JP5053029B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP5053029B2
JP5053029B2 JP2007268235A JP2007268235A JP5053029B2 JP 5053029 B2 JP5053029 B2 JP 5053029B2 JP 2007268235 A JP2007268235 A JP 2007268235A JP 2007268235 A JP2007268235 A JP 2007268235A JP 5053029 B2 JP5053029 B2 JP 5053029B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
tower
regeneration
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007268235A
Other languages
Japanese (ja)
Other versions
JP2008288187A (en
Inventor
昇 中尾
岳史 山下
彰利 藤澤
慶太 由良
真一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007268235A priority Critical patent/JP5053029B2/en
Publication of JP2008288187A publication Critical patent/JP2008288187A/en
Application granted granted Critical
Publication of JP5053029B2 publication Critical patent/JP5053029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、原料ガスを改質して得られる水素リッチガスをエネルギ源(燃料)として発電を行う燃料電池システムに関する。   The present invention relates to a fuel cell system that generates power using a hydrogen rich gas obtained by reforming a raw material gas as an energy source (fuel).

近年、地球温暖化防止対策ともあいまって、エネルギの原油依存体質からの脱却が世界的規模で重要課題となっており、環境保全に対する取組みが先行する欧州の先進国はもとより、米国や日本をはじめとするアジア諸国においても、水素リッチガスをエネルギ源とする燃料電池の実用化に向けての取組みが活発化している。   In recent years, coupled with measures to prevent global warming, the departure of energy from crude oil dependence has become an important issue on a global scale, and not only developed countries in Europe, where efforts for environmental conservation are ahead, but also the United States and Japan. Even in Asian countries, efforts to put fuel cells that use hydrogen-rich gas as an energy source into practical use have become active.

燃料電池の燃料として使用される水素リッチガスの製造方法についても多くの研究が進められているが、現時点で最も安価で実現性の高い製造方法は、原料として天然ガス、LPG、灯油、ガソリン、メタノール、ジメチルエーテルなどを使用し、これらを改質して水素リッチな改質ガスを製造する方法である。   Much research has been conducted on a method for producing a hydrogen-rich gas used as a fuel for a fuel cell. At present, the most inexpensive and highly feasible production methods are natural gas, LPG, kerosene, gasoline, methanol as raw materials. In this method, hydrogen-rich reformed gas is produced by reforming these using dimethyl ether or the like.

ただし、上記方法を採用した場合、改質工程で一酸化炭素(CO)が副生するため、水素リッチな改質ガス中には相当量のCOが混入してくる。このCOは、燃料電池を被毒し、発電効率を低下させることから、その除去法についても幾つかの研究が行なわれており、例えば、選択的酸化触媒を用いたCO除去法(選択的酸化触媒法)や、吸着剤を用いたCO除去法(吸着法)が検討されている。   However, when the above method is adopted, carbon monoxide (CO) is by-produced in the reforming step, so that a considerable amount of CO is mixed in the hydrogen-rich reformed gas. Since this CO poisons the fuel cell and lowers the power generation efficiency, several studies have been conducted on its removal method. For example, a CO removal method using a selective oxidation catalyst (selective oxidation). Catalytic methods) and CO removal methods (adsorption methods) using adsorbents are being studied.

選択酸化触媒法は、主に定置形燃料電池(家庭用燃料電池を含む)に対して開発が進められている技術であり、改質ガスに空気または酸素を添加し触媒を用いて改質ガス中のCOガスを選択的に酸化しCOにして除去することでCOを除去し、燃料電池に対するCOの被毒を防止する技術である。常圧プロセスであること、比較的高い空塔速度(SV)で使用できることにより装置のコンパクト化が可能なことが本技術の特徴であるが、以下の課題を抱えている。 The selective oxidation catalyst method is a technology that is being developed mainly for stationary fuel cells (including household fuel cells), and reformed gas using a catalyst by adding air or oxygen to the reformed gas. This is a technique for removing CO by selectively oxidizing and removing it as CO 2 to prevent poisoning of the fuel cell by CO. The feature of the present technology is that it is a normal pressure process and that the apparatus can be made compact by being able to be used at a relatively high superficial velocity (SV), but has the following problems.

すなわち、(1)改質ガス中のCO濃度を十分に低下させるためには、過剰の空気または酸素を導入する必要があるが、余剰の空気または酸素により燃料電池の燃料となるべき水素の一部が酸化され、水素収率が低下してしまうこと、(2)また、選択酸化触媒反応は発熱反応であるため、触媒層の入口ガス組成の変化など条件変化に対応して反応温度を一定に維持することが難しく、反応温度が上がりすぎた場合には触媒の劣化を招くこと、(3)さらに、触媒として白金(Pt)などの貴金属を担持させた触媒が使用されるため触媒コストが高いこと、等の問題を有している。   That is, (1) In order to sufficiently reduce the CO concentration in the reformed gas, it is necessary to introduce excess air or oxygen. (2) Since the selective oxidation catalytic reaction is an exothermic reaction, the reaction temperature remains constant in response to changes in conditions such as changes in the inlet gas composition of the catalyst layer. It is difficult to maintain the reaction temperature, and if the reaction temperature rises too much, the catalyst will be deteriorated. (3) Furthermore, a catalyst carrying a noble metal such as platinum (Pt) is used as the catalyst. There are problems such as high.

一方、吸着法として、本願発明者らは、特許文献1において、COを選択的に吸着するCO吸着剤を用いて改質ガス中のCOを吸着除去し、CO吸着後のCO吸着剤にカロリーガスを通じてCO吸着剤の再生を行う燃料電池用水素ガスの製法を提案した。   On the other hand, as an adsorption method, the inventors of the present application disclosed in Patent Document 1 by adsorbing and removing CO in the reformed gas using a CO adsorbent that selectively adsorbs CO, and calories are added to the CO adsorbent after CO adsorption. A method of producing hydrogen gas for fuel cells that regenerates CO adsorbent through gas was proposed.

しかしながら、吸着法によりCOを除去する方式では、酸化触媒法に比べて多量の触媒を要し、被処理ガスのSV値を大きくとることが難しいため、必然的に装置サイズが大きくなってしまうという課題を有する。特に、家庭用の燃料電池システムなど設置面積が制約される燃料電池システムに対しては装置サイズのコンパクト化が重要な開発課題である。   However, the method of removing CO by the adsorption method requires a larger amount of catalyst than the oxidation catalyst method, and it is difficult to increase the SV value of the gas to be treated. Has a problem. In particular, for a fuel cell system whose installation area is restricted, such as a household fuel cell system, downsizing of the device size is an important development issue.

また、燃料電池では、いかにランニングコストを下げて発電できるかが本格的普及に向けての大きな課題であり、エネルギ効率のさらなる向上が求められている。
特開2006−164662号公報(特許請求の範囲など)
In addition, in fuel cells, how to reduce the running cost and generate power is a major issue for full-scale dissemination, and further improvement in energy efficiency is required.
JP 2006-164661 A (Claims etc.)

そこで本発明の目的は、従来より高いエネルギ効率での運転を可能としつつ、CO除去装置のコンパクト化を実現しうる燃料電池システムを提供することにある。   Accordingly, an object of the present invention is to provide a fuel cell system capable of realizing a compact CO removal device while enabling operation with higher energy efficiency than conventional ones.

請求項1に記載の発明は、原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスで反応させて発電する燃料電池とを備えた燃料電池システムであって、前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、いずれか1塔にて前記CO吸着除去操作を行いつつ、別の少なくとも1塔にて前記燃料電池のスタックオフガスを再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該別の少なくとも1塔からの再生オフガスを前記改質器の燃料として用いるいっぽう、残りの塔にて原料ガスを冷却用ガスとして流通させて、前記加熱・再生操作時に高温になったCO吸着剤の冷却操作を行うとともに、当該残りの塔からの冷却オフガスを前記改質器用の原料ガスとして用いるように構成したことを特徴とする燃料電池システムである。   The invention described in claim 1 includes a reformed gas production apparatus having a reformer that reforms a raw material gas to obtain a hydrogen-rich reformed gas, and adsorbs and removes CO from the reformed gas to remove the CO removed gas. A fuel cell system comprising a CO removing device to be obtained and a fuel cell that generates electricity by reacting the CO removing gas supplied to the stack with an oxygen-containing gas, the CO removing device being filled with a CO adsorbent It consists of at least three CO adsorption towers, and while performing the CO adsorption removal operation in any one tower, the stack off gas of the fuel cell is circulated as a regeneration gas in at least one other tower, thereby The heating / regeneration operation is performed, and the regeneration offgas from at least one other tower is used as the fuel for the reformer. On the other hand, the raw material gas is circulated as a cooling gas in the remaining tower, and the heating is performed. It performs cooling operation CO adsorbent heated to a high temperature during the regenerating operation, a fuel cell system characterized by being configured to use the cooling off from the rest of the column as the raw material gas in the reformer.

請求項2に記載の発明は、前記別の少なくとも1塔に流通させる再生用ガスとして、前記燃料電池のスタックオフガスに加えて前記残りの塔に流通させる原料ガスの一部を用いるように構成した請求項1に記載の燃料電池システムである。   The invention described in claim 2 is configured such that a part of the raw material gas to be circulated to the remaining tower is used in addition to the stack-off gas of the fuel cell as the regeneration gas to be circulated to the at least one other tower. The fuel cell system according to claim 1.

請求項3に記載の発明は、前記別の少なくとも1塔からの再生オフガスの一部を、熱交換器にて昇温し、当該別の少なくとも1塔の再生用ガスとして循環使用するように構成した請求項1または2に記載の燃料電池システムである。   The invention according to claim 3 is configured such that a part of the regeneration off-gas from the at least one other tower is heated in a heat exchanger and circulated and used as a regeneration gas for the at least one other tower. The fuel cell system according to claim 1 or 2.

請求項4に記載の発明は、前記加熱・再生操作を減圧下にて行うように構成した請求項1または2に記載の燃料電池システムである。   A fourth aspect of the present invention is the fuel cell system according to the first or second aspect, wherein the heating / regeneration operation is performed under reduced pressure.

請求項5に記載の発明は、原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスで反応させて発電する燃料電池とを備えた燃料電池システムであって、前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、いずれか1塔にて前記CO吸着除去操作を行いつつ、別の少なくとも1塔にて前記燃料電池のスタックオフガスを再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該別の少なくとも1塔からの再生オフガスを前記改質器の燃料として用いるいっぽう、前記CO除去ガスを、残りの塔に冷却用ガスとして流通させて、前記加熱・再生時に高温になったCO吸着剤の冷却操作を行った後に、前記燃料電池のスタックに供給するように構成したことを特徴とする燃料電池システムである。   According to a fifth aspect of the present invention, there is provided a reformed gas production apparatus having a reformer for reforming a raw material gas to obtain a hydrogen-rich reformed gas, and removing CO from the reformed gas by adsorbing and removing CO. A fuel cell system comprising a CO removing device to be obtained and a fuel cell that generates electricity by reacting the CO removing gas supplied to the stack with an oxygen-containing gas, the CO removing device being filled with a CO adsorbent It consists of at least three CO adsorption towers, and while performing the CO adsorption removal operation in any one tower, the stack off gas of the fuel cell is circulated as a regeneration gas in at least one other tower, thereby While performing the heating / regeneration operation and using the regenerated off-gas from at least one other tower as fuel for the reformer, the CO removal gas is circulated as a cooling gas to the remaining tower, After the cooling operation of CO adsorbent heated to a high temperature during the serial heating and regeneration, a fuel cell system characterized by being configured to supply to the stack of the fuel cell.

請求項6に記載の発明は、原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスと反応させて発電する燃料電池とを備えた燃料電池システムであって、前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、いずれか1塔にて前記CO吸着除去操作を行いつつ、別の少なくとも1塔にて前記燃料電池のスタックオフガスを冷却用ガスとして流通させて、後記加熱・再生時に高温になったCO吸着剤の冷却操作を行い、当該別の少なくとも1塔からの冷却オフガスを、残りの塔に再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該残りの塔からの再生オフガスを前記改質器の燃料として用いるよう構成したことを特徴とする燃料電池システムである。   The invention described in claim 6 is a reformed gas production apparatus having a reformer that reforms a raw material gas to obtain a hydrogen-rich reformed gas, and adsorbs and removes CO from the reformed gas, A fuel cell system comprising a CO removal device to be obtained and a fuel cell that generates electricity by reacting the CO removal gas supplied to the stack with an oxygen-containing gas, the CO removal device being filled with a CO adsorbent It comprises at least three CO adsorption towers, and while performing the CO adsorption removal operation in any one tower, the fuel cell stack-off gas is circulated as a cooling gas in another tower, A cooling operation of the CO adsorbent that has become hot during regeneration is performed, and the cooling off-gas from at least one other tower is circulated as a regeneration gas to the remaining tower to perform heating and regeneration operations of the CO adsorbent. It is a fuel cell system characterized by being configured so as to use the play off-gas from the rest of the tower as a fuel for the reformer.

請求項7に記載の発明は、前記CO吸着剤の加熱・再生操作時に、前記改質器からのバーナオフガスが持つ熱量を利用して、吸着塔を外部加熱する請求項1〜6のいずれか1項に記載の燃料電池システムである。   The invention according to claim 7 is the heating apparatus according to any one of claims 1 to 6, wherein the adsorption tower is externally heated by using the amount of heat of the burner off gas from the reformer during the heating / regeneration operation of the CO adsorbent. 2. A fuel cell system according to item 1.

請求項8に記載の発明は、前記吸着塔を外部加熱するための加熱媒体が、水蒸気または温水である請求項7に記載の燃料電池システムである。   The invention according to claim 8 is the fuel cell system according to claim 7, wherein a heating medium for externally heating the adsorption tower is steam or warm water.

請求項9に記載の発明は、前記改質ガスを、前記CO吸着剤の加熱・再生操作を行っている吸着塔の外部加熱に用いた後に、前記CO吸着除去操作を行っている吸着塔に流通させる請求項1〜6のいずれか1項に記載の燃料電池システムである。   The invention according to claim 9 is directed to the adsorption tower that performs the CO adsorption removal operation after the reformed gas is used for external heating of the adsorption tower that performs the heating / regeneration operation of the CO adsorbent. It is a fuel cell system of any one of Claims 1-6 to distribute | circulate.

請求項10に記載の発明は、前記改質ガス製造装置が、以下の(a)〜(e)のいずれかの装置である請求項1〜9のいずれか1項に記載の燃料電池システムである。
(a)原料ガスを水蒸気で改質して水素リッチな改質ガスを得る水蒸気改質器
(b)原料ガスを水蒸気で改質して水素含有ガスを得る水蒸気改質器と、この水素含有ガスを変成させて水素リッチな改質ガスを得る変成器との組み合わせからなる装置
(c)原料ガスを部分酸化により改質して水素リッチな改質ガスを得る部分酸化改質器
(d)原料ガスを部分酸化により改質させると同時に水蒸気で改質して水素リッチな改質ガスを得る部分酸化・水蒸気改質器
(e)原料ガスを水蒸気で改質して水素含有ガスを得る水蒸気改質器と、この水素含有ガスを流通させて水素濃度を高めて水素リッチな改質ガスを得るセラミックフィルタ等の粗製分離膜との組み合わせからなる装置
The invention according to claim 10 is the fuel cell system according to any one of claims 1 to 9, wherein the reformed gas manufacturing apparatus is any one of the following (a) to (e). is there.
(A) A steam reformer that reforms the source gas with steam to obtain a hydrogen-rich reformed gas (b) A steam reformer that reforms the source gas with steam to obtain a hydrogen-containing gas, and the hydrogen-containing reformer (C) Partial oxidation reformer which obtains hydrogen-rich reformed gas by reforming raw material gas by partial oxidation (d) Partial oxidation / steam reformer that reforms source gas by partial oxidation and simultaneously reforms with steam to obtain hydrogen-rich reformed gas (e) Steam that reforms source gas with steam to obtain hydrogen-containing gas An apparatus composed of a combination of a reformer and a rough separation membrane such as a ceramic filter for obtaining a hydrogen-rich reformed gas by circulating the hydrogen-containing gas to increase the hydrogen concentration

請求項11に記載の発明は、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1〜10のいずれか1項に記載の燃料電池システムである。   The invention according to claim 11 is characterized in that the CO adsorbent is applied to one or more kinds of carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene-based resin, with copper (I) halide and / or halogen. The fuel cell system according to any one of claims 1 to 10, which is a material supporting copper (II) chloride or a reduction treatment of the material.

本発明によれば、CO除去装置を、CO吸着剤を充填した3塔以上のCO吸着塔で構成するとともに、いずれかの塔でCO吸着除去操作を行いつつ、他の塔で、燃料電池のスタックオフガス、改質用原料ガス等を用いてCO吸着剤の加熱・再生操作および再生後の冷却操作を並行して行うことで、燃料電池のスタックオフガスの顕熱等を有効活用して従来よりエネルギ効率の高い運転を可能としつつ、CO吸着剤の加熱・再生操作および冷却操作に要する時間の短縮が図れ、流通ガスのSV値を大きく設定することが可能となり、トータルとして必要なCO吸着剤量を従来より大幅に低減できる結果、CO除去装置のコンパクト化が実現できる。   According to the present invention, the CO removal device is composed of three or more CO adsorption towers packed with a CO adsorbent, and the CO adsorption removal operation is performed in one of the towers while the fuel cell is removed in another tower. By using the stack off gas, reforming source gas, etc., the CO adsorbent heating / regeneration operation and the cooling operation after regeneration are performed in parallel to effectively utilize the sensible heat of the stack off gas of the fuel cell. While enabling high energy efficiency operation, the time required for CO adsorbent heating / regeneration operation and cooling operation can be shortened, and the SV value of the circulating gas can be set large. As a result that the amount can be significantly reduced as compared with the conventional case, the CO removal device can be made compact.

以下、本発明の実施の形態について図1〜8のフロー図を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the flowcharts of FIGS.

〔実施形態1〕
本発明に係る燃料電池システムの実施形態の一例を図1のフロー図に示す。同図において、符号1は改質用原料ガスを改質して水素リッチな改質ガスを得る改質装置1、符号2は前記改質ガスからCOを吸着除去しCO除去ガスを得るCO吸着剤を充填したCO除去装置2、符号3は前記CO除去ガスをエネルギ源(燃料)として発電する燃料電池4をそれぞれ示す。以下、装置ごとにさらに詳細に説明を行う。
Embodiment 1
An example of an embodiment of a fuel cell system according to the present invention is shown in the flowchart of FIG. In the figure, reference numeral 1 is a reformer 1 for reforming a reforming raw material gas to obtain a hydrogen-rich reformed gas, and reference numeral 2 is a CO adsorption for removing CO from the reformed gas to obtain a CO removal gas. A CO removing device 2 filled with an agent, and a reference numeral 3 denote a fuel cell 4 that generates electric power using the CO removing gas as an energy source (fuel). Hereinafter, it demonstrates in detail for every apparatus.

(改質装置)
本発明に係る改質装置1としては、例えば通常用いられる水蒸気改質器1aと変成器1bとを組み合わせて構成すればよい。改質器1aにて例えば都市ガスなど、天然ガス等の炭化水素を含有する原料ガスを水蒸気で改質してHおよびCOを主成分とするガスとした後、変成器1bにてこのガスにさらに水蒸気を添加して変成しHを主成分とする(水素リッチな)改質ガスBを生成する。この改質ガスB中には、Hの他、少量のCO、CH、HOなどとともに、0.5%程度のCOが残留している。なお、後工程のCO除去装置2においては低温ほど吸着反応が促進されることから、改質装置1とCO除去装置2との間に高温の改質ガスBを冷却するための熱交換器(図示せず)を設けるのが望ましい。
(Reformer)
The reformer 1 according to the present invention may be configured by combining, for example, a steam reformer 1a and a transformer 1b that are normally used. After reforming the raw material gas containing hydrocarbons such as natural gas such as city gas with steam in the reformer 1a to make the gas mainly composed of H 2 and CO, this gas is transformed in the transformer 1b. Further, water vapor is added to the modified gas to produce a reformed gas B containing H 2 as a main component (hydrogen-rich). In the reformed gas B, about 0.5% CO remains in addition to H 2 and a small amount of CO 2 , CH 4 , H 2 O, and the like. In addition, since the adsorption reaction is promoted at a lower temperature in the CO removal apparatus 2 in the subsequent process, a heat exchanger (the heat exchanger for cooling the high-temperature reformed gas B between the reformer 1 and the CO removal apparatus 2). It is desirable to provide a device (not shown).

(CO除去装置)
本発明のCO除去装置2としては、例えば図1に示すように、CO吸着剤を充填したCO吸着塔3塔(2a,2b,2c)からなる構成を採用すればよい。以下、各塔における操作について順を追って説明を行う。
(CO removal device)
As the CO removal apparatus 2 of the present invention, for example, as shown in FIG. 1, a configuration comprising three CO adsorption towers (2a, 2b, 2c) filled with a CO adsorbent may be employed. Hereinafter, the operation in each tower will be described in order.

[CO吸着除去操作]:改質ガスBをいずれか1塔(本例では2a)を通過させ、改質ガスB中のCOを選択的に吸着除去し、CO除去ガスCとする。CO吸着剤としては、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものが好適に用いられ、なかでもアルミナ担体に塩化銅(I)を担持した材料はCOに対する選択性が高く推奨される。このようなハロゲン化銅を担持させたCO吸着剤は、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤に比べ数倍〜数十倍のCO吸着容量を有するため、CO吸着塔を大幅に小型化できる。     [CO adsorption removal operation]: The reformed gas B is allowed to pass through any one column (2a in this example), and CO in the reformed gas B is selectively adsorbed and removed to obtain a CO removed gas C. As the CO adsorbent, copper (I) halide and / or copper (II) halide was supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. A material or a material obtained by subjecting this material to reduction treatment is preferably used. Among them, a material in which copper (I) chloride is supported on an alumina support is highly recommended for CO. Such a CO adsorbent carrying copper halide has a CO adsorption capacity several to several tens of times that of conventional adsorbents such as zeolite molecular sieves, carbon molecular sieves, activated carbon, or activated alumina. The adsorption tower can be greatly reduced in size.

[加熱・再生操作]:CO吸着除去操作に用いられていた別のCO吸着塔(本例では2b)については、CO吸着剤の吸着性能を維持するために、CO吸着容量を超えてCO吸着塔2bの出口側からCOが漏れ出てくる前にCO吸着剤を再生する必要がある。CO吸着剤の再生は、吸着サイトに吸着したCOを脱離洗浄するため、COを実質的に含まないガスを流通させつつ行う。また、COの脱離反応は温度が高いほど促進されるため、CO吸着剤は40〜150℃に加熱した状態で再生(洗浄)を行うことが望ましい。このような条件を満足させるため、上記再生用ガスとして用いるCOを実質的に含まないガスとして、燃料電池3のスタックオフガスDの全部または一部を使用すればよい。燃料電池3のスタックオフガスDは、燃料電池のスタック運転時の温度が80℃程度と高いため、このガスDの持つ熱量を利用することでCO吸着剤の再生効率の向上が図れる。さらに、スタックオフガスDは、例えば熱交換器4にて改質器1a加熱用バーナの燃焼オフガスと熱交換し、スタックオフガス温度を100〜200℃に高めてから用いることにより、CO吸着塔2bを外部からヒータ等で加熱し再生する場合と比較してCO吸着剤の再生が効率的かつ短時間に行える。そして、この塔2bからの再生オフガスEを改質器1a加熱用燃料として用いる。再生オフガスE中には、燃料電池3のスタックから未反応(未燃)のまま排出された水素と、CO吸着剤から脱離したCOが含有されているので、これらのガス成分の燃焼熱を回収して有効利用でき、改質器1aに外部から供給する加熱用燃料の使用量を低減できる。なお、加熱・再生操作時における再生用ガスのSV値を高めてCO吸着剤の再生所要時間をさらに短縮するとともに、再生オフガスEの燃焼カロリを調整する目的で、後述の冷却操作時に冷却用ガスとしてCO吸着塔2cに供給する原料ガスAの一部A1をスタックオフガスDに添加してもよい。この場合、原料ガスAの一部A1は常温でスタックオフガスDに添加されるので、熱交換器4を用いるときは、その上流側で添加し、熱交換器4で加熱してからCO吸着塔2bに導入するようにするとよい。     [Heating / regeneration operation]: For another CO adsorption tower (2b in this example) used for the CO adsorption removal operation, the CO adsorption capacity exceeded the CO adsorption capacity in order to maintain the adsorption performance of the CO adsorbent. Before the CO leaks from the outlet side of the tower 2b, it is necessary to regenerate the CO adsorbent. The regeneration of the CO adsorbent is performed while circulating a gas substantially free of CO in order to desorb and wash the CO adsorbed at the adsorption site. Further, since the CO desorption reaction is promoted as the temperature increases, it is desirable that the CO adsorbent be regenerated (washed) in a state heated to 40 to 150 ° C. In order to satisfy such conditions, all or part of the stack-off gas D of the fuel cell 3 may be used as a gas that does not substantially contain CO used as the regeneration gas. Since the stack-off gas D of the fuel cell 3 has a high temperature at the time of stack operation of the fuel cell of about 80 ° C., the CO adsorbent regeneration efficiency can be improved by using the heat quantity of the gas D. Further, the stack off gas D is used after, for example, heat exchange with the combustion off gas of the reformer 1a heating burner in the heat exchanger 4 to increase the stack off gas temperature to 100 to 200 ° C. The CO adsorbent can be regenerated efficiently and in a short period of time compared to the case of regenerating by heating with a heater or the like from the outside. Then, the regeneration offgas E from the tower 2b is used as fuel for heating the reformer 1a. Since the regenerated off-gas E contains unreacted (unburned) hydrogen discharged from the fuel cell 3 stack and CO desorbed from the CO adsorbent, the combustion heat of these gas components is reduced. It can be recovered and used effectively, and the amount of heating fuel supplied from the outside to the reformer 1a can be reduced. In order to further reduce the time required for regeneration of the CO adsorbent by increasing the SV value of the regeneration gas during the heating / regeneration operation and to adjust the combustion calorie of the regeneration offgas E, the cooling gas is used during the cooling operation described later. A part A1 of the raw material gas A supplied to the CO adsorption tower 2c may be added to the stack off gas D. In this case, since part A1 of the raw material gas A is added to the stack-off gas D at room temperature, when using the heat exchanger 4, it is added upstream of the heat exchanger 4 and heated by the heat exchanger 4 before the CO adsorption tower. It is good to introduce into 2b.

[冷却操作]:さらに、加熱・再生操作が終了した残りのCO吸着塔(本例では2c)については、次のCO吸着除去操作に備えるため、例えば常温の原料ガスAを流通させて、加熱・再生操作時に高温になったCO吸着剤を冷却する。原料ガスAとしては、上述の都市ガスの他、天然ガス、プロパンガス、COGなど炭化水素成分を主体とするガス状の原料を用いることができる。この場合も、冷却水などを用いてCO吸着塔2c外部よりCO吸着剤を冷却する場合と比較して、CO吸着剤の冷却が効率的かつ短時間に行える。そして、この塔2cからの冷却オフガスFを改質器1a用の原料ガスとして用いる。これにより加熱・再生操作時に高温になったCO吸着剤の顕熱を回収して有効利用でき、改質器1aに外部から供給する加熱用燃料の消費量をさらに低減できる。   [Cooling operation]: Further, for the remaining CO adsorption tower (2c in this example) after the heating / regeneration operation, in order to prepare for the next CO adsorption removal operation, for example, the raw material gas A at normal temperature is circulated and heated. -Cool the CO adsorbent that has become hot during the regeneration operation. As the source gas A, in addition to the city gas described above, a gaseous source mainly composed of hydrocarbon components such as natural gas, propane gas, and COG can be used. Also in this case, the CO adsorbent can be cooled more efficiently and in a shorter time than when the CO adsorbent is cooled from the outside of the CO adsorption tower 2c using cooling water or the like. The cooling off gas F from the tower 2c is used as a raw material gas for the reformer 1a. As a result, the sensible heat of the CO adsorbent that has become high during the heating / regeneration operation can be recovered and effectively used, and the consumption of the heating fuel supplied from the outside to the reformer 1a can be further reduced.

(燃料電池)
各CO吸着塔につき、上記CO吸着除去操作、加熱・再生操作および冷却操作をサイクリックに切り替えて運転することにより、いずれかのCO吸着塔は必ずCO吸着除去操作の状態にすることができることから、CO除去装置1から連続的に水素リッチなCO除去ガスCが燃料電池3のスタックに供給できる。そして、燃料電池3のスタックにて、この水素リッチなCO除去ガスCを、別途導入した空気、酸素などの酸素含有ガスで反応させて発電を行う。これにより、COによる燃料電池の被毒を防止しつつ、連続して長期に安定した発電を行うことができる。
(Fuel cell)
Since each CO adsorption tower is operated by cyclically switching the above CO adsorption removal operation, heating / regeneration operation, and cooling operation, any one of the CO adsorption towers can always be in the state of the CO adsorption removal operation. The CO-removing gas C rich in hydrogen can be continuously supplied from the CO removing device 1 to the stack of the fuel cells 3. Then, in the stack of the fuel cell 3, the hydrogen-rich CO removal gas C is reacted with an oxygen-containing gas such as air or oxygen introduced separately to generate power. Thereby, it is possible to continuously generate power stably for a long time while preventing poisoning of the fuel cell by CO.

以上のように、いずれか1塔にてCO吸着除去操作を行いつつ、他の塔にてCO吸着剤の加熱・再生操作および冷却操作を並行して行うため、CO吸着剤の加熱・再生および冷却に要する時間の大幅な短縮が図れ、流通ガスのSV値を大きく設定することが可能となり、CO除去装置1全体として必要なCO吸着剤量を従来より大幅に低減でき、CO除去装置1のコンパクト化が実現できる。   As described above, since the CO adsorbent removal operation is performed in one of the towers, and the CO adsorbent heating / regeneration operation and the cooling operation are performed in parallel in the other towers, The time required for cooling can be greatly shortened, the SV value of the circulating gas can be set large, and the amount of CO adsorbent required for the CO removal device 1 as a whole can be greatly reduced compared to the conventional case. Compact size can be realized.

以下、別の実施形態について説明を行うが、上記実施形態1と共通する部分については説明を省略し、異なる部分についてのみ詳細に説明を行うこととする。   Hereinafter, although another embodiment will be described, description of parts common to the first embodiment will be omitted, and only different parts will be described in detail.

〔実施形態2〕
上記実施形態1では、再生用ガスのSV値を高めるために、スタックオフガスDに原料ガスAの一部A1を添加する例を示したが、原料ガスAの一部A1を添加する代わりに、図2に示すように、CO吸着塔2bからの再生オフガスEの一部E1をスタックオフガスDのラインに循環し、熱交換器4にて昇温して使用するようにしてもよい。なお、上記実施形態1では、スタックオフガスDに原料ガスAの一部A1を添加することは、改質器1a用の加熱用燃料として用いる再生オフガスEの燃焼カロリを調整する目的も兼ねたものであるが、この目的のためには、本実施形態においては、同図に示すように、例えば、上記循環ラインより下流側で原料ガスAの一部A1を添加するようにすればよい。
[Embodiment 2]
In the first embodiment, an example in which a part A1 of the source gas A is added to the stack-off gas D in order to increase the SV value of the regeneration gas has been shown, but instead of adding a part A1 of the source gas A, As shown in FIG. 2, a part E1 of the regeneration offgas E from the CO adsorption tower 2b may be circulated to the stack offgas D line, and the temperature may be raised in the heat exchanger 4 for use. In the first embodiment, the addition of a part A1 of the raw material gas A to the stack off gas D also serves to adjust the combustion calorie of the regenerated off gas E used as a heating fuel for the reformer 1a. However, for this purpose, in this embodiment, as shown in the figure, for example, a part A1 of the source gas A may be added downstream from the circulation line.

〔実施形態3〕
図3に示すように、上記実施形態1(図1)において、加熱・再生操作に従事させるCO吸着塔2bの上流側に絞り弁5、下流側に真空ポンプ5をそれぞれ設置しておき、真空ポンプ6にてCO吸着塔2b内を減圧しながら、スタックオフガスDを絞り弁5にて減圧しつつ塔2bに流通させるように構成してもよい。減圧下で高温の再生ガスを流すことで、CO吸着剤からのCOの脱着がさらに促進され、より効率的なCO吸着剤の再生が可能となる。
[Embodiment 3]
As shown in FIG. 3, in Embodiment 1 (FIG. 1), a throttle valve 5 is installed upstream of the CO adsorption tower 2b engaged in the heating / regeneration operation, and a vacuum pump 5 is installed on the downstream side. You may comprise so that the stack off gas D may be distribute | circulated to the tower 2b, decompressing with the throttle valve 5, reducing the inside of the CO adsorption tower 2b with the pump 6. FIG. By flowing a high-temperature regeneration gas under reduced pressure, the desorption of CO from the CO adsorbent is further promoted, and more efficient regeneration of the CO adsorbent becomes possible.

〔実施形態4〕
上記実施形態1〜3では、CO吸着剤の冷却操作のための冷却用ガスとして原料ガスAを用いる例を示したが、図4に示すように、CO吸着除去後のCO除去ガスCを冷却用ガスとして用いてもよい。CO除去ガスC(すなわち、COを除去した改質ガスB)は、CHを主成分とする都市ガスを原料ガスAとして用いる場合、原料ガスAに比べて約5倍の流量を有していることから、上記実施形態1〜3に比べ冷却用ガスのSV値を大きくでき、CO吸着剤の冷却効率をさらに高めることができる。
[Embodiment 4]
In the first to third embodiments, the example in which the raw material gas A is used as the cooling gas for the cooling operation of the CO adsorbent is shown. However, as shown in FIG. 4, the CO removal gas C after the CO adsorption removal is cooled. It may be used as a working gas. The CO removal gas C (that is, the reformed gas B from which CO has been removed) has a flow rate about five times that of the raw material gas A when the city gas mainly containing CH 4 is used as the raw material gas A. Therefore, the SV value of the cooling gas can be increased as compared with the first to third embodiments, and the cooling efficiency of the CO adsorbent can be further increased.

〔実施形態5〕
上記実施形態1〜4では、CO吸着剤の冷却操作に用いる冷却用ガスとして原料ガスAを用いる例を示したが、図5に示すように、燃料電池3のスタックオフガスDを用いることも可能である。スタックオフガスDは原料ガスAの3倍程度のガス量があるため、より効率的にCO吸着剤の冷却が可能であり、また加熱・再生操作の間にCO吸着剤が完全に再生されていなくとも、冷却操作の際に多量のスタックオフガスDを流通させることでCO吸着剤の完全な再生が可能になる。なお、スタックオフガスDは燃料電池3のスタック出口では50〜80℃程度の温度を有しているため、CO吸着剤の冷却操作に用いる際は熱交換器4’などを使用して常温付近まで温度を下げてから用いることが望ましい。冷却操作に用いた後のスタックオフガスD(冷却オフガスF)は、例えば熱交換器4を使用して加熱した後に、加熱・再生操作を行っている吸着塔2bに導入することで再生用ガスとして利用することができる。さらに再生用ガスとして使用した後のスタックオフガスD(再生オフガスE)は改質器1a用の加熱用燃料として利用することが可能である。
[Embodiment 5]
In the first to fourth embodiments, the example in which the raw material gas A is used as the cooling gas used for the cooling operation of the CO adsorbent has been shown, but the stack off gas D of the fuel cell 3 can also be used as shown in FIG. It is. Since the stack off gas D has about three times as much gas as the source gas A, the CO adsorbent can be cooled more efficiently, and the CO adsorbent is not completely regenerated during the heating / regeneration operation. In both cases, the CO adsorbent can be completely regenerated by circulating a large amount of the stack off gas D during the cooling operation. Since the stack off gas D has a temperature of about 50 to 80 ° C. at the stack outlet of the fuel cell 3, when used for the cooling operation of the CO adsorbent, the heat exchanger 4 ′ or the like is used to reach the room temperature. It is desirable to use after lowering the temperature. The stack off gas D (cooling off gas F) after being used for the cooling operation is heated using, for example, the heat exchanger 4, and then introduced into the adsorption tower 2b where the heating / regeneration operation is performed, thereby serving as a regeneration gas. Can be used. Further, the stack off gas D (regeneration off gas E) after being used as the regeneration gas can be used as a heating fuel for the reformer 1a.

〔実施形態6〕
上記実施形態1〜5では、CO吸着剤の加熱・再生操作は、上記別のCO吸着塔2bにスタックオフガスDなどの高温ガスを流通させ、その顕熱を利用してCO吸着剤を加熱しつつ再生を行う例を示したが、高温ガスを流通させると同時に、吸着塔2bを外部から加熱(以下「外部加熱」という。)するようにしてもよい。これにより、CO吸着剤をより迅速に再生温度まで昇温できるので、さらに効率的にCO吸着剤の再生を行うことができる。外部加熱を行う際の熱量としては、例えば、図6および7に例示するように、改質器1aの加熱用バーナ7のオフガス(以下「バーナオフガス」という。)Gの熱量を有効に利用できる。
[Embodiment 6]
In the first to fifth embodiments, the CO adsorbent is heated and regenerated by circulating a high-temperature gas such as the stack-off gas D through the other CO adsorption tower 2b and heating the CO adsorbent using the sensible heat. Although the example of performing the regeneration is shown, the adsorption tower 2b may be heated from the outside (hereinafter referred to as “external heating”) at the same time as circulating the high-temperature gas. Thereby, the temperature of the CO adsorbent can be raised to the regeneration temperature more rapidly, so that the CO adsorbent can be regenerated more efficiently. As the amount of heat at the time of external heating, for example, as illustrated in FIGS. 6 and 7, the amount of heat of the off-gas (hereinafter referred to as “burner off-gas”) G of the heating burner 7 of the reformer 1a can be effectively used. .

図6は、改質器1aからのバーナオフガスGの熱量を用いて水蒸気(スチーム)Hを製造し、この水蒸気Hを加熱媒体として、ジャケット8を備えたCO吸着塔2bの該ジャケット8に導入し、CO吸着塔2bを外部加熱する一例を示したものである。水蒸気Hを加熱媒体として用いることで、高温のガスを加熱媒体として用いる場合に比較して、水蒸気から水への凝縮潜熱を利用できるため、格段に少ないガス量でCO吸着剤を加熱することができ、加熱効率を高くすることができる。CO吸着塔2bから排出される凝縮水Jは、同図に示すように、改質器1aにおける改質用水蒸気の原料として有効利用することが可能である。   FIG. 6 shows the production of water vapor (steam) H using the amount of heat of the burner off gas G from the reformer 1a, and this water vapor H is introduced into the jacket 8 of the CO adsorption tower 2b equipped with the jacket 8 as a heating medium. In addition, an example in which the CO adsorption tower 2b is externally heated is shown. By using the water vapor H as a heating medium, it is possible to use the latent heat of condensation from water vapor to water as compared with the case where a high-temperature gas is used as the heating medium, so that it is possible to heat the CO adsorbent with a significantly smaller amount of gas. And heating efficiency can be increased. As shown in the figure, the condensed water J discharged from the CO adsorption tower 2b can be effectively used as a raw material for reforming steam in the reformer 1a.

また、図7は、改質器1aからのバーナオフガスGの熱量を用いて例えば70〜95℃程度の温水Kを製造し、この温水Kを加熱媒体として、ジャケット8を備えたCO吸着塔2bの当該ジャケット8に導入し、CO吸着塔2bを外部加熱する一例を示したものである。温水Kを加熱媒体として用いることで、高温のガスを加熱媒体として用いる場合と比較して、単位容積流量あたりの加熱媒体の熱量を大きくすることができるため、やはり格段に少ない流量でCO吸着剤の加熱を行うことが可能となり、加熱効率を高くすることができる。CO吸着塔2bから排出された温水Lは、例えば図示しない給湯器に貯めて家庭で使用するお湯として再利用することができる。もちろん、温水Lはその一部を改質器1aの改質用水蒸気の原料として使用することも可能である。   FIG. 7 shows the production of hot water K of, for example, about 70 to 95 ° C. using the calorie of the burner off gas G from the reformer 1a, and the CO adsorption tower 2b equipped with the jacket 8 using this hot water K as a heating medium. Is an example in which the CO adsorption tower 2b is externally heated. By using the hot water K as the heating medium, the amount of heat of the heating medium per unit volume flow rate can be increased compared with the case where a high-temperature gas is used as the heating medium. Thus, it is possible to increase the heating efficiency. The hot water L discharged from the CO adsorption tower 2b can be reused, for example, as hot water stored in a water heater (not shown) and used at home. Of course, a part of the hot water L can be used as a raw material for steam for reforming in the reformer 1a.

また上記のような、ジャケット8を備えたCO吸着塔2a〜2cを使用する場合、冷却操作および吸着操作時には、ジャケット8へは、上記スチームや温水に代えて、冷却水を流通させつつ、CO吸着剤の冷却およびCOガスの吸着を行うことが可能である。これにより、冷却操作時には、冷却ガスのみで冷却する場合と比較して、より効率的な冷却が可能となる。また、吸着操作時には、CO吸着反応に伴う発熱によるCO吸着剤の温度上昇を確実に防止することができるので、CO吸着反応をより促進させることができる。   Further, when the CO adsorption towers 2a to 2c provided with the jacket 8 as described above are used, the cooling water and the hot water are circulated to the jacket 8 during the cooling operation and the adsorption operation, while the cooling water is circulated. It is possible to cool the adsorbent and adsorb the CO gas. Thereby, at the time of cooling operation, compared with the case where it cools only with cooling gas, more efficient cooling is attained. In addition, during the adsorption operation, the temperature increase of the CO adsorbent due to the heat generated by the CO adsorption reaction can be surely prevented, so that the CO adsorption reaction can be further promoted.

〔実施形態7〕
上記実施形態6では加熱・再生操作を行っているCO吸着塔2bの外部加熱の熱媒体としてスチームや高温のお湯を用いる例を示したが、図8に示すように、高温の改質ガスBを、CO吸着除去操作を行っているCO吸着塔2aに導入する前に、加熱・再生操作を行っているCO吸着塔2bの外部加熱用の熱媒体として用いることも可能である。このように外部加熱用の熱媒体として用いることで高温の改質ガスB自体は冷却されて低温化され、この低温の改質ガスB’が、CO吸着除去操作を行っているCO吸着塔2aに供給されるので、CO吸着除去操作がより促進される。
[Embodiment 7]
In the sixth embodiment, steam or high-temperature hot water is used as the heat medium for external heating of the CO adsorption tower 2b performing the heating / regeneration operation. However, as shown in FIG. Can be used as a heat medium for external heating of the CO adsorption tower 2b that is performing the heating / regeneration operation before being introduced into the CO adsorption tower 2a that is performing the CO adsorption removal operation. As described above, the high-temperature reformed gas B itself is cooled and cooled down by using it as a heat medium for external heating, and this low-temperature reformed gas B ′ is subjected to CO adsorption removal operation. Therefore, the CO adsorption removal operation is further promoted.

(変形例)
CO吸着剤を用いたCO吸着装置のサイズを小さくするためには、CO吸着除去、加熱・再生、冷却の各操作の時間をできるだけ短く設定しサイクルタイムを短くすることが有効である。これら3操作のうち、加熱・再生操作および冷却操作は、CO吸着剤の昇温および冷却に時間がかかるため、サイクルタイムを短縮しようとする際の律速となる。そして、加熱・再生操作は再生用ガスを高温に設定することで時間短縮が可能であるが、冷却操作は最も時間がかかる操作である。上記実施形態1〜7では、CO除去装置1として3塔のCO吸着塔で構成し、各1塔にてCO吸着除去、加熱・再生および冷却の各操作をそれぞれ行う例を示したが、上記サイクルタイムをさらに短縮するために、4塔以上のCO吸着塔で構成し、上記各操作を行う塔数を変更してもよい。例えば、4塔で構成する場合、上記実施形態1〜7と同じく、1塔でCO吸着除去操作、別の1塔で加熱・再生操作をそれぞれ行うが、残りの2塔で冷却操作を行うようにすればよい。また、例えば、5塔で構成する場合、上記実施例1〜7と同じく、1塔でCO吸着除去操作を行うが、別の2塔で加熱・再生操作、残りの2塔で冷却操作をそれぞれ行うようにすればよい。2塔以上で加熱・再生操作(または冷却操作)を行う場合、例えば、これらの塔それぞれに並列に再生用ガス(または冷却用ガス)を流通させてもよいし、これらの塔を直列に接続して再生用ガス(または冷却用ガス)を1パスで流通させてもよい。
(Modification)
In order to reduce the size of the CO adsorbing apparatus using the CO adsorbent, it is effective to set the time for each operation of CO adsorption removal, heating / regeneration, and cooling as short as possible to shorten the cycle time. Of these three operations, the heating / regeneration operation and the cooling operation take time to increase the temperature and cooling of the CO adsorbent, and are therefore rate limiting when attempting to shorten the cycle time. The heating / regeneration operation can be shortened by setting the regeneration gas to a high temperature, but the cooling operation is the most time-consuming operation. In the first to seventh embodiments, the CO removing device 1 is configured by three CO adsorption towers, and each of the CO adsorption removal, heating / regeneration, and cooling operations is performed in each one tower. In order to further shorten the cycle time, it is possible to change the number of towers to be configured by four or more CO adsorption towers and perform the above operations. For example, in the case of four towers, as in the first to seventh embodiments, the CO adsorption removal operation is performed in one tower and the heating / regeneration operation is performed in another tower, but the cooling operation is performed in the remaining two towers. You can do it. For example, in the case of five towers, the CO adsorption removal operation is performed in one tower as in Examples 1 to 7, but the heating / regeneration operation is performed in another two towers, and the cooling operation is performed in the remaining two towers. You just have to do it. When heating / regeneration operation (or cooling operation) is performed in two or more towers, for example, regeneration gas (or cooling gas) may be circulated in parallel to each of these towers, or these towers are connected in series. Then, the regeneration gas (or cooling gas) may be circulated in one pass.

上記実施形態1〜7(図1〜8)において、改質装置1とCO除去装置2との間に、改質ガスB中のHOを除去する除湿装置を設けてもよい。除湿装置としては、改質ガスBを冷却してドレイン水として除去する機器や吸着式の除湿器が使用できる。吸着式の除湿器を用いる場合、吸着剤としてはアルミナ系もしくはシリカ系の吸着剤を用いることができ、さらにはこれらを併用して用いることもできる。これにより燃料電池3のスタックに導入されるCO除去ガスCの水素濃度が高まり、発電効率がさらに向上する。 In the first to seventh embodiments (FIGS. 1 to 8), a dehumidifier that removes H 2 O in the reformed gas B may be provided between the reformer 1 and the CO remover 2. As the dehumidifier, an apparatus that cools the reformed gas B and removes it as drain water or an adsorption dehumidifier can be used. When using an adsorption-type dehumidifier, an alumina-based or silica-based adsorbent can be used as the adsorbent, and these can be used in combination. Thereby, the hydrogen concentration of the CO removal gas C introduced into the stack of the fuel cell 3 is increased, and the power generation efficiency is further improved.

また、上記実施形態1〜7では、改質装置1として改質器1aと変成器1bの組み合わせを例示したが、変成器1bに代えてセラミックフィルタ等の粗製分離膜を用いてもよい。すなわち、上記実施形態では、改質装置として原料ガスを水蒸気で改質した後に変成して水素リッチな改質ガスを得る装置構成を例示したが、水蒸気で改質した後にセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めて水素リッチな改質ガスを得る装置構成も当然に適用できる。   In the first to seventh embodiments, a combination of the reformer 1a and the transformer 1b is illustrated as the reformer 1. However, a crude separation membrane such as a ceramic filter may be used instead of the transformer 1b. That is, in the above embodiment, the reformer is exemplified by a device configuration in which the raw material gas is reformed after being reformed with steam to obtain a hydrogen-rich reformed gas. An apparatus configuration in which a hydrogen-rich reformed gas is obtained by increasing the hydrogen concentration by circulating the membrane can be naturally applied.

さらには、CO吸着剤のCO吸着性能によっては、変成器1bを省略して改質器1aのみのプロセスも成立しうる。すなわち、改質装置として、水蒸気で改質しただけで改質ガスを得るようにした、水蒸気改質器のみからなる装置構成も適用可能である。変成器1bを省略した場合、改質ガスB中のH生成量は減少するもののCO生成量も減少するため、CO除去後の改質ガス(CO除去ガス)Cの水素純度が上昇し、燃料電池3の効率が向上する。また、貴金属触媒が用いられる変成器1bが省略されることで、機器コストが安価になるというメリットもある。さらには水蒸気改質に代えて部分酸化を用いて改質ガスを得るようにした、部分酸化改質器のみからなる装置構成、あるいは部分酸化により改質させると同時に水蒸気で改質して改質ガスを得るようにした、部分酸化・水蒸気改質器のみからなる装置構成も適用しうるものである。 Furthermore, depending on the CO adsorption performance of the CO adsorbent, a process using only the reformer 1a without the transformer 1b may be established. That is, as a reformer, an apparatus configuration composed only of a steam reformer that can obtain a reformed gas only by reforming with steam is also applicable. When the transformer 1b is omitted, the amount of H 2 produced in the reformed gas B is reduced, but the amount of CO 2 produced is also reduced, so that the hydrogen purity of the reformed gas (CO removed gas) C after CO removal increases. The efficiency of the fuel cell 3 is improved. Moreover, there is also an advantage that the equipment cost is reduced by omitting the transformer 1b using the noble metal catalyst. Furthermore, instead of steam reforming, partial oxidation is used to obtain a reformed gas, or a device configuration consisting of only a partial oxidation reformer, or reforming by partial oxidation and reforming by steam at the same time An apparatus configuration consisting only of a partial oxidation / steam reformer that is adapted to obtain gas can also be applied.

本発明の効果を確認するため、3塔のCO吸着塔からなるCO除去装置を用いて、上記実施形態1の構成からなるCO除去装置の運転を模擬する試験を行った。試験条件を表1に示す。CO吸着塔に充填したCO吸着剤としては、塩化銅(I)担持アルミナを用いた。なお、加熱・再生操作および冷却操作では、高温の再生用ガスおよび低温(常温)の冷却用ガスをそれぞれ用いるとともに、ヒータによる外部加熱および水冷による外部冷却をそれぞれ併用した。

Figure 0005053029
In order to confirm the effect of the present invention, a test for simulating the operation of the CO removal apparatus having the configuration of the first embodiment was performed using a CO removal apparatus including three CO adsorption towers. Table 1 shows the test conditions. As the CO adsorbent packed in the CO adsorption tower, copper (I) chloride-supported alumina was used. In the heating / regeneration operation and the cooling operation, a high-temperature regeneration gas and a low-temperature (room temperature) cooling gas were used, respectively, and external heating by a heater and external cooling by water cooling were used in combination.
Figure 0005053029

図9にCO除去後の模擬改質ガス(CO除去ガス)中のCO濃度の経時変化を示す。定置形燃料電池に供給する水素リッチガス中のCO濃度は10ppm以下とする必要があるが、同図から明らかなように、本発明に係るCO吸着装置の構成を採用することで1ppm以下の非常に低いCO濃度で燃料電池スタックに燃料を供給できることを確認した。   FIG. 9 shows the change over time in the CO concentration in the simulated reformed gas (CO removal gas) after CO removal. The CO concentration in the hydrogen-rich gas supplied to the stationary fuel cell needs to be 10 ppm or less. As is clear from the figure, by adopting the configuration of the CO adsorbing device according to the present invention, the CO concentration is very low, 1 ppm or less. It was confirmed that fuel could be supplied to the fuel cell stack with a low CO concentration.

また、比較例として2塔のCO吸着塔からなるCO除去装置を用い、1塔でCO吸着除去操作、他の1塔で加熱・再生操作および冷却操作を並行して行い、これらの操作をサイクリックに切り替えて運転する試験を行った。試験条件は、加熱・再生操作および冷却操作については上記実施例(表1)と同じとし、CO吸着除去操作については、吸着温度および模擬改質ガス組成は上記実施例(表1)と同じとしたが、CO吸着除去操作のサイクルタイムは加熱・再生操作および冷却操作のサイクルタイムの合計時間である20分とし、CO吸着除去操作時のGHSVはCO除去ガス中のCO濃度が上記実施例と同様の1ppm以下になるように設定した。   In addition, as a comparative example, a CO removal apparatus composed of two CO adsorption towers is used, and CO adsorption removal operation is performed in one tower, heating / regeneration operation and cooling operation are performed in parallel in the other tower, and these operations are performed simultaneously. A test of driving by switching to a click was conducted. The test conditions are the same for the heating / regeneration operation and cooling operation as in the above example (Table 1), and for the CO adsorption removal operation, the adsorption temperature and the simulated reformed gas composition are the same as in the above example (Table 1). However, the cycle time of the CO adsorption removal operation is set to 20 minutes, which is the total cycle time of the heating / regeneration operation and the cooling operation, and the GHSV at the time of the CO adsorption removal operation has a CO concentration in the CO removal gas of the above example. It set so that it might become the same 1 ppm or less.

表2に、上記実施例および比較例それぞれにおける、CO吸着除去操作時のGHSVおよび必要CO吸着剤量を比較して示す。同表より明らかなように、実施例では比較例に比べ、CO吸着除去操作時のGHSVを大幅に高くできる結果、必要CO吸着剤量が37%低減できることを確認した。

Figure 0005053029
Table 2 shows a comparison of GHSV and required amount of CO adsorbent during the CO adsorption removal operation in each of the above Examples and Comparative Examples. As is clear from the table, in the example, as compared with the comparative example, it was confirmed that the required CO adsorbent amount can be reduced by 37% as a result of significantly increasing the GHSV during the CO adsorption removal operation.
Figure 0005053029

実施形態1に係る燃料電池システムの構成を示すフロー図である。1 is a flowchart showing a configuration of a fuel cell system according to Embodiment 1. FIG. 実施形態2に係る燃料電池システムの構成を示すフロー図である。FIG. 5 is a flowchart showing a configuration of a fuel cell system according to Embodiment 2. 実施形態3に係る燃料電池システムの構成を示すフロー図である。It is a flowchart which shows the structure of the fuel cell system which concerns on Embodiment 3. 実施形態4に係る燃料電池システムの構成を示すフロー図である。FIG. 6 is a flowchart showing a configuration of a fuel cell system according to Embodiment 4. 実施形態5に係る燃料電池システムの構成を示すフロー図である。FIG. 9 is a flowchart showing a configuration of a fuel cell system according to Embodiment 5. 実施形態6に係る燃料電池システムの構成を示すフロー図である。FIG. 10 is a flowchart showing a configuration of a fuel cell system according to Embodiment 6. 実施形態6に係る燃料電池システムの別の構成を示すフロー図である。FIG. 10 is a flowchart showing another configuration of the fuel cell system according to Embodiment 6. 実施形態7係る燃料電池システムの構成を示すフロー図である。It is a flowchart which shows the structure of the fuel cell system which concerns on Embodiment 7. 実施例におけるCO吸着除去後の改質ガス中のCO濃度の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of CO density | concentration in the reformed gas after CO adsorption removal in an Example.

符号の説明Explanation of symbols

1…改質装置
1a…改質器
1b…変成器
2…CO除去装置
2a,2b,2c…CO吸着塔
3…燃料電池
4,4’…熱交換器
5…絞り弁
6…真空ポンプ
7…加熱用バーナ
8…ジャケット
A…原料ガス
B…改質ガス
B’…低温の改質ガス
C…CO除去ガス
D…スタックオフガス
E…再生オフガス
F…冷却オフガス
G…バーナオフガス
H…水蒸気
J…凝縮水
K,L…温水
DESCRIPTION OF SYMBOLS 1 ... Reformer 1a ... Reformer 1b ... Transformer 2 ... CO removal apparatus 2a, 2b, 2c ... CO adsorption tower 3 ... Fuel cell 4, 4 '... Heat exchanger 5 ... Throttle valve 6 ... Vacuum pump 7 ... Burner 8 for heating ... Jacket A ... Raw material gas B ... Reformed gas B '... Low temperature reformed gas C ... CO removal gas D ... Stack off gas E ... Regeneration off gas F ... Cooling off gas G ... Burner off gas H ... Steam J ... Condensation Water K, L ... warm water

Claims (11)

原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスと反応させて発電する燃料電池とを備えた燃料電池システムであって、
前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、
いずれか1塔にて前記CO吸着除去操作を行いつつ、
別の少なくとも1塔にて前記燃料電池のスタックオフガスを再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該別の少なくとも1塔からの再生オフガスを前記改質器の燃料として用いるいっぽう、
残りの塔にて原料ガスを冷却用ガスとして流通させて、前記加熱・再生操作時に高温になったCO吸着剤の冷却操作を行うとともに、当該残りの塔からの冷却オフガスを前記改質器用の原料ガスとして用いるように構成したことを特徴とする燃料電池システム。
A reformed gas production apparatus having a reformer that reforms a raw material gas to obtain a hydrogen-rich reformed gas, a CO removal apparatus that absorbs and removes CO from the reformed gas to obtain a CO removed gas, and supplies the stack A fuel cell system comprising: a fuel cell that generates electricity by reacting the CO-removed gas with an oxygen-containing gas,
The CO removal device comprises at least three CO adsorption towers filled with a CO adsorbent;
While performing the CO adsorption removal operation in any one tower,
In another at least one tower, the stack off gas of the fuel cell is circulated as a regeneration gas to perform heating / regeneration operation of the CO adsorbent, and the regeneration off gas from the at least one other tower is used as a fuel for the reformer. I use it as
The raw material gas is circulated as a cooling gas in the remaining tower, the CO adsorbent that has become hot during the heating / regeneration operation is cooled, and the cooling off-gas from the remaining tower is used for the reformer. A fuel cell system configured to be used as a source gas.
前記別の少なくとも1塔に流通させる再生用ガスとして、前記燃料電池のスタックオフガスに加えて前記残りの塔に流通させる原料ガスの一部を用いるように構成した請求項1に記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein a part of the raw material gas to be circulated to the remaining tower is used in addition to the stack off gas of the fuel cell as the regeneration gas to be circulated to the at least one other tower. . 前記別の少なくとも1塔からの再生オフガスの一部を、熱交換器にて昇温し、当該別の少なくとも1塔の再生用ガスとして循環使用するように構成した請求項1または2に記載の燃料電池システム。   3. The configuration according to claim 1, wherein a part of the regeneration off-gas from the at least one other tower is heated in a heat exchanger and circulated as a regeneration gas for the at least one other tower. Fuel cell system. 前記加熱・再生操作を減圧下にて行うように構成した請求項1または2に記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein the heating / regeneration operation is performed under reduced pressure. 原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスで反応させて発電する燃料電池とを備えた燃料電池システムであって、
前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、
いずれか1塔にて前記CO吸着除去操作を行いつつ、
別の少なくとも1塔にて前記燃料電池のスタックオフガスを再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該別の少なくとも1塔からの再生オフガスを前記改質器の燃料として用いるいっぽう、
前記CO除去ガスを、残りの塔に冷却用ガスとして流通させて、前記加熱・再生時に高温になったCO吸着剤の冷却操作を行った後に、前記燃料電池のスタックに供給するように構成したことを特徴とする燃料電池システム。
A reformed gas production apparatus having a reformer that reforms a raw material gas to obtain a hydrogen-rich reformed gas, a CO removal apparatus that absorbs and removes CO from the reformed gas to obtain a CO removed gas, and supplies the stack A fuel cell system comprising a fuel cell that generates electric power by reacting the CO-removed gas with an oxygen-containing gas,
The CO removal device comprises at least three CO adsorption towers filled with a CO adsorbent;
While performing the CO adsorption removal operation in any one tower,
In another at least one tower, the stack off gas of the fuel cell is circulated as a regeneration gas to perform heating / regeneration operation of the CO adsorbent, and the regeneration off gas from the at least one other tower is used as a fuel for the reformer. I use it as
The CO removal gas is circulated as a cooling gas in the remaining towers, and after cooling operation of the CO adsorbent that has become hot during the heating / regeneration, it is supplied to the fuel cell stack. A fuel cell system.
原料ガスを改質して水素リッチな改質ガスを得る改質器を有する改質ガス製造装置と、前記改質ガスからCOを吸着除去しCO除去ガスを得るCO除去装置と、スタックに供給された前記CO除去ガスを酸素含有ガスと反応させて発電する燃料電池とを備えた燃料電池システムであって、
前記CO除去装置が、CO吸着剤を充填した少なくとも3塔のCO吸着塔からなり、
いずれか1塔にて前記CO吸着除去操作を行いつつ、
別の少なくとも1塔にて前記燃料電池のスタックオフガスを冷却用ガスとして流通させて、後記加熱・再生時に高温になったCO吸着剤の冷却操作を行い、
当該別の少なくとも1塔からの冷却オフガスを、加熱した後に、残りの塔に再生用ガスとして流通させてCO吸着剤の加熱・再生操作を行うとともに、当該残りの塔からの再生オフガスを前記改質器の燃料として用いるよう構成したことを特徴とする燃料電池システム。
A reformed gas production apparatus having a reformer that reforms a raw material gas to obtain a hydrogen-rich reformed gas, a CO removal apparatus that absorbs and removes CO from the reformed gas to obtain a CO removed gas, and supplies the stack A fuel cell system comprising: a fuel cell that generates electricity by reacting the CO-removed gas with an oxygen-containing gas,
The CO removal device comprises at least three CO adsorption towers filled with a CO adsorbent;
While performing the CO adsorption removal operation in any one tower,
In another at least one tower, the stack off gas of the fuel cell is circulated as a cooling gas, and the CO adsorbent that has become hot during heating and regeneration described below is cooled,
After heating the cooling off-gas from at least one other tower, it is circulated as a regeneration gas to the remaining tower to perform heating / regeneration operation of the CO adsorbent, and the regeneration off-gas from the remaining tower is changed to the modified tower. A fuel cell system configured to be used as a fuel for a mass device.
前記CO吸着剤の加熱・再生操作時に、前記改質器からのバーナオフガスが持つ熱量を利用して、吸着塔を外部加熱する請求項1〜6のいずれか1項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 6, wherein the adsorption tower is externally heated by using the amount of heat of the burner off gas from the reformer during the heating / regeneration operation of the CO adsorbent. 前記吸着塔を外部加熱するための加熱媒体が、水蒸気または温水である請求項7に記載の燃料電池システム。   The fuel cell system according to claim 7, wherein a heating medium for externally heating the adsorption tower is steam or warm water. 前記改質ガスを、前記CO吸着剤の加熱・再生操作を行っている吸着塔の外部加熱に用いた後に、前記CO吸着除去操作を行っている吸着塔に流通させる請求項1〜6のいずれか1項に記載の燃料電池システム。   7. The reformed gas is used for external heating of an adsorption tower performing heating / regeneration operation of the CO adsorbent, and then circulated through the adsorption tower performing CO adsorption removal operation. The fuel cell system according to claim 1. 前記改質ガス製造装置が、以下の(a)〜(e)のいずれかの装置である請求項1〜9のいずれか1項に記載の燃料電池システム。
(a)原料ガスを水蒸気で改質して水素リッチな改質ガスを得る水蒸気改質器のみからなる装置
(b)原料ガスを水蒸気で改質して水素含有ガスを得る水蒸気改質器と、この水素含有ガスを変成させて水素リッチな改質ガスを得る変成器との組み合わせからなる装置
(c)原料ガスを部分酸化により改質して水素リッチな改質ガスを得る部分酸化改質器のみからなる装置
(d)原料ガスを部分酸化により改質させると同時に水蒸気で改質して水素リッチな改質ガスを得る部分酸化・水蒸気改質器のみからなる装置
(e)原料ガスを水蒸気で改質して水素含有ガスを得る水蒸気改質器と、この水素含有ガスを流通させて水素濃度を高めて水素リッチな改質ガスを得るセラミックフィルタ等の粗製分離膜との組み合わせからなる装置
The fuel cell system according to any one of claims 1 to 9, wherein the reformed gas production apparatus is any one of the following apparatuses (a) to (e).
(A) An apparatus consisting only of a steam reformer that reforms a source gas with steam to obtain a hydrogen-rich reformed gas (b) A steam reformer that reforms a source gas with steam to obtain a hydrogen-containing gas (C) Partial oxidation reforming to obtain hydrogen-rich reformed gas by reforming the raw material gas by partial oxidation (D) An apparatus consisting only of a partial oxidation / steam reformer that reforms a raw material gas by partial oxidation and simultaneously reforms it with steam to obtain a hydrogen-rich reformed gas (e) A combination of a steam reformer that obtains a hydrogen-containing gas by reforming with steam and a crude separation membrane such as a ceramic filter that obtains a hydrogen-rich reformed gas by circulating the hydrogen-containing gas to increase the hydrogen concentration apparatus
前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1〜10のいずれか1項に記載の燃料電池システム。   The CO adsorbent has copper (I) halide and / or copper (II) halide supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. The fuel cell system according to any one of claims 1 to 10, which is a material or a material obtained by reducing the material.
JP2007268235A 2006-10-16 2007-10-15 Fuel cell system Active JP5053029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268235A JP5053029B2 (en) 2006-10-16 2007-10-15 Fuel cell system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006281649 2006-10-16
JP2006281649 2006-10-16
JP2007107507 2007-04-16
JP2007107507 2007-04-16
JP2007268235A JP5053029B2 (en) 2006-10-16 2007-10-15 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2008288187A JP2008288187A (en) 2008-11-27
JP5053029B2 true JP5053029B2 (en) 2012-10-17

Family

ID=40147691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268235A Active JP5053029B2 (en) 2006-10-16 2007-10-15 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5053029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507136B2 (en) 2009-03-27 2013-08-13 Panasonic Corporation Fuel cell system
US8758950B2 (en) 2009-05-12 2014-06-24 Panasonic Corporation Fuel cell system
KR20110127709A (en) * 2009-05-12 2011-11-25 파나소닉 주식회사 Fuel cell system
WO2023212843A1 (en) * 2022-05-05 2023-11-09 大连大学 Device for selectively removing co and use method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900570B2 (en) * 1996-12-06 2007-04-04 石川島播磨重工業株式会社 CO reduction device for phosphoric acid fuel cell
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas
JP2007091498A (en) * 2005-09-27 2007-04-12 Kobe Steel Ltd Method of producing hydrogen

Also Published As

Publication number Publication date
JP2008288187A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US7524344B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
CN100571846C (en) Based on the puncture detection of temperature and pressure swing adsorption system and the fuel processing system that comprises it
JP2008528423A (en) Syngas production method with low carbon dioxide emission
JP2006342014A (en) Method for producing high purity hydrogen
JP2002201005A (en) Removing carbon monoxide/water in feeding gas to fuel cell
JP5743215B2 (en) Helium gas purification method and purification apparatus
JP5053029B2 (en) Fuel cell system
JP3985006B2 (en) High purity hydrogen production method
JP3947752B2 (en) High purity hydrogen production method
JP2011167629A (en) Method and apparatus for separating hydrogen gas
US20040179998A1 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP2007091498A (en) Method of producing hydrogen
WO2006132040A1 (en) Process for producing high-purity hydrogen
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP2004256328A (en) Apparatus and method for refining hydrogen gas
JP2012031050A (en) Method and apparatus for purifying helium gas
JP5745434B2 (en) Argon gas purification method and purification apparatus
JP2012162444A (en) Refining method and refining apparatus of helium gas
TW201136654A (en) Purifying method and purifying apparatus for argon gas
JP2011173769A (en) Method and apparatus for purifying argon gas
JP5357465B2 (en) High purity hydrogen production method
JP4819349B2 (en) Production of hydrogen gas for fuel cells
JP5270215B2 (en) Fuel cell system
JP5276300B2 (en) Method for producing hydrogen gas for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5053029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3