JP3900570B2 - CO reduction device for phosphoric acid fuel cell - Google Patents

CO reduction device for phosphoric acid fuel cell Download PDF

Info

Publication number
JP3900570B2
JP3900570B2 JP32666196A JP32666196A JP3900570B2 JP 3900570 B2 JP3900570 B2 JP 3900570B2 JP 32666196 A JP32666196 A JP 32666196A JP 32666196 A JP32666196 A JP 32666196A JP 3900570 B2 JP3900570 B2 JP 3900570B2
Authority
JP
Japan
Prior art keywords
reformed gas
flow path
reformed
cooling
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32666196A
Other languages
Japanese (ja)
Other versions
JPH10172597A (en
Inventor
行貴 濱田
意 武井
晴彦 足立
俊哉 大村
真志 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP32666196A priority Critical patent/JP3900570B2/en
Publication of JPH10172597A publication Critical patent/JPH10172597A/en
Application granted granted Critical
Publication of JP3900570B2 publication Critical patent/JP3900570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、りん酸型燃料電池に供給する改質ガス中のCOを削減するりん酸型燃料電池用CO削減装置に関する。
【0002】
【従来の技術】
りん酸型燃料電池は天然ガスなどに水蒸気を加え改質器で触媒を用いて高温下で水素を含む改質ガスとし、COコンバータでCOを削減してアノードに供給して化学反応により電気を発生する。
【0003】
図4は従来の改質ガスよりCOを削減する装置を示す図である。水蒸気を添加された燃料ガスは改質器1で水素を主体としCO(一酸化炭素)を含む改質ガスとなる。改質ガスは700℃前後の高温であるため熱交換器2によりCOを除去するのに適した温度、例えば200℃程度に冷却され、COコンバータ3でCOを除去されて、燃料電池4のアノードに供給される。
【0004】
改質器1は改質室と燃焼室より構成され、改質室には改質用触媒が充填されており、燃焼室には未燃焼成分を含む燃料電池4のアノード排ガス等が供給され、高温で燃焼し燃料ガスと水蒸気とを加熱して改質に適した温度とする。熱交換器2は冷却ガスまたは冷却水により改質器1で発生した改質ガスを冷却する。冷却ガスとしては改質器1に入る前の燃料ガスが使われ、冷却水としては電池冷却水が使われる。COコンバータ3にはCO除去触媒が充填されており、次の式によりCOをCOに変換する。
【0005】
CH+HO→CO+3H…(1)
CO+HO→CO+H…(2)
【0006】
(1)式は燃料ガスの主成分のメタンガスが、添加された水蒸気と反応して改質室で水素ガスとCOになることを示し、(2)式はCOコンバータ3での反応式でこの反応をシフト反応と呼んでいる。(2)式は平衡式を表し、例えばCOを0.5%に削減するには210℃前後の温度領域が必要となる。このため熱交換器2で改質器1で発生した高温の改質ガスを冷却する。
【0007】
【発明が解決しようとする課題】
改質ガス中にCOが含まれると燃料電池のアノード電極は被毒され劣化する。このため熱交換器2やCOコンバータ3が用いられているが、これらはかなりの大きさを有し、広い設置面積が必要となる。
【0008】
本発明は、上述の問題点に鑑みてなされたもので、熱交換器とCOコンバータを一体にして小型化することを目的とする。
【0009】
【0010】
【0011】
【0012】
【0013】
【課題を解決するための手段】
上記目的を達成するため請求項の発明は、改質器で改質した水素を含む改質ガスを冷却し改質ガスに含まれるCOを削減してりん酸型燃料電池に供給するりん酸型燃料電池用CO削減装置において、改質ガス流路とこの改質ガス流路に接して設けられた冷却ガス流路とから構成した熱交換器と、この熱交換器の冷却ガス流路をバイパスするバイパスラインとを備え、改質ガス流路にはCO除去触媒充填され、改質ガスと冷却ガスとを対向する流れとしており、前記冷却ガス流路は、前記改質ガス流路の出側から所定範囲の隣接部分に位置し伝熱促進剤が充填された伝熱促進剤充填領域と、前記改質ガス流路に隣接し且つ前記伝熱促進剤充填領域よりも冷却ガスの上流側に位置し伝熱促進剤が充填されていない伝熱促進剤非充填領域を有する
【0014】
【0015】
【発明の実施の形態】
以下、参考例及び本発明の実施の形態について図面を参照して説明する。図1は第1参考例を示し、(A)は熱交換器型CO削減装置、(B)は温度分布を示す図である。熱交換器型CO削減装置10は改質ガス流路11と、この改質ガス流路11に接して設けられた冷却ガス流路12から構成される。改質ガス流路11には(2)式で示したシフト反応によりCOをCOに変換させる反応を促進するCO除去触媒が充填されている。冷却ガス流路12には改質ガス流路11からの熱を冷却ガスに効率よく伝達する伝熱促進材が充填されている。伝熱促進材としてはアルミニウムを小さな球状にしたアルミボールが用いられる。改質ガス流路11と冷却ガス流路12とは並行して配置されており、改質ガスと冷却ガスの流れの向きは互いに対向するようにする。つまり冷却ガスの入側に改質ガスの出側が配置され、冷却ガスの出側に改質ガスの入側が配置されている。
【0016】
図1(B)は改質ガス流路11内を流れる改質ガスの温度分布aと、冷却ガス流路12内を流れる冷却ガスの温度分布bの一例を示す。横軸の距離は(A)に示す改質ガス流路11および冷却ガス流路12の長さを表す。冷却ガスの入側温度は115℃で改質ガスより熱伝達されて昇温し出側で350℃となって排出される。改質ガスは改質器1より360℃で供給され、冷却ガスにより冷却されながら(2)式に示すシフト反応を行い、出側ではCOが0.5%程度まで削減される230℃まで冷却されて排出される。
【0017】
第1参考例では熱交換器の高温流路にCO除去触媒を充填して改質ガスのCO除去を促進し、冷却ガス流路にアルミナボールを充填して熱伝達率を向上させているので、熱交換器とCOコンバータを一体化でき、かつ熱伝達の向上により熱交換に必要な流路を短くできるので、装置がコンパクトになり、設置面積も小さくすることができる。
【0018】
図2は第2参考例を示し、(A)は熱交換器型CO削減装置と補助CO削減装置、(B)は温度分布を示す。本実施形態は第1実施形態の性能を改良したもので、(2)式のシフト反応が活発になる温度、つまり200℃程度の温度に改質ガスをさらす期間を長くしている。このため熱交換器型CO削減装置10の改質ガス流路11の出側に補助CO削減装置13設けている。また、冷却ガス流路12にはバイパスライン14を設け、流量制御弁15により冷却ガスの流量を調整し改質ガス流路11の改質ガスの温度を改質ガスの流量に応じて調整し、改質ガスの温度分布を(2)式で示すシフト反応に適切なものにする。
【0019】
改質ガス流路11と冷却ガス流路12の構造は第1参考例と同様であり、補助CO削減装置13は改質ガスの流路にCO除去触媒を充填したものである。第2参考例は形の上では図4に示した従来例と同じとなるが、冷却ガス流路12にアルミナボールを充填して熱伝達率を大きくしているので、熱交換器型CO削減装置10は従来の熱交換器よりも小さくなっている。また補助CO削減装置13は改質ガス流路11でかなりシフト反応が行われCOの除去も行われているので、従来のCOコンバータよりもかなり小さくなっている。
【0020】
図2(B)は改質ガス流路11の温度分布aと冷却ガス流路12の温度分布bおよび補助CO削減装置13の温度分布aを示す。横軸の距離は(A)に示す改質ガス流路11の長さ、冷却ガス流路12の長さ、および補助CO削減装置13の長さを表す。改質ガス流路11の温度分布aと冷却ガス流路12の温度分布bは第1参考例の場合とほぼ同じであるが、補助CO削減装置13の温度分布aは200℃近傍のほぼ一定値であり、(2)式に示すシフト反応が活発に行われ、COがほぼ0.5%程度まで削減される。
【0021】
図3は本発明の実施形態を示し、(A)は熱交換器型CO削減装置、(B)は温度分布を示す。本実施形態は第2参考例を改良したもので、第2参考例の熱交換器型CO削減装置10と補助CO削減装置13とを一体化しこれを熱交換器型CO削減装置10としたものである。改質ガス流路11にはCO除去触媒が充填されている。冷却ガス流路12には出側より、隣接して流れる改質ガスの温度が200℃程度に冷却される位置までアルミナボールが充填されている。その位置より入側までは空間で冷却ガスが流れるだけである。冷却ガス流路12にはバイパスライン14が設けられ、流量制御弁15により改質ガスの流量に応じて冷却ガスの流量を調整し、改質ガスの温度分布を(2)式のシフト反応を促進するようにする。また改質ガスと冷却ガスの流れ方向は互いに対向するようにする。
【0022】
図3(B)は改質ガス流路11の温度分布aと冷却ガス流路12の温度分布bの一例を示す。横軸の距離は(A)に示す改質ガス流路11および冷却ガス流路12の長さを表す。アルミナボールは改質ガスの温度aが入側の360℃より220℃まで冷却される位置まで出側より充填されている。また冷却ガスの温度bは入側よりアルミナボールまでは115℃であり、アルミナボールより熱伝達されて出側では350℃となっている。改質ガスは(2)式のシフト反応を促進するのに適した220℃でCO除去触媒中をCOが所定の濃度、例えば0.5%に削減される長さ流れる。
【0023】
本実施形態では、第2参考例の補助CO削減装置13を熱交換器型CO削減装置10と一体化することにより装置自体のコンパクト化および設置面積の低減を実現している。またシフト反応を促進する温度(例えば220℃)に改質ガスを保持するので、改質ガス中のCOを極めて低い濃度にすることができる。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明は、熱交換器の改質ガス流路にCO除去触媒を充填し、冷却ガス流路にアルミナボールなどの伝熱促進材を充填することにより、熱交換器とCOコンバータを一体にすることができ、装置のコンパクト化が実現され、この装置の設置面積も削減することができる。また改質ガスがシフト反応の促進する温度領域を通過する距離を長くすることにより、COを確実に削減することができる。また冷却ガス流路にバイパスラインを設けることにより改質ガスの温度を適切に設定することができる。
【図面の簡単な説明】
【図1】 第1参考例を示し、(A)は構成を示し、(B)は温度分布を示す図である。
【図2】 第2参考例を示し、(A)は構成を示し、(B)は温度分布を示す図である。
【図3】 本発明の実施形態を示し、(A)は構成を示し、(B)は温度分布を示す図である。
【図4】 従来のCO削減装置の配置を示す図である。
【符号の説明】
1 改質器
2 熱交換器
3 COコンバータ
4 燃料電池
10 熱交換器型CO削減装置
11 改質ガス流路
12 冷却ガス流路
13 補助CO削減装置
14 バイパスライン
15 流量制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CO reduction device for a phosphoric acid fuel cell that reduces CO in reformed gas supplied to the phosphoric acid fuel cell.
[0002]
[Prior art]
Phosphoric acid fuel cells add water vapor to natural gas, etc., and use a reformer as a catalyst to produce reformed gas containing hydrogen at high temperatures, reduce CO with a CO converter, supply it to the anode, and generate electricity through chemical reactions. appear.
[0003]
FIG. 4 is a view showing an apparatus for reducing CO from a conventional reformed gas. The fuel gas to which water vapor is added becomes a reformed gas mainly containing hydrogen and containing CO (carbon monoxide) in the reformer 1. Since the reformed gas has a high temperature of around 700 ° C., it is cooled to a temperature suitable for removing CO by the heat exchanger 2, for example, about 200 ° C., CO is removed by the CO converter 3, and the anode of the fuel cell 4 To be supplied.
[0004]
The reformer 1 is composed of a reforming chamber and a combustion chamber. The reforming chamber is filled with a reforming catalyst, and the anode exhaust gas of the fuel cell 4 containing unburned components is supplied to the combustion chamber. It burns at high temperature and heats the fuel gas and water vapor to a temperature suitable for reforming. The heat exchanger 2 cools the reformed gas generated in the reformer 1 with cooling gas or cooling water. The fuel gas before entering the reformer 1 is used as the cooling gas, and the battery cooling water is used as the cooling water. The CO converter 3 is filled with a CO removal catalyst, and CO is converted to CO 2 by the following equation.
[0005]
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
[0006]
Equation (1) indicates that methane gas, which is the main component of the fuel gas, reacts with the added water vapor to become hydrogen gas and CO in the reforming chamber. Equation (2) is a reaction equation in the CO converter 3 and The reaction is called a shift reaction. Equation (2) represents an equilibrium equation. For example, a temperature region around 210 ° C. is required to reduce CO to 0.5%. For this reason, the high temperature reformed gas generated in the reformer 1 is cooled by the heat exchanger 2.
[0007]
[Problems to be solved by the invention]
When CO is contained in the reformed gas, the anode electrode of the fuel cell is poisoned and deteriorates. For this reason, although the heat exchanger 2 and the CO converter 3 are used, these have a considerable size and require a large installation area.
[0008]
The present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the size by integrating a heat exchanger and a CO converter.
[0009]
[0010]
[0011]
[0012]
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is the phosphoric acid supplied to the phosphoric acid fuel cell by cooling the reformed gas containing hydrogen reformed by the reformer to reduce CO contained in the reformed gas. In the CO reduction device for a fuel cell, a heat exchanger composed of a reformed gas channel and a cooling gas channel provided in contact with the reformed gas channel, and a cooling gas channel of the heat exchanger and a bypass line for bypassing, the reformed gas flow passage is filled with CO removing catalyst, and then the flow facing the reformed gas and the cooling gas, the cooling gas flow passage, the reformed gas stream A heat transfer accelerator filling region that is located adjacent to a predetermined range from the exit side of the passage and is filled with a heat transfer accelerator, and a cooling gas that is adjacent to the reformed gas flow path and is more than the heat transfer accelerator filling region It has a heat transfer promoter non-filling region that is located upstream of the heat transfer promoter and is not filled .
[0014]
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, reference examples and embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first reference example , (A) shows a heat exchanger type CO reduction device, and (B) shows a temperature distribution. The heat exchanger type CO reduction device 10 includes a reformed gas channel 11 and a cooling gas channel 12 provided in contact with the reformed gas channel 11. The reformed gas channel 11 is filled with a CO removal catalyst that promotes the reaction of converting CO into CO 2 by the shift reaction shown in the equation (2). The cooling gas passage 12 is filled with a heat transfer promoting material that efficiently transfers heat from the reformed gas passage 11 to the cooling gas. As the heat transfer promoting material, aluminum balls made of aluminum in a small spherical shape are used. The reformed gas passage 11 and the cooling gas passage 12 are arranged in parallel, and the directions of the flow of the reformed gas and the cooling gas are opposed to each other. In other words, the reformed gas outlet side is arranged on the cooling gas inlet side, and the reformed gas inlet side is arranged on the cooling gas outlet side.
[0016]
FIG. 1B shows an example of the temperature distribution a of the reformed gas flowing in the reformed gas flow path 11 and the temperature distribution b of the cooling gas flowing in the cooling gas flow path 12. The distance on the horizontal axis represents the lengths of the reformed gas channel 11 and the cooling gas channel 12 shown in FIG. The inlet side temperature of the cooling gas is 115 ° C., the heat is transferred from the reformed gas, the temperature rises, and the outlet side becomes 350 ° C. and is discharged. The reformed gas is supplied from the reformer 1 at 360 ° C., undergoes the shift reaction shown in the formula (2) while being cooled by the cooling gas, and is cooled down to 230 ° C. where CO is reduced to about 0.5% on the outlet side. Is discharged.
[0017]
In the first reference example , the high temperature flow path of the heat exchanger is filled with a CO removal catalyst to promote CO removal of the reformed gas, and the cooling gas flow path is filled with alumina balls to improve the heat transfer rate. Since the heat exchanger and the CO converter can be integrated, and the flow path required for heat exchange can be shortened by improving heat transfer, the apparatus can be made compact and the installation area can be reduced.
[0018]
FIG. 2 shows a second reference example , (A) shows a heat exchanger type CO reduction device and auxiliary CO reduction device, and (B) shows a temperature distribution. In this embodiment, the performance of the first embodiment is improved, and the period during which the reformed gas is exposed to a temperature at which the shift reaction of the equation (2) becomes active, that is, a temperature of about 200 ° C. is extended. Therefore, an auxiliary CO reduction device 13 is provided on the outlet side of the reformed gas flow path 11 of the heat exchanger type CO reduction device 10. In addition, a bypass gas line 14 is provided in the cooling gas passage 12, and the flow rate of the cooling gas is adjusted by the flow rate control valve 15, and the temperature of the reformed gas in the reformed gas passage 11 is adjusted according to the flow rate of the reformed gas. Then, the temperature distribution of the reformed gas is made appropriate for the shift reaction represented by the equation (2).
[0019]
The structures of the reformed gas flow path 11 and the cooling gas flow path 12 are the same as those in the first reference example , and the auxiliary CO reduction device 13 is one in which the reformed gas flow path is filled with a CO removal catalyst. The second reference example is the same as the conventional example shown in FIG. 4 in terms of shape, but the heat transfer coefficient is reduced by filling the cooling gas passage 12 with alumina balls to increase the heat transfer coefficient. The device 10 is smaller than a conventional heat exchanger. Further, the auxiliary CO reduction device 13 is considerably smaller than the conventional CO converter because the shift reaction is considerably performed in the reformed gas flow path 11 and the CO is removed.
[0020]
FIG. 2B shows the temperature distribution a of the reformed gas passage 11, the temperature distribution b of the cooling gas passage 12, and the temperature distribution a of the auxiliary CO reduction device 13. The distance on the horizontal axis represents the length of the reformed gas passage 11, the length of the cooling gas passage 12, and the length of the auxiliary CO reduction device 13 shown in FIG. The temperature distribution a of the reformed gas passage 11 and the temperature distribution b of the cooling gas passage 12 are substantially the same as in the first reference example , but the temperature distribution a of the auxiliary CO reduction device 13 is substantially constant around 200 ° C. The shift reaction shown in Equation (2) is actively performed, and CO is reduced to about 0.5%.
[0021]
FIG. 3 shows an embodiment of the present invention , (A) shows a heat exchanger type CO reduction device, and (B) shows a temperature distribution. Those present embodiment in which the second reference example obtained by improving the second reference example heat exchanger type CO reduction unit 10 and the auxiliary CO reduction unit 13 and the heat exchanger type CO reduction unit 10 which integrates the It is. The reformed gas channel 11 is filled with a CO removal catalyst. The cooling gas passage 12 is filled with alumina balls from the outlet side to a position where the temperature of the reformed gas flowing adjacently is cooled to about 200 ° C. From the position to the entry side, only the cooling gas flows in the space. The cooling gas flow path 12 is provided with a bypass line 14, and the flow rate of the cooling gas is adjusted according to the flow rate of the reformed gas by the flow rate control valve 15, and the temperature distribution of the reformed gas is subjected to the shift reaction of equation (2). Try to promote. The flow directions of the reformed gas and the cooling gas are made to face each other.
[0022]
FIG. 3B shows an example of the temperature distribution a of the reformed gas passage 11 and the temperature distribution b of the cooling gas passage 12. The distance on the horizontal axis represents the lengths of the reformed gas channel 11 and the cooling gas channel 12 shown in FIG. The alumina balls are filled from the outlet side until the temperature a of the reformed gas is cooled from 360 ° C. on the inlet side to 220 ° C. The temperature b of the cooling gas is 115 ° C. from the inlet side to the alumina ball, and heat is transferred from the alumina ball to 350 ° C. on the outlet side. The reformed gas flows through the CO removal catalyst at 220 ° C. suitable for promoting the shift reaction of the formula (2) for a length that reduces CO to a predetermined concentration, for example, 0.5%.
[0023]
In the present embodiment , the auxiliary CO reduction device 13 of the second reference example is integrated with the heat exchanger type CO reduction device 10 to achieve a compact device and a reduced installation area. In addition, since the reformed gas is held at a temperature that promotes the shift reaction (for example, 220 ° C.), CO in the reformed gas can be made to have a very low concentration.
[0024]
【The invention's effect】
As is apparent from the above description, the present invention provides a heat exchanger by filling the reforming gas passage of the heat exchanger with a CO removal catalyst and filling the cooling gas passage with a heat transfer promoting material such as alumina balls. Since the exchanger and the CO converter can be integrated, the apparatus can be made compact, and the installation area of the apparatus can be reduced. Further, CO can be reliably reduced by increasing the distance that the reformed gas passes through the temperature region where the shift reaction is promoted. Further, the temperature of the reformed gas can be appropriately set by providing a bypass line in the cooling gas passage.
[Brief description of the drawings]
FIG. 1 shows a first reference example , (A) shows a configuration, and (B) shows a temperature distribution.
FIG. 2 shows a second reference example , (A) shows the configuration, and (B) shows the temperature distribution.
FIG. 3 shows an embodiment of the present invention , (A) shows the configuration, and (B) shows the temperature distribution.
FIG. 4 is a diagram showing an arrangement of a conventional CO reduction device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reformer 2 Heat exchanger 3 CO converter 4 Fuel cell 10 Heat exchanger type CO reduction apparatus 11 Reformation gas flow path 12 Cooling gas flow path 13 Auxiliary CO reduction apparatus 14 Bypass line 15 Flow control valve

Claims (1)

改質器で改質した水素を含む改質ガスを冷却し改質ガスに含まれるCOを削減してりん酸型燃料電池に供給するりん酸型燃料電池用CO削減装置において、
改質ガス流路とこの改質ガス流路に接して設けられた冷却ガス流路とから構成した熱交換器と、この熱交換器の冷却ガス流路をバイパスするバイパスラインとを備え、改質ガス流路にはCO除去触媒充填され、改質ガスと冷却ガスとを対向する流れとしており、
前記冷却ガス流路は、前記改質ガス流路の出側から所定範囲の隣接部分に位置し伝熱促進剤が充填された伝熱促進剤充填領域と、前記改質ガス流路に隣接し且つ前記伝熱促進剤充填領域よりも冷却ガスの上流側に位置し伝熱促進剤が充填されていない伝熱促進剤非充填領域を有することを特徴とするりん酸型燃料電池用CO削減装置。
In the phosphoric acid fuel cell CO reduction device for cooling the reformed gas containing hydrogen reformed by the reformer and reducing the CO contained in the reformed gas and supplying it to the phosphoric acid fuel cell,
A heat exchanger composed of a reformed gas flow path and a cooling gas flow path provided in contact with the reformed gas flow path, and a bypass line that bypasses the cooling gas flow path of the heat exchanger. The gas passage is filled with a CO removal catalyst , and the reformed gas and the cooling gas are opposed to each other.
The cooling gas flow path is located adjacent to a predetermined range from the outlet side of the reformed gas flow path, and is adjacent to the reformed gas flow path, and a heat transfer accelerator filling area filled with a heat transfer accelerator. And a CO reduction device for a phosphoric acid fuel cell, characterized by having a heat transfer promoter non-filling region that is located upstream of the cooling gas from the heat transfer promoter filling region and is not filled with a heat transfer promoter. .
JP32666196A 1996-12-06 1996-12-06 CO reduction device for phosphoric acid fuel cell Expired - Fee Related JP3900570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32666196A JP3900570B2 (en) 1996-12-06 1996-12-06 CO reduction device for phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32666196A JP3900570B2 (en) 1996-12-06 1996-12-06 CO reduction device for phosphoric acid fuel cell

Publications (2)

Publication Number Publication Date
JPH10172597A JPH10172597A (en) 1998-06-26
JP3900570B2 true JP3900570B2 (en) 2007-04-04

Family

ID=18190264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32666196A Expired - Fee Related JP3900570B2 (en) 1996-12-06 1996-12-06 CO reduction device for phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JP3900570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183350A1 (en) 2012-06-07 2013-12-12 株式会社Ihi Micro reactor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063038B2 (en) * 2006-06-15 2012-10-31 Jx日鉱日石エネルギー株式会社 CO remover temperature rising operation method
JP5053029B2 (en) * 2006-10-16 2012-10-17 株式会社神戸製鋼所 Fuel cell system
JP5339719B2 (en) * 2007-12-25 2013-11-13 京セラ株式会社 Fuel cell device
JP2010076966A (en) * 2008-09-25 2010-04-08 Casio Computer Co Ltd Reactor and power generation system
JP2010238416A (en) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183350A1 (en) 2012-06-07 2013-12-12 株式会社Ihi Micro reactor
US9370761B2 (en) 2012-06-07 2016-06-21 Ihi Corporation Microreactor

Also Published As

Publication number Publication date
JPH10172597A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US6924053B2 (en) Solid oxide regenerative fuel cell with selective anode tail gas circulation
KR100723371B1 (en) Modifying device
JP2965273B2 (en) Electrochemical cell device with a valve for controlling the composition of the reformable fuel gas
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
EP1557897A1 (en) Fuel cell power generation system
US20060233690A1 (en) Method for purifying hydrogen in a reformed gas
EP2887438B1 (en) Fuel cell system
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
JP3667231B2 (en) Fuel cell device
JP2005514746A (en) Free water reduction fuel cell power equipment
JP3685936B2 (en) Polymer electrolyte fuel cell system
JP2004192958A (en) Fuel cell system
JP3900570B2 (en) CO reduction device for phosphoric acid fuel cell
JP4015225B2 (en) Carbon monoxide removal equipment
JP3450991B2 (en) Fuel cell system
JP4940567B2 (en) Polymer electrolyte fuel cell system
US20060204800A1 (en) Fuel processing system and its shutdown procedure
JPS6134865A (en) Fuel cell power generating system
JP6582572B2 (en) Fuel cell system
JP2003123820A (en) Carbon monoxide remover and fuel cell system
JP4590766B2 (en) Reformer
JP6218591B2 (en) Fuel cell system
JP3626371B2 (en) Hydrogen supply device for fuel cell
JPH06290801A (en) Fuel cell power generating device
JP2002241108A (en) Fuel reforming apparatus and fuel cell power generation apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees