JP5048369B2 - Organic EL device, organic EL device manufacturing method - Google Patents

Organic EL device, organic EL device manufacturing method Download PDF

Info

Publication number
JP5048369B2
JP5048369B2 JP2007078253A JP2007078253A JP5048369B2 JP 5048369 B2 JP5048369 B2 JP 5048369B2 JP 2007078253 A JP2007078253 A JP 2007078253A JP 2007078253 A JP2007078253 A JP 2007078253A JP 5048369 B2 JP5048369 B2 JP 5048369B2
Authority
JP
Japan
Prior art keywords
layer
charge
organic
charge injection
injection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007078253A
Other languages
Japanese (ja)
Other versions
JP2008243874A (en
Inventor
敏夫 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007078253A priority Critical patent/JP5048369B2/en
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to CN200880010215A priority patent/CN101647132A/en
Priority to PCT/JP2008/054877 priority patent/WO2008117691A1/en
Priority to KR1020097020087A priority patent/KR101167867B1/en
Priority to EP08722272.5A priority patent/EP2131410B1/en
Priority to TW097110096A priority patent/TW200908791A/en
Publication of JP2008243874A publication Critical patent/JP2008243874A/en
Priority to US12/567,068 priority patent/US8334647B2/en
Application granted granted Critical
Publication of JP5048369B2 publication Critical patent/JP5048369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は有機EL素子の技術分野に係り、特に電荷注入層の表面に電極層を形成する技術に関する。   The present invention relates to the technical field of organic EL elements, and more particularly to a technique for forming an electrode layer on the surface of a charge injection layer.

従来、この種の有機EL素子としては、図9の符号101ようなものが知られている。
この有機EL素子101は、基板102上に、第一の電極層103と、正孔注入層104と、正孔輸送層108と、発光層109と、電子輸送層110と、電子注入層106と、第二の電極層107とが、この順序で形成されている。
Conventionally, as an organic EL element of this type, a reference numeral 101 in FIG. 9 is known.
The organic EL element 101 includes a first electrode layer 103, a hole injection layer 104, a hole transport layer 108, a light emitting layer 109, an electron transport layer 110, an electron injection layer 106, and a substrate 102. The second electrode layer 107 is formed in this order.

有機層105は、正孔輸送層108と、発光層109と、電子輸送層110とで構成されている。
有機層105のうち電子注入層106に接触する側は、電子輸送層110であり、電子輸送性を有する有機材料を主成分とする薄膜である。
The organic layer 105 includes a hole transport layer 108, a light emitting layer 109, and an electron transport layer 110.
The side of the organic layer 105 that is in contact with the electron injection layer 106 is an electron transport layer 110, which is a thin film containing an organic material having an electron transport property as a main component.

電子注入層106は電子注入性を有する金属材料からなる薄膜であり、例えばリチウム等のアルカリ金属元素やアルカリ土類金属元素の単体、あるいは化合物が用いられる。
この有機EL素子101は、有機層105の表面に蒸着法により電子注入層106を形成し、電子注入層106の表面に蒸着法により第二の電極層107を形成している。
The electron injection layer 106 is a thin film made of a metal material having an electron injection property. For example, a simple substance or a compound of an alkali metal element such as lithium or an alkaline earth metal element is used.
In this organic EL element 101, an electron injection layer 106 is formed on the surface of the organic layer 105 by a vapor deposition method, and a second electrode layer 107 is formed on the surface of the electron injection layer 106 by a vapor deposition method.

第二の電極層107の蒸着法では、成膜時の熱負荷によってマスクが変形する等の問題が生じ、基板大型化が困難となっていた。そのため、スパッタリング法により第二の電極層107を形成することが試みられている。
しかし、スパッタリング法で第二の電極層107を形成した場合、発光効率が落ちることが知られており、解決が望まれている。
特開2005−26003号公報 特開2004−164992号公報
In the vapor deposition method of the second electrode layer 107, there is a problem that the mask is deformed by a thermal load during film formation, and it is difficult to increase the size of the substrate. Therefore, it has been attempted to form the second electrode layer 107 by a sputtering method.
However, it is known that when the second electrode layer 107 is formed by a sputtering method, the light emission efficiency is lowered, and a solution is desired.
Japanese Patent Laid-Open No. 2005-2603 JP 2004-164992 A

本発明は上記従来技術の問題を解決するために創作されたものであり、その目的は、スパッタリング法により第二の電荷注入層の表面に電極層を形成しても発光効率が低下しない技術を提供することにある。   The present invention was created in order to solve the above-mentioned problems of the prior art, and its purpose is to develop a technique that does not lower the luminous efficiency even if an electrode layer is formed on the surface of the second charge injection layer by sputtering. It is to provide.

上記課題を解決するために研究したところ、発光効率が落ちるのは、第二の電荷注入層と有機層の界面は、スパッタリング粒子が入射する影響で、電極層を形成する前の界面の状態に対して乱され、第二の電荷注入層から有機層へ電荷の注入効率が低下することが原因であると推測された。
そこで、発光効率を低下させないためには、スパッタリングによって電極層を形成する際に、第二の電荷注入層が形成されたときの状態が維持されるようにすればよい。
As a result of researches to solve the above-mentioned problems, the luminous efficiency decreases because the interface between the second charge injection layer and the organic layer is affected by the incidence of sputtered particles, and is in the state before the electrode layer is formed. It was presumed that this was caused by the disturbance of the charge injection efficiency from the second charge injection layer to the organic layer.
Therefore, in order not to reduce the light emission efficiency, it is only necessary to maintain the state when the second charge injection layer is formed when the electrode layer is formed by sputtering.

本発明は、上記観点から創作されたものであり、第一の電荷注入層と、前記第一の電荷注入層の表面に形成された有機層と、前記有機層の表面に形成された第二の電荷注入層とを有し、前記第一、第二の電荷注入層から、互いに逆極性の電荷が前記有機層にそれぞれ注入され、前記有機層が発光する有機EL素子であって、前記第二の電荷注入層は、母材有機材料と電荷注入性金属材料とが混合された薄膜で構成され、前記有機層は発光層と電荷輸送層とを有し、前記電荷輸送層は、前記発光層と前記第二の電荷注入層の間に配置され、前記電荷輸送層には、前記第二の電荷注入層と同じ前記母材有機材料含有され、前記第二の電荷注入層の前記電荷注入性金属材料は含有されず前記第二の電荷注入層の前記電荷注入性金属材料はリチウムであり、前記第二の電荷注入層には、前記電荷注入性金属材料が2wt%以上含有され、前記第二の電荷注入層の表面には、スパッタリング法で形成された電極層が設けられたことを特徴とする有機EL素子である。
また、本発明は、前記母材有機材料はAlq3である有機EL素子である。
また、本発明は、前記第二の電荷注入層は、前記母材有機材料の蒸気と、前記電荷注入性金属材料の蒸気とが、成膜対象物上に一緒に到達し、形成された有機EL素子である。
また、本発明は、第一の電荷注入層と、前記第一の電荷注入層の表面に形成され、発光層と電荷輸送層とを有する有機層と、前記有機層の表面に形成され、母材有機材料と電荷注入性金属材料とを含有する第二の電荷注入層とを有し、前記第一、第二の電荷注入層から、互いに逆極性の電荷が前記有機層にそれぞれ注入され、前記有機層が発光する有機EL素子を形成する有機EL素子製造方法であって、前記発光層を蒸着によって形成する工程と、前記発光層の表面に、前記第二の電荷注入層と同じ前記母材有機材料を含有し、前記第二の電荷注入層の前記電荷注入性金属材料を含有しない電荷輸送層を蒸着する工程と、前記電荷輸送層の表面に、前記母材有機材料の蒸気と、前記電荷注入性金属材料の蒸気とを一緒に到達させ、前記母材有機材料と前記電荷注入性金属材料とが混合され、前記電荷注入性金属材料が2wt%以上含有された薄膜からなる前記第二の電荷注入層を形成する工程と、前記第二の電荷注入層の表面にスパッタリング法で電極層を形成する工程と、を有し、前記電荷輸送層に含有された前記母材有機材料と、前記第二の電荷注入層に含有された前記母材有機材料とは、前記母材有機材料が配置されたのと同じ蒸着源から放出させる有機EL素子製造方法である。

The present invention was created from the above viewpoint, and includes a first charge injection layer, an organic layer formed on the surface of the first charge injection layer, and a second layer formed on the surface of the organic layer. An organic EL element in which charges having opposite polarities are injected into the organic layer from the first and second charge injection layers, respectively, and the organic layer emits light. The second charge injection layer is formed of a thin film in which a base material organic material and a charge injectable metal material are mixed. The organic layer includes a light emitting layer and a charge transport layer, and the charge transport layer includes the light emitting layer. disposed between said layer second charge injection layer, the charge in the transport layer, the same the matrix organic material and the second charge injection layer is contained, the charge of the second charge injection layer injectable metallic material containing Sarezu, the charge injectable metallic material of said second charge injection layer is lithium , And the wherein the second charge injection layer, the charge injectable metallic material is contained more than 2 wt%, the second surface of the charge injection layer, the electrode layer formed by sputtering is provided It is an organic EL element characterized by this.
In addition, the present invention is an organic EL element in which the base organic material is Alq 3 .
Further, in the present invention, the second charge injection layer is formed by the vapor of the base organic material and the vapor of the charge injectable metal material reaching the film formation target together. It is an EL element.
The present invention also includes a first charge injection layer, an organic layer formed on the surface of the first charge injection layer, having a light emitting layer and a charge transport layer, formed on the surface of the organic layer, A second charge injection layer containing an organic material and a charge injectable metal material, and charges having opposite polarities are injected into the organic layer from the first and second charge injection layers, An organic EL device manufacturing method for forming an organic EL device that emits light from the organic layer, the step of forming the light emitting layer by vapor deposition, and the same mother as the second charge injection layer on the surface of the light emitting layer. A step of depositing a charge transport layer containing a material organic material and not containing the charge injectable metal material of the second charge injection layer, and a vapor of the matrix organic material on the surface of the charge transport layer, The base material is made to reach together with the vapor of the charge injectable metal material Mixed with gear charge and the charge injectable metallic material, comprising the steps of the charge injectable metallic material forms the second charge injection layer composed of a thin film containing more than 2 wt%, the second charge injection layer Forming an electrode layer on the surface of the base material by a sputtering method, the base material organic material contained in the charge transport layer, and the base material organic material contained in the second charge injection layer Is an organic EL element manufacturing method in which the base organic material is emitted from the same vapor deposition source on which the organic material is disposed.

スパッタリング法によって第二の電荷注入層の表面に電極層を形成しても、発光効率は低下しない。   Even if an electrode layer is formed on the surface of the second charge injection layer by sputtering, the light emission efficiency does not decrease.

図3(e)の断面図は、本発明の有機EL素子40を示している。
この有機EL素子40は、板状の基板21を有しており、当該基板21の表面には、第一の電極層22と、第一の電荷注入層23と、第一の電荷輸送層27と、発光層28と、第二の電荷輸送層29と、第二の電荷注入層25と、第二の電極層26とが、下層からこの順序で形成されている。
第一の電極層22と、第二の電極層26とは電源41に接続されている。
The cross-sectional view of FIG. 3 (e) shows the organic EL element 40 of the present invention.
The organic EL element 40 has a plate-like substrate 21, and a first electrode layer 22, a first charge injection layer 23, and a first charge transport layer 27 are formed on the surface of the substrate 21. The light emitting layer 28, the second charge transport layer 29, the second charge injection layer 25, and the second electrode layer 26 are formed in this order from the lower layer .
The first electrode layer 22 and the second electrode layer 26 are connected to a power source 41.

第一の電荷注入層23は、正孔と電子のどちらか一方が注入され、輸送される物質で形成されており、第二の電荷注入層25は、第一の電荷注入層23とは逆の極性の電荷が注入され、輸送される物質で構成されている。
有機層24は、第一の電荷輸送層27と、発光層28と、第二の電荷輸送層29とで構成されている。
First charge injection layer 23, either of holes and electrons are injected, is formed by the transported substances, the second charge injection layer 25, the first charge injection layer 23 opposite the polarity of the charge is injected in, and a transported substances.
The organic layer 24 includes a first charge transport layer 27, a light emitting layer 28, and a second charge transport layer 29.

第一の電極層22と第二の電極層26との間に電圧が印加されると、正孔と電子のうち一方は、第一の電荷注入層23から第一の電荷輸送層27に注入され、他方は第二の電荷注入層25から第二の電荷輸送層29に注入される。正孔と電子は、第一、第二の電荷輸送層27、29内を輸送されて、発光層28に到達する。発光層28に到達した正孔と電子は、発光層28内で再結合すると、発光する。 When a voltage is applied between the first electrode layer 22 and the second electrode layer 26, one of holes and electrons is injected from the first charge injection layer 23 into the first charge transport layer 27. The other is injected from the second charge injection layer 25 into the second charge transport layer 29. The holes and electrons are transported in the first and second charge transport layers 27 and 29 and reach the light emitting layer 28. The holes and electrons that have reached the light emitting layer 28 emit light when recombined in the light emitting layer 28.

基板21はガラス基板であり、第一の電極層22は透明であり、第一の電極層22と基板21を透過した放射光が観察される。
なお、第一の電極層22には、ITO(Indium−Tin−Oxide)等を用いることができる。
Substrate 21 is a glass substrate, a first electrode layer 22 is transparent, radiation transmitted through the first electrode layer 22 and the substrate 21 is observed.
For the first electrode layer 22, ITO (Indium-Tin-Oxide) or the like can be used.

本発明では、第二の電荷注入層25は、後述するように、母材有機材料60と電荷注入性金属材料61が混合された薄膜からなる混合層50で構成されている。電荷注入性金属材料61は電荷注入性を有しており、母材有機材料60は電荷注入性金属材料61が注入する電荷と同じ極性の電荷を輸送する有機材料である。この第二の電荷注入層25の表面には、第二の電極層26がスパッタリング法で形成されている。   In the present invention, the second charge injection layer 25 is composed of a mixed layer 50 made of a thin film in which a base organic material 60 and a charge injectable metal material 61 are mixed, as will be described later. The charge injectable metal material 61 has charge injectability, and the base organic material 60 is an organic material that transports charges having the same polarity as the charges injected by the charge injectable metal material 61. A second electrode layer 26 is formed on the surface of the second charge injection layer 25 by a sputtering method.

以下に、図を参照にして、この有機EL素子40の製造工程を説明する。
図1の符号1は、本発明の有機EL素子40の製造装置を示している。
この製造装置1は搬送室2を有しており、搬送室2には、搬入室3と、搬出室4と、第一のスパッタ装置5と、第一の蒸着装置6と、第二の蒸着装置10と、第二のスパッタ装置7とがそれぞれ接続されている。
Below, the manufacturing process of this organic EL element 40 is demonstrated with reference to figures.
Reference numeral 1 in FIG. 1 indicates a manufacturing apparatus for the organic EL element 40 of the present invention.
The manufacturing apparatus 1 has a transfer chamber 2, and the transfer chamber 2 has a carry-in chamber 3, a carry-out chamber 4, a first sputtering device 5, a first vapor deposition device 6, and a second vapor deposition. The apparatus 10 and the second sputtering apparatus 7 are connected to each other.

搬送室2内には基板搬送ロボット9が配置されており、各室2〜7、10間で基板の搬入、搬出ができるように構成されている。
第一の電極層22が形成された状態の基板21(図3(a))は、予め、複数枚が搬入室3に配置されている。
各室2〜7、10は大気から遮断され、真空排気されている。
A substrate transfer robot 9 is disposed in the transfer chamber 2 and is configured so that substrates can be transferred into and out of the chambers 2 to 7 and 10.
A plurality of substrates 21 (FIG. 3A) on which the first electrode layer 22 is formed are arranged in advance in the carry-in chamber 3.
Each of the chambers 2 to 7 and 10 is cut off from the atmosphere and evacuated.

この状態で、第一の電極層22が形成された状態の基板21を搬入室3から第一のスパッタ装置5内に搬送し、第一のスパッタ装置5内では、第一の電極層22をターゲットに向け、スパッタリングガスを導入してターゲットをスパッタリングし、第一の電極層22の表面に第一の電荷注入層23を形成する。
ここでは銀ターゲットを用い、第一の電極層22の表面には、銀からなる第一の電荷注入層23が形成される。
In this state, the substrate 21 on which the first electrode layer 22 is formed is transported from the carry-in chamber 3 into the first sputtering apparatus 5, and the first electrode layer 22 is moved inside the first sputtering apparatus 5. A sputtering gas is introduced toward the target and the target is sputtered to form the first charge injection layer 23 on the surface of the first electrode layer 22.
Here, a silver target is used, and a first charge injection layer 23 made of silver is formed on the surface of the first electrode layer 22.

第一の電荷注入層23の形成終了後、第一の電荷注入層23が形成された状態の基板21(図3(b))を第一のスパッタ装置5内から第一の蒸着装置6内に搬送し、第一の電荷輸送層27と発光層28と第二の電荷輸送層29とに対応する3種類の蒸発源内に各層27、28、29の組成に対応する有機化合物を配置し、各蒸源から有機化合物の蒸気を放出させ、第一の電荷注入層23の表面に到達させ、第一の電荷輸送層27と発光層28と第二の電荷輸送層29からなる有機層24を形成する。
符号20は、有機層24が形成された状態の成膜対象物である(図3(c))。成膜対象物20を第一の蒸着装置6内から搬出し、第二の蒸着装置10の真空槽11内に搬入する。
After the formation of the first charge injection layer 23 is completed, the substrate 21 (FIG. 3B) on which the first charge injection layer 23 is formed is transferred from the first sputtering apparatus 5 to the first vapor deposition apparatus 6. And an organic compound corresponding to the composition of each layer 27, 28, 29 is disposed in three kinds of evaporation sources corresponding to the first charge transport layer 27, the light emitting layer 28, and the second charge transport layer 29, steam is the release of organic compounds from the evaporation source, the organic layer 24 consisting of the first to reach the surface of the charge injection layer 23, a first charge transport layer 27 and the light emitting layer 28 second charge transporting layer 29 Form.
Reference numeral 20 denotes a film formation target in a state where the organic layer 24 is formed (FIG. 3C). The film formation target 20 is carried out from the first vapor deposition apparatus 6 and carried into the vacuum chamber 11 of the second vapor deposition apparatus 10.

図2は、第二の蒸着装置10の内部を説明するための断面図であり、搬入した成膜対象物20は、真空槽11内部の基板ホルダ15に保持させる。
真空槽11の内部の、基板ホルダ15の下方には、第一の蒸発源13aと、第二の蒸発源13bとが配置されており、第一の蒸発源13aの蒸発容器62aには母材有機材料60が納められており、第二の蒸発源13bの蒸発容器62bには電荷注入性金属材料61が納められている。
FIG. 2 is a cross-sectional view for explaining the inside of the second vapor deposition apparatus 10, and the carried film formation target 20 is held by the substrate holder 15 inside the vacuum chamber 11.
A first evaporation source 13a and a second evaporation source 13b are disposed inside the vacuum chamber 11 below the substrate holder 15, and a base material is provided in the evaporation container 62a of the first evaporation source 13a. An organic material 60 is accommodated, and a charge injectable metal material 61 is accommodated in the evaporation container 62b of the second evaporation source 13b.

第一、第二の蒸発源13a、13bは、上部に放出口63a、63bを有している。第一、第二の蒸発源13a、13bのヒーターに通電して、第一、第二の蒸発源13a、13b内の母材有機材料60と電荷注入性金属材料61は、予め昇温させておく。   The first and second evaporation sources 13a and 13b have discharge ports 63a and 63b at the top. By energizing the heaters of the first and second evaporation sources 13a and 13b, the base material organic material 60 and the charge injecting metal material 61 in the first and second evaporation sources 13a and 13b are heated in advance. deep.

成膜対象物20が基板ホルダ15に配置された後、基板ホルダ15と第一、第二の蒸発源13a、13bの間の各シャッター16〜18で遮断した状態で、さらに昇温させ、第一の蒸発源13aと第二の蒸発源13bの放出口63a63bから、母材有機材料60の蒸気と電荷注入性金属材料61の蒸気をそれぞれ放出させる。   After the film formation target 20 is disposed on the substrate holder 15, the temperature is further increased in a state where the film formation target 20 is blocked by the shutters 16 to 18 between the substrate holder 15 and the first and second evaporation sources 13a and 13b. The vapor of the base organic material 60 and the vapor of the charge injecting metal material 61 are discharged from the discharge ports 63a63b of the first evaporation source 13a and the second evaporation source 13b, respectively.

母材有機材料60と電荷注入性金属材料61の蒸発状態と放出速度が安定したところで、基板ホルダ15と第一、第二の蒸発源13a、13bの間の各シャッター16〜18を開け、母材有機材料60の蒸気と電荷注入性金属材料61の蒸気を真空槽11内に放出させる。   When the evaporation state and the discharge speed of the base material organic material 60 and the charge injection metal material 61 are stabilized, the shutters 16 to 18 between the substrate holder 15 and the first and second evaporation sources 13a and 13b are opened, The vapor of the organic material 60 and the vapor of the charge injectable metal material 61 are released into the vacuum chamber 11.

第一、第二の蒸発源13a、13bは近接されており、基板ホルダ15は両方の蒸気が到達する位置に配置されており、第一の電荷注入層23の表面に母材有機材料60と電荷注入性金属材料61が混合された薄膜の成長が開始される。   The first and second evaporation sources 13a and 13b are close to each other, the substrate holder 15 is disposed at a position where both vapors reach, and the base organic material 60 and the surface of the first charge injection layer 23 The growth of the thin film mixed with the charge injecting metal material 61 is started.

予め決められた時間、母材有機材料60と電荷注入性金属材料61が混合された薄膜を成長させ、所定の膜厚となったところで、各シャッター16〜18を閉じ、薄膜の成長を終了させると、母材有機材料60と電荷注入性金属材料61との混合層50が第二の電荷注入層25として形成される。ここでは、放出口63a、63bからの各蒸気の単位時間あたりの放出量を一定にしており、その結果、膜厚方向に組成の変化がなく、膜厚方向で混合率が一定の混合層が得られる。
混合層50が形成された状態の成膜対象物20を、真空槽11から第二のスパッタ装置7内に搬送する。
A thin film in which the base material organic material 60 and the charge injectable metal material 61 are mixed is grown for a predetermined time. When the film thickness reaches a predetermined thickness, the shutters 16 to 18 are closed to complete the growth of the thin film. Then, the mixed layer 50 of the base organic material 60 and the charge injecting metal material 61 is formed as the second charge injection layer 25. Here, the discharge amount per unit time of each vapor from the discharge ports 63a and 63b is made constant. As a result, there is no mixed layer in the film thickness direction, and there is a mixed layer having a constant mixing ratio in the film thickness direction. can get.
The film formation target 20 with the mixed layer 50 formed is transported from the vacuum chamber 11 into the second sputtering apparatus 7.

図3(d)の符号30は、有機層24の表面に混合層50が形成された成膜対象物である。
成膜対象物30を基板ホルダに保持させ、第二のスパッタ装置7内では、混合層50をターゲットに向け、スパッタリングガスを導入してターゲットをスパッタリングし、混合層50の表面に、第二の電極層26を形成する。
ここではターゲットにはアルミニウムが用いられており、混合層50上には、アルミニウムからなる第二の電極層26が形成される(図3(e))。
Reference numeral 30 in FIG. 3D denotes a film formation target in which the mixed layer 50 is formed on the surface of the organic layer 24.
The film formation target 30 is held on the substrate holder, and in the second sputtering apparatus 7, the mixed layer 50 is directed to the target, the sputtering gas is introduced, the target is sputtered, and the second layer is formed on the surface of the mixed layer 50. The electrode layer 26 is formed.
Here, aluminum is used for the target, and the second electrode layer 26 made of aluminum is formed on the mixed layer 50 (FIG. 3E).

第二の電極層26が形成された状態の成膜対象物30を第二のスパッタ装置7内から搬出室4内に搬送し、取り出して組み立てると、有機EL素子40が得られる。
なお、上記実施例では、第二の電荷輸送層29を形成した蒸発源に、母材有機材料60を配置し、母材有機材料60を含有する第二の電荷輸送層29を形成し、同じ母材有機材料60を含有する薄膜(第二の電荷輸送層29と第二の電荷注入層25)を積層した。その結果、第二の電荷輸送層29と第二の電荷注入層25の界面は、母材有機材料60で連続し、界面で急峻な組成変化に成らないようになっている。
When the film formation target 30 with the second electrode layer 26 formed is transferred from the second sputtering apparatus 7 into the carry-out chamber 4 and taken out and assembled, the organic EL element 40 is obtained.
In the above embodiment, the base organic material 60 is disposed in the evaporation source on which the second charge transport layer 29 is formed, and the second charge transport layer 29 containing the base organic material 60 is formed. A thin film (second charge transport layer 29 and second charge injection layer 25) containing the base material organic material 60 was laminated. As a result, the interface between the second charge transport layer 29 and the second charge injection layer 25 is continuous with the base material organic material 60 so that a sharp composition change does not occur at the interface.

上記実施例では、混合層50を第二の電荷注入層25として形成し、混合層50の表面に第二の電極層26を形成したが、それに限定されず、図4のように、母材有機材料60と電荷注入性金属材料61とが混合された混合層50の表面に電荷注入性金属材料61からなる電荷注入性金属層51を形成し、第二の電荷注入層25を混合層50と電荷注入性金属層51の二層構造として構成してもよい。   In the above embodiment, the mixed layer 50 is formed as the second charge injection layer 25 and the second electrode layer 26 is formed on the surface of the mixed layer 50. However, the present invention is not limited to this, and as shown in FIG. A charge injectable metal layer 51 made of the charge injectable metal material 61 is formed on the surface of the mixed layer 50 in which the organic material 60 and the charge injectable metal material 61 are mixed, and the second charge injection layer 25 is used as the mixed layer 50. The charge injection metal layer 51 may be configured as a two-layer structure.

例えば、混合層50が形成された後、蒸着装置10より搬出し、別の蒸着装置で混合層50の表面に電荷注入性金属層51を形成してもよい。また、蒸着装置10より搬出せずに、第一の蒸発源13aからの母材有機材料60の放出を停止し、混合層50の表面に電荷注入性金属材料61の蒸気を到達させ、混合層50の表面に電荷注入性金属層51を形成してもよい。   For example, after the mixed layer 50 is formed, the charge injecting metal layer 51 may be formed on the surface of the mixed layer 50 using another vapor deposition apparatus. In addition, the discharge of the base organic material 60 from the first evaporation source 13 a is stopped without being carried out from the vapor deposition apparatus 10, the vapor of the charge injectable metal material 61 reaches the surface of the mixed layer 50, and the mixed layer The charge injectable metal layer 51 may be formed on the surface 50.

このように混合層50の表面に電荷注入性金属層51を形成し、電荷注入性金属層51の表面にスパッタリングによって第二の電極層26を形成すると、第二の電荷注入層25から第二の電荷輸送層29に注入される電荷の注入効率が上がる。   When the charge injectable metal layer 51 is thus formed on the surface of the mixed layer 50 and the second electrode layer 26 is formed on the surface of the charge injectable metal layer 51 by sputtering, the second charge injection layer 25 to the second The injection efficiency of charges injected into the charge transport layer 29 increases.

なお、上記実施例では、第二の電荷注入層25は、母材有機材料60と電荷注入性金属材料61の組成が膜厚方向に変化がなく、混合率が膜厚方向で一定であったが、それに限定されず、第二の電荷注入層25内の第二の電荷輸送層29に近い位置では母材有機材料60の割合が大きく、遠い位置では電荷注入性金属材料61の割合が大きくなるように組成を変化させてもよい。
この場合、混合層50の表面に電荷注入性金属層51を形成しなくても、電荷注入効率を上げることができる。
In the above embodiment, the composition of the base organic material 60 and the charge injectable metal material 61 is not changed in the film thickness direction, and the mixing rate is constant in the film thickness direction in the second charge injection layer 25. However, the ratio is not limited thereto, and the ratio of the base material organic material 60 is large at a position close to the second charge transport layer 29 in the second charge injection layer 25, and the ratio of the charge injectable metal material 61 is large at a position far away. You may change a composition so that it may become.
In this case, the charge injection efficiency can be increased without forming the charge injectable metal layer 51 on the surface of the mixed layer 50.

第二の電荷注入層25の母材有機材料60としてAlq3[Tris(8−hydroxyquinoline) aluminium]、電荷注入性金属材料61としてリチウムを第一、第二の蒸源13a、13b内に配置し、それぞれの材料を蒸発させ、Alq3の蒸気とリチウムの蒸気をそれぞれ放出させ、有機層24の表面に一緒に到達させ、Alq3に対してリチウムが重量割合で2%混合された薄膜からなる混合層50を形成して第二の電荷注入層25とし、第二の電荷注入層25の表面にスパッタリング法又は蒸着法でアルミニウム薄膜から成る第二の電極層26を形成し、第一、第二の電極層22、26間に電圧を印加して、発光させ、発光強度と流れた電流の大きさを測定した。
Second Alq 3 as a matrix organic material 60 of the charge injection layer 25 [Tris (8-hydroxyquinoline) aluminium], lithium first as the charge injectable metallic material 61, a second evaporation source 13a, located within 13b Then, the respective materials are evaporated, the vapor of Alq 3 and the vapor of lithium are respectively released, reach the surface of the organic layer 24 together, and from a thin film in which 2% of lithium is mixed by weight with respect to Alq 3 The mixed layer 50 is formed as a second charge injection layer 25, and a second electrode layer 26 made of an aluminum thin film is formed on the surface of the second charge injection layer 25 by sputtering or vapor deposition. A voltage was applied between the second electrode layers 22 and 26 to emit light, and the light emission intensity and the magnitude of the flowing current were measured.

図5に、測定結果を示す。図5の横軸は印加電圧の大きさであり、縦軸は発光強度である。同図中の符号L1はアルミニウムを蒸着した比較例の有機EL素子の測定結果であり、符号L2はアルミニウムターゲットをスパッタリングした本発明の有機EL素子40の測定結果である。 FIG. 5 shows the measurement results. The horizontal axis in FIG. 5 is the magnitude of the applied voltage, and the vertical axis is the emission intensity. Symbol L 1 in the figure is the measurement result of the organic EL element of the comparative example in which aluminum is deposited, and symbol L 2 is the measurement result of the organic EL element 40 of the present invention in which the aluminum target is sputtered.

これらのグラフから、本発明の有機EL素子40と比較例の有機EL素子との発光強度の差は見られなかった。
各素子の発光層28の面積は、予め分かっており、この面積から電流密度が算出でき、また、発光強度と測定電流の大きさから発光効率が算出できる。
From these graphs, a difference in light emission intensity between the organic EL element 40 of the present invention and the organic EL element of the comparative example was not observed.
The area of the light emitting layer 28 of each element is known in advance, the current density can be calculated from this area, and the light emission efficiency can be calculated from the light emission intensity and the magnitude of the measured current.

図6の横軸は電圧、縦軸は電流密度であり、符号L3は、比較例の有機EL素子の印加電圧と電流密度の関係を示す曲線であり、符号L4は、本発明の有機EL素子40の印加電圧と電流密度の関係を示す曲線である。 The horizontal axis of FIG. 6 is voltage, the vertical axis is current density, the symbol L 3 is a curve showing the relationship between the applied voltage and the current density of the organic EL element of the comparative example, and the symbol L 4 is the organic of the present invention. 4 is a curve showing the relationship between the applied voltage of the EL element 40 and the current density.

図7の横軸は電流密度を示し、縦軸は発光強度を示しており、符号L5は、比較例の有機EL素子の電流密度に対する発光強度の関係を示す曲線であり、符号L6は、本発明の有機EL素子40の電流密度に対する発光強度の関係を示す曲線である。 In FIG. 7, the horizontal axis indicates the current density, the vertical axis indicates the emission intensity, the symbol L 5 is a curve indicating the relationship of the emission intensity to the current density of the organic EL element of the comparative example, and the symbol L 6 is It is a curve which shows the relationship of the emitted light intensity with respect to the current density of the organic EL element 40 of this invention.

図8の横軸は電流密度を示し、縦軸は発光効率を示している。符号L7は、比較例の有機EL素子の電流密度に対する発光効率の関係を示す曲線であり、符号L8は、本発明の有機EL素子40の電流密度に対する発光効率の関係を示す曲線である。 The horizontal axis in FIG. 8 indicates the current density, and the vertical axis indicates the light emission efficiency. Reference symbol L 7 is a curve showing the relationship of the luminous efficiency to the current density of the organic EL element of the comparative example, and reference symbol L 8 is a curve showing the relationship of the luminous efficiency to the current density of the organic EL device 40 of the present invention. .

図6、図7、図8から分かるように、本発明の有機EL素子40と比較例の有機EL素子との電流密度、発光強度、及び発光効率の差は見られなかった。
即ち、Alq3とリチウムとの混合層50として形成された第二の電荷注入層25の表面に、スパッタリング法で第二の電極層26を形成しても、電流密度、発光強度、及び発光効率は低下しない。
As can be seen from FIGS. 6, 7, and 8, there was no difference in current density, light emission intensity, and light emission efficiency between the organic EL element 40 of the present invention and the organic EL element of the comparative example.
That is, even when the second electrode layer 26 is formed on the surface of the second charge injection layer 25 formed as the mixed layer 50 of Alq 3 and lithium by the sputtering method, the current density, the emission intensity, and the emission efficiency. Will not drop.

なお、本発明では、第一の電荷注入層23の材料には銀を用いたが、それに限定されず、第二の電荷注入層25によって注入される電荷とは逆の極性の電荷を注入する材料を用いることができる。   In the present invention, silver is used as the material of the first charge injection layer 23, but the present invention is not limited to this, and a charge having the opposite polarity to the charge injected by the second charge injection layer 25 is injected. Materials can be used.

なお、上記実施例では、電荷注入性金属材料61としてリチウムを用いたが、リチウムに限定されず、電子注入材料の場合はセシウム等のアルカリ金属元素やマグネシウム等のアルカリ土類金属元素を含有する金属材料を用いることができる。   In the above embodiment, lithium is used as the charge injecting metal material 61. However, the material is not limited to lithium, and the electron injecting material contains an alkali metal element such as cesium and an alkaline earth metal element such as magnesium. Metal materials can be used.

なお、上記実施例では、母材有機材料60としてAlq3を用いたが、Alq3に限定されず、電荷注入性金属材料61が第二の電荷輸送層29に注入する電荷と同じ極性の電荷を輸送する有機材料を用いることができる。特に、母材有機材料60は、第二の電荷輸送層29に含まれる有機化合物から成る有機材料であることが望ましい。 In the above embodiment, Alq 3 is used as the base material organic material 60, but is not limited to Alq 3 , and the charge having the same polarity as the charge injected into the second charge transport layer 29 by the charge injectable metal material 61 is used. It is possible to use an organic material that transports the water. In particular, the base material organic material 60 is desirably an organic material composed of an organic compound contained in the second charge transport layer 29.

なお、上記実施例では、Alq3に対してリチウムが2%混合されていたが、それに限定されず、重量割合で2%以上であればよい。
なお、本発明では、第二の電極層26にアルミニウムを用いたが、アルミニウムに限定されず、他の金属を用いることができる。
なお、本発明では、製造装置としてクラスタ型装置を用いたが、それに限定されず、インライン型装置を用いることができる。
In the above embodiment, 2% of lithium is mixed with Alq 3 , but the present invention is not limited to this, and it may be 2% or more by weight.
In the present invention, aluminum is used for the second electrode layer 26. However, the present invention is not limited to aluminum, and other metals can be used.
In the present invention, a cluster type apparatus is used as a manufacturing apparatus. However, the present invention is not limited to this, and an inline type apparatus can be used.

本発明の有機EL素子の製造装置を説明するためのブロック図The block diagram for demonstrating the manufacturing apparatus of the organic EL element of this invention 真空蒸着装置を説明するための断面図Sectional drawing for demonstrating a vacuum evaporation system (a)〜(e):本発明の有機EL素子の製造工程を説明するための断面図(A)-(e): Sectional drawing for demonstrating the manufacturing process of the organic EL element of this invention 混合層と電荷注入性金属層の二層構造として第二の電荷注入層を形成した場合の有機EL素子を説明するための断面図Sectional drawing for demonstrating the organic electroluminescent element at the time of forming a 2nd charge injection layer as a two-layer structure of a mixed layer and a charge injection metal layer 本発明の有機EL素子と比較例の有機EL素子の電圧と発光強度の関係を説明するためのグラフThe graph for demonstrating the relationship between the voltage of the organic EL element of this invention, and the organic EL element of a comparative example, and emitted light intensity. 本発明の有機EL素子と比較例の有機EL素子の電圧と電流密度の関係を説明するためのグラフThe graph for demonstrating the relationship between the voltage of an organic EL element of this invention, and the organic EL element of a comparative example, and current density 本発明の有機EL素子と比較例の有機EL素子の電流密度と発光強度の関係を説明するためのグラフThe graph for demonstrating the relationship between the current density of the organic EL element of this invention, and the organic EL element of a comparative example, and emitted light intensity. 本発明の有機EL素子と比較例の有機EL素子の電流密度と発光効率の関係を説明するためのグラフThe graph for demonstrating the relationship between the current density of the organic EL element of this invention, and the organic EL element of a comparative example, and luminous efficiency. 従来の有機EL素子を説明するための断面図Sectional drawing for demonstrating the conventional organic EL element

符号の説明Explanation of symbols

20…成膜対象物 22…第一の電極層 23…第一の電荷注入層 24…有機層 25…第二の電荷注入層 26…第二の電極層 30…成膜対象物 40…有機EL素子 60…母材有機材料 61…電荷注入性金属材料   DESCRIPTION OF SYMBOLS 20 ... Film formation target 22 ... 1st electrode layer 23 ... 1st charge injection layer 24 ... Organic layer 25 ... 2nd charge injection layer 26 ... 2nd electrode layer 30 ... Film formation target 40 ... Organic EL Element 60 ... Organic material of base material 61 ... Metal material with charge injection property

Claims (4)

第一の電荷注入層と、
前記第一の電荷注入層の表面に形成された有機層と、
前記有機層の表面に形成された第二の電荷注入層とを有し、
前記第一、第二の電荷注入層から、互いに逆極性の電荷が前記有機層にそれぞれ注入され、前記有機層が発光する有機EL素子であって、
前記第二の電荷注入層は、母材有機材料と電荷注入性金属材料とが混合された薄膜で構成され、
前記有機層は発光層と電荷輸送層とを有し、前記電荷輸送層は、前記発光層と前記第二の電荷注入層の間に配置され、前記電荷輸送層には、前記第二の電荷注入層と同じ前記母材有機材料含有され、前記第二の電荷注入層の前記電荷注入性金属材料は含有されず
前記第二の電荷注入層の前記電荷注入性金属材料はリチウムであり、前記第二の電荷注入層には、前記電荷注入性金属材料が2wt%以上含有され、
前記第二の電荷注入層の表面には、スパッタリング法で形成された電極層が設けられたことを特徴とする有機EL素子。
A first charge injection layer;
An organic layer formed on the surface of the first charge injection layer;
A second charge injection layer formed on the surface of the organic layer,
An organic EL element in which charges having opposite polarities are injected from the first and second charge injection layers into the organic layer, and the organic layer emits light,
The second charge injection layer is composed of a thin film in which a matrix organic material and a charge injectable metal material are mixed,
The organic layer has a light emitting layer and a charge transport layer, the charge transport layer is disposed between the light emitting layer and the second charge injection layer, and the charge transport layer includes the second charge. the same the matrix organic material and the injection layer is contained, the charge injectable metallic material of said second charge injection layer containing Sarezu,
The charge injecting metal material of the second charge injection layer is lithium, and the second charge injection layer contains 2 wt% or more of the charge injectable metal material,
An organic EL element, wherein an electrode layer formed by a sputtering method is provided on a surface of the second charge injection layer .
前記母材有機材料はAlq3である請求項1記載の有機EL素子。 Wherein the matrix organic material according to claim 1 Symbol placement of the organic EL element is Alq 3. 前記第二の電荷注入層は、前記母材有機材料の蒸気と、前記電荷注入性金属材料の蒸気とが、成膜対象物上に一緒に到達し、形成された請求項1又は2のいずれか1項記載の有機EL素子。 Said second charge injection layer includes a vapor of the matrix organic material, a vapor of the charge injectable metallic material, reaches together on the film-forming target, one formed according to claim 1 or 2 The organic EL element of Claim 1. 第一の電荷注入層と、
前記第一の電荷注入層の表面に形成され、発光層と電荷輸送層とを有する有機層と、
前記有機層の表面に形成され、母材有機材料と電荷注入性金属材料とを含有する第二の電荷注入層とを有し、
前記第一、第二の電荷注入層から、互いに逆極性の電荷が前記有機層にそれぞれ注入され、前記有機層が発光する有機EL素子を形成する有機EL素子製造方法であって、
前記発光層を蒸着によって形成する工程と、
前記発光層の表面に、前記第二の電荷注入層と同じ前記母材有機材料を含有し、前記第二の電荷注入層の前記電荷注入性金属材料を含有しない電荷輸送層を蒸着する工程と、
前記電荷輸送層の表面に、前記母材有機材料の蒸気と、前記電荷注入性金属材料の蒸気とを一緒に到達させ、前記母材有機材料と前記電荷注入性金属材料とが混合され、前記電荷注入性金属材料が2wt%以上含有された薄膜からなる前記第二の電荷注入層を形成する工程と、
前記第二の電荷注入層の表面にスパッタリング法で電極層を形成する工程と、
を有し、
前記電荷輸送層に含有された前記母材有機材料と、前記第二の電荷注入層に含有された前記母材有機材料とは、前記母材有機材料が配置されたのと同じ蒸着源から放出させる有機EL素子製造方法。
A first charge injection layer;
An organic layer formed on the surface of the first charge injection layer and having a light emitting layer and a charge transport layer;
A second charge injection layer formed on the surface of the organic layer and containing a matrix organic material and a charge injectable metal material;
An organic EL device manufacturing method in which charges having opposite polarities are injected into the organic layer from the first and second charge injection layers, respectively, and the organic layer emits light.
Forming the light emitting layer by vapor deposition;
Depositing, on the surface of the light emitting layer, a charge transport layer that contains the same organic material as that of the second charge injection layer and does not contain the charge injectable metal material of the second charge injection layer; ,
The matrix organic material vapor and the charge injectable metal material vapor are allowed to reach the surface of the charge transport layer together, and the matrix organic material and the charge injectable metal material are mixed , Forming the second charge injection layer comprising a thin film containing 2 wt% or more of a charge injectable metal material ;
Forming an electrode layer on the surface of the second charge injection layer by a sputtering method;
Have
The matrix organic material contained in the charge transport layer and the matrix organic material contained in the second charge injection layer are emitted from the same vapor deposition source as the matrix organic material is disposed. The organic EL element manufacturing method to make it.
JP2007078253A 2007-03-26 2007-03-26 Organic EL device, organic EL device manufacturing method Active JP5048369B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007078253A JP5048369B2 (en) 2007-03-26 2007-03-26 Organic EL device, organic EL device manufacturing method
PCT/JP2008/054877 WO2008117691A1 (en) 2007-03-26 2008-03-17 Organic el element and organic el element manufacturing method
KR1020097020087A KR101167867B1 (en) 2007-03-26 2008-03-17 Organic el element and organic el element manufacturing method
EP08722272.5A EP2131410B1 (en) 2007-03-26 2008-03-17 Organic el element and organic el element manufacturing method
CN200880010215A CN101647132A (en) 2007-03-26 2008-03-17 Organic el element and organic el element manufacturing method
TW097110096A TW200908791A (en) 2007-03-26 2008-03-21 Organic EL device and method for producing organic EL device
US12/567,068 US8334647B2 (en) 2007-03-26 2009-09-25 Organic EL device and an organic EL device producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078253A JP5048369B2 (en) 2007-03-26 2007-03-26 Organic EL device, organic EL device manufacturing method

Publications (2)

Publication Number Publication Date
JP2008243874A JP2008243874A (en) 2008-10-09
JP5048369B2 true JP5048369B2 (en) 2012-10-17

Family

ID=39914898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078253A Active JP5048369B2 (en) 2007-03-26 2007-03-26 Organic EL device, organic EL device manufacturing method

Country Status (2)

Country Link
JP (1) JP5048369B2 (en)
CN (1) CN101647132A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204671A (en) * 2010-03-02 2011-10-13 Canon Inc Organic electroluminescence element and light-emitting device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113976A (en) * 1998-10-07 2000-04-21 Tdk Corp Organic el element
JP4255250B2 (en) * 2002-06-12 2009-04-15 大日本印刷株式会社 Electroluminescent element
US6703180B1 (en) * 2003-04-16 2004-03-09 Eastman Kodak Company Forming an improved stability emissive layer from a donor element in an OLED device
JP2006210890A (en) * 2004-12-27 2006-08-10 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2007073500A (en) * 2005-08-11 2007-03-22 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device and electronic device

Also Published As

Publication number Publication date
CN101647132A (en) 2010-02-10
JP2008243874A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US20210119175A1 (en) Hermetically sealed isolated oled pixels
KR20220150987A (en) Method for patterning a coating on a surface and device including a patterned coating
JP2009087931A (en) Film forming method, vapor deposition apparatus, and organic el manufacturing apparatus
JP2003077662A (en) Method and device for manufacturing organic electroluminescent element
US20160254487A1 (en) Permeation barrier system for substrates and devices and method of making the same
JPWO2009044675A1 (en) Organic EL device, organic EL device manufacturing method
JP5048369B2 (en) Organic EL device, organic EL device manufacturing method
KR20110124429A (en) Apparatus for deposition of organic thin film and manufacturing method of organic luminescence emitting device using the same
KR101814241B1 (en) Organic el display device and method for manufacturing the same
US20140295603A1 (en) Method for producing organic electroluminescence element
JP4925903B2 (en) Organic EL device, organic EL device manufacturing method
KR101167867B1 (en) Organic el element and organic el element manufacturing method
WO2012105349A1 (en) Vacuum vapor deposition device, vacuum vapor deposition method, and organic electroluminescence element formed using said vacuum vapor deposition device or vacuum vapor deposition method
JP4964591B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
JP4308172B2 (en) Thin film forming method and organic electroluminescent device manufacturing method
JP2006002218A (en) Film-forming source, film-forming method, hot plate, and method for manufacturing organic el element
JP2009087884A (en) Organic electroluminescent device and method for manufacturing the same
JP2007005680A (en) Organic electroluminescence device
JP2002324669A (en) Organic electroluminescent element
TW201125432A (en) Organic EL device and manufacturing method of electrode for organic EL device, illuminating device and method for manufacturing illuminating device
JP2003264065A (en) Organic thin-film fabricating method
KR20060041058A (en) Apparatus for fabricating organic electro luminescence display device
JP2005183202A (en) Manufacturing method of organic el element
JPWO2012105348A1 (en) Vacuum deposition apparatus, vacuum deposition method, and organic electroluminescence element formed using the vacuum deposition apparatus or the vacuum deposition method
KR20060054863A (en) Apparatus for fabricating organic electro luminescence display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250