JP5051225B2 - 配電系統システム、事故探索・分断方法 - Google Patents

配電系統システム、事故探索・分断方法 Download PDF

Info

Publication number
JP5051225B2
JP5051225B2 JP2009516098A JP2009516098A JP5051225B2 JP 5051225 B2 JP5051225 B2 JP 5051225B2 JP 2009516098 A JP2009516098 A JP 2009516098A JP 2009516098 A JP2009516098 A JP 2009516098A JP 5051225 B2 JP5051225 B2 JP 5051225B2
Authority
JP
Japan
Prior art keywords
accident
sensor
switch
section
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009516098A
Other languages
English (en)
Other versions
JPWO2008146358A1 (ja
Inventor
隆之 柴田
賢二 日比
裕昌 國府田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Publication of JPWO2008146358A1 publication Critical patent/JPWO2008146358A1/ja
Application granted granted Critical
Publication of JP5051225B2 publication Critical patent/JP5051225B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations

Description

本発明は、配電系統における事故探索を行う配電系統システム、事故探索・分断方法に関する。
現代では、電力の供給停止、所謂停電が日常生活に及ぼす影響は計り知れない。従って、配電系統の一部で事故が発生し停電を招いた場合には、その事故点を早期に特定し原因を取り除いて電力の供給を迅速に再開しなければならない。
例えば、6.6kVの架空配電線において漏電等を伴った事故が生じた場合、まず、電力事業者は、電流異常を検知した発電所または変電所において、その管理下にある配電系統への電力供給を止める。そして、事故区間を絞り、その事故区間以外の健全区間の電力供給を再開する。その後、事故区間内の具体的な事故点の特定を遂行する。このような事故区間を特定する方法として、時限式や分散制御式といった事故探索方法が知られている。
図9および図10は、上述した時限式事故探索方法の概略を説明するための配電系統図である。かかる時限式事故探索方法が適用される配電系統システム10では、配電用変電所12が、母線14からの電力を、配電用変圧器16を介して高圧配電線網18に供給する。高圧配電線網18は、配電用変圧器16から分岐した複数の並行線路(フィーダ:Feeder)(A)、(B)と、この並行線路(A)、(B)同士および並行線路(A)、(B)と他の並行線路とを連結する連結線路(C)、(D)、(E)、(F)、(G)とから形成される。
例えば、配電系統システム10において、高圧配電線網18の所定の位置20で短絡や地絡のような事故が生じると、配電用変電所12では、過電流保護継電器や地絡方向継電器といった保護継電器が動作して送り出し遮断器CB1を開放し、高圧配電線網18の並行線路Aへの給電が停止される。かかる停電を受けると、事故探索に備えて並行線路A上に配置された開閉器A0、A1、A2が電力喪失により自動的に開放される。図9は、並行線路(A)の停電後の状態が示され、開放状態にある開閉器(例えばA0、A1、A2)を白抜きで、閉じている状態にある開閉器(例えばB0、B1、B2)を黒塗りで示している。以下に示す図は全てこの規則に従う。
そして、所定時間経過後、再び並行線路(A)の送り出し遮断器CB1が投入されると、動作可能となった開閉器A0、A1、A2が、電源側から順(A0→A1→A2)に投入される。このように開閉器を順次投入すると、いずれかの開閉器投入の際、ここでは開閉器A1を投入した際に再度保護継電器が動作して配電用変電所12の送り出し遮断器CB1が再び開放し、2回目の停電が生じる。
ここで、事故区間24の直前にある開閉器A1は、時限ロック(開路)の機能により、負荷側の開閉器A2に対して開放状態を保持させる。所定時間経過後、送り出し遮断器CB1が再び投入され、開閉器A0、A1、A2が電源側から順に投入されるのだが、開放状態が保持されている開閉器A1、A2は投入されないので、事故区間から負荷側の高圧配電線は分断されることとなる。その後、制御装置からの指令または現地でのマニュアル操作を通じ、連結線路(D)上の開閉器ADを閉じて事故区間24より負荷側にある健全区間への電力供給を再開する。こうして図10に示すように、事故区間24の分断および健全な高圧配電線網18への給電再開が完了する。
図11および図12は、分散制御式事故探索方法の概略を説明するための配電系統図である。かかる配電系統システム30では、事故が生じた場合、事故区間に近い開閉器(開閉器子局)が相互に通信を行い予め設定されたアルゴリズム(例えば、非特許文献1)によって事故区間を切り離している。
かかるアルゴリズムは、例えば、所定の位置20で地絡事故が生じると、その位置より電源側の開閉器A1〜A3全てが事故を検知する。各開閉器は、その検知情報の送信タイミングに時間差が設けられており、開閉器A1およびA2は、開閉器A3からの検知情報を取得すると自己の検知情報の送信を取りやめ、開閉器A3の負荷側で事故が起きていることを把握する。
そして、連絡開閉器ABは、予め設定されているアルゴリズム「開閉器A3が事故を検知したら最初に投入」によって投入され、開閉器A4は、「開閉器A3が事故を検知したら2番目に開放」によって開放される。最後に開閉器A3が所定時限経過後に開放される。こうして図12に示すように、事故区間24の分断および健全な高圧配電線網18への給電再開が完了する。
「地絡無停電切替システムの開発」日本ガイシ、NGKレビュー第58号、1999年12月
しかし、時限式事故探索方法では、事故区間を分離するため、配電用変電所内の遮断器の2回の開閉操作を要し、事故区間以外の健全区間に対しても少なくとも2回の停電による負担を負わせてしまう。
また、分散制御式事故探索方法では、連系して動作する一連の開閉器(開閉器子局)群を同一の並行線路に配置しなくてはならないので、多分割多連係や系統構成が変わる系統に関してのその拡張性、あるいはそれらの汎用性が課題となる。また、開閉器に予め動作パターンを設定する必要があるので配電線を拡張する度に煩雑な設定処理が行われる。また、配電線の過負荷を回避するため、各並行線路間の負荷分割(配電系統の有機的切換)を行う技術が実施されているが、分散制御式事故探索方法では、連系構成の変化に応じてその都度開閉器の動作パターンを変更しなくてはならないので、上述した配電系統の構成が適応的に変化する多分割多連系の高圧配電線網には実用上適用することは困難である。さらに、当該分散制御式事故探索方法は、3相短絡や過負荷時に対応しておらず、開閉器の開閉容量を超過した場合には何ら手立てがないということになる。
また、上述した従来技術による事故探索方法では、高圧配電線網上の任意の位置の電圧、電流、零相電圧、零相電流、高調波、フリッカ等の線路状態を知る術が無く、高圧配電線網の末端の管理ができなかった。今後は、電力供給のより高い信頼性や高い電力品質を確保するため、事故後の対応のみならず、高圧配電線網の部分的監視により事故を未然に防止することや高調波やフリッカを防止することも望まれている。
本発明は、従来の事故探索方法が有する上記問題点に鑑みてなされたものであり、本発明の目的は、多分割多連系の高圧配電線網に適用可能であり、健全区間においては最小限の停電により、迅速かつ確実に事故区間を特定、分断することが可能な、配電系統システム、事故探索・分断方法を提供することである。
本発明では、連系構成が様々に変化する多分割多連系の高圧配電線網において、配電用変電所内での送り出し遮断機がトリップする前に事故区間を特定し、その事故区間前後の開閉器のみに対する開閉制御によって事故区間の分断を行う。このようにして、健全区間を含む広範囲の停電を回避し、電力の安定供給を図ることができる。
上記課題を解決するために、本発明にかかる配電系統システムの代表的な構成は、配電用変圧器と、配電用変圧器から放射状に分岐した複数の並行線路(フィーダ)、および、並行線路同士を連結する連結線路を含む高圧配電線網と、高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず線路を開閉および開閉状態保持可能であり、かつ、線路状態を検知するセンサを備える複数のセンサ内蔵開閉器と、複数のセンサ内蔵開閉器にそれぞれ接続され、センサの検知結果を取得する検知結果取得部、および、センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置(RTU:Remote Terminal Unit)と、複数の開閉器制御装置に通信網を介して接続され、開閉器制御装置が取得した検知結果を収集する情報収集部、検知結果に基づいて事故区間を特定する事故区間特定部、事故区間の電源側および負荷側のセンサ内蔵開閉器を開放して事故区間を分断する区間分断部、ならびに、配電線の線路距離や線の種類に基づいて複数のセンサ内蔵開閉器における事故判定閾値を計算して複数の開閉器制御装置に送信する閾値生成部を含む管理サーバと、を備え、開閉制御部は、開閉器制御装置が取得した検知結果と事故判定閾値との比較によって事故の有無を判断することを特徴とする。ただし、ここで言う「放射状」は、配電用変圧器から様々な方向に並行線路が広がる配電系統の理論的な構成を示し、物理的に放射状に形成される必要はない。また、「線路状態」は、電圧、電流、零相電圧、零相電流、高調波、フリッカ等のうちの1または複数の電気的状態を示す。
ここでは、管理サーバが、開閉器制御装置を介して、高圧配電線網の全てのセンサ内蔵開閉器を集中管理するので、送り出し遮断機がトリップする前に、事故区間を統括的に特定、分断することができる。また、各センサ内蔵開閉器にセンサを設ける構成により、各センサ内蔵開閉器の設置点における電圧、電流、零相電圧、零相電流、高調波、フリッカ等の線路状態を把握することができる。本発明は、事故の状況に応じて管理サーバが個々の開閉器制御装置に開閉指令を行うため、多分割多連系の高圧配電線網にも適用することが可能であり、健全区間の停電を最小限に抑えるとともに、迅速かつ確実に事故区間を特定することができる。
また閾値生成部は、複数のセンサ内蔵開閉器それぞれと配電用変圧器との線路距離や線種からセンサ内蔵開閉器までのインピーダンスを計算することができ、そのセンサ内蔵開閉器の負荷に応じて、センサ内蔵開閉器で検知すべき整定値(電流値や電圧値)を導き出すことができる。管理サーバは、負荷変動も踏まえて、事故が起きているとみなすことができる事故判定閾値を計算するので、開閉器制御装置の開閉制御部は、電流値や電圧値がかかる事故判定閾値を超えた場合に事故が生じていると判断することができる。
本発明にかかる配電系統システムの他の代表的な構成は、配電用変圧器と、配電用変圧器から放射状に分岐した複数の並行線路、および、並行線路同士を連結する連結線路を含む高圧配電線網と、高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず線路を開閉および開閉状態保持可能であり、かつ、線路状態を検知するセンサを備える複数のセンサ内蔵開閉器と、複数のセンサ内蔵開閉器にそれぞれ接続され、センサの検知結果を取得する検知結果取得部、および、センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置と、複数の開閉器制御装置に通信網を介して接続され、開閉器制御装置が取得した検知結果を収集する情報収集部、検知結果に基づいて事故区間を特定する事故区間特定部、事故区間の電源側および負荷側のセンサ内蔵開閉器を開放して事故区間を分断する区間分断部、ならびに、複数の開閉器制御装置が取得した検知結果を定期的に収集し、事故が生じる蓋然性の高い区間を推定する事故推定部を含む管理サーバと、を備えることを特徴とする。
これにより上記と同様に、送り出し遮断機がトリップする前に、事故区間を統括的に特定、分断することができる。また各センサ内蔵開閉器の設置点における線路状態を把握することができ、健全区間の停電を最小限に抑えるとともに、迅速かつ確実に事故区間を特定することができる。
さらに本発明では、開閉器制御装置からの検知結果を集中管理しているので、事故には至ってないものの事故が生じる蓋然性の高い状態、例えば、被覆電線やケーブルの絶縁レベル低下、樹木接触、断線、高抵抗地絡等を把握することができる。従って、事故区間の特定のみならず、事故の発生を予測し、その事故予測区間に事前に対処することで、事故を未然に防ぐことも可能となる。
管理サーバは、高圧配電線網の事故区間より電源側と事故区間より負荷側への給電を再開する給電再開部をさらに備えてもよい。
かかる構成により、事故が生じたことによる負荷側の健全区間への電力供給や、高圧配電線の過負荷対応のための高圧配電網の負荷分割に迅速かつ適切に対応することが可能となる。また、センサ内蔵開閉器に設けられたセンサにより、事故区間の抽出時のみならず、事故後に電力が安定供給されていることを容易に確認することもできる。
上記センサは、零相変流器(ZCT)、零相電圧変成器(ZPD)、各相計器用変流器(CT)、各相計器用変成器(PD)の群から選択された1または2以上の組み合わせであってもよい。従って、センサを零相変流器(ZCT)と零相電圧変成器(ZPD)との組み合わせからなる地絡方向継電器で構成することができる。かかる零相電圧変成器(ZPD)は各相の計器用変成器(PD)によっても構成可能である。また、計器用変流器(CT)、計器用変成器(PD)を過電流継電器や電圧電流監視器に用いてもよい。
上記零相変流器により、そのセンサ内蔵開閉器より下流(負荷側)に故障があることを特定でき、また、上記センサを活用した常時監視機や制御部を含めたセンサ内蔵開閉器自体の不具合または故障についても特定することができる。管理サーバは、事故を検知しているセンサ群と検知していないセンサ群との間の区間を事故区間として特定することができる。
当該配電系統システムにおける事故電流がセンサ内蔵開閉器の開閉容量を超過した場合、区間分断部は、配電用変圧器からの給電が停止した後、事故区間を分断するとしてもよい。
例えば、接地系統における1相、2相、3相地絡事故、非接地系統における2相、3相地絡事故、または、両系統共通の2相、3相短絡事故等では、事故電流がセンサ内蔵開閉器の開閉容量を超過する場合がある。かかる場合、本発明では、一旦、配電用変電所の送り出し遮断器を開放し、配電用変圧器からの給電を停止して、事故区間前後のセンサ内蔵開閉器を開放する。その時点で管理サーバは既に事故区間を特定しているので、従来の時限式事故探索・分断方法のように2回の停電を伴うことなく、事故区間の分断を行うことができる。なお、センサ内蔵開閉器は、電力(電源)を喪失しても直前の入り切り状態を保持する、例えば、ラッチ機構(機構部を機械的に把持して電力喪失前の開閉器状態を維持する装置)を有するものとし、電力を喪失した後も事故区間の分断を行うため開閉動作ができるものとする。
上記課題を解決するために、本発明にかかる事故探索・分断方法の代表的な構成は、配電用変圧器から放射状に分岐した複数の並行線路と、並行線路同士を連結する連結線路とからなる高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず線路を開閉および開閉状態保持可能であり、かつ、線路状態を検知するセンサを備える複数のセンサ内蔵開閉器にそれぞれ接続され、センサの検知結果を取得し、かつ、センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置が、通信網を介して接続された管理サーバにセンサの検知結果を送信し、管理サーバが、開閉器制御装置を通じてセンサの検知結果を収集し、センサの検知結果に基づいて事故区間を特定し、事故区間の電源側および負荷側のセンサ内蔵開閉器を開放して事故区間を分断し、さらに管理サーバは配電線の線路距離や線の種類に基づいて複数のセンサ内蔵開閉器における事故判定閾値を計算して複数の開閉器制御装置に送信し、開閉制御部が検知結果と事故判定閾値との比較によって事故の有無を判断することを特徴とする。
また、本発明にかかる事故探索・分断方法の他の代表的な構成は、配電用変圧器から放射状に分岐した複数の並行線路と、並行線路同士を連結する連結線路とからなる高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず線路を開閉および開閉状態保持可能であり、かつ、線路状態を検知するセンサを備える複数のセンサ内蔵開閉器に接続され、センサの検知結果を取得し、かつ、センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置が、通信網を介して接続された管理サーバにセンサの検知結果を送信し、管理サーバが、開閉器制御装置を通じてセンサの検知結果を収集し、センサの検知結果に基づいて事故区間を特定し、事故区間の電源側および負荷側のセンサ内蔵開閉器を開放して事故区間を分断し、さらに管理サーバは、複数の開閉器制御装置が取得した検知結果を定期的に収集し、事故が生じる蓋然性の高い区間を推定することを特徴とする。
上述した、配電系統システムの技術的思想に基づく構成要素やその説明は、当該事故探索・分断方法にも適用可能である。
以上説明したように本発明の配電系統システムによれば、多分割多連系の高圧配電線網にも適用することが可能であり、健全区間においては最小限の停電により、迅速かつ確実に事故区間を特定することが可能となる。
配電系統システムの概略的な構成を示した配電系統図である。 センサ内蔵開閉器および開閉器制御装置の構成を示した説明図である。 管理サーバの概略的な機能を示した機能ブロック図である。 事故区間特定部の事故区間の特定処理を説明するための配電系統図である。 事故区間が分断された後の状態を示した配電系統図である。 閾値生成部による事故判定閾値の設定を説明した説明図である。 センサ内蔵開閉器の開閉容量を超過した場合の事故区間の分断を説明した配電系統図である。 事故探索・分断方法の処理の流れを示したフローチャートである。 従来の時限式事故探索方法の概略を説明するための配電系統図である。 従来の時限式事故探索方法の概略を説明するための配電系統図である。 従来の分散制御式事故探索方法の概略を説明するための配電系統図である。 従来の分散制御式事故探索方法の概略を説明するための配電系統図である。
符号の説明
100 配電系統システム
110 配電用変圧器
120 高圧配電線網
130 センサ内蔵開閉器
140 開閉器制御装置(RTU)
142 検知結果取得部
144 開閉制御部
150 管理サーバ
168 情報収集部
170 事故区間特定部
172 区間分断部
174 給電再開部
176 閾値生成部
178 事故推定部
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
配電系統の一部で事故が発生した場合、事故が発生した事故区間を特定し、配電系統における前後のセンサ内蔵開閉器を開放し、その事故区間以外の健全区間への電力供給を再開する。そして事故区間中の具体的な事故点を特定する。具体的な事故点が特定されるとその事故の原因を速やかに取り除いて事故区間においても通常の電力供給を再開する。
本実施形態の配電系統システムは、このような事故区間の特定を迅速かつ確実に行うことができる。また、配電系統システムは、事故区間の特定のみならず、事故の生じ得る区間を予測して事故を未然に防ぐことも可能となる。以下、このような配電系統システムの具体的構成を述べ、後にその配電系統システムを用いて事故点を特定する事故探索・分断方法を説明する。
(配電系統システム100)
図1は、本実施形態における配電系統システム100の概略的な構成を示した配電系統図である。かかる配電系統システム100は、配電用変圧器110と、高圧配電線網120と、複数のセンサ内蔵開閉器130と、複数の開閉器制御装置(RTU:Remote Terminal Unit、以下、単にRTUという。)140と、管理サーバ150とからなる。また、ここでは、理解を容易にするため、6.6kVの配電線における事故を想定して、当該配電系統システムを適用する。
上記配電用変圧器110は、例えば、負荷時タップ切替変圧器(Load Ratio control Transformer:LRT)等の、通電状態を維持したままで2次側の電圧(送出電圧)を変化させることが可能な変圧器である。
上記高圧配電線網120は、配電用変圧器から分岐した複数の並行線路であるフィーダと、フィーダ同士を網目状に連結する連結線路とからなる。従って、フィーダ状の開閉器と連結結線の開閉器の開閉状態によっては、配電系統の膨大な量の組合せを形成することができる。本実施形態では、このような配電系統の如何なる組合せに対しても、適切に事故区間が特定される。
上記センサ内蔵開閉器130は、高圧配電線網120上に配置を異にして(例えば、A1、A2)接続され、事故による電力喪失に拘わらず、高圧配電線網120の線路の開閉および開閉状態保持を行う。これは、センサ内蔵開閉器130が、電力喪失直前の開閉状態を保持し、電力喪失後も開閉が可能であることを示す。センサ内蔵開閉器130は、柱上に限らず、地上、地中に配される。また、本実施形態において、センサ内蔵開閉器130は、センサを内蔵する。
上記センサは、零相変流器(ZCT)、零相電圧変成器(ZPD)、各相計器用変流器(CT)、各相計器用変成器(PD)の群から選択された1または2以上の組み合わせであってもよい。従って、センサを零相変流器(ZCT)と零相電圧変成器(ZPD)との組み合わせからなる地絡方向継電器で構成することができる。かかる零相電圧変成器(ZPD)は各相の計器用変成器(PD)によっても構成可能である。また、計器用変流器(CT)、計器用変成器(PD)を過電流継電器や電圧電流監視器に用いてもよい。
上記零相変流器により、そのセンサ内蔵開閉器より下流(負荷側)に故障があることを特定でき、また、上記センサを活用した常時監視機や制御部を含めたセンサ内蔵開閉器自体の不具合または故障についても特定することができる。管理サーバは、事故を検知しているセンサ群と検知していないセンサ群との間の区間を事故区間として特定することができる。
また、センサは、自己における電圧、電流、零相電圧、零相電流、高調波、フリッカ等の線路状態も検知し、線路の異常状況(被覆電線やケーブルの絶縁レベル低下、樹木接触、断線、高抵抗地絡等)を認識することができる。また、本実施形態では各RTU140間およびRTU140と管理サーバ150間のデータ伝送網は、光ケーブルで形成されているが、事故の特定、分断に支障のない通信速度を実現できれば、メタルケーブルや無線通信を利用することもできる。
本実施形態では、データ収集の対象であるセンサとしてセンサ内蔵開閉器130のセンサを用いているが、かかる場合に限られず、高圧配電線網120上のあらゆる電機機器に内蔵されるセンサを用いてもよいし、高圧配電線網120上にデータ収集専用のセンサ機器を設けてもよい。
図2は、センサ内蔵開閉器130およびRTU140の構成を示した説明図である。センサ内蔵開閉器130は、零相変流器ZCTと、3相分の計器用変流器CTと、3相分の計器用変成器PDと、負荷開閉器LBSとを含んで構成され、RTU140は、検知結果取得部142、開閉制御部144、メモリ146、伝送部148とを含んで構成される。なお、負荷開閉器LBSはより大きな事故電流を遮断できる遮断器CBでもよい。
上記零相変流器ZCTは、単相または3相の行き来する電流の総和が等しいことを利用して、変流器で零相電流Iを検出する。また、計器用変流器CTは各相の電流を、計器用変成器PDは各相の電圧を測定する。かかる計器用変成器PDを3相合わせることで零相電圧変成器ZPDとしても機能する。
かかる零相電圧変成器ZPDは、零相電圧を検出し、当該センサ内蔵開閉器130の線路において地絡電流が流れた場合のみ反応する。高圧配電線網120の線路が地絡した場合、地絡電流Iが流れるとともに、その線路に零相電圧Vが発生する。例えば、6.6kVの線路における完全地絡時(地絡抵抗=0Ω)の零相電圧は、6,600/√3=3,810Vにもなる。零相電圧変成器ZPDは計器用変成器PDとして図2に示したように、発生した零相電圧をコンデンサで数V程度まで分圧し、その電圧値を測定する。開閉器制御部144は、その零相電圧Vに応じて、事故の有無を判断する。負荷開閉器LBSは、開閉制御部144からの開閉指令に応じて、線路の開閉を行う。
上記検知結果取得部142は、センサ内蔵開閉器130に内蔵されたセンサから検出結果を取得し、開閉制御部144が認識できるデータに変換する。
上記開閉制御部144は、当該RTU140に接続されたセンサ内蔵開閉器130を制御し、その負荷開閉器LBSの開閉を実行する。また、後述する事故判定閾値を得た場合、検知結果取得部142が取得した検知結果とこの事故判定閾値との比較によって事故の有無を独立して判断できる。
また、開閉制御部144は、検知結果取得部142から取得した事故電流と、センサ内蔵開閉器130の開閉容量との比較も実施可能であり、開閉不能であることを把握した場合、開閉制御部144は、その旨も検知結果に含める。かかる開閉不能の情報は、管理サーバ150が当該センサ内蔵開閉器130の開閉を試みる無駄な処理を省くために参照される。
上記メモリ146は、検知結果取得部142が取得した検知結果を一旦保持したり、事故判定閾値を記憶したりする。
伝送部148は、開閉制御部144で加工された検知結果を管理サーバ150に送信し、また、管理サーバ150からの負荷開閉器LBSの開閉指令を受信して開閉制御部144に伝達する。開閉制御部144は、かかる開閉指令を受けて負荷開閉器LBSを開閉する。
上記管理サーバ150は、複数のRTU140に通信網122を介して接続され、RTU140を介して複数のセンサ内蔵開閉器130を一括監視制御する。管理サーバ150は、当該配電系統システム100内のRTU140全てに固有の識別子(アドレス等)を割り当て、RTU140を通じてセンサ内蔵開閉器130における線路状況の変化や、配電系統の接続変更を配電系統構成データベースに反映する。また、RTU140からの検知結果により事故の有無を把握すると、その事故区間を特定し、RTU140を通じた遠隔操作によって事故区間前後のセンサ内蔵開閉器130を開放する。
ここでは、管理サーバ150が、高圧配電線網の全てのセンサ内蔵開閉器130を、RTU140を介して集中管理するので、事故区間を統括的に特定することができる。また、各センサ内蔵開閉器130にセンサを設ける構成により、各センサ内蔵開閉器130の設置点における電圧、電流、零相電圧、零相電流、高調波、フリッカ等の線路状態を把握することができ、確実に事故区間を特定することができる。
また、管理サーバ150は、保護協調も実施する。保護協調は、高圧配電線網120に事故が発生した場合、事故区間を切り離し健全回路の保護を図ると共に、保護機能が相互に協調をとりながら健全回路への給電を継続することを目的としている。
また、このような配電系統システム100では、管理サーバ150が各センサ内蔵開閉器130のセンサの検知結果を利用して、潮流計算や、配電用変圧器110におけるバンク送り出し電流と2次側の送出電圧との関数である整定曲線の適切な整定値の計算も可能となる。管理サーバ150の具体的な機能を以下に示す。
(管理サーバ150)
図3は、管理サーバ150の概略的な機能を示した機能ブロック図である。かかる管理サーバ150は、サーバ制御部160と、メモリ162と、表示部164と、操作部166と、情報収集部168とを含んで構成される。
上記サーバ制御部160は、中央処理装置(CPU)を含む半導体集積回路により、メモリ162に記憶されたプログラムを用いて、管理サーバ150全体を管理および制御する。また、本実施形態において、サーバ制御部160は、後述する、事故区間特定部170と、区間分断部172と、給電再開部174と、閾値生成部176と、事故推定部178としても機能する。
上記メモリ162は、ROM、RAM、EPROM、不揮発性RAM、フラッシュメモリ、HDD等で構成され、サーバ制御部160で処理されるプログラムや、配電系統構成データベース等を記憶する。
上記表示部164は、カラーまたはモノクロのディスプレイで構成され、メモリ162に記憶された配電系統の系統構成情報、または後述する情報収集部168で収集した検知結果等を表示することができる。
上記操作部166は、キーボード、十字キー、ジョイスティック等のスイッチから構成され、ユーザの操作入力を受け付ける。
上記情報収集部168は、センサ内蔵開閉器130におけるセンサの検知結果をRTU140および通信網122を介して収集する。
上記事故区間特定部170は、情報収集部168が収集したセンサの検知結果に基づいて事故区間を特定する。
図4は、事故区間特定部170の事故区間の特定処理を説明するための配電系統図である。RTU140は、自己に接続されたセンサ内蔵開閉器130より下流(負荷側)の任意の地点180で事故が起きていると判断すると、RTU140を介して管理サーバ150にその旨送信する。従って、事故地点より上流(電源側)にある全てのRTU140(ここではセンサ内蔵開閉器A0およびA1に接続されたRTU)から事故の存在を示す検知結果が収集される。
事故区間特定部170は、かかる検知結果を、メモリ162に記憶された配電系統構成データベースと比較し、検知結果を発したRTU140のうち、電源側から最も遠くに位置するセンサ内蔵開閉器A1と、その下流かつ直近にあるセンサ内蔵開閉器A2との間に事故点180があると判定し、そこを事故区間182とする。
上記区間分断部172は、事故区間特定部170が特定した事故区間182の前後のセンサ内蔵開閉器A1およびA2のみを開放して事故区間182を分断する。また、センサ内蔵開閉器A2より下流にある健全区間へ継続して電力の供給を行うため、RTU140を介して連結経路のセンサ内蔵開閉器Eを閉じ、フィーダAへの閉路を形成する。
上記給電再開部174は、高圧配電線網120の事故区間182より電源側と、事故区間182より負荷側への給電を再開する。
図5は、このように事故区間182が分断された後の状態を示した配電系統図である。ここでは、センサ内蔵開閉器A1までの健全区間に、配電用変圧器110の電力がフィーダAを介して直接供給され、センサ内蔵開閉器A2以降の健全区間に、連結線路Eを通じた他のフィーダからの電力が供給される。事故区間特定部170による事故区間182の特定、および、区間分断部172による事故区間182の分断は高速処理されるため、配電用変圧器110から健全区間への給電を停止することなく、各健全区間への給電が継続される。
かかる構成により、事故が生じたことによる負荷側の健全区間への電力供給や高圧配電網の負荷分割に迅速かつ適切に対応することが可能となる。また、センサ内蔵開閉器130に設けられたセンサにより、事故区間の抽出時のみならず、事故後設定した通りに電力が安定供給されていることを容易に確認することができる。
上記閾値生成部176は、複数のセンサ内蔵開閉器130それぞれと配電用変圧器110との線路距離に基づいて複数のセンサ内蔵開閉器130における事故判定閾値を計算し、複数のRTU140にそれぞれの事故判定閾値を送信する。RTU140は、上述した地絡方向継電器に代えて、または加えて、管理サーバ130から受信した事故判定閾値と、自己に接続されたセンサ内蔵開閉器の測定値との比較により事故を検知してもよい。
閾値生成部176は、配電系統構成データベースを参照して、複数のセンサ内蔵開閉器130それぞれと配電用変圧器110との線路距離や線種からセンサ内蔵開閉器130までの分布定数による固定のインピーダンスを計算することができ、そのセンサ内蔵開閉器130の負荷に応じて、センサ内蔵開閉器130を制御するRTU140で検知すべき整定値(電流値や電圧値)を導き出すことができる。管理サーバ150は、負荷変動も考慮して整定値より大きくなるように事故判定閾値を計算するので、RTU140は、電流値や電圧値がかかる事故判定閾値を超えた場合に事故が生じていると判断することができる。
図6は、閾値生成部176による事故判定閾値の設定を説明した説明図である。図6のセンサ内蔵開閉器A1までのインピーダンスZ1とセンサ内蔵開閉器A2までのインピーダンスZ1+Z2では、センサ内蔵開閉器A2までの方が大きくなるので、電流値は、センサ内蔵開閉器A1の方が大きくなる。従って、センサ内蔵開閉器A1、A2を制御するRTU140の電流の整定値は、例えば、550A、520Aとなる。このとき、閾値生成部176は、センサ内蔵開閉器A1、A2を制御するRTU140の電流の事故判定閾値を700A、665Aと設定すると、各センサ内蔵開閉器A1、A2を制御するRTU140は、かかる事故判定閾値以上の電流を検知した時点で事故が生じた旨、検知結果に載せて管理サーバ150に伝送する。
かかる事故判定閾値による事故判定は、電源からのインピーダンスが高く事故電流が小さい場合であって、かつ、短絡事故等の零相電圧や零相電流が検出されないような場合に、特に有効に機能する。
上記事故推定部178は、複数のRTU140が取得した検知結果を定期的に収集し、事故が生じる蓋然性の高い区間を推定する。
本実施形態では、RTU140を通じてセンサ内蔵開閉器130のセンサからの検知結果を集中管理しているので、事故には至ってないものの事故が生じる蓋然性の高い状態、例えば、被覆電線やケーブルの絶縁レベル低下、樹木接触、断線、高抵抗地絡等を把握することができる。従って、事故区間の特定のみならず、事故の発生を予測し、その事故予測区間に事前に対処することで、事故を未然に防ぐことができる。
また、センサ内蔵開閉器130設置地点毎の電圧、電流、零相電圧、零相電流、高調波、フリッカ等の計測情報をリアルタイムに測定することで、計測情報を事故の未然防止に活用することが可能である。
また、当該配電系統システム100における事故電流がセンサ内蔵開閉器130の開閉容量を超過した場合、区間分断部172は、配電用変圧器110からの給電が停止した後に、事故区間を分断するとしてもよい。
図7は、センサ内蔵開閉器130の開閉容量を超過した場合の事故区間の分断を説明した配電系統図である。配電系統システム100において、高圧配電線網120の所定の位置180で2相の地絡事故が生じると、本実施形態の事故区間特定部170が事故区間180を特定し、区間分断部172が事故区間の分断を行う。しかし、かかる事故が接地系統における1相、2相、3相地絡事故、非接地系統における2相、3相地絡事故、または、両系統共通の2相、3相短絡事故の場合、事故電流がセンサ内蔵開閉器130の開閉容量を超過して、センサ内蔵開閉器130では、事故区間の分断ができないことがある。
この場合、事故電流がフィーダ(A)を流れ続け、やがて、配電用変電所の過電流保護継電器や地絡方向継電器といった保護継電器が動作し、送り出し遮断器CB1を開放する。こうして、一旦、高圧配電線網120の並行線路Aへの給電が停止される。ここで、センサ内蔵開閉器A0、A1、A2は、電力(電源)を喪失しても直前の入り切り状態を保持するラッチ機構を有しており、かつ、電力を喪失した後も事故区間の分断を行うため開閉動作ができる。従って、図7に示したように、停電後もセンサ内蔵開閉器A0、A1、A2の閉路状態が維持される。
従来の時限式事故探索・分断方法であれば、送り出し遮断器CBが開放された後、開閉器A0、A1、A2は電源の喪失により電路が開放され、その後、電源側から順次センサ内蔵開閉器A0、A1、A2を投入し、再度の停電が余儀なくされる。本実施形態では、既に事故区間が特定されているので、RTU140を介して事故区間182前後のセンサ内蔵開閉器A1,A2のみを開放、その他のセンサ内蔵開閉器130を投入して、電力の供給を直ぐに再開することができる。従って、従来の時限式事故探索・分断方法のように2回の停電を伴うことなく、1回の停電のみで、迅速に事故区間182の分断を行うことができる。
上述した配電系統システムによって、事故発生と同時に事故区間を特定し、センサ内蔵開閉器130を一括制御する事で直ちに事故区間を除去することができる。また、健全区間の停電を最小限に抑える事が可能となり、電力の需要事業所または需要宅への影響を極小化できる。また、1つの管理サーバによって各センサ内蔵開閉器を集中制御する事で、日々系統が切り替わる配電系統に適用したとしてもその効果を喪失することはない。
(事故探索・分断方法)
次に、上述した配電系統システム100を利用して事故探索を行う事故探索・分断方法を説明する。
図8は、事故探索・分断方法の処理の流れを示したフローチャートである。まず、管理サーバ150の閾値生成部176は、配電系統構成データベースを参照し(S200)、複数のセンサ内蔵開閉器130それぞれと配電用変圧器110との線路距離や線種に基づいて複数のセンサ内蔵開閉器130における事故判定閾値を算出し(S202)、複数のRTU140にそれぞれの事故判定閾値を送信する(S204)。RTU140は、かかる事故判定閾値をメモリ146に格納し、電流値や電圧値がかかる事故判定閾値を超えた場合に事故が生じていると判断する。
そして、高圧配電線網120の任意の位置で事故が生じた場合、それを検知したRTU140が少なくとも事故の有無を表す検知結果を管理サーバ150に送信する。管理サーバ150は、情報収集部168が収集した検知結果から事故の有無を判断し(S210)、事故が生じていることを把握すると、収集した検知結果に基づいて事故区間を特定し(S212)、特定した事故区間の前後のセンサ内蔵開閉器130の開放を試みる(S214)。
このとき、RTU140側で、センサ内蔵開閉器130から取得した事故電流と、センサ内蔵開閉器130の開閉容量とが比較され、センサ内蔵開閉器130では電路を開放できないことが予め把握されている場合、RTU140は、その旨も検知結果と併せて管理サーバ150に送信する。かかる開放不能を認識した管理サーバ150は、上記開放を試みること(S214)なしに次の工程に移行する。
そして、管理サーバ150は、センサ内蔵開閉器130が開放できたかどうか確認し(S216)、事故電流がセンサ内蔵開閉器130の開閉容量を超過している場合、または、開閉容量を超過することを予めRTU140から知らされている場合、即ち、センサ内蔵開閉器130を開放できなかった場合、配電用変電所内の送り出し遮断器が保護継電器の動作に応じて遮断されるのを待ち(S218)、給電が絶たれた状態で事故区間の電源側および負荷側に設置されたセンサ内蔵開閉器130のみを開放(事故区間を分断)する(S220)。そして、センサ内蔵開閉器130の準備ができたら、送り出し遮断器を投入して給電を再開する(S222)。このような事故区間の特定および分断が完了すると、配電系統構成データベースを更新して(S224)、最初からの処理を繰り返す。また、センサ内蔵開閉器130を開放することができた場合、送り出し遮断器を遮断することなく、事故区間を分断する(S226)。
また、事故の有無の判断(S210)において、事故の存在が確認されなかった場合、各センサ内蔵開閉器130の検知結果からその配電系統の過負荷を判断し(S230)、管理サーバ150で過負荷と判断されると、配電系統を再構築して(S232)、過負荷を解消させる。そして、配電系統構成データベースを更新して(S224)、最初からの処理を繰り返す。
さらに、過負荷の判断(S230)において、過負荷の存在が確認されなかった場合、検知結果を用いて、事故が生じる蓋然性の高い区間の有無を判断し(S240)、例えば、被覆電線やケーブルの絶縁レベル低下、樹木接触、断線、高抵抗地絡等が把握されると、その区間を事故区間同様分断し、その事故予測区間に事前に対処する(S242)。こうして、事故を未然に防ぐことができる。そして、配電系統構成データベースを更新して(S224)、最初からの処理を繰り返す。
以上説明した事故探索・分断方法によって、迅速かつ確実に事故区間を特定し、健全区間に電力を安定供給するとともに、事故区間の早期の修復が可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
なお、本明細書の事故探索・分断方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むとしても良い。
本発明は配電系統における事故探索を行う配電系統システム、事故探索・分断方法に適用可能である。

Claims (4)

  1. 配電用変圧器と、
    前記配電用変圧器から放射状に分岐した複数の並行線路、および、該並行線路同士を連結する連結線路を含む高圧配電線網と、
    前記高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず該線路を開閉および開閉状態保持可能であり、かつ、該線路状態を検知するセンサを備える複数のセンサ内蔵開閉器と、
    前記複数のセンサ内蔵開閉器にそれぞれ接続され、前記センサの検知結果を取得する検知結果取得部、および、該センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置と、
    前記複数の開閉器制御装置に通信網を介して接続され、該開閉器制御装置が取得した検知結果を収集する情報収集部、該検知結果に基づいて事故区間を特定する事故区間特定部、該事故区間の電源側および負荷側の前記センサ内蔵開閉器を開放して該事故区間を分断する区間分断部、ならびに、配電線の線路距離や線の種類に基づいて前記複数のセンサ内蔵開閉器における事故判定閾値を計算して前記複数の開閉器制御装置に送信する閾値生成部を含む管理サーバとを備え
    前記開閉制御部は、前記開閉器制御装置が取得した検知結果と前記事故判定閾値との比較によって事故の有無を判断することを特徴とする、配電系統システム。
  2. 配電用変圧器と、
    前記配電用変圧器から放射状に分岐した複数の並行線路、および、該並行線路同士を連結する連結線路を含む高圧配電線網と、
    前記高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず該線路を開閉および開閉状態保持可能であり、かつ、該線路状態を検知するセンサを備える複数のセンサ内蔵開閉器と、
    前記複数のセンサ内蔵開閉器にそれぞれ接続され、前記センサの検知結果を取得する検知結果取得部、および、該センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置と、
    前記複数の開閉器制御装置に通信網を介して接続され、該開閉器制御装置が取得した検知結果を収集する情報収集部、該検知結果に基づいて事故区間を特定する事故区間特定部、該事故区間の電源側および負荷側の前記センサ内蔵開閉器を開放して該事故区間を分断する区間分断部、ならびに、前記複数の開閉器制御装置が取得した検知結果を定期的に収集し、事故が生じる蓋然性の高い区間を推定する事故推定部を含む管理サーバと、を備えることを特徴とする配電系統システム。
  3. 配電用変圧器から放射状に分岐した複数の並行線路と、該並行線路同士を連結する連結線路とからなる高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず該線路を開閉および開閉状態保持可能であり、かつ、該線路状態を検知するセンサを備える複数のセンサ内蔵開閉器にそれぞれ接続され、前記センサの検知結果を取得し、かつ、該センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置が、通信網を介して接続された管理サーバに該センサの検知結果を送信し、
    前記管理サーバが、前記開閉器制御装置を通じて前記センサの検知結果を収集し、前記センサの検知結果に基づいて事故区間を特定し、前記事故区間の電源側および負荷側の前記センサ内蔵開閉器を開放して該事故区間を分断し、
    さらに前記管理サーバは配電線の線路距離や線の種類に基づいて前記複数のセンサ内蔵開閉器における事故判定閾値を計算して前記複数の開閉器制御装置に送信し、
    前記開閉制御部が前記検知結果と前記事故判定閾値との比較によって事故の有無を判断することを特徴とする事故探索・分断方法。
  4. 配電用変圧器から放射状に分岐した複数の並行線路と、該並行線路同士を連結する連結線路とからなる高圧配電線網の線路上に配置され、事故による電力喪失に拘わらず該線路を開閉および開閉状態保持可能であり、かつ、該線路状態を検知するセンサを備える複数のセンサ内蔵開閉器に接続され、前記センサの検知結果を取得し、かつ、該センサ内蔵開閉器を制御する開閉制御部を含む複数の開閉器制御装置が、通信網を介して接続された管理サーバに該センサの検知結果を送信し、
    前記管理サーバが、前記開閉器制御装置を通じて前記センサの検知結果を収集し、前記センサの検知結果に基づいて事故区間を特定し、前記事故区間の電源側および負荷側の前記センサ内蔵開閉器を開放して該事故区間を分断し、
    さらに前記管理サーバ、前記複数の開閉器制御装置が取得した検知結果を定期的に収集し、事故が生じる蓋然性の高い区間を推定することを特徴とする事故探索・分断方法。
JP2009516098A 2007-05-29 2007-05-29 配電系統システム、事故探索・分断方法 Expired - Fee Related JP5051225B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/060850 WO2008146358A1 (ja) 2007-05-29 2007-05-29 配電系統システム、事故探索・分断方法

Publications (2)

Publication Number Publication Date
JPWO2008146358A1 JPWO2008146358A1 (ja) 2010-08-12
JP5051225B2 true JP5051225B2 (ja) 2012-10-17

Family

ID=40074643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009516098A Expired - Fee Related JP5051225B2 (ja) 2007-05-29 2007-05-29 配電系統システム、事故探索・分断方法

Country Status (2)

Country Link
JP (1) JP5051225B2 (ja)
WO (1) WO2008146358A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147739B2 (ja) * 2009-01-07 2013-02-20 中国電力株式会社 配電系統の地絡保護システム、配電系統の地絡保護方法、プログラム
RU2562916C2 (ru) 2011-06-20 2015-09-10 Абб Рисерч Лтд Способ и устройство для выбора защитных зон в компоновке с множеством шин
CN102709889B (zh) * 2012-05-29 2014-10-15 长园深瑞继保自动化有限公司 电力配电网络故障自愈方法
WO2014018909A1 (en) 2012-07-27 2014-01-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods
US9310416B2 (en) * 2012-09-15 2016-04-12 Saudi Arabian Oil Company GSM/GPRS based method, system and computer programs to determine and locate high impedance faults on medium voltage distribution networks in high resistivity
JP6095550B2 (ja) * 2013-02-06 2017-03-15 三菱電機株式会社 開閉装置、および電力制御システム
GB201601472D0 (en) * 2016-01-26 2016-03-09 Alstom Grid Uk Ltd Oscillations in electrical power networks
US11588323B2 (en) 2020-09-03 2023-02-21 Commonwealth Associates, Inc. Method and apparatus for locating faults in an islanded microgrid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591658A (ja) * 1991-09-27 1993-04-09 Ngk Insulators Ltd 配電線路の区分開閉装置
JPH11178200A (ja) * 1997-12-10 1999-07-02 Yaskawa Electric Corp 配電システム
JP2000139025A (ja) * 1998-10-30 2000-05-16 Mitsubishi Electric Corp 配電制御装置及び配電制御方法

Also Published As

Publication number Publication date
JPWO2008146358A1 (ja) 2010-08-12
WO2008146358A1 (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5051225B2 (ja) 配電系統システム、事故探索・分断方法
US6654216B2 (en) Distributed monitoring and protection system for a distributed power network
US6907321B2 (en) Fault control and restoration in a multi-feed power network
US10910826B2 (en) Voltage derivative and zero-sequence broken conductor detection
US20080211511A1 (en) Method of Generating Fault Indication in Feeder Remote Terminal Unit for Power Distribution Automation System
US11128127B2 (en) FLISR without communication
CN111313379B (zh) 比较线路两侧线电压与备自投配合的断线保护方法
US11489365B2 (en) Non-three-phase fault isolation and restoration systems
CN103354352A (zh) 一种基于分布式智能的配电网安全保护方法
WO2009127817A1 (en) Self organising unit protection
Uluski Using distribution automation for a self-healing grid
CN111781465A (zh) 用于不接地电网的故障定位系统及方法
CN101902037B (zh) 小电流接地系统的一种分布式单相接地故障隔离方法
CN109378797B (zh) 一种高压架空线断线保护识别方法
JP2004053554A (ja) 配電線断線検出システム
Allen Effects of wide-area control on the protection and operation of distribution networks
CN114355104A (zh) 一种小电流接地选线方法、系统及装置
Friend et al. Effect of distribution automation on protective relaying
CN111781466A (zh) 用于消弧线圈接地电网的故障定位系统及方法
CN111781464A (zh) 用于消弧线圈和小电阻接地电网的故障定位系统及方法
CN111766472A (zh) 用于小电阻接地电网的故障定位系统及方法
EP2150895B1 (en) Redundant computers and computer communication networks in a high-voltage power transmission system
Cabrera et al. Implementation of arc-flash protection using IEC 61850 GOOSE messaging
WO2008067299A2 (en) Method and system for isolating disturbances to the power distribution system
CN111668814B (zh) 母线故障切除方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees