JP5054414B2 - Niobium oxide powder - Google Patents

Niobium oxide powder Download PDF

Info

Publication number
JP5054414B2
JP5054414B2 JP2007108105A JP2007108105A JP5054414B2 JP 5054414 B2 JP5054414 B2 JP 5054414B2 JP 2007108105 A JP2007108105 A JP 2007108105A JP 2007108105 A JP2007108105 A JP 2007108105A JP 5054414 B2 JP5054414 B2 JP 5054414B2
Authority
JP
Japan
Prior art keywords
niobium oxide
oxide powder
glass
wavelength
spectral reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007108105A
Other languages
Japanese (ja)
Other versions
JP2008266047A (en
Inventor
靖英 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007108105A priority Critical patent/JP5054414B2/en
Publication of JP2008266047A publication Critical patent/JP2008266047A/en
Application granted granted Critical
Publication of JP5054414B2 publication Critical patent/JP5054414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、光学材料あるいは電子材料等に使用される酸化ニオブ粉に関する。   The present invention relates to niobium oxide powder used for optical materials or electronic materials.

酸化ニオブ粉は、ガラス等の光学材料や、圧電素子に用いるニオブ酸リチウムの単結晶育成等の電子材料に広く利用されている。特許文献1には、これらの用途に用いられる酸化ニオブ粉として、45μmのふるいを通過する割合が99.9重量%より多く、比表面積が3.5m/gより大きな酸化ニオブ粉が記載されている。
特開平3−23222号公報
Niobium oxide powder is widely used for optical materials such as glass and electronic materials such as single crystal growth of lithium niobate used for piezoelectric elements. Patent Document 1 describes niobium oxide powder that has a ratio of passing through a 45 μm sieve of more than 99.9% by weight and a specific surface area of more than 3.5 m 2 / g as niobium oxide powder used for these applications. ing.
Japanese Patent Laid-Open No. 3-23222

しかし、特許文献1記載の酸化ニオブ粉は、流動性や他の粉末との均一混合性が充分でない場合があった。そこで、本発明者等は、特許文献2のように、CuKα線に基づくX線回折分析による回折角2θ=20°〜30°の範囲における最大ピークが、半値幅0.08°〜0.8°である酸化ニオブ粉を提供している。特許文献2の酸化ニオブ粉は、流動性および均一混合性が良好なものである。
特開2005−247601号公報
However, the niobium oxide powder described in Patent Document 1 may not have sufficient fluidity and uniform mixing with other powders. Therefore, as in Patent Document 2, the present inventors show that the maximum peak in the range of diffraction angle 2θ = 20 ° to 30 ° by X-ray diffraction analysis based on CuKα 1 line has a full width at half maximum of 0.08 ° to 0.00. Niobium oxide powder that is 8 ° is provided. The niobium oxide powder of Patent Document 2 has good fluidity and uniform mixing properties.
JP-A-2005-247601

しかしながら、特許文献2に記載の酸化ニオブ粉であっても、ガラス形成や単結晶育成においては、好適なものではない場合があった。例えば、酸化ニオブ粉とガラス材料とを混合、溶解してガラスを製造する場合において、溶解が均一に進行し難いことや、脱泡しにくいこと、あるいは得られたガラスの屈折率にムラが発生しやすいことがあった。また、酸化ニオブとアルカリ金属炭酸塩とを混合して焼成し、溶融した焼成品を引き上げて単結晶を育成すると、焼成反応が均一に進行し難い場合や、焼成品の組成割合が安定したものとなりにくい場合があり、得られる単結晶における結晶の組成割合が充分安定していない場合があった。   However, even the niobium oxide powder described in Patent Document 2 may not be suitable for glass formation or single crystal growth. For example, when manufacturing glass by mixing and melting niobium oxide powder and glass material, melting is difficult to proceed uniformly, it is difficult to defoam, or unevenness occurs in the refractive index of the obtained glass It was easy to do. Also, when niobium oxide and alkali metal carbonate are mixed and baked, and the molten baked product is pulled up to grow a single crystal, the baking reaction is difficult to proceed uniformly, or the composition ratio of the baked product is stable In some cases, the composition ratio of crystals in the resulting single crystal is not sufficiently stable.

そこで本発明は、流動性および均一混合性が良好な酸化ニオブ粉であり、ガラス形成に用いた場合、屈折率にムラが発生せず、単結晶育成に用いた場合には、得られる単結晶における結晶の組成割合が充分安定した酸化ニオブ粉の提供を目的とする。   Therefore, the present invention is niobium oxide powder having good fluidity and uniform mixing property, and when used for glass formation, there is no unevenness in the refractive index, and when used for single crystal growth, the obtained single crystal An object of the present invention is to provide niobium oxide powder having a sufficiently stable crystal composition ratio.

上記課題を解決するため、本発明者等は、流動性および均一混合性が良好であり、ガラス形成用途では屈折率にムラが発生せず、単結晶育成用途では焼成品の組成割合が安定した酸化ニオブ粉について鋭意検討を行った。その結果、以下のような酸化ニオブ粉であれば、ガラス形成用途や単結晶育成に用途にも好適な酸化ニオブ粉となることを見出し、本発明に想到するに至った。   In order to solve the above-mentioned problems, the present inventors have good fluidity and uniform mixing property, no unevenness in refractive index occurs in glass forming applications, and the composition ratio of fired products is stable in single crystal growing applications. The niobium oxide powder was studied earnestly. As a result, the following niobium oxide powder was found to be a niobium oxide powder suitable for use in glass formation and single crystal growth, leading to the present invention.

すなわち本発明は、標準白色板を基準として測定した波長500nmにおける分光反射率が95%以上であり、波長400nmにおける分光反射率が75%以上であり、波長320nmにおける分光反射率が10%以下である酸化ニオブ粉に関する。   That is, in the present invention, the spectral reflectance at a wavelength of 500 nm measured with reference to a standard white plate is 95% or more, the spectral reflectance at a wavelength of 400 nm is 75% or more, and the spectral reflectance at a wavelength of 320 nm is 10% or less. It relates to a certain niobium oxide powder.

本発明の酸化ニオブ粉は、上記した各波長の分光反射率を全て満たしている場合、ガラス形成用途において、ガラスの屈折率にムラが発生せず、単結晶用途では、酸化ニオブ粉と炭酸リチウム等とが充分に混合し、組成割合の安定した焼成品とすることができる。いずれか1の波長において分光反射率の条件を満たさない場合は、ガラス用途において屈折率にムラが発生しやすい場合や、単結晶形成用途において焼成品の組成割合が安定したものとなりにくい傾向がある。波長500nmにおける分光反射率の大きさは、酸化ニオブ粉の組成割合に影響し、95%未満では、酸化ニオブ粉が着色しやすいものとなり、酸素欠損が生じやすい。400nmにおける分光反射率は、組成の均一性に影響し、75%未満であると、組成割合が安定したものとなりにくい。320nmにおける分光反射率は、ガラスを形成した場合等における屈折率に影響し、10%を超えると、屈折率が均一なものとなりにくい傾向がある。   When the niobium oxide powder of the present invention satisfies all the above-described spectral reflectances at each wavelength, the glass refractive index does not cause unevenness in the glass forming application. In the single crystal application, the niobium oxide powder and the lithium carbonate are used. Etc. can be sufficiently mixed to obtain a fired product having a stable composition ratio. If the spectral reflectance condition is not satisfied at any one of the wavelengths, unevenness in the refractive index is likely to occur in glass applications, or the composition ratio of the fired product tends to be less stable in single crystal formation applications. . The magnitude of the spectral reflectance at a wavelength of 500 nm affects the composition ratio of the niobium oxide powder, and if it is less than 95%, the niobium oxide powder is likely to be colored and oxygen deficiency is likely to occur. The spectral reflectance at 400 nm affects the uniformity of the composition, and if it is less than 75%, the composition ratio is less likely to be stable. The spectral reflectance at 320 nm affects the refractive index when glass is formed, and when it exceeds 10%, the refractive index tends not to be uniform.

分光反射率は、500nmの反射率が97%以上、400nmの反射率が78%以上、320nmの反射率が9%以下であることが好ましく、500nmの反射率が98%以上、400nmの反射率が80%以上、320nmの反射率が8%以下であることがより好ましい。ガラスを形成した場合の屈折率がより均一となり、単結晶育成用の焼成品についても、組成割合が安定したものとすることができるからである。   The spectral reflectance is preferably such that the reflectance at 500 nm is 97% or more, the reflectance at 400 nm is 78% or more, and the reflectance at 320 nm is 9% or less, the reflectance at 500 nm is 98% or more, and the reflectance at 400 nm. Is more preferably 80% or more and 320 nm reflectance is 8% or less. This is because the refractive index when glass is formed becomes more uniform, and the composition ratio of the fired product for growing a single crystal can be made stable.

また、本発明の酸化ニオブ粉は、ガラス原料や炭酸リチウム等と混合して溶融する際、低温において溶融することが可能であり、溶融容器由来の不純物混入を低減することができる。尚、本発明の酸化ニオブ粉は、ニオブを含有する単結晶用途に用いることができるが、Li、Na、K等から選択される少なくとも1種のアルカリ金属のニオブ酸塩の単結晶に用いることが好ましく、ニオブ酸リチウムの単結晶に用いることが特に好ましい。また、アルカリ金属ニオブ酸塩の単結晶には、Mg、Ca、Ba、Zn、Zr、Ti、Ta、希土類元素等のうち1種類以上を添加してもよい。   In addition, the niobium oxide powder of the present invention can be melted at a low temperature when mixed with a glass raw material, lithium carbonate, or the like and melted, thereby reducing impurities from the melting vessel. The niobium oxide powder of the present invention can be used for single crystal applications containing niobium, but it is used for at least one alkali metal niobate single crystal selected from Li, Na, K, etc. And is particularly preferably used for a single crystal of lithium niobate. One or more of Mg, Ca, Ba, Zn, Zr, Ti, Ta, rare earth elements, and the like may be added to the alkali metal niobate single crystal.

分光反射率は、分光光度計を用いて、セラミックス製等の標準白色板の反射率を基準とし、酸化ニオブ粉の試料に対し入射角を10°として測定できる。酸化ニオブ粉の試料としては、例えば、中心にくぼみのあるガラス板に酸化ニオブ粉を入れ、平板ガラスで押し付けた後、過剰な粉体を除去したものを用いることができる。尚、測定は、320、400、500nmの各波長における反射率を測定してもよく、320〜500nmの波長領域を含む反射スペクトルを測定してもよい。   Spectral reflectance can be measured using a spectrophotometer, with the reflectance of a standard white plate made of ceramics as a reference, and an incident angle of 10 ° with respect to a sample of niobium oxide powder. As a sample of niobium oxide powder, for example, niobium oxide powder placed in a glass plate with a depression in the center, pressed with flat glass, and then excess powder removed can be used. In addition, the measurement may measure the reflectance in each wavelength of 320, 400, 500 nm, and may measure the reflection spectrum containing the wavelength range of 320-500 nm.

本発明の酸化ニオブ粉は、CuKα線に基づくX線回折分析による回折角2θ=20°〜30°の範囲における最大ピークが、2θ=22.6°±0.5°又は2θ=28.4°±0.5°に位置するものであることが好ましい。流動性が良好なものとなるためである。尚、2θ=22.6°±0.5°とは、2θ=22.1°〜23.1°の範囲を、2θ=28.4°±0.5°とは、2θ=27.9°〜28.9°の範囲をいう。   In the niobium oxide powder of the present invention, the maximum peak in the range of diffraction angle 2θ = 20 ° to 30 ° by X-ray diffraction analysis based on CuKα ray is 2θ = 22.6 ° ± 0.5 ° or 2θ = 28.4. It is preferable that it is located at ° ± 0.5 °. This is because the fluidity is good. 2θ = 22.6 ° ± 0.5 ° means a range of 2θ = 22.1 ° to 23.1 °, and 2θ = 28.4 ° ± 0.5 ° means 2θ = 27.9. The range from ° to 28.9 °.

また、回折角2θ=23.7°±0.5°における最大ピーク強度Iyと2θ=22.6°±0.5°における最大ピーク強度Ixとの比Ix/Iyは、10以上であることが好ましく、20以上であることが、より好ましい。Ix/Iyが10以上であると、特に流動性や、均一混合性に優れた酸化ニオブ粉とすることができる。以下に示す酸化ニオブ粉の製造工程では、焼成工程を高温で行うと、2θ=23.7°±0.5°に最大ピークが出現する傾向があるが、このピーク位置における強度IyがIxに対して一定範囲内である場合、ガラス形成や単結晶育成用途に好適な酸化ニオブ粉とすることができるからである。尚、本願において、Ix及びIyは、各波長におけるピーク強度の測定値から、バックグラウンドの強度を差し引いた値を採用することができ、バックグラウンドの強度が測定値の1%以下である場合は、測定値をそのまま使用してもよい。2θ=23.7°±0.5°とは、2θ=23.2°〜24.2°の範囲をいう。   The ratio Ix / Iy between the maximum peak intensity Iy at the diffraction angle 2θ = 23.7 ° ± 0.5 ° and the maximum peak intensity Ix at 2θ = 22.6 ° ± 0.5 ° is 10 or more. Is more preferable, and 20 or more is more preferable. When Ix / Iy is 10 or more, niobium oxide powder excellent in fluidity and uniform mixing property can be obtained. In the niobium oxide powder manufacturing process shown below, when the firing process is performed at a high temperature, a maximum peak tends to appear at 2θ = 23.7 ° ± 0.5 °, but the intensity Iy at this peak position is Ix. On the other hand, when it is within a certain range, niobium oxide powder suitable for glass formation and single crystal growth applications can be obtained. In this application, for Ix and Iy, a value obtained by subtracting the background intensity from the measured value of the peak intensity at each wavelength can be adopted, and when the background intensity is 1% or less of the measured value. The measured value may be used as it is. 2θ = 23.7 ° ± 0.5 ° means a range of 2θ = 23.2 ° to 24.2 °.

また、鉄及びモリブデン含有量は、いずれも5質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましい。鉄やモリブデンのような不純物を多く含有する酸化ニオブ粉は、ガラスを形成した場合に屈折率が均一となりにくく、単結晶育成用途においても、焼成品が均一となりにくいからである。特に、以下に示す製造工程で使用する原料によってはFeやMoを多く含むものがあるが、得られた酸化ニオブ粉のFe含有量が多いと酸化ニオブ粉が着色されやすく、Mo含有量が多いと紫外線により着色されやすい。   Moreover, it is preferable that all of iron and molybdenum content are 5 mass ppm or less, and it is more preferable that it is 1 mass ppm or less. This is because niobium oxide powder containing a large amount of impurities such as iron and molybdenum has a refractive index that is difficult to be uniform when glass is formed, and a fired product is difficult to be uniform even in single crystal growth applications. In particular, some raw materials used in the manufacturing process shown below contain a large amount of Fe and Mo, but if the obtained niobium oxide powder has a large Fe content, the niobium oxide powder is likely to be colored, and the Mo content is large. And easily colored by ultraviolet rays.

さらに、本発明の酸化ニオブ粉は、BET法により測定した比表面積が、1〜30m/gであることが好ましく、2〜20m/gがより好ましく、3〜15m/gがさらに好ましい。また、レーザ回折・散乱法粒度分布測定における平均粒径D50は、0.5〜15.0μmが好ましく、1.0〜10.0μmがより好ましく、1.5〜8μmがさらに好ましい。このような酸化ニオブ粉は、流動性が良好となるからである。 Further, niobium oxide powder of the present invention, the specific surface area measured by the BET method, is preferably from 1-30 m 2 / g, more preferably from 2 to 20 m 2 / g, more preferably 3~15m 2 / g . The average particle size D 50 in the laser diffraction scattering method particle size distribution measurement is preferably 0.5~15.0Myuemu, more preferably 1.0~10.0Myuemu, more preferably 1.5~8Myuemu. This is because such niobium oxide powder has good fluidity.

上記した酸化ニオブ粉は、以下に示す方法により製造することができる。図1に、酸化ニオブ粉の製造工程の概略を示す。具体的には、ニオブを含有する原料を、フッ化水素酸を含有する酸で溶解し、鉱酸や水等を加えた調製液とした後、溶媒抽出してニオブ精製液を得る。そして、アンモニア水等の沈殿剤を添加し、沈殿物を焼成・解砕して、酸化ニオブ粉を製造することができる。   The above-mentioned niobium oxide powder can be produced by the following method. In FIG. 1, the outline of the manufacturing process of niobium oxide powder is shown. Specifically, a niobium-containing raw material is dissolved with an acid containing hydrofluoric acid to prepare a preparation solution to which mineral acid, water, or the like is added, and then a solvent extraction is performed to obtain a niobium purified solution. And niobium oxide powder can be manufactured by adding a precipitating agent such as ammonia water and firing and crushing the precipitate.

沈殿物を生成する際の最終pHは8〜11であることが好ましい。pH8未満では、ニオブがニオブ精製液中に残留することがあるため、回収率が低下する傾向があり、pH11を超えると、以下に示す好適な焼成条件で焼成した場合においても、得られる酸化ニオブ粉の波長400nmの反射率が低くなる場合がある。   The final pH when producing the precipitate is preferably 8-11. If the pH is less than 8, niobium may remain in the purified niobium solution, so the recovery rate tends to decrease. If the pH exceeds 11, the obtained niobium oxide can be obtained even when calcined under the suitable calcining conditions shown below. The reflectance of the powder having a wavelength of 400 nm may be lowered.

焼成工程は、700〜1000℃に昇温後2時間以上、同様の温度条件を維持して焼成する第1焼成工程の後、400〜600℃において5時間以上、同様の温度条件を維持して焼成する第2焼成工程を有することが好ましい。第1焼成工程は、700℃未満であると、波長320nmにおける分光反射率が高くなりやすく、1000℃を超えると、400nmにおける分光反射率が低くなりやすいためであり、焼成温度は750〜950℃とすることがより好ましい。焼成時間は、2時間未満であると、500nmにおける分光反射率が低くなりやすく、48時間を超えて焼成しても特に問題はないが、過剰なエネルギー使用となり好ましくない。   After the first baking step, in which the same temperature condition is maintained for 2 hours or more after the temperature is raised to 700 to 1000 ° C., the same temperature condition is maintained for 5 hours or more at 400 to 600 ° C. It is preferable to have a second firing step for firing. The first baking step is because the spectral reflectance at a wavelength of 320 nm tends to be high when the temperature is less than 700 ° C., and the spectral reflectance at 400 nm tends to be low when the temperature exceeds 1000 ° C., and the baking temperature is 750 to 950 ° C. More preferably. If the firing time is less than 2 hours, the spectral reflectance at 500 nm tends to be low, and firing for more than 48 hours is not particularly problematic, but excessive energy is used, which is not preferable.

そして、第2焼成工程を行えば、ガラスを形成した場合に屈折率を均一とし、単結晶育成に用いる焼成品を均一なものとできる酸化ニオブ粉が製造可能となる。第2焼成工程を行わず、第1焼成工程後に、酸化ニオブ粉を400℃より低い温度に維持した場合や、第2焼成工程を400℃未満で行うと、波長400nmにおける分光反射率が低くなりやすく、600℃を超えると、320nmにおける分光反射率が高くなりやすい。焼成時間は、5時間未満であると、400nmにおける分光反射率が低くなりやすく、48時間を超えて焼成しても特に問題はないが、過剰なエネルギー使用となり好ましくない。   And if a 2nd baking process is performed, when glass is formed, a refractive index will be made uniform and it will become possible to manufacture the niobium oxide powder which can make the baked product used for single crystal growth uniform. If the niobium oxide powder is maintained at a temperature lower than 400 ° C. after the first baking step without performing the second baking step, or if the second baking step is performed at less than 400 ° C., the spectral reflectance at a wavelength of 400 nm becomes low. When it exceeds 600 ° C., the spectral reflectance at 320 nm tends to be high. If the baking time is less than 5 hours, the spectral reflectance at 400 nm tends to be low, and there is no particular problem even if baking exceeds 48 hours, but excessive energy use is not preferable.

上記したように、第1焼成工程は、第2焼成工程よりも高温で行うことが好ましい。このようにすれば、得られた酸化ニオブ粉の波長400nmにおける分光反射率を高いものとすることができるからである。一方、第2焼成工程を、第1焼成工程よりも高温とした場合には、400nmにおける分光反射率が低くなりやすい傾向がある。   As described above, the first firing step is preferably performed at a higher temperature than the second firing step. This is because the resulting niobium oxide powder can have a high spectral reflectance at a wavelength of 400 nm. On the other hand, when the second baking step is performed at a higher temperature than the first baking step, the spectral reflectance at 400 nm tends to be low.

以上で説明したように、本発明に係る酸化ニオブ粉は、ガラスを形成した場合に屈折率を均一なものとし、単結晶育成用途において、炭酸リチウム等と混合した焼成品の組成割合が安定したものとすることができる。   As described above, the niobium oxide powder according to the present invention has a uniform refractive index when glass is formed, and the composition ratio of the fired product mixed with lithium carbonate or the like is stable in single crystal growth applications. Can be.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

図2に示す工程により、Ta抽出用調整液を得た。原料として、フェロニオブ5000kgを用いて、ジョークラシャーによる粗粉砕、湿式ボールミルによる微粉砕を行い粉砕スラリーを得た。48% NaOH水溶液を8800kg、5時間かけて添加した後、5時間撹拌してアルカリ疎解させ、ろ過して疎解ケーキを得た。次に、1mol/L 硫酸をpH1.3になるまで添加して酸洗浄ケーキとし、80%HF 4200Lで溶解させて、ろ過し、96%硫酸400Lと水とを添加してTa抽出用調整液を得た。この調整液1000Lの組成を調べたところ、Ta 25.9g/L、Nb 222g/L、Fe 21g/L、Mo 1.1g/L、硫酸 0.72mol/L、HF 1.3mol/Lを含有するものであった。   According to the process shown in FIG. 2, an adjustment liquid for Ta extraction was obtained. Using 5000 kg of ferroniobium as a raw material, coarse pulverization with a jaw crusher and fine pulverization with a wet ball mill were performed to obtain a pulverized slurry. After adding 8800 kg of 48% NaOH aqueous solution over 5 hours, the mixture was stirred for 5 hours to cause alkaline decontamination and filtered to obtain a decontaminated cake. Next, 1 mol / L sulfuric acid is added until pH 1.3 to obtain an acid washed cake, dissolved in 4200 L of 80% HF, filtered, and added with 400 L of 96% sulfuric acid and water to prepare a Ta extraction adjustment solution. Got. When the composition of this adjustment liquid 1000 L was examined, Ta 25.9 g / L, Nb 222 g / L, Fe 21 g / L, Mo 1.1 g / L, sulfuric acid 0.72 mol / L, HF 1.3 mol / L were contained. It was something to do.

次に、Ta抽出用調整液を用いて第1溶媒抽出工程を行い、液調整した後、第2溶媒抽出工程を行いNb精製液を得た。第1溶媒抽出工程は、図3に示すように、溶媒には4−メチル−2−ペンタノン(メチルイソブチルケトン、MIBK)を用いて、容量70Lのミキサーセトラーを7段使用した向流抽出によって、Ta抽出用調整液を2.3L/分、有機溶媒を4.5L/分流量させてTaの抽出除去を行った(図3)。そして、Taを除去した調整液に、80%HFを700L添加し、96%硫酸を1800L加えて液調製を行った。   Next, the first solvent extraction process was performed using the adjustment liquid for Ta extraction, and after liquid adjustment, the second solvent extraction process was performed to obtain an Nb purified liquid. As shown in FIG. 3, the first solvent extraction step uses 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK) as a solvent, and countercurrent extraction using seven stages of 70 L mixer settlers. Ta was extracted and removed at a flow rate of 2.3 L / min for the Ta extraction adjustment liquid and 4.5 L / min for the organic solvent (FIG. 3). Then, 700 L of 80% HF was added to the adjustment solution from which Ta was removed, and 1800 L of 96% sulfuric acid was added to prepare a solution.

その後、図4に示すような第2溶媒抽出工程を行い、Nb精製液を得た。第二溶媒抽出工程は、溶媒としてMIBKを用い、容量70Lのミキサーセトラーを用い、抽出7段、洗浄10段、逆抽出10段で向流抽出を行った。抽出工程でNbのほぼ全量と不純物の一部を有機溶媒に抽出し、洗浄工程で有機溶媒中の不純物を除去し、逆抽出工程で洗浄後の有機溶媒中のNbを純水に抽出させて、Nb精製液を得た。尚、第二溶媒抽出工程に用いる各溶液の流量は、表1に示す値として抽出を行った。   Then, the 2nd solvent extraction process as shown in FIG. 4 was performed, and the Nb refinement | purification liquid was obtained. In the second solvent extraction step, MIBK was used as a solvent and a 70-liter mixer settler was used, and countercurrent extraction was performed with 7 extraction stages, 10 washing stages, and 10 back extraction stages. In the extraction process, almost all of Nb and a part of the impurities are extracted into an organic solvent, the impurities in the organic solvent are removed in the washing process, and the Nb in the washed organic solvent is extracted into pure water in the back extraction process. Nb purified solution was obtained. In addition, the flow volume of each solution used for a 2nd solvent extraction process extracted as the value shown in Table 1.

そして、図5に示すように、Nb精製液により酸化ニオブ粉を得た。まず、Nb精製液に25質量%アンモニア水をpH9.0になるまで添加し、沈殿を生成させる。静置後、上澄み液を除去し、さらに純水を注入、撹拌し、沈殿させる工程を3回繰り返して洗浄を行った。洗浄後の沈殿をろ過し、150℃で48時間乾燥させて、焼成後、目開き500μmの振動ふるいにて、ナイロンボールを使用して解砕を行い、酸化ニオブ粉を得た。焼成条件は、各実施例について表1に示す温度及び時間で行った。得られた酸化ニオブ粉について行った各種測定試験の結果を表2、表3に示す。   And as shown in FIG. 5, the niobium oxide powder was obtained with the Nb refinement | purification liquid. First, 25 mass% ammonia water is added to Nb refinement | purification liquid until it becomes pH 9.0, and precipitation is produced | generated. After standing, the supernatant was removed, and pure water was poured, stirred and precipitated, and the washing was repeated 3 times. The washed precipitate was filtered, dried at 150 ° C. for 48 hours, fired, and then crushed using a nylon ball with a vibrating screen having an opening of 500 μm to obtain niobium oxide powder. The firing conditions were the temperature and time shown in Table 1 for each example. Tables 2 and 3 show the results of various measurement tests performed on the obtained niobium oxide powder.

[不純物含有量]
酸化ニオブ粉中のFe及びMo含有量については、フッ化水素酸溶解 ICP−AES(ICP発光分析)法により測定を行った。
[Impurity content]
About content of Fe and Mo in niobium oxide powder, it measured by the hydrofluoric acid melt | dissolution ICP-AES (ICP emission analysis) method.

[分光反射率]
紫外可視近赤外分光光度計 U−4100 固体試料測定システム(日立製作所製)により、入射角を標準側・対照側とも10°として分光反射率の測定を行った。中心に直径30mm、深さ5mmのくぼみを有する40mm角のガラス板に、上記方法により得られた各酸化ニオブ粉を約5g乗せ、平板ガラスで押しつけた後、過剰な粉体を除去したものを測定試料とした。反射率100%の基準は、標準アルミナ焼結板としてベースラインを設定し、各試料について、波長300〜800nmの範囲における反射スペクトルを測定した。尚、光源としては、紫外域で重水素ランプ、可視・近赤外域でハロゲンランプを用いて、検出器には光電子倍増管を用いた。スペクトル測定は、スリット幅3.0nm、スキャン速度300nm/min、光源切替波長340nmで行った。
[Spectral reflectance]
The spectral reflectance was measured with an ultraviolet-visible near-infrared spectrophotometer U-4100 solid sample measurement system (manufactured by Hitachi, Ltd.) at an incident angle of 10 ° on both the standard side and the control side. A glass plate with a diameter of 30 mm and a depth of 5 mm is placed on a 40 mm square glass plate with about 5 g of each niobium oxide powder obtained by the above method, pressed with flat glass, and then the excess powder is removed. A measurement sample was obtained. The standard of reflectance 100% set a baseline as a standard alumina sintered plate, and the reflection spectrum in the wavelength range of 300 to 800 nm was measured for each sample. As the light source, a deuterium lamp was used in the ultraviolet region and a halogen lamp was used in the visible / near infrared region, and a photomultiplier tube was used as the detector. The spectrum measurement was performed at a slit width of 3.0 nm, a scanning speed of 300 nm / min, and a light source switching wavelength of 340 nm.

[X線回折]
X線回折装置(MXP18:マックサイエンス株式会社製)を用いて、回折角2θ=20〜30°における最大ピーク位置、及び最大ピーク強度の比Ix/Iyの測定を行った。尚、Ix又はIyのピーク強度とバックグラウンドの強度との差が小さく、Ix又はIyの明確な最大ピークを特定できなかった場合、その波長範囲におけるバックグラウンドの強度のばらつきを考慮してIx又はIyの値の上限を定め、Ix/Iyとして確実に保証できる切の良い値を決定した。具体的には、Ixの最大ピークが明確に特定できなかった場合、「<0.05」とし、Iyの最大ピークが明確に特定できなかった場合は、「>20」とした。測定には銅ターゲットを使用し、条件は管電圧40kV、管電流150mA、測定範囲 2θ=10〜80°、スキャン速度 4°/min、サンプリング幅 0.02°として行った。
[X-ray diffraction]
Using an X-ray diffractometer (MXP18: manufactured by Mac Science Co., Ltd.), the maximum peak position at the diffraction angle 2θ = 20 to 30 ° and the maximum peak intensity ratio Ix / Iy were measured. When the difference between the peak intensity of Ix or Iy and the intensity of the background is small and a clear maximum peak of Ix or Iy cannot be specified, the variation of the intensity of the background in the wavelength range is taken into consideration. The upper limit of the value of Iy was determined, and a sharp value that could be reliably guaranteed as Ix / Iy was determined. Specifically, when the maximum peak of Ix could not be clearly specified, “<0.05” was set, and when the maximum peak of Iy could not be clearly specified, “> 20” was set. A copper target was used for the measurement, and the conditions were a tube voltage of 40 kV, a tube current of 150 mA, a measurement range of 2θ = 10 to 80 °, a scan speed of 4 ° / min, and a sampling width of 0.02 °.

[BET法比表面積]
JIS R 1626−1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法の(3.5)一点法」に準拠して、セリウム系研摩材の比表面積の測定を行った。その際、キャリアガスには、ヘリウムと吸着質ガスである窒素との混合ガスを使用した。
[BET specific surface area]
In accordance with JIS R 1626-1996 (Method for measuring specific surface area of fine ceramics powder by gas adsorption BET method) “6.2 Flow method (3.5) single point method”, specific surface area of cerium-based abrasives Was measured. At that time, a mixed gas of helium and nitrogen as an adsorbate gas was used as the carrier gas.

[平均粒径D50]
レーザ回折・散乱法粒子径分布測定装置(株式会社 堀場製作所製:LA−920)を使用して、各酸化ニオブ粉の粒度分布を測定することにより、平均粒径(D50:JIS R 1629−1996(ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法)に記載されている「体積基準の積算分率における50%径」)を求めた。
Average particle diameter D 50]
The average particle size (D50: JIS R 1629-1996) is measured by measuring the particle size distribution of each niobium oxide powder using a laser diffraction / scattering method particle size distribution measuring device (Horiba, Ltd .: LA-920). (“50% diameter in volume-based integrated fraction”) described in (Method of measuring particle size distribution by laser diffraction / scattering method of fine ceramic raw material)) was obtained.

[ガラスの屈折率]
各製造方法により得られた酸化ニオブ(Nb)39.8gに、炭酸バリウム(BaCO)31.9g、五酸化リン(P)9.0g、酸化硼素(B)1.4g、酸化アンチモン(Sb)0.08gを混合した。白金坩堝において1400℃で攪拌しながら加熱、溶融させ、キャスティングして板状のガラスを作製した。ガラスを厚さ5mmにスライスした後、両面を研摩した。d線(587.56nm)における屈折率を、He光源を用いて測定した。尚、測定は、5mm間隔で、5点について行い、平均値及び標準偏差を算出した。
[Refractive index of glass]
39.8 g of niobium oxide (Nb 2 O 5 ) obtained by each production method, 31.9 g of barium carbonate (BaCO 3 ), 9.0 g of phosphorus pentoxide (P 2 O 5 ), boron oxide (B 2 O 3) ) 1.4 g and antimony oxide (Sb 2 O 3 ) 0.08 g were mixed. While stirring at 1400 ° C. in a platinum crucible, the mixture was heated, melted, and cast to produce a plate-like glass. After slicing the glass to a thickness of 5 mm, both sides were polished. The refractive index at d-line (587.56 nm) was measured using a He light source. In addition, the measurement was performed for 5 points at intervals of 5 mm, and the average value and the standard deviation were calculated.

[ニオブ酸リチウム焼成粉末 X線回折ピーク強度比]
各製造方法により得られた酸化ニオブ(Nb)と炭酸リチウム(LiCO)とを、モル比で0.485:0.515の一致溶融組成になるよう混合した。上記のモル比で混合した後、800℃で仮焼した粉末を採取し、銅ターゲットを用いてX線回折を行った。測定条件は、上記したX線回折と同様の方法とした。得られたX線回折ピークから、酸化ニオブに起因する2θ=28.3°±0.5°における最大ピーク強度(INb2O5)とニオブ酸リチウムに起因する2θ=23.7°±0.5°における最大ピーク強度(ILN)との比〔(ILN)/(INb2O5)〕を算出した。同様の測定を、仮焼後の粉末の5箇所について行い、平均値及び標準偏差を算出した。尚、(ILN)/(INb2O5)の値が大きい場合、仮焼によりニオブ酸リチウムが形成されている割合が多く単結晶育成用途に好適であるが、値が大きい場合であっても、標準偏差が大きいと、得られる単結晶の組成割合が不安定になりやすい。
[Lithium niobate calcined powder X-ray diffraction peak intensity ratio]
Niobium oxide (Nb 2 O 5 ) and lithium carbonate (Li 2 CO 3 ) obtained by the respective production methods were mixed so as to have a congruent melt composition of 0.485: 0.515 in terms of molar ratio. After mixing at the above molar ratio, the powder calcined at 800 ° C. was collected, and X-ray diffraction was performed using a copper target. The measurement conditions were the same as those described above for X-ray diffraction. From the obtained X-ray diffraction peak, the maximum peak intensity (I Nb2O5 ) at 2θ = 28.3 ° ± 0.5 ° caused by niobium oxide and 2θ = 23.7 ° ± 0.5 caused by lithium niobate. The ratio [(I LN ) / (I Nb 2 O 5 )] to the maximum peak intensity (I LN ) at ° was calculated. The same measurement was performed on five places of the powder after calcination, and the average value and the standard deviation were calculated. In addition, when the value of (I LN ) / (I Nb 2 O 5 ) is large, the proportion of lithium niobate formed by calcining is large and suitable for single crystal growth applications, but even when the value is large, When the standard deviation is large, the composition ratio of the obtained single crystal tends to be unstable.

Figure 0005054414
Figure 0005054414

Figure 0005054414
Figure 0005054414

Figure 0005054414
Figure 0005054414

各実施例について検討すると、表1〜3より、実施例1〜12の酸化ニオブ粉は、波長500nmにおける反射率が95%以上、波長400nmにおける反射率が75%以上、波長320nmにおける反射率が10%以下であり、鉄及びモリブデンの含有量は、いずれも5質量ppm以下で、比表面積が2〜20m/g、平均粒径が0.5〜15μmの範囲内であった。そして、これらの酸化ニオブ粉でガラスを形成した場合、標準偏差が0.05以内で屈折率が均一となることが分かった。また、これらの酸化ニオブ粉と炭酸リチウムとを混合した仮焼品は、X線回折のピーク強度比(ILN)/(INb2O5)の標準偏差が5.0以下であり、焼結品の組成割合が安定したものとなることが示された。 Examining each example, from Tables 1 to 3, the niobium oxide powders of Examples 1 to 12 have a reflectance of 95% or more at a wavelength of 500 nm, a reflectance of 75% or more at a wavelength of 400 nm, and a reflectance at a wavelength of 320 nm. The content of iron and molybdenum was 5 mass ppm or less, the specific surface area was 2 to 20 m 2 / g, and the average particle size was in the range of 0.5 to 15 μm. And when glass was formed with these niobium oxide powder, it turned out that a refractive index becomes uniform within a standard deviation within 0.05. In addition, the calcined product obtained by mixing these niobium oxide powder and lithium carbonate has a standard deviation of the peak intensity ratio (I LN ) / (I Nb 2 O 5 ) of X-ray diffraction of 5.0 or less, It was shown that the composition ratio became stable.

このような実施例1〜12の酸化ニオブ粉は、第1焼成工程を700〜1000℃において5時間、第2焼成工程を400〜600℃において10時間行った場合に得ることができた。また、第1焼成工程を750〜920℃で行った実施例2〜6の酸化ニオブ粉は、500nmの反射率が97%以上、400nmの反射率が78%以上、320nmの反射率が9%以下であり、ガラスの屈折率は標準偏差0.04以内となり、炭酸リチウムとの焼成品のX線回折のピーク強度比(ILN)/(INb2O5)は標準偏差4.0以下となった。さらに、第1焼成工程を800〜880℃で行った実施例3〜5の酸化ニオブ粉は、500nmの反射率が98%以上、400nmの反射率が80%以上、320nmの反射率が8%以下であり、屈折率は標準偏差0.035以内となり、(ILN)/(INb2O5)は標準偏差3.0以下となった。 Such niobium oxide powders of Examples 1 to 12 could be obtained when the first baking step was performed at 700 to 1000 ° C. for 5 hours and the second baking step was performed at 400 to 600 ° C. for 10 hours. In addition, the niobium oxide powders of Examples 2 to 6 in which the first baking step was performed at 750 to 920 ° C. had a reflectance of 500 nm of 97% or more, a 400 nm reflectance of 78% or more, and a 320 nm reflectance of 9%. The refractive index of the glass was within a standard deviation of 0.04, and the peak intensity ratio (I LN ) / (I Nb 2 O 5 ) of the X-ray diffraction of the fired product with lithium carbonate was a standard deviation of 4.0 or less. . Furthermore, the niobium oxide powders of Examples 3 to 5 in which the first baking process was performed at 800 to 880 ° C. had a reflectance of 500 nm of 98% or more, a reflectance of 400 nm of 80% or more, and a reflectance of 320 nm of 8%. The refractive index was within a standard deviation of 0.035, and (I LN ) / (I Nb 2 O 5 ) was a standard deviation of 3.0 or less.

X線回折のピーク強度比Ix/Iyが10未満である実施例7、8は、(ILN)/(INb2O5)の標準偏差が比較的大きいものとなった。これは、第1焼成工程の焼成温度が比較的高温であることにより、2θ=23.7°±0.5°に出現するピークの強度が大きくなったためであると考えられる。 In Examples 7 and 8 where the peak intensity ratio Ix / Iy of X-ray diffraction was less than 10, the standard deviation of (I LN ) / (I Nb 2 O 5 ) was relatively large. This is presumably because the intensity of the peak appearing at 2θ = 23.7 ° ± 0.5 ° has increased due to the relatively high firing temperature in the first firing step.

実施例4、11、12より、FeやMo等の不純物含有量は、少ないほど波長400nm及び500nmの反射率が高いものとなり、ガラスの屈折率の標準偏差や、炭酸リチウムとの焼成品のX線回折のピーク強度比の標準偏差が小さなものとなることが分かった。   From Examples 4, 11, and 12, the smaller the content of impurities such as Fe and Mo, the higher the reflectance at wavelengths of 400 nm and 500 nm, and the standard deviation of the refractive index of the glass and X of the baked product with lithium carbonate. It was found that the standard deviation of the peak intensity ratio of the line diffraction becomes small.

一方、比較例について検討すると、第1焼成工程を700℃未満で行った比較例1、2は、320nmの分光反射率が10%を超えるものであり、1000℃を超える比較例3では、400nmの分光反射率が75%未満のものとなった。また、第2焼成工程を400℃未満で行った比較例4では、400nmの分光反射率が75%以下となり、600℃を超える比較例5では、320nmの分光反射率が10%を超えるものとなった。このような分光反射率である比較例1〜6は、ガラス屈折率の標準偏差が0.08を超えるものであり、(ILN)/(INb2O5)の標準偏差も10を超えるものであった。 On the other hand, when a comparative example is examined, Comparative Examples 1 and 2 in which the first baking step is performed at less than 700 ° C. have a spectral reflectance of 320 nm exceeding 10%, and Comparative Example 3 exceeding 1000 ° C. is 400 nm. The spectral reflectance was less than 75%. In Comparative Example 4 in which the second baking step was performed at less than 400 ° C., the spectral reflectance at 400 nm was 75% or less, and in Comparative Example 5 exceeding 600 ° C., the spectral reflectance at 320 nm exceeded 10%. became. In Comparative Examples 1 to 6, which are such spectral reflectances, the standard deviation of the glass refractive index exceeds 0.08, and the standard deviation of (I LN ) / (I Nb 2 O 5 ) also exceeds 10. It was.

X線回折の2θ=20〜30°における最大ピークが、2θ=22.6°±0.5°又は2θ=28.4°±0.5°のいずれの位置にも現れなかった比較例3は、ガラスの屈折率の標準偏差や、(ILN)/(INb2O5)の標準偏差が大きいものであった。これは、第1焼成工程の焼成温度が1050℃と高温であり、2θ=23.7°±0.5°に出現するピークの強度が大きくなったためであると考えられる。 Comparative Example 3 in which the maximum peak at 2θ = 20-30 ° of X-ray diffraction did not appear at any position of 2θ = 22.6 ° ± 0.5 ° or 2θ = 28.4 ° ± 0.5 ° Has a large standard deviation of the refractive index of the glass and (I LN ) / (I Nb 2 O 5 ). This is considered to be because the firing temperature in the first firing step is as high as 1050 ° C., and the intensity of the peak appearing at 2θ = 23.7 ° ± 0.5 ° is increased.

酸化ニオブ粉の製造方法の概略。The outline of the manufacturing method of niobium oxide powder. Ta抽出用調整液の調整方法。Adjustment method of adjustment liquid for Ta extraction. 第一溶媒抽出工程の概念図。The conceptual diagram of a 1st solvent extraction process. 第二溶媒抽出工程の概念図。The conceptual diagram of a 2nd solvent extraction process. Nb精製液による酸化ニオブ粉の製造方法。A method for producing niobium oxide powder with a purified Nb solution.

Claims (7)

標準白色板を基準として測定した波長500nmにおける分光反射率が95%以上であり、波長400nmにおける分光反射率が75%以上であり、波長320nmにおける分光反射率が10%以下であることを特徴とする酸化ニオブ粉。   Spectral reflectance at a wavelength of 500 nm measured with reference to a standard white plate is 95% or more, spectral reflectance at a wavelength of 400 nm is 75% or more, and spectral reflectance at a wavelength of 320 nm is 10% or less. Niobium oxide powder. CuKα線に基づくX線回折分析による回折角2θ=20°〜30°の範囲における最大ピークが、2θ=22.6°±0.5°又は2θ=28.4°±0.5°に位置する請求項1に記載の酸化ニオブ粉。   The maximum peak in the range of diffraction angle 2θ = 20 ° -30 ° by X-ray diffraction analysis based on CuKα ray is located at 2θ = 22.6 ° ± 0.5 ° or 2θ = 28.4 ° ± 0.5 °. The niobium oxide powder according to claim 1. CuKα線に基づくX線回折分析による回折角2θ=23.7°±0.5°における最大ピーク強度Iyと2θ=22.6°±0.5°における最大ピーク強度Ixとの比Ix/Iyが、10以上である請求項1又は請求項2に記載の酸化ニオブ粉。   Ratio Ix / Iy between maximum peak intensity Iy at diffraction angle 2θ = 23.7 ° ± 0.5 ° and maximum peak intensity Ix at 2θ = 22.6 ° ± 0.5 ° by X-ray diffraction analysis based on CuKα ray The niobium oxide powder according to claim 1 or 2, wherein is 10 or more. 鉄及びモリブデン含有量が、いずれも5質量ppm以下である請求項1〜3いずれかに記載の酸化ニオブ粉。   The niobium oxide powder according to any one of claims 1 to 3, wherein the iron and molybdenum contents are both 5 ppm by mass or less. 請求項1〜4いずれかに記載の酸化ニオブ粉であって、  The niobium oxide powder according to any one of claims 1 to 4,
光学材料に用いる酸化ニオブ粉。Niobium oxide powder used for optical materials.
光学材料は、ガラスまたは単結晶である請求項5に記載の酸化ニオブ粉。  The niobium oxide powder according to claim 5, wherein the optical material is glass or single crystal. 請求項1〜請求項4いずれかに記載の酸化ニオブ粉の製造方法であって、  A method for producing niobium oxide powder according to any one of claims 1 to 4,
ニオブを含む沈殿物を焼成する焼成処理を備えるものであり、Comprising a firing treatment for firing a precipitate containing niobium,
該沈殿物の焼成処理は、第1焼成工程と第2焼成工程とからなり、第1焼成工程が第2焼成工程より高温で行うことを特徴とする酸化ニオブ粉の製造方法。  The method for producing niobium oxide powder is characterized in that the firing treatment of the precipitate includes a first firing step and a second firing step, and the first firing step is performed at a higher temperature than the second firing step.
JP2007108105A 2007-04-17 2007-04-17 Niobium oxide powder Active JP5054414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108105A JP5054414B2 (en) 2007-04-17 2007-04-17 Niobium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108105A JP5054414B2 (en) 2007-04-17 2007-04-17 Niobium oxide powder

Publications (2)

Publication Number Publication Date
JP2008266047A JP2008266047A (en) 2008-11-06
JP5054414B2 true JP5054414B2 (en) 2012-10-24

Family

ID=40046075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108105A Active JP5054414B2 (en) 2007-04-17 2007-04-17 Niobium oxide powder

Country Status (1)

Country Link
JP (1) JP5054414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7208416B2 (en) 2020-06-04 2023-01-18 三井金属鉱業株式会社 Niobate compound and niobium-containing slurry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578116B2 (en) * 2004-02-05 2010-11-10 旭化成ケミカルズ株式会社 Modified mesoporous oxide
JP4271060B2 (en) * 2004-03-01 2009-06-03 三井金属鉱業株式会社 Niobium oxide powder

Also Published As

Publication number Publication date
JP2008266047A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
Molla et al. Microstructure, mechanical, thermal, EPR, and optical properties of MgAl2O4: Cr3+ spinel glass–ceramic nanocomposites
KR101803887B1 (en) Method of manufacturing magnesium oxide powder having excellent dispersion properties
Li et al. Synthesis of Nd3+ doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramic
JPH07232923A (en) Method for synthesizing crystalline ceramic powder of perovskite compound
Gaddam et al. Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses
EP2148837A1 (en) Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
Rahmani et al. A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods
WO2017061403A1 (en) Negative thermal expansion material and composite material including same
Keshavarzi et al. The effect of TiO2 and ZrO2 addition on the crystallization of Ce3+ doped yttrium aluminum garnet from glasses in the system Y2O3/Al2O3/SiO2/AlF3
Biswas et al. Formation and spectral probing of transparent oxyfluoride glass-ceramics containing (Eu2+, Eu3+: BaGdF5) nano-crystals
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5479147B2 (en) Method for producing inorganic oxide
JP2013087151A (en) Infrared absorption particle and manufacturing method therefor
CN101595060B (en) Method for producing solid solution fine particle
CN113784923B (en) Spinel powder
JP5054414B2 (en) Niobium oxide powder
JP2010285334A (en) Method for producing composite oxide fine particle
JP2016500362A (en) Ceramic material
CN101707913A (en) magnesium oxide powder
Boulay et al. Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system
Yongvanich et al. Synthesis of spinel color pigments from aluminum dross waste
JPH11278832A (en) Production of yttrium oxide powder
KR20170133157A (en) Friction material comprising potassium titanate and method for preparing the same by melting method
Nurbaiti et al. Synthesis of nano-forsterite powder by making use of natural silica sand
WO2022246765A1 (en) Nickel oxide particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250