振回路は、前記水晶振動子と帰還抵抗と反転増幅回路を並列に接続し、前記反転増幅回路の入出力両側の接続点をそれぞれ、直流カット容量と負荷容量を介して接地し、さらに前記反転増幅回路の入力側の前記直流カット容量と前記負荷容量の接続点と、出力側の前記直流カット容量と前記負荷容量の接続点を、電圧可変容量を介して接続してなり、前記電圧可変容量の両端に制御信号を印加して周波数調整を行う構成としたことを特徴としている。   In order to solve the above problem, a crystal oscillator according to the present invention includes at least a crystal resonator and an oscillation circuit, and the oscillation circuit connects the crystal resonator, a feedback resistor, and an inverting amplifier circuit in parallel, and the inverting amplifier circuit. The connection points on both sides of the input / output are grounded via a DC cut capacitor and a load capacitor, respectively, and further, the connection point between the DC cut capacitor and the load capacitor on the input side of the inverting amplifier circuit, and the DC cut on the output side A connection point between the capacitor and the load capacitor is connected via a voltage variable capacitor, and the frequency adjustment is performed by applying a control signal to both ends of the voltage variable capacitor.

更に別の構成として、少なくとも水晶振動子と発振回路から構成され、前記発振回路は、前記水晶振動子と帰還抵抗と反転増幅回路を並列に接続し、前期反転増幅回路の入出力両側の接続点をそれぞれ直流カット容量と負荷容量を介して接地し、さらに前記反転増幅回路の入力側の前記直流カット容量と前記負荷容量の接続点と、出力側の前記直流カット容量と前記負荷容量の接続点を、直列接続した2つの電圧可変容量を介して接続してなり、前記直列接続した2つの電圧可変容量の接続点および、前記反転増幅回路の入出力両側それぞれの前記直流カット容量と前記電圧可変容量との接続点の3箇所に制御信号を印加して周波数調整を行う構成としたことを特徴としている。   As another configuration, it is composed of at least a crystal resonator and an oscillation circuit, and the oscillation circuit connects the crystal resonator, a feedback resistor and an inverting amplifier circuit in parallel, and connection points on both input and output sides of the previous inverting amplifier circuit. Are connected to each other through a DC cut capacitor and a load capacitor, and further, a connection point between the DC cut capacitor and the load capacitor on the input side of the inverting amplifier circuit, and a connection point between the DC cut capacitor and the load capacitor on the output side. Are connected via two voltage variable capacitors connected in series, the connection point of the two voltage variable capacitors connected in series, and the DC cut capacitor and the voltage variable on both input and output sides of the inverting amplifier circuit. It is characterized in that the frequency adjustment is performed by applying a control signal to three connection points with the capacitor.

本発明の水晶発振器は、電圧可変容量が水晶振動子と並列に接続されるため、寄生容量が電圧可変容量に並列には挿入されず、電圧可変容量が寄生容量の影響を受けにくい構成になっている。このため従来品に比べ大きな周波数可変幅が得ることが可能である。   In the crystal oscillator of the present invention, since the voltage variable capacitor is connected in parallel with the crystal resonator, the parasitic capacitance is not inserted in parallel with the voltage variable capacitor, and the voltage variable capacitor is not easily affected by the parasitic capacitance. ing. For this reason, it is possible to obtain a large frequency variable width as compared with the conventional product.

また大きな容量値が必要だった安定化容量が不要になるため、集積回路の面積を減らすことができ、従来品に比べより小型化した製品の提供が可能である。   In addition, since the stabilization capacitor that required a large capacitance value is not necessary, the area of the integrated circuit can be reduced, and a product that is smaller than the conventional product can be provided.

以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings.

〔第1の実施形態:図1〕
図1は、本発明による水晶発振器の第1の実施形態の構成を示す回路図である。図1の回路は帰還抵抗103と反転増幅回路102と水晶振動子101を並列に接続し、反転増幅回路102の入出力両側の接続点をそれぞれ直流カット容量104および105と、負荷容量107および108を介して接地する。さらに入力側直流カット容量104と負荷容量107の接続点と、出力側直流カット容量105と負荷容量108の接続点を、電圧可変容量106を介して接続し、この電圧可変容量106の両端に制御信号を抵抗109および110を介して印加して周波数調整を行う構成である。発振の位相条件確保のために、反転増幅回路102出力と水晶振動子101間に制限抵抗を入れる場合もある。
[First Embodiment: FIG. 1]
FIG. 1 is a circuit diagram showing a configuration of a first embodiment of a crystal oscillator according to the present invention. In the circuit of FIG. 1, a feedback resistor 103, an inverting amplifier circuit 102, and a crystal resonator 101 are connected in parallel, and connection points on both input and output sides of the inverting amplifier circuit 102 are connected to DC cut capacitors 104 and 105 and load capacitors 107 and 108, respectively. To ground. Further, a connection point between the input side DC cut capacitor 104 and the load capacitor 107 and a connection point between the output side DC cut capacitor 105 and the load capacitor 108 are connected via a voltage variable capacitor 106, and control is performed at both ends of the voltage variable capacitor 106. The frequency adjustment is performed by applying a signal through resistors 109 and 110. In order to secure the oscillation phase condition, a limiting resistor may be inserted between the output of the inverting amplifier circuit 102 and the crystal resonator 101.

実際のVCXOやTCXOは、図1中の水晶振動子101と、図1の回路を含む集積回路を、セラミック等のパッケージに封止して構成する。   An actual VCXO or TCXO is configured by sealing the crystal unit 101 in FIG. 1 and an integrated circuit including the circuit in FIG. 1 in a package such as ceramic.

従来技術の課題として、電圧可変容量とGND間に大きな安定化容量が必要になり、小型化を難しくしているということがあるが、本発明の水晶発振器では安定化容量自体が必要ないためこのような問題は生じない。負荷容量107および108は安定化容量のようにインピーダンスを低く保つことが目的の容量ではないため安定化容量のように大きな容量値は必要にならない。   A problem with the prior art is that a large stabilization capacitor is required between the voltage variable capacitor and GND, which makes it difficult to reduce the size. However, the crystal oscillator according to the present invention does not require the stabilization capacitor itself. Such a problem does not occur. Since the load capacitors 107 and 108 are not intended to keep the impedance low like the stabilization capacitors, a large capacitance value is not required unlike the stabilization capacitors.

また従来技術では、反転増幅回路の入出力容量や水晶振動子接続端子容量等の大きな寄生容量が電圧可変容量に並列に挿入される構成のため、大きな周波数可変幅を得ることが難しいという課題もあったが、本発明の水晶発振器では電圧可変容量106が水晶振動子101と並列に接続される構成のため、前記寄生容量が電圧可変容量106に並列には挿入されず、電圧可変容量106の容量可変幅が制限されにくい構成となっている。   In addition, in the prior art, since a large parasitic capacitance such as an input / output capacitance of the inverting amplifier circuit or a crystal resonator connection terminal capacitance is inserted in parallel with the voltage variable capacitance, there is a problem that it is difficult to obtain a large frequency variable width. However, since the voltage variable capacitor 106 is connected in parallel with the crystal resonator 101 in the crystal oscillator of the present invention, the parasitic capacitance is not inserted in parallel with the voltage variable capacitor 106. The capacity variable width is not easily limited.

そして本発明では従来技術と同様、制御電圧を電圧可変容量106の両側から印加できる構成のため可変容量106両端に印加する制御電圧をフレキシブルに選択することが可能である。例えば電圧可変容量の容量変化特性が図3に示すように、端子間電圧がゼロボルトの点を挟んでマイナスからプラスに渡って広がるものであった場合、片側からしか電圧を印加できない構成では可変容量の容量可変幅のおよそ半分程度しか使用できないが、本発明であれば制御信号1、2の電圧範囲を適当な値に設定してやることにより容量が可変する全領域を使うことが可能である。   In the present invention, the control voltage applied to both ends of the variable capacitor 106 can be flexibly selected because the control voltage can be applied from both sides of the voltage variable capacitor 106, as in the prior art. For example, as shown in FIG. 3, when the voltage change characteristic of the voltage variable capacitor is such that the voltage between the terminals spreads from minus to plus across the zero volt point, the variable capacitor can be applied only in one side. However, according to the present invention, it is possible to use the entire region where the capacitance is variable by setting the voltage range of the control signals 1 and 2 to an appropriate value.

常温における電圧可変容量の容量値は変化範囲の中心付近にあることが望ましいので、制御信号1,2の電圧差がその近辺になるように制御信号の電圧を調整してやればよい。   Since the capacitance value of the voltage variable capacitor at normal temperature is desirably near the center of the change range, the voltage of the control signal may be adjusted so that the voltage difference between the control signals 1 and 2 is in the vicinity thereof.

VCXOの場合、制御信号は外部入力電圧のみなので、この外部入力電圧を制御信号1,2のどちらかに入力し、他方は固定電圧とする。集積回路にメモリーを内蔵し、このメモリーに書き込まれた値によって固定電圧の値を調整可能な構成とすれば、発振器完成後にメモリーの値を変化させて最も周波数可変幅が広くなる固定電圧値を選ぶことができる。あるいは初期周波数精度が厳しい用途では、上記メモリーによる固定電圧可変構成を初期周波数偏差補正として使用しても良い。   In the case of VCXO, since the control signal is only an external input voltage, this external input voltage is input to either of the control signals 1 and 2 and the other is set to a fixed voltage. If the integrated circuit has a built-in memory and the fixed voltage value can be adjusted according to the value written in this memory, the fixed voltage value with the widest frequency variable width can be obtained by changing the memory value after the oscillator is completed. You can choose. Alternatively, in applications where the initial frequency accuracy is severe, the fixed voltage variable configuration using the memory may be used as the initial frequency deviation correction.

また外部入力電圧を制御信号1,2のどちらに印加するかによって電圧対周波数の制御方向が逆転するが、これを内蔵メモリーに書き込まれた値によって切り替えられるようにしておけば、制御電圧増で周波数増、および制御電圧増で周波数減のどちらのタイプのVCXOとしても使用することが可能である。   In addition, the control direction of the voltage vs. frequency is reversed depending on which of the control signals 1 and 2 is applied with the external input voltage, but if this can be switched by the value written in the built-in memory, the control voltage can be increased. It can be used as either type of VCXO with frequency increase or control voltage increase and frequency decrease.

TCXOの場合、制御信号1、2のいずれか一方には別回路(図示せず)で生成された温度による周波数偏差を補正するための制御信号が入力される。TCXO用として一般的に用いられるATカットの水晶振動子の温度特性は温度に対して3次項と1次項が存在するので、例えば制御信号入力1に3次項補正信号を、制御信号入力2に1次項補正信号を入力する構成にしても良い。   In the case of TCXO, a control signal for correcting a frequency deviation due to temperature generated by another circuit (not shown) is input to one of the control signals 1 and 2. The temperature characteristic of an AT-cut quartz crystal resonator generally used for TCXO has a third-order term and a first-order term with respect to temperature. Therefore, for example, a third-order term correction signal is assigned to the control signal input 1 and a control signal input 2 is assigned 1 A configuration may be adopted in which a correction signal for the next term is input.

またTCXOやVC−TCXOでは、温度周波数偏差補正信号の他に、常温周波数偏差補正や外部入力周波数調整等の制御信号が要求される場合があるので、これらのいずれかの信号、あるいはこれらを合成した信号をいずれかの制御信号入力に印加しても良い   In TCXO and VC-TCXO, in addition to the temperature frequency deviation correction signal, control signals such as room temperature frequency deviation correction and external input frequency adjustment may be required. Signal may be applied to any control signal input

電圧可変容量の例としてN型のMOS可変容量の構成を図4に示す。この可変容量は半導体P型基板401中に設けたNウェル領域402中にN型リッチ層403を環状に作成して、その上部表面に絶縁膜405と電極406を設けたものである。2つの電圧印加端子1および2はいずれも、半導体P型基板401の電位からは独立しているため、可変容量の両側から電圧を印加することが可能である。   FIG. 4 shows a configuration of an N-type MOS variable capacitor as an example of the voltage variable capacitor. In this variable capacitor, an N-type rich layer 403 is formed in an annular shape in an N-well region 402 provided in a semiconductor P-type substrate 401, and an insulating film 405 and an electrode 406 are provided on the upper surface thereof. Since the two voltage application terminals 1 and 2 are independent of the potential of the semiconductor P-type substrate 401, it is possible to apply a voltage from both sides of the variable capacitor.

またP型のMOS可変容量の場合は、通常の構成では片側の電位が必ず基板電位となってしまうため片側からしか制御電圧を印加することができないが、Nウェル領域中にさらにPウェル領域を作りそこにMOS可変容量を構成する、いわゆるトリプルウェル構造のものであれば両側から制御電圧印加可能な可変容量が得られる。   In the case of a P-type MOS variable capacitor, the control voltage can be applied only from one side because the potential on one side is always the substrate potential in the normal configuration, but a P well region is further provided in the N well region. If a so-called triple well structure is formed in the MOS variable capacitor, a variable capacitor to which a control voltage can be applied from both sides can be obtained.

また他の電圧可変容量であるバリキャップダイオードの場合ではアノード側が常にP型半導体となるが、上記と同様にトリプルウェル構造を採用することで両側から電圧印加可能な可変容量が得られる。   In the case of a varicap diode which is another voltage variable capacitor, the anode side is always a P-type semiconductor. However, by adopting a triple well structure as described above, a variable capacitor capable of applying a voltage from both sides can be obtained.

以上はP型基板の半導体の場合について説明したが、N型基板の半導体の場合も極性を反転させて考えれば同様である。   The above is a case of a semiconductor of a P-type substrate, but the case of a semiconductor of an N-type substrate is the same if the polarity is reversed.

なお上記説明は本発明を水晶振動子と組み合わせて使用する場合について記述したが、水晶振動子以外の圧電振動子と組み合わせて使用することももちろん可能である。   The above description describes the case where the present invention is used in combination with a crystal resonator, but it is of course possible to use it in combination with a piezoelectric resonator other than the crystal resonator.

〔第2の実施形態:図2〕
図2は、本発明による温度補償型水晶発振器の第2の実施形態を示す回路図である。図2の説明にあたっては図1と共通する箇所も多いので、それらの箇所については説明を簡単にする。
[Second Embodiment: FIG. 2]
FIG. 2 is a circuit diagram showing a second embodiment of the temperature compensated crystal oscillator according to the present invention. In the description of FIG. 2, there are many portions in common with FIG. 1, so the description of these portions will be simplified.

図2に示す回路は、帰還抵抗203と反転増幅回路202と水晶振動子201を並列に接続し、反転増幅回路202の入出力両側の接続点をそれぞれ直流カット容量204および205と、負荷容量207および208を介して接地する。さらに入力側直流カット容量204と負荷容量207の接続点と、出力側直流カット容量205と負荷容量208の接続点を、直列接続した2つの電圧可変容量210および211を介して接続し、電圧可変容量210および211の接続点と、入力側直流カット容量204と電圧可変容量210の接続点、および出力側直流カット容量205と電圧可変容量211の接続点の3箇所に制御信号を印加して周波数調整を行うことを特徴としている。   In the circuit shown in FIG. 2, a feedback resistor 203, an inverting amplifier circuit 202, and a crystal resonator 201 are connected in parallel, and connection points on both input and output sides of the inverting amplifier circuit 202 are connected to DC cut capacitors 204 and 205, and a load capacitor 207, respectively. And 208 to ground. Further, the connection point between the input side DC cut capacitor 204 and the load capacitor 207 and the connection point between the output side DC cut capacitor 205 and the load capacitor 208 are connected via two voltage variable capacitors 210 and 211 connected in series to change the voltage. A control signal is applied to three frequencies: a connection point between the capacitors 210 and 211, a connection point between the input side DC cut capacitor 204 and the voltage variable capacitor 210, and a connection point between the output side DC cut capacitor 205 and the voltage variable capacitor 211. It is characterized by making adjustments.

第1の実施形態で述べたように図1の回路は従来例と比較して、電圧可変容量106の容量変化幅に対する寄生容量の影響が少ないため、大きな周波数可変幅を得ることができるが、従来は2つ使用していた電圧可変容量を1つしか使っていないため、可変幅の増加量としては大きな量をえることはできなかった。   As described in the first embodiment, since the circuit of FIG. 1 has less influence of the parasitic capacitance on the capacitance change width of the voltage variable capacitor 106 compared to the conventional example, a large frequency variable width can be obtained. Conventionally, only one voltage variable capacitor which has been used in two is used, so that a large amount cannot be obtained as an increase amount of the variable width.

図2の回路は、図1の回路の電圧可変容量106を、2つの電圧可変容量210および211を直列接続したものに置き換え、さらにこの2つの電圧可変容量210および211同士の接続点にも制御信号を印加できるようにした構成のため、図1の回路の長所をそっくり生かしたまま、周波数可変幅を飛躍的に増加させることを可能にしている。   In the circuit of FIG. 2, the voltage variable capacitor 106 of the circuit of FIG. 1 is replaced with two voltage variable capacitors 210 and 211 connected in series, and the connection point between the two voltage variable capacitors 210 and 211 is also controlled. Since the configuration is such that a signal can be applied, it is possible to dramatically increase the frequency variable width while taking full advantage of the circuit of FIG.

また図2の回路では3つの異なった制御信号1,2,3を入力することが可能である。図5に示した従来の回路でも制御信号入力は3つあるが、入力側と出力側の負荷容量のバランスを取るため通常は2つの制御信号入力には同一の信号を印加することは前記した。本発明の構成では電圧可変容量210および211の容量値は入力側と出力側両方の負荷容量として共用されるため、従来例のように入力側と出力側の負荷容量バランスが悪くなるといった問題なしに3つの別々な制御信号を印加することが可能であり、複数の制御信号入力が必要なVC−TCXO等で有効である。   In the circuit of FIG. 2, it is possible to input three different control signals 1, 2, and 3. The conventional circuit shown in FIG. 5 also has three control signal inputs. However, in order to balance the load capacity on the input side and the output side, the same signal is usually applied to the two control signal inputs as described above. . In the configuration of the present invention, the capacitance values of the voltage variable capacitors 210 and 211 are shared as both input and output load capacitances, so there is no problem that the load capacitance balance between the input side and the output side is deteriorated as in the conventional example. It is possible to apply three separate control signals to VC-TCXO or the like which requires a plurality of control signal inputs.

VCXOの場合には制御電圧入力3に固定電圧を入れ、制御電圧入力1および2に外部入力制御信号を入れる、もしくは制御電圧入力1および2に固定電圧を入れ、制御電圧入力3に外部入力制御信号を入れるといった使い方が考えられる。第1の実施形態で述べた内蔵メモリーを使っての周波数調整機構や制御方向選択機構を図2の回路に適用することももちろん可能である。   In the case of VCXO, a fixed voltage is input to the control voltage input 3 and an external input control signal is input to the control voltage inputs 1 and 2, or a fixed voltage is input to the control voltage inputs 1 and 2, and an external input control is applied to the control voltage input 3. It can be used as a signal. It is of course possible to apply the frequency adjustment mechanism and control direction selection mechanism using the built-in memory described in the first embodiment to the circuit of FIG.

電圧可変容量の制御電圧範囲がゼロ点をまたがないで正負どちらか片側のみで動く場合には、制御電圧3の端子を接地して使用しても良い。   If the control voltage range of the voltage variable capacitor does not cross the zero point and moves only on one side, either positive or negative, the terminal of the control voltage 3 may be grounded.

本発明の水晶発振器は従来品に比べ大きな周波数可変幅が得られるため、より高性能な発振器の提供が可能になり、また従来必要だった安定化容量が不要になるため、集積回路の面積を減らすことができ、従来品に比べより小型化した製品の提供が可能になる。   Since the crystal oscillator of the present invention can provide a larger frequency variable width than conventional products, it is possible to provide a higher-performance oscillator and eliminate the need for the stabilization capacitance that was required in the past. This makes it possible to provide products that are smaller than conventional products.

本発明の水晶発振器の基本構成図である。It is a basic block diagram of the crystal oscillator of this invention. 本発明の水晶発振器の別の構成図である。It is another block diagram of the crystal oscillator of this invention. 電圧可変容量の端子間電圧対容量特性の例である。It is an example of the voltage-capacitance characteristic between terminals of a voltage variable capacitor. MOS可変容量の構成例である。It is a structural example of a MOS variable capacitor. 従来の水晶発振器の基本構成図である。It is a basic block diagram of the conventional crystal oscillator.

符号の説明Explanation of symbols

101、201、501:水晶振動子
102、202、502:反転増幅回路
103、203、503:帰還抵抗
104、105、204、205、504、505:直流カット容量
106、210、211、512、513:電圧可変容量
107、108、207、208:負荷容量
109、110:抵抗
401:半導体P型基板
402:Nウェル領域
403:N型リッチ層
405:絶縁膜
406:電極
514:安定化容量
101, 201, 501: Crystal resonators 102, 202, 502: Inversion amplifier circuits 103, 203, 503: Feedback resistors 104, 105, 204, 205, 504, 505: DC cut capacitors 106, 210, 211, 512, 513 : Voltage variable capacitance 107, 108, 207, 208: Load capacitance 109, 110: Resistance 401: Semiconductor P type substrate 402: N well region 403: N type rich layer 405: Insulating film 406: Electrode 514: Stabilization capacitance

Claims (2)

少なくとも水晶振動子と発振回路から構成される水晶発振器において、
前記発振回路は、前記水晶振動子と帰還抵抗と反転増幅回路を並列に接続し、前記反転増幅回路の入出力両側の接続点をそれぞれ、直流カット容量と負荷容量を介して接地し、
さらに前記反転増幅回路の入力側の前記直流カット容量と前記負荷容量の接続点と、出力側の前記直流カット容量と前記負荷容量の接続点を、電圧可変容量を介して接続してなり、
前記電圧可変容量の両端に制御信号を印加して周波数調整を行うことを特徴とする水晶発振器。
In a crystal oscillator composed of at least a crystal resonator and an oscillation circuit,
The oscillation circuit connects the crystal resonator, a feedback resistor, and an inverting amplifier circuit in parallel, and grounds connection points on both input and output sides of the inverting amplifier circuit via a DC cut capacitor and a load capacitor, respectively.
Furthermore, the connection point between the DC cut capacitor and the load capacitor on the input side of the inverting amplifier circuit, and the connection point between the DC cut capacitor and the load capacitor on the output side are connected via a voltage variable capacitor,
A crystal oscillator, wherein a frequency is adjusted by applying a control signal to both ends of the voltage variable capacitor.
少なくとも水晶振動子と発振回路から構成される水晶発振器において、
前記発振回路は、前記水晶振動子と帰還抵抗と反転増幅回路を並列に接続し、前期反転増幅回路の入出力両側の接続点をそれぞれ直流カット容量と負荷容量を介して接地し、
さらに前記反転増幅回路の入力側の前記直流カット容量と前記負荷容量の接続点と、出力側の前記直流カット容量と前記負荷容量の接続点を、直列接続した2つの電圧可変容量を介して接続してなり、
前記直列接続した2つの電圧可変容量の接続点および、前記反転増幅回路の入出力両側それぞれの前記直流カット容量と前記電圧可変容量との接続点の3箇所に制御信号を印加して周波数調整を行うことを特徴とする水晶発振器。

In a crystal oscillator composed of at least a crystal resonator and an oscillation circuit,
The oscillation circuit is configured to connect the crystal resonator, the feedback resistor, and the inverting amplifier circuit in parallel, and connect the connection points on both the input and output sides of the inverting amplifier circuit through a DC cut capacitor and a load capacitor, respectively.
Further, the connection point between the DC cut capacitor and the load capacitor on the input side of the inverting amplifier circuit and the connection point between the DC cut capacitor and the load capacitor on the output side are connected via two voltage variable capacitors connected in series. And
Frequency adjustment is performed by applying a control signal to three connection points of the two voltage variable capacitors connected in series and a connection point between the DC cut capacitor and the voltage variable capacitor on both input and output sides of the inverting amplifier circuit. A crystal oscillator characterized by performing.

JP2007094487A 2007-03-30 2007-03-30 Crystal oscillator Pending JP2008252768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094487A JP2008252768A (en) 2007-03-30 2007-03-30 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094487A JP2008252768A (en) 2007-03-30 2007-03-30 Crystal oscillator

Publications (1)

Publication Number Publication Date
JP2008252768A true JP2008252768A (en) 2008-10-16

Family

ID=39977147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094487A Pending JP2008252768A (en) 2007-03-30 2007-03-30 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP2008252768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915180A (en) * 2016-04-05 2016-08-31 浪潮电子信息产业股份有限公司 Parameter determination method of resonance circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915180A (en) * 2016-04-05 2016-08-31 浪潮电子信息产业股份有限公司 Parameter determination method of resonance circuit

Similar Documents

Publication Publication Date Title
JP3350040B2 (en) Temperature compensated oscillator
US9281781B2 (en) Semiconductor apparatus, oscillation circuit, and signal processing system
JPWO2003021765A1 (en) Oscillator and communication equipment
JP2007158882A (en) Voltage-controlled oscillator
JP2006109002A (en) Voltage-controlled oscillator
JP2006060797A (en) Voltage controlled oscillator
JP2008005195A (en) Voltage-controlled crystal oscillator
JPH1188052A (en) Temperature compensating crystal oscillator
WO2021205695A1 (en) Variable-capacitance element and oscillator comprising same
JP2008252768A (en) Crystal oscillator
JP4870894B2 (en) Temperature compensated oscillator
JP2006033238A (en) Voltage-controlled oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
JPH0846427A (en) Voltage controlled crystal oscillator
JP2010206432A (en) Crystal oscillator
WO2005046046A1 (en) Crystal oscillator
JP2010183366A (en) Temperature compensated oscillation circuit
JP2002026658A (en) Quartz oscillator circuit
JP4356759B2 (en) Surface acoustic wave oscillator and frequency variable method thereof
JP2640131B2 (en) Temperature compensated crystal oscillator
JP2008072553A (en) Voltage controlled quartz oscillator
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
JP4391862B2 (en) Temperature compensated crystal oscillator
JP2003258553A (en) Oscillation circuit
JP2002026660A (en) Voltage controlled quartz oscillator