JP5053636B2 - レーザーダイオード放射線によるレーザー熱処理 - Google Patents

レーザーダイオード放射線によるレーザー熱処理 Download PDF

Info

Publication number
JP5053636B2
JP5053636B2 JP2006525409A JP2006525409A JP5053636B2 JP 5053636 B2 JP5053636 B2 JP 5053636B2 JP 2006525409 A JP2006525409 A JP 2006525409A JP 2006525409 A JP2006525409 A JP 2006525409A JP 5053636 B2 JP5053636 B2 JP 5053636B2
Authority
JP
Japan
Prior art keywords
radiation
semiconductor substrate
plane
power
line image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006525409A
Other languages
English (en)
Other versions
JP2007504669A (ja
JP2007504669A5 (ja
Inventor
タルウォー ソミット
エー マークル デービット
Original Assignee
ウルトラテック インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウルトラテック インク filed Critical ウルトラテック インク
Publication of JP2007504669A publication Critical patent/JP2007504669A/ja
Publication of JP2007504669A5 publication Critical patent/JP2007504669A5/ja
Application granted granted Critical
Publication of JP5053636B2 publication Critical patent/JP5053636B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明はレーザー熱処理に関し、特に、レーザーダイオード放射線によってレーザー熱処理を行うための装置及び方法に関する。
レーザー熱処理(LTP)(「レーザー熱アニール」ともいう)は、集積デバイスまたは回路のソース、ドレイン、ゲート領域のドーパントをアニール及び/または活性化したり、集積デバイスまたは回路にシリサイド領域を形成したり、それらに接続される金属配線の接触抵抗を低下させたり、基板に物質を成膜したり、基板から物質を除去するための化学反応を引き起こすために使用される技術である。
半導体基板のLTPを行うための様々な装置が知られており、集積回路(IC)製造業界で使用されている。LTPは、アニール対象の材料の温度をアニール温度まで上昇させた後に低下させる単一サイクルで行うことが好ましい。パルスレーザーを使用する場合には、チップまたは回路全体をアニール温度まで上昇させるために十分なパルスあたりのエネルギーが必要となる。必要とされるフィールドサイズは4cmを超え、必要とされる照射量は1.0J/cmを超える場合があるため、比較的大きく、高価なレーザーが必要である。また、多くのレーザーの狭いスペクトル領域は干渉効果のために斑点状パターンを生じさせるため、単一パルスで比較的大きな面積にわたって照射量の優れた均一性を達成することは難しい。
レーザーダイオードバーは、780nmまたは810nmという波長がシリコンの上層(すなわち、〜21μm)に容易に吸収されるため、LTPを行うための放射線源として非常に適している。また、ダイオードバーは電気から放射線への効率的な(〜45%)変換器でもある。
米国特許第6,531,681(681特許)は、直線型レーザーダイオードアレイまたは複数の直線型ダイオードアレイを使用して、基板上で走査して基板上に形成された集積回路を熱アニールすることができる均一で細い線像を形成する方法を開示している。また、681特許は、線像をマスク上に配置し、投影系を介して結像してマスクと同期して走査される基板の選択領域を処理する方法も開示している。しかし、681特許に開示されているようにレーザーダイオードバーの直線型アレイによってレーザー熱処理を行うことには問題点がある。シリコン基板を使用する用途には、比較的高いエネルギー密度(例えば、200μ秒の滞在時間で1300W/mm)を必要とする装置要件(像幅と滞在時間)がある。
米国特許第6,747,245号は、集積回路が形成されたシリコン基板のLTPを行うためにブリュースター角の近傍で入射するP偏光CO2レーザービームを使用することを開示している。米国特許出願公開第10/287,864号に記載されているように、ブリュースター角またはその近傍の入射角を使用することによって、法線入射においてスペクトル的に不均一な基板を非常に均一に加熱することができる。例えば、法線入射では、ベアシリコンは30%を超える反射率を有し、酸化シリコンは4%未満の反射率を有する。LTPを行う際にCO2レーザーを使用する利点は、比較的高いエネルギー密度を有する十分にコリメートされたビームを供給することができることである。別の利点は、CO2レーザーから放射される10.6μmの波長は、アニール工程が行われるウェハ上の様々な膜厚と比較して大きいということである。従って、膜厚が多少ばらついていても、短いアニール波長の場合のように反射率の大きなばらつきが生じることはない。
しかしながら、COレーザーの10.6μmの波長は、高濃度ドープシリコン基板をアニールするために最も適しており、その基板は材料の上部の50〜100μmの部分で十分な放射線を吸収することができる。しかし、低濃度ドープ基板または上面近傍の浅い層のみがドープされた基板をアニールする場合には、COレーザー放射線は基板を通過してしまい、入射エネルギーはほとんど有用な加熱をもたらさない。
一方、レーザーダイオードは780〜810nmの波長の放射線を放射する。これらの波長はシリコンウエハの上部の10〜20μmの部分に容易に吸収される。従って、LTPにおける短い時間スケール(100μ秒〜20ミリ秒)で動作するレーザーダイオードを使用する場合には、加熱深さは、深い吸収深さ(長さ)によるより、むしろ熱拡散によって決定される。
従って、比較的高いエネルギー密度で供給される偏光レーザーダイオード放射線を使用してブリュースター角またはその近傍の入射角でレーザー熱アニールを行うための装置及び方法は有用である。
本発明の第1の態様は、レーザーダイオード放射線を使用して基板のレーザー熱処理(LTP)を行うための装置である。装置は、例えば780〜800nmの狭い波長範囲の放射線を放射するレーザーダイオードの二次元アレイを含む。レーザーダイオードの二次元アレイから放射された放射線は、基板上で線像を形成し、基板のブリュースター角またはその近傍の入射角で基板に入射する。放射線ビームはP方向に偏光しているため、入射エネルギーのほぼ全てが基板に吸収され、ほとんど反射されない。また、基板上の各種膜積層体による反射率のばらつきが、シリコンのブリュースター角またはその近傍で最小化される。
本発明の第2の態様は、レーザーダイオード放射線を使用して基板のレーザー熱処理(LTP)を行うための方法である。方法は、レーザーダイオードの二次元アレイから選択波長の放射線を放射し、放射された放射線をLTP光学系によって受け、基板で線像を形成する放射線ビームを基板に照射することを含む。放射線ビームは、基板のブリュースター角またはその近傍の入射角で基板に入射させる。この方法は、基板の各走査部分にレーザー放射線のパルスが供給されるように基板の少なくとも一部上で線像を走査することも含む。このパルスによって、シリコン基板の表面温度は、100μ秒から20ミリ秒の間の時間にわたって、シリコンの融点(1410℃)よりも400℃か、それ以下の範囲で低い、温度に到達する。
各図面に示す各要素は説明のみのためのものであり、縮尺に必ずしも制限されるものではない。ある要素の縮尺は誇張され、その他の要素は最小となっている場合もある。各図面は、当業者が理解し、適切に実施することができる本発明の様々な実施態様を例示することを意図するものである。
本発明の装置について最初に説明し、次に装置の動作方法について説明する。その次に、パワー密度(power density)の要件と装置のスループット能力について説明する。
(装置)
図1は、本発明に係るLTP装置10の一実施形態の概略図である。装置10は二次元レーザーダイオードアレイ12を含み、レーザーダイオードアレイ12は、可動ステージ17に支持された基板16を処理(光照射)するために使用する比較的強い放射線14を発生する。基板表面16Sは、LTP光学系22の像面IPまたはその近傍に位置する。以下、これらの構成要素及び装置10を構成するその他の構成要素について個々に説明する。
(レーザーダイオードアレイ12)
レーザーダイオードアレイ12は、アレイの二次元出射面20に沿って一定の間隔で配置された複数のレーザーダイオード18を含む。一実施形態では、レーザーダイオードアレイ12はアレイの行または列を構成する直線型ダイオードアレイを組み合わせる(例えば「積層する」)ことによって形成される。
代表的な市販のレーザーダイオードアレイバー(すなわち、直線型ダイオードアレイ)は、それぞれが60個のエミッタを含み、アレイの長さに沿って約160μmの間隔で設けられた1cmの直線型アレイのスタックである。各エミッタは、幅が約1μmで、長さが約150μmである。エミッタは、エミッタの最大寸法の方向が、アレイの長さ方向に沿っている。レーザーダイオード18は、各直線型アレイの軸を含む、ここで定義したY−Z平面内で10°で拡がる、放射線14を放射する。また、放射線ビーム14は各直線型ダイオードアレイの軸と直交する平面で所定量(例えば30°)で拡がる。
好適なレーザーダイオードアレイバーは、SDL社(80 Rose Orchard Way,San Jose,Calif.95134−1365)(例えば、長さが1cmで40Wの出力電力の直線型アレイを含むSDL 3400シリーズ)、スター・テクノロジーズ社(Star Technologies, Inc.)(Pleasanton,Calif.)、スパイヤー社(Spire, Inc.)(One Patriots Park,Bedford,Mass.01730−2396)、シーメンス・マイクロエレクトロニクス社(Siemens Microelectronics, Inc.)、オプトエレクトロニクス・ディビジョン社(Optoelectronics Division)(Cupertino,Calif)(Model SPL BG81)、スペクトラ・ダイオード・ラボ社(Spectra Diode Labs)、トンプソンCFS社(Thompson CFS)(7 Rue du Bois Chaland,CE2901 Lisses,91029 Evry Cedex,France)、IMC社(20 Point West Boulevard,St.Charles,Mo.63301)などの多くの供給会社から市販されている。
レーザーダイオード18の動作時に発生する熱はかなり多く、最大有効出力電力を制限するため、レーザーダイオードアレイバーは使用時の過熱を防止するために通常は水冷式である。
特定の実施形態では、レーザーダイオードアレイ12は25列のレーザーダイオード18で構成され、各列は1.9mmの間隔で分離され、X軸に沿って100μm、Y軸(列と交差する方向)に沿って1μmの大きさの49個のレーザーダイオードを含む。各レーザーダイオードの列は10mmの長さを有し、レーザーダイオードアレイ12は24×1.9mm=45.6mmの幅を有する。各レーザーダイオードから放射された放射線は、Y−Z平面で10°の半波高全幅値(full−width half−max:FWHM)で拡がり、X−Z平面で35°のFWHMで拡がる。好適な二次元レーザーダイオードアレイ12は、コヒーレント社(Coherent,Inc.)からLightStoneTM製品(例えば、商品名LIGHTSTACKとして販売されているダイオードアレイ)として市販されている。
実施形態では、レーザーダイオードアレイ12は約350〜950nmの範囲の波長の放射線14を発生し、特定の実施形態では放射線14の波長は780nmまたは810nmである。そのような波長は、厚みが数10nmのソース/ドレイン領域からなる1μm以下のオーダーの集積デバイスまたは回路形状を有する、シリコン基板を処理するために特に有効である。
なお、本発明は上述した波長範囲のみの放射線を発生するレーザーダイオードアレイ12に限定されるものではない。市販のレーザーダイオードは、380nm(例えばGaN青色ダイオード)から931nmまでの波長の放射線を放射する。市販のレーザーダイオードアレイの波長と種類は急速に広がっており、上述した波長範囲の内外の多くのアレイが将来製造者から市販されることになると予想される。そのような将来のレーザーダイオードアレイは本発明の実施に有用である可能性があり、特にシリコンに吸収される波長を放射するレーザーダイオードアレイが有用となるだろう。市販されているレーザーダイオードアレイバーには、一列のダイオードを含む長さ1cmのバーにおいて50〜100Wの比較的高いパワーレベルで放射線14を発生することができる。
一実施形態では、レーザーダイオードアレイ12は、基板で測定した場合に150W/mm以上のパワー密度を有する放射線を発生する。
(LTP光学系22)
引き続き図1を参照すると、装置10は、レーザーダイオードアレイ12からの放射線14を受け、像面IPで実質的に均一な強度の線像24を形成する放射線ビーム23を生成するように配置されたLTP光学系22も含む。本発明において、「線像(line image)」とは、二次元像を意味し、像が一方向で比較的長く、他の方向で比較的狭く(「細く(thin)」)なるような高いアスペクト比(例えば7:1)を有するものである。光学系22は光軸A1(点線)を有する。
放射線ビーム23は、ブリュースター角θまたはその近傍の角度で基板16に入射する(図1において「〜θ」の表記は「ブリュースター角またはその近傍の角」を示す)。入射角は、表面法線N(すなわち、点線で示す基板表面16Sに対する法線ベクトル)と放射線ビーム23の軸光線(軸光線(図示せず)は光軸A1と同一の直線上にある)とによって形成される角度と定義する。ブリュースター角は、基板を構成する材料と入射放射線の波長によって定義される。本発明では、基板16はICの製造に使用されるようなシリコンであることが好ましい。室温におけるシリコンのブリュースター角は、800nmの波長でおよそ75°であり、10.6μmの波長でおよそ74°である。膜積層体のブリュースター角は定義しないが、シリコン上の膜の存在によって最小反射率の角度がわずかに変化する。それでも、シリコン基板に膜が形成されるほとんどの用途では、ベアシリコンウェハのブリュースター角と近似している。
本発明の一実施形態では、放射線ビーム23の入射角は、処理対象の基板(例えばシリコン)の材料のブリュースター角の±10°以内である。別の実施形態では、入射角は60°から80°の間である。
ブリュースター角近傍の入射角を使用することによって、異なるスペクトル特性を有する異なる膜の存在のために法線入射においてスペクトル的に不均一な基板に対して均一な加熱を行うことができる。例えば、所与のウェハは、主として結晶性ベアシリコンである領域と、SiOが0.5μmの深さで埋め込まれた分離トレンチによって主として被覆された領域を有する場合がある。第3の領域は、シリコン内の酸化物トレンチ上のポリシリコンの0.1μmの膜を含む領域を有する場合がある。各領域の反射率は、表面法線N(図1)と相対的に測定した入射角によって異なる。ブリュースター角またはその近傍(例えば、通常は60°〜80°)で動作させることによって、基板の異なる領域における吸収を、様々な膜と膜厚にわたってほぼ均等化することができる。
この角度範囲で動作させることの別の利点は、すべての膜の反射率はこの領域で非常に低いため、入射放射線ビーム23が非常に効率的に基板16に吸収されることである。法線入射では、入射放射線ビームの約33%はベアシリコンによって反射され、約3.4%は非常に厚いSiO層の表面によって反射される。68°の入射角では、放射線の約3%のみがベアシリコン及びSiO層の上面で反射される。複数の表面からの干渉効果を考慮すると、結果はさらに複雑であるが、P偏光入射放射線ビーム23がシリコンのブリュースター角またはその近傍で入射する場合には、様々な膜による反射率の全変動は最小化される。
図2A及び図2Bは、Y−Z平面及びX−Z平面からそれぞれ見たアナモルフィックLTP光学系22の概略図である。上述したように、レーザーダイオードから放射された放射線は異なる平面において異なる量で拡がり、例えばY−Z平面において10°のFWHMで拡がり、X−Z平面において35°のFWHMで拡がる。図3A及び図3Bは、X−Z平面及びY−Z平面からそれぞれ見たレーザーダイオードアレイ12に最も近い光学部材の側面図である。
図3A及び図3Bに示すように、レーザーダイオードアレイ12からの放射線をX−Z平面においてコリメートする(平行化する)ために、光学系22は、光軸Alに沿って、レーザーダイオードアレイ12に隣接して配置された二次元円柱レンズアレイ100を含む。円柱レンズアレイ100は円柱レンズ部材102で構成され、入力側104と出力側106とを有する。アレイ100における円柱レンズ部材102の数は、レーザーダイオードアレイ12におけるレーザーダイオード18の列の数に対応している。隣接するレンズ部材102の間隔はレーザーダイオードの隣接する列の間隔(例えば、上述の実施形態では1.9mm)と同じであることが好ましく、レンズ部材はX−Z平面においてレンズ作用を有する。従って、N個の円柱レンズは、X−Z平面においてコリメートされた、平行なN本のビーム110を形成する。なお、これらのビームはレーザーダイオードの列を含むY−Z平面で(例えば10°で)拡がる。
一実施形態では、各円柱レンズ部材の焦点距離は比較的短い(例えば3mm)。コリメートされたN本のビーム110(例えば、N=25)は所与の幅(例えば47.5mm)の単一のコリメートされた出力ビーム112に相当する。理論的には、(実質的に)コリメートされたビーム112における光線の角度の拡がりは非常に小さく(例えば0.024°)、エミッタの1μmのサイズまたは回折のみによって制限される。実際には、ダイオード列はわずかに曲がっており、円柱レンズ部材102との位置ずれが生じる。これによって、出力ビーム112の最小拡がり角が制限される(例えば、約0.3°のFWHM)。
好適な円柱レンズアレイ100の例は、リモ・マイクロオプティックス&レーザー・システムズ社(Limo Micro−Optics&Laser Systems)(Bookenburgweg 4,44319 Dortmund,Germany)から入手することができる。ビーム110の偏光方向は、電場ベクトルが列方向に垂直(すなわち、偏光がX方向)である向きを有する。この場合、図2Bに示す光学的配置では、偏光方向を変更する必要はない。しかし、その他のダイオードアレイは直交方向に偏光させることができ、像面IPでP偏光に対応するように偏光方向を変更することが必要となる。同様に、Y−Z平面でダイオードビームと基板との間の所望の角度が得られる場合には、偏光方向を変更することが必要である。
そこで、引き続き図3A及び図3Bを参照すると、一実施形態では、LTP光学系22は、円柱レンズアレイ100に隣接して配置され、偏光方向の変更が必要である場合には放射線の偏光を90°回転させるための任意の半波長板120を含む。また、半波長板120は、光学系の軸A1を中心として半波長板120を回転させることによって基板上でP偏光放射線ビーム23の強度を変更するために使用することができる。全てのダイオードバーは直線偏光放射線を放射するため、半波長板120の角度的な向きによって、基板に入射するP偏光及びS偏光放射線の相対的な量が決まる。放射線ビーム23のP偏光成分は強く吸収され、S偏光成分は主として反射されるため、半波長板の向きによって基板に吸収される総エネルギーが決まる。従って、基板に供給され、基板に吸収される総エネルギー量を制御するために半波長板の向きを使用することができる。
説明と図示を容易にするために、レーザーダイオードアレイ12、円柱レンズアレイ100、任意の半波長板120を1つのグループとし、出力ビーム112を放射する有効レーザー放射線源140を構成するものとみなす。
同一のLTPリレーの直交する図である図2A及び図2Bに示すように、LTP光学系22は、光軸Alに沿って、有効放射線源140に隣接して配置された円柱視野レンズ202をさらに含む。円柱視野レンズ202はX−Z平面において倍率を有する。LTP光学系22は、Y−Z平面において倍率を有する円柱コリメートレンズ204と、楕円瞳210と、X−Z平面において倍率を有する第1の円柱リレーレンズ群220と、中間像面224とをさらに含む。また、光学系22は、Y−Z平面において倍率を有する円柱集束レンズ228と、X−Z平面において倍率を有する第2の円柱リレーレンズ群230とを含む。一実施形態では、円柱リレーレンズ群220,230は、それぞれがレンズ220A,220B及び230A,230Bからなる空気分離型ダブレットである。
この例では、円柱コリメートレンズ204と円柱集束レンズ228は、縮小倍率(比率)が約2のテレセントリック・アナモルフィックリレーを形成している。なお、縮小倍率は、Y−Z平面において約1.5〜4.5の間で通常は変化する。なお、約2という縮小倍率は、約1/2の倍率に対応している。これらの円柱レンズはX−Z平面における倍率には寄与しない(図2B)。従って、図2Aに示すリレーによって形成されるテレセントリック像は長さが5mmで、20°の円錐角に対する。
通常は、基板16に形成される線像24に倍率を集めるためにできる限り大きな縮小率を有することが望ましい。しかし、縮小率が大きくなると、基板での円錐角が大きくなり、基板から見た場合の放射線ビーム23の入射角の範囲の角度変動が大きくなる。例えば、レーザーダイオードアレイ12が1:1で基板16に結像される場合には、レーザーダイオードアレイから出射した放射線の角度的な拡がりは、基板で放射線ビームにおいて2倍となる。
光学設計を比較的簡単に維持し、基板16での入射角のばらつきを制限するために、基板での放射線ビーム23の角度的な拡がりを、Y−Z平面における上述した約2の縮小倍率比に対応する約20°に制限することが望ましい。従って、例えば、長さ10mmのダイオードの列を長さ5mmの線像に結像させる。
図2Bに示すように、円柱視野レンズ202は、(円柱レンズアレイ100と任意の半波長板120と共に)最終的な像24がテレセントリックとなるように選択された位置で瞳210を形成するように作用する。第1の円柱リレーレンズ群220は、縮小倍率が約8.3の中間像面224におけるレーザーダイオードアレイ12の中間像を形成する。第2の円柱リレーレンズ群230は、第2の中間像を約69の総縮小倍率に対して約8.8の倍率で縮小し、光軸A1と垂直に約0.66mmの像サイズを得る。像は66°の角度で基板に入射するため、基板上の画像サイズは1/cosθ(θは入射角)で増加する。従って、基板上の像24の幅は約1.62mmである。
上述した例では、X−Z平面及びY−Z平面における倍率は、基板側からの放射線ビーム23の円錐角に対して20°の上限を設定することによって決定した。しかし、小さな角度の範囲によってウェハ全体で吸収されるエネルギーのばらつきは少なくなるが、入射角の範囲に対する基本的な制限はない。ダイオード及び円柱レンズアレイによるビームのコリメーションが強い場合には、X−Z平面におけるより高い倍率をより細い線像を得るために使用することができる。同様に、基板上のレーザービームの開口数が両方の平面で同一でなければならない基本的な理由はない。従って、Y−Z平面における縮小倍率は約1.5から約4.5倍であり、X−Z平面における縮小倍率は約50から約150倍であることができる。X−Z方向における縮小倍率は、円柱レンズアレイ100によるコリメーション後の放射線ビーム112の角度的な拡がりに依存する。
Y−Z平面とX−Z平面でそれぞれ見た場合の基板16において線像24を形成する円柱集束レンズ228と円柱リレーレンズ群230の拡大図を図4A及び図4Bに示す。
表1は、上述したLTP光学系22の一実施形態の光学設計データを示す。
Figure 0005053636
表1では、第1列は表面番号であり、第2列は表面半径であり、第3列は次の表面への距離(厚みまたは間隔)であり、第4列はレンズ材料を示している。「S」は「表面番号」S1,S2等を表し、THは「厚み」を表す。厚みと半径の数値は全てミリメートル(mm)で示している。アスタリスク(*)は表面S3と表面S10について非球面を示し、非球面データは表1の欄外に記載している。
(像パワー密度)
一実施形態では、各列のダイオードは水冷式で約80Wの光学的パワーを発生することができる。総合効率を70%と仮定すると、像パワー密度(すなわち、像24における強度)はほぼ以下の通りとなる。
Figure 0005053636
このパワー量は、681特許に開示された従来のLTP装置に必要とされる(200μ秒の滞在時間での)1300W/mmよりもかなり少ない。
一実施形態では、線像24における強度(パワー密度)は100W/mm以上である。
(制御系)
図1を再び参照すると、一実施形態では、LTP装置10は、装置の動作を制御する制御系25(点線で囲まれた部分)をさらに含む。制御系25は、コントローラー26と、コントローラーに接続された入力装置28と、コントローラーに接続された表示装置30とを含む。また、制御系25は、コントローラー26に接続され、レーザーダイオードアレイ12に電力を供給する電源32と、ステージ17とコントローラー26とに接続され、ステージ17の移動を制御するステージコントローラー34と、コントローラー26に接続され、ステージに配置された検出器38と、を含む。検出器38は、ステージが移動して放射線23の通過経路に検出器が配置された(すなわち、像面IPまたはその近傍で線像24を遮った)時に、像面IPに供給された放射線ビーム23の少なくとも一部を検出するように設けられている。
一実施形態では、制御系25は反射放射線モニター39Aと温度モニター39Bとを含む。反射放射線モニター39Aは、基板表面16Sの上の線像24から反射された放射線23を受けるように設けられている。反射放射線は23’で示している。反射放射線23は、線像24に対して放射線23とは反対側に発生し、基板表面に対する反射角は、当技術分野で周知のように、放射線23の入射角と等しい。温度モニター39Bは基板表面16Sの温度を測定するように設けられ、一実施形態では、線像24が形成される位置またはその近傍において法線入射で基板と向き合うように表面法線Nに沿って設けられている。ただし、温度モニター39Bは、温度を測定するために使用する波長帯に応じてブリュースター角で基板と向き合うように設けることもできる。モニター39A,39Bは、以下に詳述するように、反射放射線23’の量及び/または基板表面16Sの測定温度の測定値に基づいてフィードバック制御を行うためのコントローラに接続されている。
一実施形態では、コントローラー26は、メモリと接続されたマイクロプロセッサ、マイクロコントローラー、プログラマブリューロジックアレイ(PLA)、フィールド・プログラマブリューロジックアレイ(FPLA)、プログラムアレイロジック(PAL)、またはその他の制御装置(図示せず)である。コントローラー26は次の2つのモードで動作することができる:1)コントローラー26が基板上の一定のパワーと一定の走査速度を維持する開ループ、2)コントローラー26が基板表面上の一定の最高温度または基板に吸収される一定のパワーを維持する閉ループ。最高温度は、印加電力と比例して変化し、走査速度の平方根と反比例して変化するため、一実施形態では、閉ループ制御は走査速度の平方根で除算した入射パワーの比率を一定に維持するために使用される(すなわち、放射線ビーム23におけるパワー量をP23とし、走査速度をVとした場合、比率P23/V1/2を一定に維持する)。
閉ループ動作では、コントローラー26は、信号(例えば電気信号)を介して少なくとも1つのパラメータ、例えば、最高基板温度(例えば、温度モニター39Bからの信号232を介して)、放射線ビーム23のパワーP23(例えば、検出器38からの信号42を介して)、反射放射線23’の反射パワー(例えば、反射放射線モニター39Aからの信号230を介して)を受信する。また、コントローラー26は、信号230,232及び/または42に含まれる情報から決定したウェハ16に吸収されるパワー量等の受信信号に基づいてパラメータを計算する。
また、コントローラー26は、オペレータまたはより大きな基板アセンブリまたは処理ツールの一部であるマスターコントローラーから外部信号40を受信するように接続されている。このパラメータは、基板を処理するために供給される放射線の所定の照射量または基板で達成される最高温度を示すものである。パラメータ信号は、所定の照射量の放射線を基板16に供給するために使用される強度、走査速度(scan velocity)、走査速度(scan speed)及び/または走査数を示すものであってもよい。
コントローラー26が受信したパラメータ信号に基づき、コントローラーは表示信号46を生成し、表示装置30に送信し、ユーザーがパラメータ信号レベルを決定・確認することができるように表示装置に視覚的に情報を表示することができる。また、コントローラー26は、装置10によって行われる処理を開始させる開始信号を受信するように接続されている。開始信号は、入力装置28によって生成された信号39またはマスターコントローラー等の外部装置(図示せず)からの外部信号40であってもよい。
(操作方法)
LTP装置10の動作方法を以下に説明する。図1を引き続き参照すると、コントローラー26は、装置の動作モードを開始させる開始信号(例えば信号39または信号40)に応じて、(ステージコントローラー34を介して)基板ステージ17に基板を適切な開始位置に配置させ、走査(例えば基板ステージ17の移動)を開始し、適切な強度の放射線ビーム23を発生するように事前にプログラムされている。ユーザーまたは外部のコントローラーによって予め設定されたパラメータ信号に基づくレーザーダイオードビーム強度制御信号200が電源32に供給される。次に、電源32は強度制御信号に基づいて調整電流信号202を発生する。具体的には、電源からの電流信号202の電流量が強度制御信号200によって決定される。電源電流はレーザーダイオードアレイ12に出力され、選択されたレべルの放射線パワー14を発生させる。
一実施形態では、コントローラー26は、所定の走査速度と走査数を示すパラメータ信号に基づいて走査制御信号206を発生するように事前にプログラムされている。コントローラー26は強度制御信号200と共に走査制御信号206を生成し、走査制御信号をステージコントローラー34に供給する。走査制御信号206とステージコントローラーに事前にプログラムされた所定の走査パターンに基づいて、ステージコントローラーは走査信号210を生成し、線像24が基板16または基板16の選択領域上を走査されるようにステージ36を移動させる(例えば、ラスタ、サーペンタイン(蛇行)または牛耕式)。
一実施形態では、検出器38は、レーザーダイオードアレイ12からの放射線14と、LTP光学系22の透過と、のパワーレベルの関数である、放射線ビーム23が基板16で吸収されるパワー量を示す検出器信号42を生成する。一実施形態では、コントローラー26(またはユーザー)が強度制御信号200と走査速度を決定する。基板16上で生成された最高温度は、走査速度の平方根で除算した放射強度I23(P23/(単位面積))(すなわち、I23/V1/2)とほぼ比例している。従って、一実施形態では、コントローラー26は、走査速度またはレーザー強度またはそれらの両方を変化させることによって所望の最高温度を達成し、所望の最高温度に対応した走査速度の平方根で除算した強度の値を得るように事前にプログラムされている。別の実施形態では、走査時に所望の最高温度を一定に維持する。
別の実施形態では、反射放射線23’の量は反射放射線モニター39Aによって測定され、測定されたパワーに対応する信号230がコントローラー26に供給される。次に、基板に吸収される放射線ビーム23の割合と対応するパワーレベルを、(例えば検出器38からの)入射放射線測定値及び反射放射線測定値を使用して計算する。次に、信号230はコントローラー26がレーザーダイオードアレイ12によって基板16に供給される放射線パワーレベル23を制御するために使用され、適切な最高温度が基板内で維持される。
別の実施形態では、基板温度モニタ39Bが基板表面16Sの温度を測定し、最高基板表面温度に対応する信号232をコントローラー26に供給する。次に、信号232はコントローラー26がレーザーダイオードアレイ23によって基板に供給される放射線23の量を制御するために使用され、走査時に適切な最高温度が基板で維持される。
この方法は、シリコン基板16の表面温度をシリコンの融点(1410℃)よりも僅かに(400℃以内の範囲で)低い温度に100μ秒から20ミリ秒にわたって上昇させるレーザーダイオード放射線のパルスが各走査部分に供給されるように、基板の少なくとも一部上で線像24を走査することも含む。
(シリコンLTPのパワー密度要件)
シリコン基板(ウェハ)をアニールするために必要な吸収パワー密度は、線像24が基板表面16S(図1)の特定のポイント上にある時間を示す「滞在時間(dwell time)」によって変化する。通常、表2に示すように、必要とされるパワー密度は滞在時間の平方根と反比例して変化する。
Figure 0005053636
170W/mmの最小パワーがシリコンを使用する用途でLTPを行うために必要であると仮定すると、そのような最小パワーを生成することができるレーザーダイオードアレイ12は10ミリ秒のオーダーの滞在時間でLTPを行うことができる。
(装置のスループット)
LTP装置の商業可能性にとって、単位時間に十分な数の基板を処理することができること、業界用語で言えば十分な「スループット」を有することが重要である。LTP装置10のスループットを推定するために、300mmのシリコンウエハと長さが5mmで幅が1.62mmの線像を考える。ウェハ上の走査数は「300mm/5mm=60」で与えられる。また、滞在時間が10ミリ秒の場合には、走査速度は162mm/秒である。1走査の時間は「(300mm)/(162mm/秒)=1.85秒」で与えられる。ステージ加速率が1gの場合には、ステージの加速/減速時間は「(162mm/秒)/(9800mm/秒)=0.017秒」である。従って、1つの基板を処理するために必要な時間は「60×(1.85秒+(2)×(0.017秒))=113秒」である。基板を装置に出し入れする時間が合計で15秒である場合には、スループットは「(3600秒/時)/(15秒+113秒)=28基板/時で与えられ、これは商業可能性のあるスループット値である。
以上の詳細な説明では、各種の特徴を容易に理解できるように各種実施形態に分類した。本発明の多くの特徴及び利点は詳細な明細書から明らかであり、添付の請求項によって本発明の精神と範囲に従う上述した装置の特徴と利点を全て網羅することを意図するものである。また、当業者は数多くの変形や変更に容易に想到するものと考えられるため、本発明をここで説明した構造や動作のみに限定することは望ましいものではない。従って、その他の実施形態も添付の請求項の範囲に含まれるものである。
本発明のLTP装置の概略図である。 図2AはY−Z平面から見た本発明のLTP光学系の概略図である。 図2BはX−Z平面から見た本発明のLTP光学系の概略図である。 図3AはX−Z平面から見たレーザーダイオードアレイに最も近い光学部材の拡大分解図である。 図3BはY−Z平面から見たレーザーダイオードアレイに最も近い光学部材の拡大分解図である。 図4AはY−Z平面から見た基板に最も近いLTP光学系の構成要素の拡大図である。 図4BはX−Z平面から見た基板に最も近いLTP光学系の構成要素の拡大図である。

Claims (23)

  1. 選択された所定の波長である選択波長の放射線に対してブリュースター角を有し、かつ、1以上の活性化可能な領域を有する半導体基板のレーザー熱アニールを行うための装置であって、
    前記選択波長のP偏光放射線を同時に放射する複数のレーザーダイオードを有する二次元アレイと、
    前記レーザーダイオードの二次元アレイから放射された前記P偏光放射線を受け、前記半導体基板上で線像となる放射線ビームを形成するように設けられた光学系と、
    前記半導体基板の少なくとも1つの活性化可能な前記領域において、前記線像が形成されるように、前記半導体基板を支持し、位置付ける可動ステージと、
    前記線像から反射した放射線を受け、受けた反射放射線の量に対応する反射放射線信号を生成するように設けられた反射放射線モニターと、
    前記半導体基板に形成された前記線像における表面温度を測定し、測定した前記表面温度に対応する温度信号を生成するように設けられた温度モニターと、
    前記可動ステージ、前記反射放射線モニター、前記温度モニター、前記二次元アレイに関連付けられたコントローラーと、
    を含み、
    前記コントローラーは、前記反射放射線信号と前記温度信号の少なくとも1つの受信に応じて前記二次元アレイからの前記P偏光放射線の放射を制御し、かつ、前記半導体基板が融点に達しないようにしながら、前記半導体基板の少なくとも1つの活性化可能な前記領域をアニールするために有効な強度と滞在時間でもって、前記線像を前記半導体基板の前記領域の上で走査するために、前記可動ステージを制御し、
    前記線像は、前記半導体基板の少なくとも1つの活性化可能な前記領域をアニールするために有効な強度と滞在時間を有する、装置。
  2. 請求項1において、
    前記線像と相対的に前記半導体基板を移動させて前記線像を前記半導体基板の少なくとも1つの活性化可能な前記領域上で走査するように前記可動ステージを制御するステージコントローラーをさらに含む装置。
  3. 請求項1において、
    前記二次元アレイは、前記半導体基板上で測定した強度が150W/mm以上となる前記P偏光放射線を放射する装置。
  4. 請求項1において、
    前記二次元アレイは、780nmと810nmを含む波長の群から選択される波長を有する前記P偏光放射線を放射する装置。
  5. 請求項1において、
    前記二次元アレイから放射される前記P偏光放射線は、円柱レンズの直線型アレイによってコリメートされ、第1の平面でコリメートされ、前記第1の平面と直交する第2の平面で10°で拡がる放射線ビームである装置。
  6. 請求項5において、
    前記P偏光放射線が前記半導体基板に入射するように前記P偏光放射線の通過経路に配置された半波長板をさらに含む装置。
  7. 請求項1において、
    前記光学系は、一平面で1.5以上、4.5以下の範囲の倍率を有し、直交する平面で50以上、150以下の範囲の倍率を有するアナモルフィックリレーである装置。
  8. 請求項1において、
    前記二次元アレイがX−Y平面に配置された複数の前記レーザーダイオードを含み、
    前記光学系が、Z方向と一致する光軸(X、Y、Zは前記光学系内でY−Z平面とX−Z平面を定義する互いに直交する軸である)と、
    前記二次元アレイに隣接して配置され、前記X−Z平面において倍率を有する複数の円柱レンズ部材を有し、前記円柱レンズ部材の数がレーザーダイオードの列の数に対応しており、ダイオードの各列からの前記放射線が前記円柱レンズ部材を通過した後に前記X−Z平面でコリメートされる円柱レンズアレイと、
    前記円柱レンズアレイを出射したレーザー放射線を受けるように配置され、前記Y−Z平面において倍率を有する円柱レンズ群と、前記X−Z平面において倍率を有する第2の円柱レンズ群と、を含むテレセントリック・アナモルフィックリレーと、
    を含む装置。
  9. 請求項8において、
    前記テレセントリック・アナモルフィックリレーは、一平面で1.5以上、4.5以下の範囲の縮小倍率を有し、直交する平面で50以上、150以下の範囲の縮小倍率を有する装置。
  10. Z方向に沿って光軸を有し、かつ、1以上の活性化可能な領域を有する半導体基板のレーザーアニールを行うための光学系であって、
    選択された所定の波長である選択波長のP偏光放射線を同時に放射し、X−Y平面に配置されて前記光学系内でY−Z平面とX−Z平面を定義する複数のレーザーダイオードを有する二次元アレイと、
    前記二次元アレイに隣接して配置され、前記X−Z平面において倍率を有する複数の円柱レンズ部材を有し、前記円柱レンズ部材の数がレーザーダイオードの列の数に対応しており、各円柱レンズ部材から出射した前記P偏光放射線が前記X−Z平面でコリメートされる円柱レンズアレイと、
    前記円柱レンズアレイを出射したレーザー放射線を受けるように配置され、前記光軸に
    沿って、前記Y−Z平面において倍率を有する第1及び第2の円柱レンズを含む第1のテレセントリック・アナモルフィックリレーと、
    前記光軸に沿って、前記Y−Z平面において倍率を有する第3の円柱レンズと第1及び第2の円柱レンズを含み、前記第3の円柱レンズが前記円柱レンズアレイに隣接して位置し、第1のレンズ群が前記第1のテレセントリック・アナモルフィックリレーの前記第1及び第2の円柱レンズの間に配置された第2のテレセントリック・アナモルフィックリレーと、
    前記二次元アレイから放射される前記P偏光放射線によって線像が形成される像面と、
    前記半導体基板の少なくとも1つの活性化可能な前記領域において、前記線像が形成されるように、前記半導体基板を支持し、位置付ける可動ステージと、
    前記線像から反射した放射線を受け、受けた反射放射線の量に対応する反射放射線信号を生成するように設けられた反射放射線モニターと、
    前記半導体基板に形成された前記線像における表面温度を測定し、測定した前記表面温度に対応する温度信号を生成するように設けられた温度モニターと、
    前記可動ステージ、前記反射放射線モニター、前記温度モニター、前記二次元アレイに関連付けられたコントローラーと、
    を含み、
    前記コントローラーは、前記反射放射線信号と前記温度信号の少なくとも1つの受信に応じて前記二次元アレイからの前記P偏光放射線の放射を制御し、かつ、前記半導体基板が融点に達しないようにしながら、前記半導体基板の少なくとも1つの活性化可能な前記領域をアニールするために有効な強度と滞在時間でもって、前記線像を前記半導体基板の前記領域の上で走査するために、前記可動ステージを制御し、
    前記線像は、前記半導体基板の少なくとも1つの活性化可能な前記領域をアニールするために有効な強度と滞在時間を有する、光学系。
  11. 選択波長の放射線と基板材料に対してブリュースター角を有し、かつ、1以上の活性化可能な領域を有する半導体基板のレーザー熱アニールを行うための方法であって、
    所定の波長である前記選択波長の放射線を複数のレーザーダイオードを有する二次元アレイから同時に放射し、
    放射された前記放射線を光学系によって受け、前記半導体基板上で線像を形成する直線P偏光放射線ビームを放射された前記放射線から形成し、
    前記直線P偏光放射線ビームを前記ブリュースター角で前記半導体基板の少なくとも1以上の活性化可能な前記領域に照射し、
    前記半導体基板が融点に達しないようにしながら、前記半導体基板の少なくとも1つの活性化可能な前記領域をアニールするために有効な強度と滞在時間でもって、前記線像を前記半導体基板の少なくとも1つの活性化可能な前記領域の上で走査し、
    前記半導体基板の上の前記線像から反射する放射線のパワーである反射放射線パワーを測定し、
    前記直線P偏光放射線ビームの照射による前記半導体基板の最大温度を測定し、
    測定された前記反射放射線パワー及び前記最大温度に対応して、前記二次元アレイからの前記放射線の前記放射を制御することを含む、方法。
  12. 請求項11において、
    前記線像が100W/mm以上の強度を有する方法。
  13. 請求項11において、前記半導体基板材料がシリコンであり、前記入射角がシリコンのブリュースター角の±10°以内である方法。
  14. 請求項11において、
    前記基板の前記走査が選択された走査速度で行われ、
    選択された放射線パワー量の前記放射線ビームを供給し、
    前記走査時に、前記半導体基板に入射する前記放射線パワー量を一定に維持するとともに、前記基板走査速度を一定に維持することをさらに含む方法。
  15. 請求項11において、
    前記半導体基板に入射する放射線のパワーである入射放射線パワーを測定し、
    前記半導体基板に吸収された放射線パワーである吸収放射線パワーを測定された前記入射放射線パワー及び前記反射放射線パワーを使用して計算することをさらに含む方法。
  16. 請求項15において、
    前記走査が特定の走査速度で行われ、
    前記走査時に前記吸収放射線パワーのレベルを一定に維持するために、前記走査速度の平方根で除算した前記入射放射線パワーの比率(P23/V1/2)を一定に維持することによって、前記半導体基板に吸収される前記吸収放射線パワーを制御することをさらに含む方法。
  17. 請求項11において、
    前記走査が特定の走査速度で行われ、
    前記半導体基板に吸収される放射線パワーである吸収放射線パワーを測定し、
    前記吸収放射線パワーの量を測定し、
    前記走査速度の平方根で除算した前記入射放射線パワーの比率(P23/V1/2)を一定に維持することによって、前記吸収放射線パワーの量を一定に維持することを含む方法。
  18. 請求項11において、
    前記走査が特定の走査速度で行われ、
    前記放射線ビーム内に半波長板を配置し、
    前記半導体基板に吸収される放射線パワーである吸収放射線パワーを測定し、
    前記走査速度の平方根で除算した前記入射放射線パワーの比率(P23/V1/2)を一定に維持することによって前記吸収放射線パワーの量を一定の値に維持するために、前記半波長板を調整して前記直線P偏光放射線ビームのP偏光を変化させることを含む方法。
  19. 請求項11において、
    前記直線P偏光放射線ビームのパワーレベルを制御して、前記半導体基板において一定の最高基板温度を維持することを含む方法。
  20. 請求項19において、
    前記制御は前記直線P偏光放射線ビームの強度を変化させることを含む方法。
  21. 請求項11において、
    前記走査を特定の走査速度で行い、
    前記走査速度を制御して、前記半導体基板において一定の最高温度を維持することを含む方法。
  22. 請求項20において、
    前記直線P偏光放射線ビームの強度を変化させることは、前記放射線ビーム内に配置された半波長板の向きを調整することを含む方法。
  23. 請求項1において、
    前記半導体基板に入射する前記P偏光放射線のパワーを測定する前記コントローラーと関連付けられた放射線検出器をさらに含み、
    前記コントローラーは、前記放射線検出器により測定された前記パワーと、前記反射放射線モニターからの前記反射放射線信号と、を用いて前記半導体基板に吸収された放射線パワーを計算する、装置。
JP2006525409A 2003-09-02 2004-08-31 レーザーダイオード放射線によるレーザー熱処理 Expired - Fee Related JP5053636B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/653,625 2003-09-02
US10/653,625 US7763828B2 (en) 2003-09-02 2003-09-02 Laser thermal processing with laser diode radiation
PCT/US2004/028389 WO2005022249A2 (en) 2003-09-02 2004-08-31 Laser thermal processing with laser diode radiation

Publications (3)

Publication Number Publication Date
JP2007504669A JP2007504669A (ja) 2007-03-01
JP2007504669A5 JP2007504669A5 (ja) 2007-05-24
JP5053636B2 true JP5053636B2 (ja) 2012-10-17

Family

ID=34217932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006525409A Expired - Fee Related JP5053636B2 (ja) 2003-09-02 2004-08-31 レーザーダイオード放射線によるレーザー熱処理

Country Status (4)

Country Link
US (1) US7763828B2 (ja)
JP (1) JP5053636B2 (ja)
TW (1) TWI335700B (ja)
WO (1) WO2005022249A2 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397571B2 (ja) * 2001-09-25 2010-01-13 株式会社半導体エネルギー研究所 レーザ照射方法およびレーザ照射装置、並びに半導体装置の作製方法
US7279721B2 (en) * 2005-04-13 2007-10-09 Applied Materials, Inc. Dual wavelength thermal flux laser anneal
US7897891B2 (en) * 2005-04-21 2011-03-01 Hewlett-Packard Development Company, L.P. Laser welding system
JP2006351659A (ja) * 2005-06-14 2006-12-28 Toyota Motor Corp 半導体装置の製造方法
US7238915B2 (en) * 2005-09-26 2007-07-03 Ultratech, Inc. Methods and apparatus for irradiating a substrate to avoid substrate edge damage
US20080173620A1 (en) * 2005-09-26 2008-07-24 Ultratech, Inc. Apparatuses and methods for irradiating a substrate to avoid substrate edge damage
CA2624200A1 (en) * 2005-10-03 2007-04-12 Aradigm Corporation Method and system for laser machining
JP2008066356A (ja) * 2006-09-05 2008-03-21 Ihi Corp レーザアニール方法および装置
US7732353B2 (en) 2007-04-18 2010-06-08 Ultratech, Inc. Methods of forming a denuded zone in a semiconductor wafer using rapid laser annealing
US8674257B2 (en) 2008-02-11 2014-03-18 Applied Materials, Inc. Automatic focus and emissivity measurements for a substrate system
US7947968B1 (en) 2009-01-29 2011-05-24 Ultratech, Inc. Processing substrates using direct and recycled radiation
JP5590925B2 (ja) * 2010-03-10 2014-09-17 住友重機械工業株式会社 半導体装置の製造方法及びレーザアニール装置
JP2011187760A (ja) * 2010-03-10 2011-09-22 Sumitomo Heavy Ind Ltd 半導体装置の製造方法及びレーザアニール装置
US9429742B1 (en) * 2011-01-04 2016-08-30 Nlight, Inc. High power laser imaging systems
US9409255B1 (en) 2011-01-04 2016-08-09 Nlight, Inc. High power laser imaging systems
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
US9720244B1 (en) 2011-09-30 2017-08-01 Nlight, Inc. Intensity distribution management system and method in pixel imaging
TW201321789A (zh) * 2011-11-16 2013-06-01 Ind Tech Res Inst 成像系統與掃描方法
US10874873B2 (en) 2012-05-25 2020-12-29 Ojai Retinal Technology, Llc Process utilizing pulsed energy to heat treat biological tissue
US10531908B2 (en) 2012-05-25 2020-01-14 Ojai Retinal Technology, Llc Method for heat treating biological tissues using pulsed energy sources
US10278863B2 (en) 2016-03-21 2019-05-07 Ojai Retinal Technology, Llc System and process for treatment of myopia
US10953241B2 (en) 2012-05-25 2021-03-23 Ojai Retinal Technology, Llc Process for providing protective therapy for biological tissues or fluids
US10219947B2 (en) 2012-05-25 2019-03-05 Ojai Retinal Technology, Llc System and process for retina phototherapy
US11077318B2 (en) 2012-05-25 2021-08-03 Ojai Retinal Technology, Llc System and process of utilizing energy for treating biological tissue
US9381116B2 (en) 2012-05-25 2016-07-05 Ojai Retinal Technology, Llc Subthreshold micropulse laser prophylactic treatment for chronic progressive retinal diseases
US9168174B2 (en) 2012-05-25 2015-10-27 Ojai Retinal Technology, Llc Process for restoring responsiveness to medication in tissue of living organisms
US9427602B2 (en) 2012-05-25 2016-08-30 Ojai Retinal Technology, Llc Pulsating electromagnetic and ultrasound therapy for stimulating targeted heat shock proteins and facilitating protein repair
US10894169B2 (en) 2012-05-25 2021-01-19 Ojai Retinal Technology, Llc System and method for preventing or treating Alzheimer's and other neurodegenerative diseases
US9381115B2 (en) 2012-05-25 2016-07-05 Ojai Retinal Technology, Llc System and process for retina phototherapy
US10596389B2 (en) 2012-05-25 2020-03-24 Ojai Retinal Technology, Llc Process and system for utilizing energy to treat biological tissue
US10076671B2 (en) 2012-05-25 2018-09-18 Ojai Retinal Technology, Llc Apparatus for retina phototherapy
US9962291B2 (en) 2012-05-25 2018-05-08 Ojai Retinal Technology, Llc System and process for neuroprotective therapy for glaucoma
JP5980043B2 (ja) * 2012-08-22 2016-08-31 住友重機械工業株式会社 レーザ照射装置
US9310248B2 (en) 2013-03-14 2016-04-12 Nlight, Inc. Active monitoring of multi-laser systems
CN104078339B (zh) * 2013-03-26 2017-08-29 上海微电子装备有限公司 一种激光退火装置和方法
US10537965B2 (en) * 2013-12-13 2020-01-21 Applied Materials, Inc. Fiber array line generator
US9709810B2 (en) 2014-02-05 2017-07-18 Nlight, Inc. Single-emitter line beam system
US9559023B2 (en) 2014-06-23 2017-01-31 Ultratech, Inc. Systems and methods for reducing beam instability in laser annealing
US9613828B2 (en) 2014-06-24 2017-04-04 Ultratech, Inc. Method of laser annealing a semiconductor wafer with localized control of ambient oxygen
JP6439297B2 (ja) * 2014-07-04 2018-12-19 富士電機株式会社 不純物導入方法、不純物導入装置及び半導体素子の製造方法
AU2015290225A1 (en) * 2014-07-16 2016-12-08 Ojai Retinal Technology, Llc Apparatus for retina phototherapy
TWI571342B (zh) * 2014-11-12 2017-02-21 財團法人工業技術研究院 雷射銲接裝置
US10709608B2 (en) 2016-03-21 2020-07-14 Ojai Retinal Technology, Llc System and process for prevention of myopia
CN111479649B (zh) * 2017-12-20 2022-06-24 索尼公司 激光装置和激光处理方法
US11081458B2 (en) * 2018-02-15 2021-08-03 Micron Technology, Inc. Methods and apparatuses for reflowing conductive elements of semiconductor devices
DE102019212400B4 (de) * 2019-08-20 2021-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur Entfernung von Werkstoffen eines Substrats mittels elektromagnetischer Strahlung
EP3808663B1 (en) * 2019-10-14 2024-03-27 General Electric Company Lighting system for an optical navigation beacon

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214216A (en) * 1978-10-02 1980-07-22 General Electric Company Face-pumped laser with diffraction-limited output beam
US4356375A (en) 1980-07-10 1982-10-26 Avery International Corporation Process for producing lines of weakness in the protective backing of an adhesive laminate
US4520472A (en) * 1983-02-07 1985-05-28 Rca Corporation Beam expansion and relay optics for laser diode array
GB8525108D0 (en) * 1984-08-27 2013-10-16 Texas Instruments Inc Single aperture thermal imager/laser rangefinder
US4734912A (en) * 1986-06-06 1988-03-29 Lightwave Electronics Corp. Laser diode end pumped Nd:YAG single mode laser
GB2211210A (en) * 1987-10-16 1989-06-28 Philips Electronic Associated A method of modifying a surface of a body using electromagnetic radiation
JPH01173707A (ja) * 1987-12-28 1989-07-10 Matsushita Electric Ind Co Ltd レーザアニール方法
US4908493A (en) * 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
US5046070A (en) * 1990-05-22 1991-09-03 Coherent, Inc. Longitudinally laser pumped laser with compensation for thermal lens effects
JPH0666493B2 (ja) * 1991-09-19 1994-08-24 関西電力株式会社 半導体レーザー励起ディスク形固体レーザー増幅器の励起方法
US5617441A (en) * 1991-10-21 1997-04-01 Rohm Co. Ltd. Light source unit and its manufacturing method, adjusting method and adjusting apparatus
US5643801A (en) * 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
US6599790B1 (en) * 1996-02-15 2003-07-29 Semiconductor Energy Laboratory Co., Ltd Laser-irradiation method and laser-irradiation device
JPH10324021A (ja) * 1997-03-26 1998-12-08 Toray Ind Inc イメージング装置およびイメージング方法ならびに印刷装置
US5978074A (en) * 1997-07-03 1999-11-02 Therma-Wave, Inc. Apparatus for evaluating metalized layers on semiconductors
JP3347072B2 (ja) * 1998-09-16 2002-11-20 株式会社東芝 多結晶の成長方法
US6208673B1 (en) * 1999-02-23 2001-03-27 Aculight Corporation Multifunction solid state laser system
US6366308B1 (en) * 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
US6531681B1 (en) * 2000-03-27 2003-03-11 Ultratech Stepper, Inc. Apparatus having line source of radiant energy for exposing a substrate
DE10042733A1 (de) * 2000-08-31 2002-03-28 Inst Physikalische Hochtech Ev Multikristalline laserkristallisierte Silicium-Dünnschicht-Solarzelle auf transparentem Substrat
JP4518463B2 (ja) * 2001-05-23 2010-08-04 マットソン サーマル プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 基板の熱処理方法および熱処理装置
US6770546B2 (en) * 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP2003059858A (ja) * 2001-08-09 2003-02-28 Sony Corp レーザアニール装置及び薄膜トランジスタの製造方法
US6747245B2 (en) * 2002-11-06 2004-06-08 Ultratech Stepper, Inc. Laser scanning apparatus and methods for thermal processing

Also Published As

Publication number Publication date
US7763828B2 (en) 2010-07-27
TW200512996A (en) 2005-04-01
JP2007504669A (ja) 2007-03-01
WO2005022249A3 (en) 2005-09-09
TWI335700B (en) 2011-01-01
US20050045604A1 (en) 2005-03-03
WO2005022249A2 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP5053636B2 (ja) レーザーダイオード放射線によるレーザー熱処理
US20090095724A1 (en) Laser thermal processing with laser diode radiation
US6531681B1 (en) Apparatus having line source of radiant energy for exposing a substrate
US11945045B2 (en) Annealing apparatus using two wavelengths of radiation
US8288683B2 (en) Fast axis beam profile shaping for high power laser diode based annealing system
JP5517396B2 (ja) 低濃度ドープシリコン基板のレーザー熱アニール
KR102056494B1 (ko) 온도 성능이 개선된 2빔 레이저 어닐링 방법 및 시스템
JP4843225B2 (ja) 低濃度ドープされたシリコン基板のレーザ熱アニール
TW201342480A (zh) 管理基材退火的熱預算
KR20070017958A (ko) 저농도로 도핑된 실리콘 기판의 레이저 열 어닐링

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120517

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees