JP5047226B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP5047226B2
JP5047226B2 JP2009125588A JP2009125588A JP5047226B2 JP 5047226 B2 JP5047226 B2 JP 5047226B2 JP 2009125588 A JP2009125588 A JP 2009125588A JP 2009125588 A JP2009125588 A JP 2009125588A JP 5047226 B2 JP5047226 B2 JP 5047226B2
Authority
JP
Japan
Prior art keywords
infrared
detection
heated
unit
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009125588A
Other languages
Japanese (ja)
Other versions
JP2010272481A (en
Inventor
彰 森井
滋之 永田
広康 私市
博史 山崎
昭彦 小林
庄太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009125588A priority Critical patent/JP5047226B2/en
Publication of JP2010272481A publication Critical patent/JP2010272481A/en
Application granted granted Critical
Publication of JP5047226B2 publication Critical patent/JP5047226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は電磁誘導を利用して天板上に載置された鍋やフライパンなどの調理容器(以下被加熱物という)の加熱調理を行う加熱調理器に関するものである。   The present invention relates to a cooking device that cooks a cooking container (hereinafter referred to as an object to be heated) such as a pan or a pan placed on a top plate using electromagnetic induction.

従来の加熱調理器においては、温度検知部として天板下から上方へ予圧配置されている接触式温度検知手段(サーミスタなど)が最も多く用いられている。しかし、天板下に設置された接触式温度検知手段では、天板上に載置された被加熱物の形状が反っている場合、あるいは天板が加熱初期より予熱されている場合には温度変化の追従性が遅いため信頼性が著しく落ちる。さらに天板(ガラス)の熱容量もあるため、温度検知には時間遅れが発生してしまう。
そこで、このような接触式温度検知手段の問題を解決するために、赤外線温度検知手段を用いて温度検知する方式が知られており、例えば天板下に赤外線温度検知手段を設置して下から上方の被加熱物の温度を天板を介して測定するものが知られている。しかし、このように天板下に赤外線温度検知手段を設置した場合には、天板(ガラス)が150℃以下の波長帯の電磁波を透過しないため、被加熱物の温度が150℃以下の場合に温度検知ができないという問題があった。
そこで、このような天板下に赤外線温度検知手段を設置した場合の問題を解決するために、天板の側方且つ上方より赤外線温度検知手段を用いて天板上に載置された被加熱物の初期温度から調理温度迄の広範な温度範囲を天板を介さずに直接検知するものが知られている(例えば特許文献1参照)。
この場合、測定対象である被加熱物が鏡面加工か非鏡面加工かによって放射率が異なる。例えば、被加熱物がステンレス製で鏡面加工されている場合には放射率εがε=0.15程度であるのに対して、ホーローなどの容器では放射率εがε=0.8程度であり、赤外線放射エネルギー量に大きな乖離が発生してしまう。
そこでこの問題を解決するために補正が必要になるが、この補正処理の詳細については特許文献2に記載されているため、ここでは詳細説明を省略する。
In a conventional cooking device, a contact temperature detecting means (such as a thermistor) preliminarily arranged from below the top plate as a temperature detecting unit is most often used. However, with the contact-type temperature detection means installed under the top plate, the temperature of the object to be heated placed on the top plate is warped or the top plate is preheated from the beginning of heating. Reliability is remarkably reduced due to slow change following. Furthermore, since there is also a heat capacity of the top plate (glass), a time delay occurs in temperature detection.
Therefore, in order to solve such a problem of the contact-type temperature detection means, a method of detecting the temperature using the infrared temperature detection means is known. For example, the infrared temperature detection means is installed under the top plate from below. What measures the temperature of an upper to-be-heated material through a top plate is known. However, when the infrared temperature detection means is installed under the top plate in this way, since the top plate (glass) does not transmit electromagnetic waves in the wavelength band of 150 ° C. or lower, the temperature of the heated object is 150 ° C. or lower. However, there was a problem that temperature could not be detected.
Therefore, in order to solve the problem in the case where the infrared temperature detection means is installed under such a top plate, the heated object placed on the top plate using the infrared temperature detection means from the side and above the top plate. A device that directly detects a wide temperature range from the initial temperature of an object to the cooking temperature without using a top plate is known (see, for example, Patent Document 1).
In this case, the emissivity varies depending on whether the object to be heated, which is a measurement target, is mirror-finished or non-mirror-finished. For example, when the object to be heated is made of stainless steel and mirror-finished, the emissivity ε is about ε = 0.15, whereas in a container such as a hollow, the emissivity ε is about ε = 0.8. There is a big difference in the amount of infrared radiation energy.
Therefore, correction is required to solve this problem, but details of this correction processing are described in Patent Document 2, and thus detailed description thereof is omitted here.

特許第3924720号Japanese Patent No. 3924720 特願2008−284081号(第3頁〜第6頁、図4〜図8)Japanese Patent Application No. 2008-284081 (pages 3 to 6, FIGS. 4 to 8)

また、被加熱物が鏡面の場合には、被加熱物の側面(以下、鍋肌と呼ぶ場合もある)、天板(ガラス)と被加熱物の底面との境界部、及び境界部近傍の天板の内で境界部からの放射量が最も多い。非鏡面の場合には、被加熱物の側面と境界部が最も多い。そこで、鏡面/非鏡面いずれの場合にもこの境界部を視野領域に含む検知素子(以下、単に素子と呼ぶ場合もある)が検知する赤外線量に基づいて温度検知を行えば、高精度な温度検知が可能になる。
しかしながら、赤外線温度検知部は、一例として縦方向の視野領域1°、横方向の視野領域3°/1素子の検知領域をとる複数の検知素子から成るサーモパイルであり、1素子の検知領域面積で得られる総赤外線量を面積で平均化して値を返す。
このため、天板(ガラス)と被加熱物の底面との境界部から上記検知素子までの距離が遠く離れている場合には、検知領域の総面積に対して境界部が占める面積の割合が小さくなるため、検知素子検知する赤外線量は小さくなってしまう。従って、被加熱物の底径の大小により、この被加熱物と天板の境界部を検知する素子の温度が過剰になったり、低過ぎたりして温度検知の精度が低下するという問題があった。
In addition, when the object to be heated is a mirror surface, the side surface of the object to be heated (hereinafter sometimes referred to as nabe skin), the boundary between the top plate (glass) and the bottom of the object to be heated, and the vicinity of the boundary The amount of radiation from the boundary of the top plate is the largest. In the case of a non-mirror surface, the side surface and the boundary portion of the object to be heated are the most. Therefore, if temperature detection is performed based on the amount of infrared rays detected by a detection element including this boundary portion in the visual field region (hereinafter also referred to simply as an element) in both cases of mirror and non-mirror surfaces, a highly accurate temperature can be obtained. Detection is possible.
However, the infrared temperature detection unit is a thermopile composed of a plurality of detection elements having, for example, a vertical visual field area of 1 ° and a horizontal visual field area of 3 ° / 1 element. Average the total amount of infrared rays obtained by area and return the value.
For this reason, when the distance from the boundary between the top plate (glass) and the bottom surface of the object to be heated is far away from the detection element, the ratio of the area occupied by the boundary to the total area of the detection region is Since it becomes small, the amount of infrared rays detected by the sensing element becomes small. Therefore, there is a problem in that the temperature detection accuracy decreases because the temperature of the element that detects the boundary between the object to be heated and the top plate becomes excessive or too low due to the size of the bottom diameter of the object to be heated. It was.

本発明は、上記の問題を解決するために為されたものであり、その目的は被加熱物の温度を底径の大小に関わらず正確に検知することが可能な加熱調理器を得ることにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to obtain a cooking device capable of accurately detecting the temperature of the object to be heated regardless of the size of the bottom diameter. is there.

本発明に係る加熱調理器は、鍋などの被加熱物が載置される天板と、天板の下方に設けられ被加熱物を誘導加熱する加熱コイルと、加熱コイルに交番電力を供給して駆動する加熱コイル駆動部と、天板の側方且つ上方に設けられ、被加熱物の側面、被加熱物の底面と天板との境界部、及び天板に至る連続領域を複数に分割して得られる分割領域のそれぞれに対応して設けられた複数の検知素子を有し、天板の上方の赤外線量を直接検知する赤外線温度検知部と、赤外線温度検知部の検知した赤外線量を温度に変換する演算部と、演算部が出力した温度に基づいて加熱コイル駆動部を制御する制御部と、各検知素子とこの検知素子が検知する分割領域までの距離及び補正係数とを対応付けた対応表を記憶する記憶部と、を備え演算部は、複数の検知素子の内で検知した赤外線量の大小比較に基づいて境界部を検知したものを特定し、特定した検知素子が被加熱物から検知した赤外線量を予め設定された補正係数で補正し、補正した赤外線量に基づいて被加熱物の温度を推定するものであり、補正係数は、各検知素子が検知する分割領域に境界部が含まれるときにその検知素子が出力する赤外線量と、予め設定された基準値となる赤外線量との相対比として算出され、各検知素子が検知する分割領域までの距離に応じて各検知素子毎に設定された値とされたものである。 A heating cooker according to the present invention supplies a top plate on which an object to be heated such as a pan is placed, a heating coil provided below the top plate for induction heating the object to be heated, and supplies alternating power to the heating coil. The heating coil drive unit that is driven and the side of the object to be heated and the upper side of the top panel, the side surface of the object to be heated, the boundary between the bottom surface of the object to be heated and the top panel, and the continuous area that reaches the top panel are divided into multiple parts A plurality of detection elements provided corresponding to each of the obtained divided regions, an infrared temperature detection unit that directly detects the amount of infrared radiation above the top plate, and an infrared amount detected by the infrared temperature detection unit Corresponding the calculation unit for converting to temperature, the control unit for controlling the heating coil driving unit based on the temperature output by the calculation unit, the distance to each detection element and the divided area detected by the detection element, and the correction coefficient comprising a storage unit for storing a correspondence table, and the arithmetic unit, a plurality Based on a comparison of the amount of infrared rays detected in the detection element, the detection of the boundary is specified, and the infrared amount detected from the object to be heated by the specified detection element is corrected by a preset correction coefficient. The temperature of the object to be heated is estimated based on the amount of infrared rays , and the correction coefficient is set in advance with the amount of infrared rays output by the detection element when the boundary area is included in the divided area detected by each detection element. It is calculated as a relative ratio to the infrared amount that is the reference value, and is a value set for each detection element according to the distance to the divided area detected by each detection element .

本発明によれば、被加熱物の底面と天板との境界部からの赤外線を検知した検知素子が出力する赤外線量を、各検知素子が検知する分割領域に境界部が含まれるときにその検知素子が出力する赤外線量と、予め設定された基準値となる赤外線量との相対比として算出され、各検知素子が検知する分割領域までの距離に応じて各検知素子毎に設定された補正係数で補正し、補正した赤外線量に基づいて被加熱物の温度を推定するので、被加熱物の温度を底径の大小に関わらず正確に検知することが可能となる。 According to the present invention, when the boundary portion is included in the divided area detected by each detection element, the amount of infrared rays output from the detection element that detects infrared rays from the boundary portion between the bottom surface of the object to be heated and the top plate is detected. Calculated as a relative ratio between the amount of infrared light output by the sensing element and the amount of infrared radiation that is a preset reference value, and a correction set for each sensing element according to the distance to the divided area detected by each sensing element Since the temperature of the object to be heated is estimated based on the corrected amount of infrared rays, the temperature of the object to be heated can be accurately detected regardless of the size of the bottom diameter.

本発明の実施の形態1、2における加熱調理器の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of the heating cooker in Embodiment 1, 2 of this invention. 図1の正面断面図である。It is front sectional drawing of FIG. 図1の側面断面図である。It is side surface sectional drawing of FIG. 本発明の実施の形態1における赤外線温度検知部7を構成する検知素子の縦方向に8列且つ横方向に1列の配列とその被検知領域とを示す図である。It is a figure which shows the arrangement | sequence and its to-be-detected area | region of 8 rows in a vertical direction and 1 row in a horizontal direction of the detection element which comprises the infrared temperature detection part 7 in Embodiment 1 of this invention. 本発明の実施の形態1、2における赤外線温度検知部7を構成する検知素子の縦方向に4列且つ横方向に2列の千鳥配列とその被検知領域とを示す図である。It is a figure which shows the zigzag arrangement | sequence of 4 rows in the vertical direction of the detection element which comprises the infrared temperature detection part 7 in Embodiment 1, 2 of this invention, and 2 rows in a horizontal direction, and its to-be-detected area | region. 検知素子の識別子と補正係数および被加熱物と天板の境界部から対応する検知素子までの距離とを対応付けた対応表である。FIG. 5 is a correspondence table in which identifiers of detection elements, correction coefficients, and distances from the boundary between the heated object and the top plate to corresponding detection elements are associated with each other. 図4(b)において境界部を強調したものである。In FIG. 4B, the boundary portion is emphasized. 図7に示す位置に被加熱物が載置された場合の各素子の出力と時間の関係を示すグラフである。It is a graph which shows the relationship between the output of each element, and time when a to-be-heated material is mounted in the position shown in FIG. 本実施の形態1における演算部15の動作を示すフローチャートである。3 is a flowchart illustrating an operation of a calculation unit 15 according to the first embodiment. 本発明の実施の形態3における特定の検知領域に位置決め用の赤外線LEDを設けた場合の8眼赤外線温度検知部とその被検知領域との関係を示す要部の側面断面図及び斜視図である。It is side surface sectional drawing and perspective view of the principal part which show the relationship between the 8-eye infrared temperature detection part and its to-be-detected area | region at the time of providing infrared LED for positioning in the specific detection area in Embodiment 3 of this invention. . 図10において赤外線LED点灯時の8眼赤外線温度検知部における各素子の出力を示すグラフである。It is a graph which shows the output of each element in the 8-eye infrared temperature detection part at the time of infrared LED lighting in FIG. 本発明の実施の形態3における加熱調理器の赤外線温度検知部及び被検知領域を示す図である。It is a figure which shows the infrared temperature detection part and to-be-detected area | region of the heating cooker in Embodiment 3 of this invention. 本発明の実施の形態3における演算部15の動作を示す図である。It is a figure which shows operation | movement of the calculating part 15 in Embodiment 3 of this invention. 赤外線LEDの放射方向を反射板を介して赤外線温度検知部7に向けるように構成した場合の側面断面と斜視図である。It is a side cross section and a perspective view at the time of comprising so that the radiation direction of infrared LED may face the infrared temperature detection part 7 via a reflecting plate. 図14において赤外線LED点灯時の8眼赤外線温度検知部における各素子の出力を示すグラフである。It is a graph which shows the output of each element in the 8-eye infrared temperature detection part at the time of infrared LED lighting in FIG. 本実施の形態4における演算部15の動作を示すフローチャートである。14 is a flowchart illustrating an operation of a calculation unit 15 according to the fourth embodiment. 本実施の形態5における演算部15の動作を示すフローチャートである。10 is a flowchart illustrating an operation of a calculation unit 15 according to the fifth embodiment. 本発明の実施の形態6における加熱調理器の正面断面を示す模式図である。It is a schematic diagram which shows the front cross section of the heating cooker in Embodiment 6 of this invention. 本実施の形態6における演算部15の動作を示すフローチャートである。14 is a flowchart illustrating an operation of a calculation unit 15 according to the sixth embodiment. 単眼の赤外線温度検知部を有する加熱調理器の要部構成を示す側面断面図である。It is side surface sectional drawing which shows the principal part structure of the heating cooker which has a monocular infrared temperature detection part. 本発明の実施の形態7における演算部15の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the calculating part 15 in Embodiment 7 of this invention.

実施の形態1.
図1は本発明の実施の形態1における加熱調理器の外観を模式的に示す斜視図、図2は図1の正面断面図、図3は図1の側面断面図である。
加熱調理器は、本体1と本体1の上面に配置され、被加熱物2を載置するための例えばセラミクスなどの耐熱性材料から成る天板3と、本体1の上面の一側に配置されて機器のオン/オフや天板3上に載置される被加熱物2の加熱温度を設定する各操作スイッチ(図示なし)が設けられた操作部4と、機器のオン/オフや設定温度を表示する表示部5とを備えている。また、天板3には、被加熱物2を載置する際の加熱口6を示すサークルが印刷されている。本体1はグリル部11と、天板3の直下且つグリル部11の上方に配置され天板3上に載置された被加熱物2を加熱するための加熱コイルで構成された加熱部12と、交流電源(図示せず)から供給される商用電力を高周波電力に変換して加熱部12に供給する駆動部13と、駆動部13を制御する制御部14とを備えている。なお、制御部14はDSPやマイコンから構成される。
Embodiment 1 FIG.
1 is a perspective view schematically showing the appearance of a heating cooker according to Embodiment 1 of the present invention, FIG. 2 is a front sectional view of FIG. 1, and FIG. 3 is a side sectional view of FIG.
The heating cooker is disposed on the upper surface of the main body 1 and the main body 1, and is disposed on one side of the upper surface of the main body 1 and the top plate 3 made of a heat resistant material such as ceramics for placing the object to be heated 2. The operation unit 4 provided with each operation switch (not shown) for setting on / off of the device and the heating temperature of the object 2 to be heated placed on the top board 3, and the on / off of the device and the set temperature Is displayed. Further, the top plate 3 is printed with a circle indicating the heating port 6 when the article 2 to be heated is placed. The main body 1 has a grill part 11, a heating part 12 that is arranged immediately below the top plate 3 and above the grill part 11, and is composed of a heating coil for heating the heated object 2 placed on the top plate 3. , A drive unit 13 that converts commercial power supplied from an AC power source (not shown) into high-frequency power and supplies it to the heating unit 12, and a control unit 14 that controls the drive unit 13. The control unit 14 includes a DSP and a microcomputer.

加熱調理器は更に、被加熱物2から放射される赤外線量を検出する赤外線温度検知部7を2つの加熱部のそれぞれに対応して1つずつ有している。赤外線温度検知部7は、天板3の上面を臨むように天板3の上方且つ側方、具体的には加熱調理器本体1の背面部に形成された吸気口8を利用して取り付けられており、本体1内に設けられた演算部15は赤外線温度検知部7で天板3を介さずに直接検出した赤外線量を温度データに変換し、温度データを制御部14に出力する。このように赤外線温度検知部7を天板3の上方に設置することで、被加熱物2の温度を直接検知できるので、高速応答性を確保できる。また、本体1内には、天板3の裏面に熱的に接触するように配置され、被加熱物2の温度を天板3を介して検出する接触式温度検出部17が設けられている。
一方、制御部14は、操作部4から設定された運転条件を入力部10を介して取得し、この運転条件と赤外線温度検知部7の検知温度とに基づいて駆動部13を制御し、加熱部12の加熱動作を駆動させる。
The heating cooker further includes one infrared temperature detection unit 7 for detecting the amount of infrared rays radiated from the object to be heated 2 corresponding to each of the two heating units. The infrared temperature detection unit 7 is attached using an intake port 8 formed on the top and side of the top plate 3, specifically on the back surface of the heating cooker body 1 so as to face the top surface of the top plate 3. The calculation unit 15 provided in the main body 1 converts the amount of infrared rays directly detected by the infrared temperature detection unit 7 without using the top plate 3 into temperature data, and outputs the temperature data to the control unit 14. Thus, by installing the infrared temperature detection part 7 above the top plate 3, since the temperature of the to-be-heated object 2 can be detected directly, high-speed responsiveness is securable. Further, in the main body 1, a contact-type temperature detection unit 17 that is disposed so as to be in thermal contact with the back surface of the top plate 3 and detects the temperature of the object to be heated 2 through the top plate 3 is provided. .
On the other hand, the control unit 14 acquires the operation condition set from the operation unit 4 via the input unit 10, controls the drive unit 13 based on the operation condition and the detected temperature of the infrared temperature detection unit 7, and performs heating. The heating operation of the unit 12 is driven.

次に、赤外線温度検知部7の構成について説明する。
図4は、本発明の実施の形態1における赤外線温度検知部7を構成する検知素子の縦方向に8列且つ横方向に1列の配列とその被検知領域とを示す図であり、図4(a)は検知素子の配列を示す図、図4(b)は検知素子の被検知領域を示す図である。図4(a)に示すように複眼で構成された赤外線温度検知部7を構成する複数の検知素子7a〜7hを備えており、ここでは縦方向に8列且つ横方向に1列に配列された検知素子7a〜7hがそれぞれの被検知領域a〜hを検知することが示されている。また、図5は、本発明の実施の形態1における赤外線温度検知部7を構成する検知素子の縦方向に4列且つ横方向に2列の千鳥配列とその被検知領域とを示す図であり、図5(a)は検知素子の配列を示す図、図5(b)は検知素子の被検知領域を示す図、図5(c)は被加熱物の境界部を拡大した図である。図5(a)に示すように複眼で構成された赤外線温度検知部7を構成する複数の検知素子7a〜7hを備えており、図5(b)に示すように実線と隣接する実線との間が1つの素子の検知領域を示しており、破線と隣接する破線との間が隣接する別の1つの素子の検知領域を示しており、ここでは縦方向に4列且つ横方向に2列の千鳥状に配列された検知素子7a〜7hがそれぞれの被検知領域a〜hを相互に一部重ねることで結果として被加熱領域を2重に検知する様子が示されている。
これにより、天板3上に載置される被加熱物2の側面、被加熱物2と前記天板3との境界部、及び天板3を含む連続する被検知領域を複数に分割して得られる分割領域の温度をより正確に検知することが可能となる。
Next, the configuration of the infrared temperature detection unit 7 will be described.
FIG. 4 is a diagram showing an array of eight rows in the vertical direction and one row in the horizontal direction of the detection elements constituting the infrared temperature detection unit 7 according to Embodiment 1 of the present invention, and the detected region. (A) is a figure which shows the arrangement | sequence of a sensing element, FIG.4 (b) is a figure which shows the to-be-detected area | region of a sensing element. As shown in FIG. 4 (a), a plurality of detection elements 7a to 7h constituting an infrared temperature detection unit 7 configured with a compound eye are provided, and here are arranged in 8 rows in the vertical direction and 1 row in the horizontal direction. It is shown that the detection elements 7a to 7h detect the respective detection areas a to h. FIG. 5 is a diagram showing a staggered arrangement of four rows in the vertical direction and two rows in the horizontal direction and the detection region thereof in the infrared temperature detection unit 7 according to Embodiment 1 of the present invention. FIG. 5A is a view showing the arrangement of the detection elements, FIG. 5B is a view showing the detection area of the detection elements, and FIG. 5C is an enlarged view of the boundary portion of the object to be heated. As shown in FIG. 5 (a), a plurality of detecting elements 7a to 7h constituting an infrared temperature detecting unit 7 configured with a compound eye are provided, and a solid line and an adjacent solid line as shown in FIG. 5 (b). The interval between the detection areas of one element is shown, and the detection area of another element adjacent between the broken line and the adjacent broken line is shown. Here, there are four rows in the vertical direction and two rows in the horizontal direction. It is shown that the detection elements 7a to 7h arranged in a zigzag form each of the detection areas a to h partially overlap each other, and as a result, the heating area is detected twice.
Accordingly, the side surface of the object to be heated 2 placed on the top plate 3, the boundary between the object to be heated 2 and the top plate 3, and the continuous detection area including the top plate 3 are divided into a plurality of parts. It becomes possible to more accurately detect the temperature of the obtained divided region.

次に、本実施の形態1の動作を説明する。
説明に際して、説明を簡単にするために以下の前提条件を設ける。この前提条件は全ての実施の形態に共通のものである。
(a)赤外線温度検知部は、縦方向に8列横方向に1列の検知素子7a〜7hの8眼で構成されるサーモパイルであり、一例として縦方向の視野領域1°、横方向の視野領域3°/1素子の検知領域をとり、1素子の検知領域面積で得られる総赤外線量を面積で平均化して値を返すものとする。その被検知領域は図4(b)に示されるものである。
(b)本体1に設けられた演算部15は、検知素子7a〜7hとそれぞれの被検知領域a〜hまでの距離及び補正係数(補正すべき赤外線放射率)とを対応付けた対応表を記憶する記憶部(図示せず)を内蔵しているとする。
(c)ユーザーが被加熱物2を天板3上に載置するときには、被加熱物2の中心を加熱コイル12の中心にほぼ合致させた状態で載置することとする。
Next, the operation of the first embodiment will be described.
In the explanation, the following preconditions are provided to simplify the explanation. This precondition is common to all the embodiments.
(A) The infrared temperature detection unit is a thermopile composed of eight eyes of eight rows of detection elements 7a to 7h in the vertical direction and one row in the vertical direction. As an example, the vertical visual field region is 1 ° and the horizontal visual field. An area of 3 ° / 1 element is taken, and the total amount of infrared rays obtained by the area of the detection area of one element is averaged by the area to return a value. The detected area is as shown in FIG.
(B) The calculation unit 15 provided in the main body 1 has a correspondence table in which the detection elements 7a to 7h are associated with the distances to the respective detection areas a to h and correction coefficients (infrared emissivity to be corrected). It is assumed that a storage unit (not shown) for storing is incorporated.
(C) When the user places the object to be heated 2 on the top plate 3, the user places the object 2 in a state where the center of the object to be heated 2 substantially matches the center of the heating coil 12.

以上の前提条件の下に、動作を説明する。
まず、以下の事前準備を行う。
(ア)予め基準となる被加熱物2を選び、この被加熱物の底径を測定しておく。そして、加熱実験に際してユーザーは、当該被加熱物2の中心位置を加熱口6の中心即ち加熱コイル12の中心位置にほぼ合致させた状態で載置し、操作部4を操作して運転条件を設定する。これにより、制御部14は操作部から設定された運転条件に基づき加熱コイル駆動部13を制御して天板3の加熱口6に載置された被加熱物2を誘導加熱する。そして、被加熱物2の温度が運転条件で設定した温度に達したとき、各検知素子7a〜7hが被加熱物2の鍋肌、境界部、天板3に至る連続領域を8個に分割して得られる分割領域のそれぞれの赤外線量を取得し、取得した赤外線量の内で最大のものを特定する。そして特定された赤外線量と当該被加熱物2の底径とを対応させて基準値として上記記憶部に記憶しておく。
(イ)次に、補正係数は以下のように推定して、図示しない記憶部に設定させておく。予め、複数の底径を持つ被加熱物2を選び、この被加熱物の底径を測定しておく。そして、加熱実験に際してユーザーは、当該被加熱物2の中心位置を加熱口6の中心即ち加熱コイル12の中心位置にほぼ合致させた状態で載置し、操作部4を操作して運転条件を設定する。これにより、制御部14は操作部から設定された運転条件に基づき加熱コイル駆動部13を制御して天板3の加熱口6に載置された被加熱物2を誘導加熱する。そして、被加熱物2の温度が運転条件で設定した温度に達したとき、各検知素子7a〜7hが被加熱物2の鍋肌、境界部、天板3に至る連続領域を8個に分割して得られる分割領域のそれぞれの赤外線量を取得し、取得した赤外線量の内で最大のものを特定する。そして、特定された赤外線量と、上記(ア)で得られた赤外線量との相対比を算出し、補正係数として図示しない記憶部に記憶すると共に、当該被加熱物2の底径から、当該被加熱物2の天板3との境界部と対応する被検知領域を検知する検知素子までの距離を算出する。そして、得られた補正係数と境界部と対応する被検知領域を検知する検知素子までの距離とを当該検知素子の識別子と対応させて対応表として図示しない記憶部に記憶しておく。次に被加熱物の位置をずらして、この被加熱物の境界部を隣の被検知領域に配置し、再び上記動作を行う。このような動作を8個の被検知領域について繰り返し行い、対応表を作成する。このようにして得られた対応表を図6に示す。
The operation will be described under the above preconditions.
First, the following preparations are made.
(A) The object to be heated 2 serving as a reference is selected in advance, and the bottom diameter of the object to be heated is measured. In the heating experiment, the user places the object 2 to be heated in a state where the center position of the object to be heated 2 substantially matches the center of the heating port 6, that is, the center position of the heating coil 12, and operates the operation unit 4 to change the operating condition. Set. Thereby, the control part 14 controls the heating coil drive part 13 based on the driving | running condition set from the operation part, and the to-be-heated material 2 mounted in the heating port 6 of the top plate 3 is induction-heated. And when the temperature of the to-be-heated object 2 reaches the temperature set by the operating condition, each detection element 7a-7h divides | segments the continuous area | region which reaches the pot skin of the to-be-heated object 2, a boundary part, and the top plate 3 into eight. Then, the infrared amount of each of the obtained divided areas is acquired, and the largest one of the acquired infrared amounts is specified. Then, the specified infrared amount and the bottom diameter of the object to be heated 2 are associated with each other and stored in the storage unit as a reference value.
(A) Next, the correction coefficient is estimated as follows and set in a storage unit (not shown). The object to be heated 2 having a plurality of bottom diameters is selected in advance, and the bottom diameter of the object to be heated is measured. In the heating experiment, the user places the object 2 to be heated in a state where the center position of the object to be heated 2 substantially matches the center of the heating port 6, that is, the center position of the heating coil 12, and operates the operation unit 4 to change the operating condition. Set. Thereby, the control part 14 controls the heating coil drive part 13 based on the driving | running condition set from the operation part, and the to-be-heated material 2 mounted in the heating port 6 of the top plate 3 is induction-heated. And when the temperature of the to-be-heated object 2 reaches the temperature set by the operating condition, each detection element 7a-7h divides | segments the continuous area | region which reaches the pot skin of the to-be-heated object 2, a boundary part, and the top plate 3 into eight. Then, the infrared amount of each of the obtained divided areas is acquired, and the largest one of the acquired infrared amounts is specified. And while calculating the relative ratio of the specified amount of infrared rays and the amount of infrared rays obtained in (a) above, storing it in a storage unit (not shown) as a correction coefficient, and from the bottom diameter of the object to be heated 2, The distance to the detection element that detects the detection area corresponding to the boundary between the object to be heated 2 and the top plate 3 is calculated. Then, the obtained correction coefficient and the distance to the detection element that detects the detection area corresponding to the boundary portion are stored in a storage unit (not shown) as a correspondence table in association with the identifier of the detection element. Next, the position of the object to be heated is shifted, the boundary portion of the object to be heated is arranged in the adjacent detection area, and the above operation is performed again. Such an operation is repeated for the eight detected areas to create a correspondence table. The correspondence table obtained in this way is shown in FIG.

次に、距離の算出方法について詳細に説明する。
図7は図4(b)において本発明のポイントとなる境界部を強調した図である。図7において、境界部を黒で塗りつぶしている。
また、図8は図7に示す位置に被加熱物が載置された場合の各素子の出力と時間の関係を示すグラフである。
図7において、赤外線温度検知部7のセンサー角度/高さが決まれば,被加熱物2の鍋底が天板3上のどの位置にあるかを各素子7a〜7hから各素子の検知領域までの距離を三角関数計算より割り出すことが可能となる。(図7はセンサー視野角Y方向に1°,センサー中心高さ13mm,中心軸角度6°の領域対応表を示している。)鏡面鍋設置時には赤外線温度検知部7の最大出力を返す素子が鍋底のエッジを見ていることから、上記同様にエッジの位置までの距離を計算で出すことが可能となる。
演算部15は、天板の上方且つ側方に設けられた赤外線温度検知部7の出力により、赤外線温度検知部7の被加熱物のエッジ部までの距離を推定する(被加熱物と天板との境界部の距離を判定する)。
これにより、鍋が置かれた位置を判定することで鍋底径、加熱コイル12と鍋底の位置関係、大鍋か小鍋かの検知が可能となる。
また、それぞれの条件により(繰り返し実験を行うことにより)赤外線センサーの出力の係数を変更することにより検知温度の頻度が向上する。
図4(a)に示すように、横1列×縦8列の縦配列の検知素子から成る複眼の赤外線温度検知部7を用いた場合、初期設置角度・高さにより各検知素子7a〜7hの検知領域が決定する。例えば天板3より高さ13mm、角度水平、1素子の視野領域が2°の赤外線温度検知部7を用いた場合には、最下部に設置された素子7hの検知領域は
"X1〜X2"となる。
但し、 X1=13mm*tan-1(8°)、
2=13mm*tan-1(6°)
即ち、赤外線センサーの先端から92.5〜123.7mmが検知幅となる。もしこの範囲に鍋底が置かれた場合には、図7及び図8に示すように上から6番目の素子7fが最大値を返すことになり、演算部15は、この値に対して予め準備した対応表から素子7fに対応する補正係数を取り出して赤外線量に対して補正を行う。
Next, a method for calculating the distance will be described in detail.
FIG. 7 is a diagram emphasizing the boundary portion which is the point of the present invention in FIG. In FIG. 7, the boundary portion is filled with black.
FIG. 8 is a graph showing the relationship between the output of each element and time when the object to be heated is placed at the position shown in FIG.
In FIG. 7, if the sensor angle / height of the infrared temperature detector 7 is determined, the position of the pan bottom of the article 2 to be heated is located on the top 3 from each element 7 a to 7 h to the detection area of each element. The distance can be determined by trigonometric function calculation. (FIG. 7 shows an area correspondence table of sensor viewing angle Y direction of 1 °, sensor center height of 13 mm, and center axis angle of 6 °.) When a mirror pan is installed, an element that returns the maximum output of the infrared temperature detector 7 is Since the edge of the pan bottom is viewed, the distance to the edge position can be calculated by calculation as described above.
The calculating part 15 estimates the distance to the edge part of the to-be-heated object of the infrared temperature detection part 7 by the output of the infrared temperature detection part 7 provided above and on the side of the top board (the to-be-heated object and the top board). And determine the distance of the boundary part.)
Thus, by determining the position where the pan is placed, it is possible to detect the pan bottom diameter, the positional relationship between the heating coil 12 and the pan bottom, and whether the pan is a large pan or a small pan.
In addition, the frequency of the detection temperature is improved by changing the coefficient of the output of the infrared sensor according to each condition (by repeatedly performing an experiment).
As shown in FIG. 4 (a), when a compound eye infrared temperature detection unit 7 composed of detection elements in a vertical arrangement of 1 horizontal row × 8 vertical rows is used, each of the detection elements 7a to 7h depends on the initial installation angle and height. The detection area is determined. For example, when the infrared temperature detector 7 having a height of 13 mm from the top plate 3, an angle level of 1 and a visual field area of 2 elements is used, the detection area of the element 7 h installed at the bottom is
“X 1 to X 2 ”.
However, X 1 = 13 mm * tan −1 (8 °),
X 2 = 13 mm * tan −1 (6 °)
That is, the detection width is 92.5 to 123.7 mm from the tip of the infrared sensor. If the pan bottom is placed in this range, the sixth element 7f from the top returns the maximum value as shown in FIGS. 7 and 8, and the calculation unit 15 prepares in advance for this value. The correction coefficient corresponding to the element 7f is extracted from the correspondence table and the infrared ray amount is corrected.

次に、上記条件の下に、動作を説明する。
ユーザーは天板3上の加熱口6に鍋などの被加熱物2を載置し、加熱調理器本体1の電源スイッチを投入し、さらに操作部4を操作して運転条件を入力設定して調理を開始する。制御部14は、電源スイッチの投入により起動され、操作部4から入力設定された運転条件と、赤外線温度検知部7の検知出温度とに基づいて駆動部13を制御し、加熱部12の加熱動作を駆動させる。これにより、被加熱物2内の被調理物9の加熱調理が行われ、赤外線温度検知部7を構成する複数の検知素子7a〜7hはそれぞれ自身が検知する被検知領域a〜hの赤外線量を検知する。一方、演算部15も電源スイッチの投入により起動され、演算部15は検知素子7a〜7hによって検知された赤外線量を増幅且つA/D変換する。そして、被加熱物2の温度が運転条件で設定した温度に達したとき、演算部15は検知素子7a〜7hから取得した8個の赤外線量の内で最大のものを選択する。この場合、被加熱物2の底部と天板との境界部が最大の温度情報赤外線量を放射するので、この境界部(図7の例では被検知領域f)を検知する検知素子(図8の例では素子7f)が最大の温度情報を出力する。この様子を図6に示す。
演算部15は、最大の赤外線量検知した検知素子7fを特定する。次に、演算部15は特定した検知素子7fを検索キーとして図示しない記憶部に記憶された図4に示す対応表を検索して、特定した検知素子7fから被加熱物2の境界部までの距離と補正係数を取得する。次に演算部15は、特定された検知素子7fが被加熱物2から検知した赤外線量に記憶部から取得した補正係数を乗算することで補正し、補正した赤外線量を被加熱物2の実際の赤外線量として推定する。そして、下記の式(1)に代入することで温度データに変換する。
Next, the operation will be described under the above conditions.
The user places an object to be heated 2 such as a pan on the heating port 6 on the top plate 3, turns on the power switch of the heating cooker body 1, and further operates the operation unit 4 to input and set operating conditions. Start cooking. The control unit 14 is activated by turning on the power switch, and controls the drive unit 13 based on the operating condition input and set from the operation unit 4 and the detected temperature output from the infrared temperature detection unit 7, thereby heating the heating unit 12. Drive action. Thereby, cooking of the to-be-cooked object 9 in the to-be-heated object 2 is performed, and the some detection elements 7a-7h which comprise the infrared temperature detection part 7 respectively detect the infrared rays amount of the to-be-detected area | region ah detected by itself. Is detected. On the other hand, the calculation unit 15 is also activated by turning on the power switch, and the calculation unit 15 amplifies and A / D-converts the amount of infrared rays detected by the detection elements 7a to 7h. And when the temperature of the to-be-heated material 2 reaches the temperature set on the driving | running condition, the calculating part 15 selects the largest thing among eight infrared rays amount acquired from the detection elements 7a-7h. In this case, since the boundary between the bottom of the object to be heated 2 and the top plate radiates the maximum amount of temperature information infrared rays, a detection element for detecting this boundary (detected region f in the example of FIG. 7) (FIG. 8). In the example, the element 7f) outputs the maximum temperature information. This is shown in FIG.
The computing unit 15 identifies the detection element 7f that has detected the maximum amount of infrared rays. Next, the calculation unit 15 searches the correspondence table shown in FIG. 4 stored in a storage unit (not shown) using the specified detection element 7f as a search key, and extends from the specified detection element 7f to the boundary portion of the object 2 to be heated. Get distance and correction factor. Next, the calculation unit 15 corrects the identified infrared ray amount detected from the heated object 2 by multiplying the infrared ray amount detected from the storage unit by the correction coefficient acquired from the storage unit, and corrects the corrected infrared ray amount to the actual value of the heated object 2. Estimated as the amount of infrared rays. And it converts into temperature data by substituting into the following formula | equation (1).

T=(P/k) 1/4・・・・・・・・・(1)
但し、P=検知した赤外線量×補正係数
k=ステファンボルツマン定数やセンサー感度から決まる定
T = (P / k) 1/4 ... (1)
However, P = detected infrared ray amount x correction coefficient ,
k = constants determined by the Stefan Boltzmann constant and sensor sensitivity

以上のようにして得られた温度データは演算部15から制御部14へ送られ、制御部14は演算部15から取得した温度データが被加熱物2の温度であると推定し、この温度データが操作部4から設定された目標温度になるように駆動部13を制御する。
以上のように目標温度値に対してフィードバック制御が行われるので、正確な温度制御が可能となる。
The temperature data obtained as described above is sent from the calculation unit 15 to the control unit 14, and the control unit 14 estimates that the temperature data acquired from the calculation unit 15 is the temperature of the object to be heated 2, and this temperature data. Controls the drive unit 13 so that the target temperature set by the operation unit 4 is reached.
Since feedback control is performed on the target temperature value as described above, accurate temperature control is possible.

図9は本実施の形態1における演算部15の動作を示すフローチャートである。
次に演算部15の動作を図7〜図9を用いて説明する。
演算部15は起動されると、カウンタクリア、赤外線量クリヤなどの初期処理を実行した(ステップS901)後、最初の検知素子(例えば素子7a)を選択して(ステップS902)、検知素子からの出力として赤外線量(Aとする)を取得する(ステップS903)。次に演算部15は、取得した赤外線量Aを記憶手段に記憶している最大の赤外線量B(最初はゼロ)と比較し(ステップS904)、今回検知した赤外線量Aの方がBよりも小さければ、ステップS907へ飛び、今回検知した赤外線量Aの方がBよりも大きければ、今回の赤外線量をBとして記憶部に書込む(ステップS905)とともに、この時の検知素子の識別子(例えば番号)も記憶部に書込む(ステップS906)。次に、演算部15は全ての領域を検知終了したか否かを調べ(ステップS907)、まだ終了していなければ次の検知素子(例えば、素子7b)を選択した(ステップS908)上で、ステップS903に戻り、再び同様の処理を実行する。この動作を更に素子7c、7d、7e、…7hまで順次繰り返し実行する。そして、やがて素子7hの処理が終了すると、ステップS907において、Yesとなるので、ステップS909へ進む。ここで最大の赤外線量を検出した検知素子(境界部を検知した検知素子)を図示しない記憶部から読込み、さらに記憶部に記憶された対応表をこの検知素子によって参照することで距離と補正係数を読込む(ステップS910)。次に演算部15は赤外線量に補正係数を乗算して補正する(ステップS911)。次に演算部15は補正した赤外線量を温度データに変換する(ステップS912)。
FIG. 9 is a flowchart showing the operation of the calculation unit 15 in the first embodiment.
Next, the operation of the calculation unit 15 will be described with reference to FIGS.
When activated, the calculation unit 15 executes initial processing such as counter clearing, infrared ray clearing (step S901), and then selects the first sensing element (for example, the element 7a) (step S902). An infrared ray amount (assumed as A) is acquired as an output (step S903). Next, the computing unit 15 compares the acquired infrared ray amount A with the maximum infrared ray amount B (initially zero) stored in the storage unit (step S904), and the detected infrared ray amount A is more than B. If it is smaller, the process jumps to step S907, and if the detected infrared light amount A is larger than B, the current infrared light amount is written as B in the storage unit (step S905), and the detection element identifier at this time (for example, Number) is also written in the storage unit (step S906). Next, the calculation unit 15 checks whether or not all areas have been detected (step S907), and if not completed yet, selects the next detection element (for example, element 7b) (step S908). Returning to step S903, similar processing is executed again. This operation is sequentially repeated until the elements 7c, 7d, 7e,. Then, when the process of the element 7h is finished, the result of Step S907 is Yes, so that the process proceeds to Step S909. Here, the sensing element that has detected the maximum amount of infrared rays (the sensing element that has detected the boundary) is read from a storage unit (not shown), and the correspondence table stored in the storage unit is referred to by this detection element, so that the distance and the correction coefficient Is read (step S910). Next, the calculating part 15 corrects by multiplying the amount of infrared rays by a correction coefficient (step S911). Next, the calculation unit 15 converts the corrected infrared ray amount into temperature data (step S912).

本実施の形態1によれば、演算部は、被加熱物の側面、被加熱物の底面と天板との境界部、天板に至る連続領域を複数に分割して得られるそれぞれの領域に対応して設けられた複数の検知素子の内で検知した赤外線量の大小比較に基づいて境界部を検知したものを特定し、特定した検知素子が被加熱物から検知した赤外線量を予め設定された補正係数で補正し、補正した赤外線量に基づいて被加熱物の温度を推定するので、被加熱物の底径の大小に関わらず被加熱物の温度を正確に検知することが可能となる。
また、赤外線センサーの構成を複眼としたので、単眼の場合に比べ、視野範囲が広がるため、検知精度が高い。
According to the first embodiment, the calculation unit is divided into a plurality of areas obtained by dividing the side surface of the object to be heated, the boundary between the bottom surface of the object to be heated and the top plate, and the continuous region reaching the top plate into a plurality of parts. Based on a comparison of the magnitudes of infrared rays detected among a plurality of detection elements provided in correspondence, the detection of the boundary is specified, and the infrared quantity detected from the object to be heated by the specified detection element is preset. Since the temperature of the object to be heated is estimated based on the corrected infrared amount, the temperature of the object to be heated can be accurately detected regardless of the bottom diameter of the object to be heated. .
In addition, since the infrared sensor has a compound eye structure, the visual field range is wider than that of a single eye, so that the detection accuracy is high.

実施の形態2.
実施の形態1では、被加熱物の境界部から対応する検知素子までの距離が遠く離れている場合に検知素子が検知する赤外線量が小さくなることを防止するために検知素子が検知した赤外線量を補正するように構成したが、被加熱物が加熱コイル12の内側にあるか否かによって、被加熱物の温度が急激に異なってしまう。即ち、被加熱物が加熱コイル12の内側にあれば、境界部のみならず、被加熱物の側面(鍋肌)も加熱コイル12と強く電磁結合するため、側面温度が急上昇する。その影響で被加熱物全体の温度が高くなり、境界部の温度も上昇するが、元々十分に高い赤外線量を発しているため、飽和状態に近く、被加熱物全体の温度上昇に追従できない。これに対して、被加熱物が加熱コイル12の外側にあれば、被加熱物の側面(鍋肌)が加熱コイル12と電磁結合する量は少ないため、側面温度は大きく変わらない。従って、実施の形態1と同様にして温度計測が可能である。このように被加熱物の底径が加熱コイル12の径より小さいと、この被加熱物と天板の境界部の温度上昇に基づいて被加熱物全体の温度を推定する場合には温度検知の精度が低下する虞がある。本実施の形態ではこのような課題を解決する態様について説明する。
Embodiment 2. FIG.
In the first embodiment, the amount of infrared detected by the detection element to prevent the amount of infrared detected by the detection element from decreasing when the distance from the boundary of the object to be heated to the corresponding detection element is far away. However, depending on whether the object to be heated is inside the heating coil 12 or not, the temperature of the object to be heated varies abruptly. That is, if the object to be heated is inside the heating coil 12, not only the boundary portion but also the side surface (naked skin) of the object to be heated is strongly electromagnetically coupled to the heating coil 12, so the side surface temperature rises rapidly. As a result, the temperature of the entire object to be heated increases, and the temperature at the boundary portion also rises. However, since a sufficiently high infrared ray is emitted from the beginning, it is close to saturation and cannot follow the temperature increase of the entire object to be heated. On the other hand, if the object to be heated is outside the heating coil 12, the side surface temperature does not change greatly because the amount of the side surface (naked skin) of the object to be heated electromagnetically coupled to the heating coil 12 is small. Therefore, temperature measurement is possible in the same manner as in the first embodiment. Thus, if the bottom diameter of the object to be heated is smaller than the diameter of the heating coil 12, the temperature of the entire object to be heated is estimated based on the temperature rise at the boundary between the object to be heated and the top plate. There is a risk that the accuracy may decrease. In this embodiment, a mode for solving such a problem will be described.

図1〜図8は本実施の形態2でも使用される。構成については実施の形態1と同様である。
次に、本実施の形態2の動作を説明する。
本実施の形態2でも予め、各検知素子とこの検知素子が検知する分割領域までの距離とを対応付けた対応表を記憶部に記憶させておく。また、記憶手段は被加熱物2の境界部が加熱コイル12の内側に位置する場合と外側に位置する場合とで値が異なる第二の補正係数を記憶部に記憶しておく。
(ア)この場合、第二の補正係数は以下のように推定して、図示しない記憶部に設定させておく。予め、加熱コイル12より小さい底径を持つ被加熱物2を選び、この被加熱物の底径を測定しておく。そして、加熱実験に際してユーザーは、当該被加熱物2の中心位置を加熱口6の中心即ち加熱コイル12の中心位置にほぼ合致させた状態で載置し、操作部4を操作して運転条件を設定する。これにより、制御部14は操作部から設定された運転条件に基づき加熱コイル駆動部13を制御して天板3の加熱口6に載置された被加熱物2を誘導加熱する。そして、被加熱物の温度が運転条件で設定した温度に達したとき、各検知素子7a〜7hが被加熱物2の鍋肌、境界部、天板3に至る連続領域を8個に分割して得られる分割領域のそれぞれの赤外線量を取得し、取得した赤外線量の内で最大のものを特定する。そして、特定された赤外線量を式(1)に代入して得られた温度を算出し、算出された温度と、設定温度(この温度は実際の温度に対応する)との相対比を算出し、内側用の第二の補正係数として図示しない記憶部に記憶すると共に、当該被加熱物2の底径から、当該被加熱物2の天板3との境界部と対応する被検知領域を検知する検知素子までの距離を算出する。そして、得られた内側用の第二の補正係数と境界部と対応する被検知領域を検知する検知素子までの距離とを当該検知素子の識別子と対応させて対応表として図示しない記憶部に記憶しておく。次に被加熱物2の位置をずらして、この被加熱物の境界部が加熱コイル12の外側にはみ出すように配置し、再び上記動作を行う。このとき、境界部から得られる赤外線量は急激に低下する。そこで、このときの境界部を検知する検知素子の識別子と、境界部から対応する検知素子までの距離及び外側用の第二の補正係数を上記と同様にして取得して記憶部に記憶させておく。
1 to 8 are also used in the second embodiment. The configuration is the same as in the first embodiment.
Next, the operation of the second embodiment will be described.
Also in the second embodiment, a correspondence table that associates each detection element with the distance to the divided area detected by the detection element is stored in the storage unit in advance. In addition, the storage unit stores in the storage unit a second correction coefficient having different values depending on whether the boundary portion of the article to be heated 2 is located inside the heating coil 12 or the outside.
(A) In this case, the second correction coefficient is estimated as follows and set in a storage unit (not shown). The object to be heated 2 having a bottom diameter smaller than the heating coil 12 is selected in advance, and the bottom diameter of the object to be heated is measured. In the heating experiment, the user places the object 2 to be heated in a state where the center position of the object to be heated 2 substantially matches the center of the heating port 6, that is, the center position of the heating coil 12, and operates the operation unit 4 to change the operating condition. Set. Thereby, the control part 14 controls the heating coil drive part 13 based on the driving | running condition set from the operation part, and the to-be-heated material 2 mounted in the heating port 6 of the top plate 3 is induction-heated. When the temperature of the object to be heated reaches the temperature set in the operating conditions, each of the detection elements 7a to 7h divides the continuous area of the object 2 to reach the pot skin, the boundary, and the top plate 3 into eight. The obtained infrared amount of each of the divided areas is acquired, and the largest one of the acquired infrared amounts is specified. Then, the temperature obtained by substituting the specified amount of infrared rays into equation (1) is calculated, and the relative ratio between the calculated temperature and the set temperature (this temperature corresponds to the actual temperature) is calculated. The second correction coefficient for the inner side is stored in a storage unit (not shown), and the detection area corresponding to the boundary between the heated object 2 and the top plate 3 is detected from the bottom diameter of the heated object 2. The distance to the sensing element to be calculated is calculated. Then, the obtained second correction coefficient for the inside and the distance to the detection element that detects the detection area corresponding to the boundary are stored in a storage unit (not shown) as a correspondence table in association with the identifier of the detection element. Keep it. Next, the position of the object to be heated 2 is shifted so that the boundary of the object to be heated protrudes outside the heating coil 12, and the above operation is performed again. At this time, the amount of infrared rays obtained from the boundary portion decreases rapidly. Therefore, the identifier of the detection element that detects the boundary portion at this time, the distance from the boundary portion to the corresponding detection element, and the second correction coefficient for the outside are acquired in the same manner as described above and stored in the storage unit. deep.

次に、上記条件の下に、動作を説明する。
ユーザーは天板3上の加熱口6に鍋などの被加熱物2を載置し、加熱調理器本体1の電源スイッチを投入し、さらに操作部4を操作して運転条件を入力設定して調理を開始する。制御部14は、電源スイッチの投入により起動され、操作部4から入力設定された運転条件と、赤外線温度検知部7の検知出温度とに基づいて駆動部13を制御し、加熱部12の加熱動作を駆動させる。これにより、被加熱物2内の被調理物9の加熱調理が行われ、赤外線温度検知部7を構成する複数の検知素子7a〜7hはそれぞれ自身が検知する被検知領域a〜hの赤外線量を検知する。一方、演算部15も電源スイッチの投入により起動され、演算部15は検知素子7a〜7hによって検知された赤外線量を増幅且つA/D変換する。そして、被加熱物2の温度が運転条件で設定した温度に達したとき、演算部15は検知素子7a〜7hから取得した8個の赤外線量の内で最大のものを選択する。この場合、被加熱物2の底部と天板との境界部が最大の温度情報赤外線量を放射するので、この境界部(図7の例では被検知領域f)を検知する検知素子(図8の例では素子7f)が最大の温度情報を出力する。この様子を図7、図8に示す。
演算部15は、最大の赤外線量検知した検知素子7fを特定する。次に、演算部15は特定した検知素子7fを検索キーとして図示しない記憶部に記憶された図に示す対応表を検索して、特定した検知素子7fから被加熱物2の境界部までの距離を取得する。次に演算部15は、取得した距離に基づいて、被加熱物2の底径を算出し、被加熱物2の底径が加熱コイル12の径と比較する。被加熱物2の底径が加熱コイル12の径より小さければ内側用の第二の補正係数を検知した赤外線量に乗算して適用して補正し、被加熱物2の底径が加熱コイル12の径より大きければ外側用の第二の補正係数を検知した赤外線量に乗算して適用して補正する。この後、さらに実施の形態1に記載した補正を行う。そして、上記の式(1)に代入することで温度データに変換する。
これにより、被加熱物2の底径の大小に関わらず正確な温度制御が可能となる。
Next, the operation will be described under the above conditions.
The user places an object to be heated 2 such as a pan on the heating port 6 on the top plate 3, turns on the power switch of the heating cooker body 1, and further operates the operation unit 4 to input and set operating conditions. Start cooking. The control unit 14 is activated by turning on the power switch, and controls the drive unit 13 based on the operating condition input and set from the operation unit 4 and the detected temperature output from the infrared temperature detection unit 7, thereby heating the heating unit 12. Drive action. Thereby, cooking of the to-be-cooked object 9 in the to-be-heated object 2 is performed, and the some detection elements 7a-7h which comprise the infrared temperature detection part 7 respectively detect the infrared rays amount of the to-be-detected area | region ah detected by itself. Is detected. On the other hand, the calculation unit 15 is also activated by turning on the power switch, and the calculation unit 15 amplifies and A / D-converts the amount of infrared rays detected by the detection elements 7a to 7h. And when the temperature of the to-be-heated material 2 reaches the temperature set on the driving | running condition, the calculating part 15 selects the largest thing among eight infrared rays amount acquired from the detection elements 7a-7h. In this case, since the boundary between the bottom of the object to be heated 2 and the top plate radiates the maximum amount of temperature information infrared rays, a detection element for detecting this boundary (detected region f in the example of FIG. 7) (FIG. 8). In the example, the element 7f) outputs the maximum temperature information. This state is shown in FIGS .
The computing unit 15 identifies the detection element 7f that has detected the maximum amount of infrared rays. Next, the calculation unit 15 searches the correspondence table shown in FIG. 6 stored in a storage unit (not shown) using the specified detection element 7f as a search key, and extends from the specified detection element 7f to the boundary portion of the object 2 to be heated. Get the distance. Next, the calculation unit 15 calculates the bottom diameter of the object to be heated 2 based on the acquired distance, and compares the bottom diameter of the object to be heated 2 with the diameter of the heating coil 12. If the bottom diameter of the object to be heated 2 is smaller than the diameter of the heating coil 12, the second correction coefficient for the inside is corrected by multiplying the detected infrared ray amount and applied, and the bottom diameter of the object to be heated 2 is corrected by the heating coil 12. If it is larger than the diameter, the second correction coefficient for the outside is multiplied by the detected infrared amount and applied to correct it. Thereafter, the correction described in the first embodiment is further performed. And it converts into temperature data by substituting into said Formula (1).
Thereby, accurate temperature control becomes possible regardless of the size of the bottom diameter of the article 2 to be heated.

本実施の形態2によれば、演算部は、特定した検知素子と対応表に基づいて特定した検知素子から境界部までの距離を取得し、取得した距離に基づいて被加熱物の底径を算出し、算出した被加熱物の底径と前記加熱コイル12の径との大小比較に基づいて被加熱物が加熱コイル12の内側に位置するか否かを判定し、この判定結果に基づいて記憶手段に記憶された内側用の第二の補正係数と外側用の第二の補正係数を切り替え、特定した検知素子が被加熱物から検知した赤外線量を切替えた第二の補正係数で補正するように構成したので、被加熱物2の底径の大小に関わらず正確な温度制御が可能となる。 According to the second embodiment, the calculation unit acquires the distance from the specified detection element to the boundary portion based on the specified detection element and the correspondence table, and calculates the bottom diameter of the object to be heated based on the acquired distance. It is determined whether or not the object to be heated is positioned inside the heating coil 12 based on a comparison between the calculated bottom diameter of the object to be heated and the diameter of the heating coil 12, and based on the determination result. It switches the second correction coefficients for stored in the storage unit inside and a second correction coefficient for the outer, corrected by a second correction coefficient specified sensing element switches the amount of infrared detected from the object to be heated Since it comprised so, exact temperature control is attained irrespective of the magnitude | size of the bottom diameter of the to-be-heated material 2. FIG.

なお、上記の説明では、補正係数を対応表に入れない場合について説明したが、対応表に含ませても良いことは言うまでもない。   In the above description, the correction coefficient is not included in the correspondence table. However, it goes without saying that the correction coefficient may be included in the correspondence table.

実施の形態3.
実施の形態1〜2では、赤外線温度検知部7の設定位置が正常である場合を前提として説明したが、正常な位置でない場合には、正確な検知ができないもしくは検知そのものが不可能となる虞がある。本実施の形態3では、このような場合についての補正方法について説明する。
図10は本発明の実施の形態3における特定の検知領域に位置決め用の赤外線LEDを設けた場合の8眼赤外線温度検知部とその被検知領域との関係を示す要部の側面断面図及び斜視図であり、図10(a)は8眼赤外線温度検知部とその被検知領域との関係を示す要部の側面断面図、図10(b)は8眼赤外線温度検知部とその被検知領域との関係を示す要部の斜視図である。
図10(a)において、図7と同符号は同一または相当の部である。ここでは、赤外線LEDが追加された以外は図7と同様の構成である。
Embodiment 3 FIG.
The first and second embodiments have been described on the assumption that the setting position of the infrared temperature detection unit 7 is normal. However, if the setting position is not normal, accurate detection may not be possible or detection itself may not be possible. There is. In the third embodiment, a correction method for such a case will be described.
FIG. 10 is a side cross-sectional view and a perspective view of a main part showing the relationship between an 8-eye infrared temperature detection unit and its detection region when a positioning infrared LED is provided in a specific detection region in Embodiment 3 of the present invention. FIG. 10A is a side cross-sectional view of the main part showing the relationship between the eight-eye infrared temperature detection unit and its detection region, and FIG. 10B is the eight-eye infrared temperature detection unit and its detection region. It is a perspective view of the principal part which shows the relationship.
10A, the same reference numerals as those in FIG. 7 denote the same or corresponding parts. Here, the configuration is the same as in FIG. 7 except that an infrared LED is added.

次に、本実施の形態3の動作を説明する。
本体1は天板3上の任意の位置に少なくとも1個以上赤外線LED16を設け、赤外線温度検知部7を構成する8個の検知素子7a〜7hの内、常にこの赤外線LED16を検知する素子は1つであるとする。ここでは、赤外線LED16を検知する素子は7hとする。
図10(a)(b)に示すように、初期位置補正用として、天板3の検知領域hに位置し、且つ加熱の影響を受けない天板直下に赤外線LED16を設け、検知素子7hに赤外線の放射方向を向けて設置される。一方、赤外線温度検知部7も赤外線LED16からの赤外線を効率良く検知できるようにその向きを赤外線LED16に向けて設置する。このように構成することで、加熱開始前では各検知素子が検知する赤外線量の内、図11に示すように素子7hの検知する赤外線量が突出して大きくなる。
このような条件の下で、制御部14が誘導加熱制御を開始する前の運転初期に各温度検知素子が正常に設置されているか否かを判定するために、演算部15は各温度検知素子7a〜7hが検知した赤外線量の大小比較により赤外線LED16からの赤外線量を取得した素子7hを特定して、ここを指標点とする。
次に、制御部14は加熱コイル駆動部13を制御して加熱コイル12に被加熱物2を誘導加熱させ、演算部15は検知した赤外線量の大小比較を行うことで、最大値を得た検知素子(図12の例では、黒で塗りつぶした領域eを検知する素子7e)を取得し、この検知素子の識別子で対応表を参照することで、最大の赤外線を放射した被検知領域(地点)(図12では領域e)から検知素子までの距離を算出する。次に、最大値を検知した検知素子7eの位置と検知素子7hの位置とは同じ位置であるから、「最大の赤外線を放射した被検知領域(地点)から検知素子7hまでの距離」から「指標点から検知素子7hまでの距離」を減算することで上記指標点から最大の赤外線を放射した被検知領域(地点)までの相対距離を算出する。この相対距離は赤外線温度検知部の初期位置がずれていたとしても変わることはない。従って、毎回赤外線温度検知部の初期位置がずれていたとしてもこの指標点を基にソフトウェア処理で補正をかけることができる。
Next, the operation of the third embodiment will be described.
The main body 1 is provided with at least one infrared LED 16 at an arbitrary position on the top plate 3, and among the eight detection elements 7 a to 7 h constituting the infrared temperature detection unit 7, the element that always detects the infrared LED 16 is 1. Suppose that Here, the element for detecting the infrared LED 16 is 7h.
As shown in FIGS. 10 (a) and 10 (b), as an initial position correction, an infrared LED 16 is provided in the detection region h of the top plate 3 and directly under the top plate that is not affected by heating. Installed with the direction of infrared radiation. On the other hand, the infrared temperature detector 7 is also installed with its direction facing the infrared LED 16 so that infrared rays from the infrared LED 16 can be detected efficiently. With this configuration, the amount of infrared rays detected by the element 7h protrudes and becomes large as shown in FIG. 11 among the amount of infrared rays detected by each detection element before the start of heating.
Under such conditions, in order to determine whether or not each temperature detection element is normally installed at the initial stage of operation before the control unit 14 starts the induction heating control, the calculation unit 15 includes each temperature detection element. The element 7h that has acquired the amount of infrared rays from the infrared LED 16 is identified by comparing the amount of infrared rays detected by 7a to 7h, and this is used as an index point.
Next, the control unit 14 controls the heating coil driving unit 13 to cause the heating coil 12 to inductively heat the article 2 to be heated, and the calculation unit 15 compares the detected infrared light amounts to obtain a maximum value. By acquiring a detection element (in the example of FIG. 12, the element 7e that detects the area e painted in black) and referring to the correspondence table with the identifier of this detection element, the detected area (point) that radiates the maximum infrared ray ) (Distance e in FIG. 12) to the sensing element is calculated. Next, since the position of the detection element 7e that has detected the maximum value and the position of the detection element 7h are the same position, from the "distance from the detection region (point) that radiates the maximum infrared ray to the detection element 7h" By subtracting the “distance from the index point to the detection element 7h”, the relative distance from the index point to the detected region (point) that emits the maximum infrared ray is calculated. This relative distance does not change even if the initial position of the infrared temperature detector is shifted. Therefore, even if the initial position of the infrared temperature detection unit is shifted every time, correction can be performed by software processing based on this index point.

図13は本発明の実施の形態3における演算部15の動作を示す図である。次に、実施の形態3における演算部15の動作を図13を用いて説明する。
ステップS901からS910までの動作は図9と同様である。次に演算部15は記憶部から読込んだ距離と赤外線LEDの位置(指標値)との相対距離を算出する(ステップS131)。次に演算部15は相対距離から補正係数を推定する(ステップS132)。次に図9のステップS911〜S912と同様に動作する。
以上の動作により実施の形態と同様の効果を奏する。
FIG. 13 is a diagram illustrating the operation of the calculation unit 15 according to the third embodiment of the present invention. Next, the operation of the calculation unit 15 in the third embodiment will be described with reference to FIG.
The operations from step S901 to S910 are the same as those in FIG. Next, the calculation unit 15 calculates a relative distance between the distance read from the storage unit and the position (index value) of the infrared LED (step S131). Next, the computing unit 15 estimates a correction coefficient from the relative distance (step S132). Next, it operates similarly to steps S911 to S912 of FIG.
With the above operation, the same effects as in the embodiment can be obtained.

本実施の形態3によれば、指標点としての赤外線LEDを設け、赤外線の最大値を検知した被検知領域と指標点との相対距離を算出することで、この相対距離は常に変わることがないため、毎回赤外線温度検知部の初期位置がずれていたとしてもこの指標点を基に補正をかけることができる。従って、被加熱物の温度を正確に検知することが可能となる。   According to the third embodiment, the relative distance does not always change by providing the infrared LED as the index point and calculating the relative distance between the detected area where the maximum value of the infrared is detected and the index point. Therefore, even if the initial position of the infrared temperature detection unit is shifted every time, the correction can be performed based on this index point. Therefore, it becomes possible to accurately detect the temperature of the object to be heated.

なお、上記の例では、赤外線LEDを最も外側に配置した場合について説明したが、これに限る必要はなく、例えば加熱コイル12の中心に設置しても良い。
また、上記の例では直接赤外線LEDの放射方向を直接赤外線温度検知部7に向ける場合について説明したが、赤外線LEDの放射方向を反射板を介して赤外線温度検知部7に向けるように構成しても良い。
図14は、赤外線LEDの放射方向を反射板を介して赤外線温度検知部7に向けるように構成した場合の側面断面と斜視図であり、図14(a)は赤外線LEDの放射方向を反射板を介して赤外線温度検知部7に向けるように構成した場合の側面断面、図14(b)は赤外線LEDの放射方向を反射板を介して赤外線温度検知部7に向けるように構成した場合の斜視図である。
図14(a)において、図10と同符号は同一又は相当部分を示す。反射板18が追加されている以外は図10と同じである。
ここでは、検知領域dに赤外線LEDを配置する。これにより、図15に示すように検知素子7dは突出した赤外線量を検知する。
In the above example, the infrared LED is disposed on the outermost side. However, the present invention is not limited to this. For example, the infrared LED may be installed at the center of the heating coil 12.
Further, in the above example, the case where the radiation direction of the direct infrared LED is directed directly to the infrared temperature detection unit 7 has been described, but the radiation direction of the infrared LED is configured to be directed to the infrared temperature detection unit 7 via the reflector. Also good.
FIG. 14 is a side cross-sectional view and a perspective view of the infrared LED configured such that the radiation direction of the infrared LED is directed to the infrared temperature detection unit 7 via the reflector, and FIG. 14A shows the radiation direction of the infrared LED as the reflector. FIG. 14B is a perspective view of a configuration in which the radiation direction of the infrared LED is directed toward the infrared temperature detection unit 7 via the reflector. FIG.
14A, the same reference numerals as those in FIG. 10 denote the same or corresponding parts. 10 is the same as FIG. 10 except that a reflector 18 is added.
Here, an infrared LED is arranged in the detection area d. Thereby, as shown in FIG. 15, the detection element 7d detects the protruding amount of infrared rays.

実施の形態4.
実施の形態3では、赤外線LED16による位置決め動作中をユーザーに知らせる方法がなかった。したがって、位置決め動作中であることを示すために例えば赤外線LEDを点滅させるように構成しても良い。
本実施の形態4ではこのような場合について説明する。
図16は本実施の形態4における演算部15の動作である。次に本実施の形態4における演算部15の動作を図16を用いて説明する。
制御部14が加熱制御を開始する前の運転初期に演算部15は以下の動作を実行する。演算部15はカウンタクリアなどの初期処理を実行した(S1601)後、赤外線LEDを所定時間点灯させる(ステップS1602)。次に、演算部15は検知素子7a〜7hの8個の検知素子の内で最大の赤外線量を検知した特定の検知素子(即ち、赤外線LEDに対応する検知素子)の出力Aを取得する(ステップS1603)。次に、演算部15は赤外線LEDを所定時間消灯させる(ステップS1604)。次に、カウンタの値を調べ(ステップS1605)、カウンタの値が所定回数に達しない間は、カウンタを1つ増やした(ステップS1606)上で、ステップS1602へ戻って再び点滅を繰返す。ステップS1605の判定においてカウンタの値が所定回数に達した場合、制御部14に点滅動作終了の旨を送信した後、処理を終了する。
なお、上記の処理を演算部15が実行する場合について説明したが、制御部14が実行しても良い。
Embodiment 4 FIG.
In the third embodiment, there is no method for notifying the user of the positioning operation by the infrared LED 16. Therefore, for example, an infrared LED may be blinked to indicate that the positioning operation is being performed.
This case will be described in the fourth embodiment.
FIG. 16 shows the operation of the calculation unit 15 in the fourth embodiment. Next, the operation of the calculation unit 15 in the fourth embodiment will be described with reference to FIG.
In the initial operation before the control unit 14 starts the heating control, the calculation unit 15 performs the following operation. The calculation unit 15 performs initial processing such as counter clear (S1601), and then turns on the infrared LED for a predetermined time (step S1602). Next, the calculation unit 15 acquires an output A of a specific detection element (that is, a detection element corresponding to the infrared LED) that detects the maximum amount of infrared rays among the eight detection elements of the detection elements 7a to 7h (that is, the detection element corresponding to the infrared LED). Step S1603). Next, the calculation unit 15 turns off the infrared LED for a predetermined time (step S1604). Next, the counter value is checked (step S1605). While the counter value does not reach the predetermined number of times, the counter is incremented by one (step S1606), and then the process returns to step S1602 to repeat the blinking again. If the value of the counter reaches the predetermined number in the determination in step S1605, the process is terminated after transmitting the end of the blinking operation to the control unit 14.
In addition, although the case where the calculation part 15 performed said process was demonstrated, you may perform the control part 14. FIG.

以上のように、ノイズなどの外乱が有る場合でも、赤外線LED16を点滅させるので、ユーザーの注意を喚起することができる。また、赤外線LED16の点滅中は「位置決め検知中」であるという旨を予めルールを決めておけば、赤外線LED16を点滅させることで、ユーザーにその旨を認識させることができる。これにより、位置決め動作中はユーザーに対して、鍋の移動などの操作を行わないように促すことができる。   As described above, even when there is a disturbance such as noise, the infrared LED 16 blinks, so that the user's attention can be drawn. In addition, if a rule is determined in advance that “the positioning is being detected” while the infrared LED 16 is blinking, the infrared LED 16 can be blinked so that the user can recognize the fact. Thereby, it is possible to prompt the user not to perform an operation such as moving the pan during the positioning operation.

実施の形態5.
経年劣化により赤外線LED16の寿命が到来したとき、あるいは赤外線LED16上に障害物が載置された場合など、赤外線LED16の出力が得られなかった場合には、位置判定が不可能になる。その場合にはその旨を示す情報を表示部5またはスピーカなどの音声出力部に警報出力してユーザーに報知することができる。
本実施の形態5ではこのような場合について説明する。
図17は本実施の形態5における演算部15の動作を示すフローチャートである。次に演算部15の動作を図17を用いて説明する。
制御部14が誘導加熱制御を開始する前の運転初期に演算部15はカウンタクリアなどの初期処理を実行した(S1601)後、赤外線LEDを所定時間点灯させる(ステップS1602)。次に、演算部15は検知素子7a〜7hの8個の検知素子の内で最大の赤外線量を検知した特定の検知素子(即ち、赤外線LEDに対応する検知素子)の出力Aを取得する(ステップS1603)。次に、演算部15は赤外線LEDを所定時間消灯させる(ステップS1604)。次に、カウンタの値を調べ(ステップS1605)、カウンタの値が所定回数に達しない間は、カウンタを1つ増やした(ステップS1606)上で、ステップS1602へ戻って再び点滅を繰返す。ステップS1605の判定においてカウンタの値が所定回数に達した場合、検知素子が検知した赤外線量Aの平均値を算出する(ステップS1701)。即ち、赤外線量Aを所定回数累積し、累積した値を所定回数で除算して平均値を算出する。次に、演算部15はAの平均値を予め設定した下限値と比較し(ステップS1702)、Aの平均値が下限値以上であれば演算部15は正常であると判断して、点滅処理を終了する。ステップS1702の判定において、Aの平均値が下限値よりも小さければ演算部15は異常であると判断して、表示部5に異常の旨を示す情報を出力する。また、スピーカなどの音声出力装置に出力する(ステップS1703)。
Embodiment 5 FIG.
If the output of the infrared LED 16 cannot be obtained, such as when the life of the infrared LED 16 comes to an age due to aging, or when an obstacle is placed on the infrared LED 16, the position cannot be determined. In that case, information indicating that can be output to the display unit 5 or an audio output unit such as a speaker to notify the user.
This case will be described in the fifth embodiment.
FIG. 17 is a flowchart showing the operation of the calculation unit 15 in the fifth embodiment. Next, the operation of the calculation unit 15 will be described with reference to FIG.
At the initial stage of operation before the control unit 14 starts induction heating control, the calculation unit 15 performs initial processing such as counter clearing (S1601), and then turns on the infrared LED for a predetermined time (step S1602). Next, the calculation unit 15 acquires an output A of a specific detection element (that is, a detection element corresponding to the infrared LED) that detects the maximum amount of infrared rays among the eight detection elements of the detection elements 7a to 7h (that is, the detection element corresponding to the infrared LED). Step S1603). Next, the calculation unit 15 turns off the infrared LED for a predetermined time (step S1604). Next, the counter value is checked (step S1605). While the counter value does not reach the predetermined number of times, the counter is incremented by one (step S1606), and then the process returns to step S1602 to repeat the blinking again. When the value of the counter reaches the predetermined number in the determination in step S1605, the average value of the infrared amount A detected by the detection element is calculated (step S1701). That is, the infrared amount A is accumulated a predetermined number of times, and the accumulated value is divided by the predetermined number of times to calculate an average value. Next, the calculation unit 15 compares the average value of A with a preset lower limit value (step S1702), and if the average value of A is equal to or greater than the lower limit value, the calculation unit 15 determines that it is normal and blinks. Exit. If it is determined in step S1702 that the average value of A is smaller than the lower limit value, the calculation unit 15 determines that it is abnormal, and outputs information indicating the abnormality to the display unit 5. Further, it is output to an audio output device such as a speaker (step S1703).

以上のように、経年劣化により赤外線LED16の寿命が到来したとき、あるいは赤外線LED16上に障害物が載置された場合など、赤外線LED16の出力が得られなかった場合には、位置判定が不可能の旨を示す情報を表示部5またはスピーカなどの音声出力部に警報出力してユーザーに報知するので、ユーザーは早急に対処することができる。
また、ノイズなどの外乱が有る場合でも、赤外線量を時間積分(時間平均)することで、外乱は分散化されて殆どゼロになるので問題がない。これに対して赤外線LED16からの赤外線量は分散化されずにそのまま残るため、この赤外線量のみを取り出すことができる。従って、赤外線LED16の出力成分を分析することが可能になる。
As described above, the position cannot be determined when the output of the infrared LED 16 cannot be obtained, for example, when the life of the infrared LED 16 is reached due to deterioration over time or when an obstacle is placed on the infrared LED 16. Is output to the display unit 5 or an audio output unit such as a speaker to notify the user, so that the user can deal with it quickly.
Even when there is a disturbance such as noise, there is no problem because the disturbance is dispersed and becomes almost zero by integrating the amount of infrared rays over time (time average). On the other hand, since the amount of infrared rays from the infrared LED 16 remains as it is without being dispersed, only this amount of infrared rays can be taken out. Therefore, the output component of the infrared LED 16 can be analyzed.

実施の形態6.
実施の形態5では経年劣化により赤外線LED16の寿命が到来したとき、あるいは赤外線LED16上に障害物が載置された場合など、加熱調理しても赤外線LED16の出力が十分に得られなかった場合には、位置判定が不可能の旨を示す情報を表示部5またはスピーカなどの音声出力部に警報出力してユーザーに報知するようにしたが、さらに赤外線温度検知部に代えて、天板3の下に押圧設置しているサーミスタなどの接触式温度検知部の出力に基づいて被加熱物の温度を検知するように構成しても良い。
本実施の形態6ではこのような場合について説明する。
図18は本発明の実施の形態6における加熱調理器の正面断面を示す模式図である。図18において、図2と同符号は同一または相当部分を示す。接触式温度検知部17が追加されている以外は図2と同じである。なお、加熱コイル駆動部13はあるが図示していない。
Embodiment 6 FIG.
In the fifth embodiment, when the infrared LED 16 has reached the end of its life due to aging, or when an obstacle is placed on the infrared LED 16, the output of the infrared LED 16 cannot be sufficiently obtained even after cooking. The information indicating that the position cannot be determined is output to the display unit 5 or an audio output unit such as a speaker to notify the user, but in place of the infrared temperature detection unit, You may comprise so that the temperature of a to-be-heated material may be detected based on the output of contact-type temperature detection parts, such as the thermistor pressed down.
This case will be described in the sixth embodiment.
FIG. 18 is a schematic diagram showing a front cross section of a heating cooker according to Embodiment 6 of the present invention. 18, the same reference numerals as those in FIG. 2 denote the same or corresponding parts. It is the same as FIG. 2 except that the contact temperature detector 17 is added. Although there is a heating coil driving unit 13, it is not shown.

次に、本実施の形態6の動作を説明する。
図19は本実施の形態6における演算部15の動作を示すフローチャートである。図19において、図17のステップS1703の代わりにステップS1801に置き換えている以外は図17と同じである。次に演算部15の動作を図19を用いて説明する。
ステップS160〜S1605、S1701〜S1702については図17と同様である。ステップS1702の判断において、赤外線Aの平均値が下限値より小さければ、演算部15は異常であると判断して接触式温度検知部17に切替え、接触式温度検知部17によって被加熱物2の温度を検知する(ステップS1901)。
Next, the operation of the sixth embodiment will be described.
FIG. 19 is a flowchart showing the operation of the calculation unit 15 in the sixth embodiment. 19 is the same as FIG. 17 except that step S1801 is replaced with step S1801 in FIG. Next, the operation of the calculation unit 15 will be described with reference to FIG.
Steps S160 to S1605 and S1701 to S1702 are the same as those in FIG. If it is determined in step S1702 that the average value of the infrared rays A is smaller than the lower limit value, the calculation unit 15 determines that it is abnormal and switches to the contact-type temperature detection unit 17. The temperature is detected (step S1901).

このように、赤外線温度検知部7が異常の場合にこの赤外線温度検知部7に代えて、天板3の下に押圧設置しているサーミスタなどの接触式温度検知部の出力に基づいて被加熱物2の温度を検知するので、被加熱物2の温度検知能力の低下を最小限に抑えることができる。   As described above, when the infrared temperature detection unit 7 is abnormal, the infrared temperature detection unit 7 is replaced with the infrared temperature detection unit 7 based on the output of the contact type temperature detection unit such as a thermistor that is pressed and installed under the top plate 3. Since the temperature of the object 2 is detected, a decrease in the temperature detection capability of the object to be heated 2 can be minimized.

実施の形態7.
上記実施の形態では複眼の赤外線温度検知部を使用する場合について説明したが、単眼の赤外線温度検知部を上下に振らせつつ検知するように構成しても良い。本実施の形態ではこのような場合についてその態様を説明する。
図20は、単眼の赤外線温度検知部を有する加熱調理器の要部構成を示す側面断面図である。図20において、図12と同符号は同一または相当部分を示す。単眼の赤外線温度検知部70におきかえられ、さらに単眼の赤外線温度検知部70を上下方向に回転移動(首振り)させる駆動機構として外周に歯車を形成した半円筒状のラック701とこのラック701の歯車に噛み合うように構成されたピニオン702が追加されている以外は図12と同様である。図示しないモーターを演算部15からの指令によって駆動することにより、ピニオン702が回転し、このピニオン702の回転によりラック701の角度が回転移動し、これにより単眼の赤外線温度検知部70が首振りを行う。従って、制御部14によってモーターの回転を制御することで、単眼の赤外線温度検知部70を所定角度ずつ回転移動させては停止させるという動作を繰返す。
Embodiment 7 FIG.
Although the case where a compound eye infrared temperature detection unit is used has been described in the above embodiment, the detection may be performed while shaking the monocular infrared temperature detection unit up and down. In the present embodiment, such a case will be described.
FIG. 20 is a side cross-sectional view showing a main configuration of a heating cooker having a monocular infrared temperature detection unit. 20, the same reference numerals as those in FIG. 12 denote the same or corresponding parts. The monocular infrared temperature detector 70 is replaced with a semi-cylindrical rack 701 having gears on the outer periphery as a drive mechanism for rotating and moving the monocular infrared temperature detector 70 in the vertical direction (swinging). FIG. 12 is the same as FIG. 12 except that a pinion 702 configured to mesh with the gear is added. By driving a motor (not shown) according to a command from the calculation unit 15, the pinion 702 rotates, and the rotation of the pinion 702 rotates the angle of the rack 701, thereby causing the monocular infrared temperature detection unit 70 to swing. Do. Therefore, by controlling the rotation of the motor by the control unit 14, the operation of rotating and stopping the monocular infrared temperature detection unit 70 by a predetermined angle is repeated.

図21は本発明の実施の形態7における演算部15の動作を示すフローチャートである。次に、本実施の形態7における演算部15の動作を図20及び図21を用いて説明する。
演算部15は起動されると、カウンタクリア、赤外線量クリヤなどの初期処理を実行した(ステップS901)後、単眼の赤外線温度検知部70の視野角度を所定の角度だけ移動して最初の被検知領域(例えば領域a)を選択して(ステップS2101)、赤外線温度検知部70からの出力として赤外線量(Aとする)を取得する(ステップS903)。次に演算部15は、取得した赤外線量Aを記憶手段に記憶している最大の赤外線量B(最初はゼロ)と比較し(ステップS904)、今回検知した赤外線量Aの方がBよりも小さければ、ステップS907へ飛び、今回検知した赤外線量Aの方がBよりも大きければ、今回の赤外線量をBとして記憶部に書込む(ステップS905)とともに、この時の赤外線温度検知部70の角度(角度の番号でも可)も記憶部に書込む(ステップS2102)。次に、演算部15は全ての領域を検知終了したか否かを調べ(ステップS907)、まだ終了していなければ、単眼の赤外線温度検知部70の視野角度を所定の角度だけ移動して次の被検知領域(例えば領域b)を選択した(ステップS2103)上で、ステップS903に戻り、再び同様の処理を実行する。この動作を更に被検知領域c、d、e、…hまで順次繰り返し実行する。そして、やがて被検知領域hの処理が終了すると、ステップS907において、Yesとなるので、ステップS2104へ進む。ここで最大の赤外線量を検出した赤外線温度検知部70の角度(境界部を検知した角度)を図示しない記憶部から読込み、さらに記憶部に記憶された対応表をこの検知素子によって参照することで距離と補正係数を読込む(ステップS910)。次に演算部15は赤外線量に補正係数を乗算して補正する(ステップS911)。次に演算部15は補正した赤外線量を温度データに変換する(ステップS912)。
FIG. 21 is a flowchart showing the operation of the calculation unit 15 according to the seventh embodiment of the present invention. Next, the operation of the calculation unit 15 in the seventh embodiment will be described with reference to FIGS.
When activated, the calculation unit 15 executes initial processing such as counter clearing and infrared ray clearing (step S901), and then moves the viewing angle of the monocular infrared temperature detection unit 70 by a predetermined angle to detect the first detected object. A region (for example, region a) is selected (step S2101), and an infrared ray amount (A) is acquired as an output from the infrared temperature detection unit 70 (step S903). Next, the computing unit 15 compares the acquired infrared ray amount A with the maximum infrared ray amount B (initially zero) stored in the storage unit (step S904), and the detected infrared ray amount A is more than B. If it is smaller, the process jumps to step S907, and if the detected infrared ray amount A is larger than B, the present infrared ray amount is written as B in the storage unit (step S905), and the infrared temperature detector 70 at this time The angle (or an angle number is acceptable) is also written in the storage unit (step S2102). Next, the calculation unit 15 checks whether or not all the areas have been detected (step S907). If the calculation has not been completed, the calculation unit 15 moves the viewing angle of the monocular infrared temperature detection unit 70 by a predetermined angle and continues. After selecting the detected area (for example, the area b) (step S2103), the process returns to step S903 and the same process is executed again. This operation is further repeated sequentially until the detected areas c, d, e,. Then, when the process for the detected area h is finished, the process proceeds to step S2104 because the result of step S907 is Yes. Here, the angle of the infrared temperature detection unit 70 that detects the maximum amount of infrared rays (the angle at which the boundary portion is detected) is read from a storage unit (not shown), and the correspondence table stored in the storage unit is referred to by this detection element. The distance and the correction coefficient are read (step S910). Next, the calculating part 15 corrects by multiplying the amount of infrared rays by a correction coefficient (step S911). Next, the calculation unit 15 converts the corrected infrared ray amount into temperature data (step S912).

本実施の形態7によれば、単眼の赤外線温度検知部70の設置においてずれが発生しても、単眼の赤外線温度検知部70の角度を首振りにより調整することで極めて簡単に初期位置の位置決めができるので、複眼の赤外線温度検知部と異なり、ソフトウェアのアルゴリズムで補正する必要がなく、極めて簡単な構成で実施の形態1と同様の効果を奏することができる。   According to the seventh embodiment, even if a deviation occurs in the installation of the monocular infrared temperature detection unit 70, the initial position can be determined very easily by adjusting the angle of the monocular infrared temperature detection unit 70 by swinging. Therefore, unlike the compound-eye infrared temperature detection unit, it is not necessary to perform correction by a software algorithm, and the same effects as those of the first embodiment can be achieved with a very simple configuration.

なお、加熱コイル12の中心に赤外線LED16を配置しても良い。この場合も同様の効果を奏する。   In addition, you may arrange | position infrared LED16 in the center of the heating coil 12. FIG. In this case, the same effect is obtained.

1 本体、2 被加熱物、3 天板、4 操作部、5 表示部、6 加熱口、6a 加熱口の中心、7 赤外線温度検知部、7a〜7h 検知素子(素子)、8 吸気口、9 被調理物、10 入力部、11 グリル部、12 加熱部(加熱コイル)、13 駆動部、14 制御部、15 演算部、16 赤外線LED、17 接触式温度検知部、18 反射板、70 単眼の赤外線温度検知部、701 ラック、702 ピニオン。   DESCRIPTION OF SYMBOLS 1 Main body, 2 To-be-heated object, 3 Top plate, 4 Operation part, 5 Display part, 6 Heating port, 6a The center of a heating port, 7 Infrared temperature detection part, 7a-7h Detection element (element), 8 Intake port, 9 To-be-cooked object, 10 input section, 11 grill section, 12 heating section (heating coil), 13 drive section, 14 control section, 15 calculation section, 16 infrared LED, 17 contact-type temperature detection section, 18 reflector, 70 monocular Infrared temperature detector, 701 rack, 702 pinion.

Claims (13)

鍋などの被加熱物が載置される天板と、
この天板の下方に設けられ前記被加熱物を誘導加熱する加熱コイルと、
この加熱コイルに交番電力を供給して駆動する加熱コイル駆動部と、
前記天板の側方且つ上方に設けられ、前記被加熱物の側面、前記被加熱物の底面と前記天板との境界部、及び前記天板に至る連続領域を複数に分割して得られる分割領域のそれぞれに対応して設けられた複数の検知素子を有し、前記天板の上方の赤外線量を直接検知する赤外線温度検知部と、
この赤外線温度検知部の検知した赤外線量を温度に変換する演算部と、
この演算部が出力した温度に基づいて前記加熱コイル駆動部を制御する制御部と、
前記各検知素子とこの検知素子が検知する分割領域までの距離及び補正係数とを対応付けた対応表を記憶する記憶部と、を備え
記演算部は、前記複数の検知素子の内で検知した赤外線量の大小比較に基づいて前記境界部を検知したものを特定し、特定した検知素子が前記被加熱物から検知した赤外線量を予め設定された前記補正係数で補正し、補正した赤外線量に基づいて前記被加熱物の温度を推定するものであり、
前記補正係数は、
前記各検知素子が検知する分割領域に前記境界部が含まれるときにその検知素子が出力する赤外線量と、予め設定された基準値となる赤外線量との相対比として算出され、前記各検知素子が検知する前記分割領域までの距離に応じて前記各検知素子毎に設定された値である
ことを特徴とする加熱調理器。
A top plate on which a heated object such as a pan is placed;
A heating coil provided below the top plate for induction heating the object to be heated;
A heating coil driving section for supplying and driving alternating power to the heating coil;
It is provided at the side and above the top plate, and is obtained by dividing the side surface of the object to be heated, the boundary between the bottom surface of the object to be heated and the top plate, and the continuous region reaching the top plate into a plurality of parts. An infrared temperature detection unit that has a plurality of detection elements provided corresponding to each of the divided areas, and directly detects the amount of infrared radiation above the top plate;
A calculation unit that converts the amount of infrared rays detected by the infrared temperature detection unit into a temperature;
A control unit for controlling the heating coil driving unit based on the temperature output by the calculation unit;
A storage unit for storing a correspondence table in which each detection element is associated with a distance to a divided region detected by the detection element and a correction coefficient ;
Before SL calculating unit identifies a material obtained by detecting the boundary based on the amount of infrared rays compares detected by the plurality of sensing elements, the amount of infrared is specified sensing element detects from the object to be heated corrected by preset the correction coefficient, which estimates the temperature of the object to be heated based on the corrected amount of infrared rays,
The correction factor is
Calculated as a relative ratio between the amount of infrared light output by the detection element when the boundary portion is included in the divided area detected by each detection element and the amount of infrared light that is a preset reference value, The heating cooker, which is a value set for each of the detection elements in accordance with the distance to the divided region detected by .
前記記憶部には、記境界部が前記加熱コイルの内側に位置する場合と外側に位置する場合とで値が異なる第二の補正係数が記憶されており
前記演算部は、前記補正係数を用いて前記赤外線量を補正することに加え、
前記境界部を検知した前記検知素子からこの検知素子が検知する分割領域までの距離に基づいて、前記境界部が前記加熱コイルの内側に位置するか否かを判定し、この判定結果に基づいて選択した前記第二の補正係数のいずれか一方を用いて、この検知素子が検知した赤外線量を補正する
ことを特徴とする請求項1に記載の加熱調理器。
Wherein the storage unit is a second correction coefficient values in the case located outside the case located inside different front Kisakai boundary part said heating coil is stored,
In addition to correcting the amount of infrared rays using the correction coefficient, the calculation unit,
Based on the distance from the detection element that has detected the boundary portion to the divided region detected by the detection element, it is determined whether or not the boundary portion is located inside the heating coil, and based on the determination result The cooking device according to claim 1, wherein the infrared ray amount detected by the detection element is corrected using any one of the selected second correction coefficients .
前記演算部は、前記特定した検知素子の出力を補正して得た赤外線量に所定の算術式を適用して前記被加熱物の温度を算出することを特徴とする請求項1または請求項2に記載の加熱調理器。 The arithmetic unit, according to claim 1 or claim 2, characterized in that by applying a predetermined arithmetic expression on the amount of infrared radiation obtained by correcting the output of the specified sensing element for calculating the temperature of the object to be heated heating cooking device according to. 前記赤外線温度検知部の複数の前記検知素子の検知領域の少なくとも1個所に対して赤外線を放射する赤外線LEDを備え、
加熱初期において、前記赤外線LEDが赤外線を放射し、
前記演算部は、前記赤外線LEDが赤外線を放射したときに前記複数の検知素子検知した赤外線量の大小に基づいて、前記複数の検知素子の内で前記赤外線LEDからの赤外線を検知する検知素子を特定し、この特定した検知素子が所定の検知素子であることを確認すれば正常であると判断することを特徴とする請求項1〜請求項3のいずれか一項に記載の加熱調理器。
An infrared LED emitting infrared for at least one position detection region of the plurality of the sensing element of the infrared temperature detector,
In the initial stage of heating, the infrared LED emits infrared rays,
The calculation unit is a detection element that detects infrared rays from the infrared LEDs among the plurality of detection elements based on the amount of infrared rays detected by the plurality of detection elements when the infrared LEDs emit infrared rays. The cooking device according to any one of claims 1 to 3 , wherein the cooking device is determined to be normal if the identified sensing element is confirmed to be a predetermined sensing element. .
前記演算部は、前記複数の検知素子の内で検知した赤外線量が最大のものを特定することを特徴とする請求項に記載の加熱調理器。 5. The cooking device according to claim 4 , wherein the calculation unit identifies the infrared ray detected in the plurality of detection elements having a maximum amount. 前記天板の下に設けられ前記被加熱物の温度を検知する接触式温度検知部と、
前記赤外線温度検知部の複数の前記検知素子の検知領域の少なくとも1個所に対して赤外線を放射する赤外線LEDと、を備え、
加熱初期において、前記赤外線LEDが赤外線を放射し、前記赤外線LEDから放射される赤外線を検知すべき前記検知素子が検知する赤外線量が所定値より低い場合には、
前記制御部は、前記演算部が出力した温度に代えて、前記接触式温度検知部の出力に基づいて、前記加熱コイル駆動部を制御することを特徴とする請求項1〜請求項3のいずれか一項に記載の加熱調理器。
A contact-type temperature detection unit that is provided under the top plate and detects the temperature of the object to be heated;
And a infrared LED for emitting infrared rays for at least one position detection region of the plurality of the sensing element of the infrared temperature detector,
In the initial stage of heating, when the infrared LED emits infrared rays and the amount of infrared rays detected by the detection element that should detect infrared rays emitted from the infrared LEDs is lower than a predetermined value,
The said control part controls the said heating coil drive part based on the output of the said contact-type temperature detection part instead of the temperature which the said calculating part output , The any one of Claims 1-3 characterized by the above-mentioned. heating cooker according to an item or.
報知部と、
前記赤外線温度検知部の複数の前記検知素子の検知領域の少なくとも1個所に対して赤外線を放射する赤外線LEDと、を備え、
加熱初期において、前記赤外線LEDが赤外線を放射し、前記赤外線LEDから放射される赤外線を検知すべき前記検知素子が検知する赤外線量が所定値より低い場合には、
前記報知部は、前記赤外線LEDが断線している、もしくは前記赤外線LED上に障害物が載置されている旨を示す情報を警報出力することを特徴とする請求項1〜請求項3のいずれか一項に記載の加熱調理器。
A notification unit;
And a infrared LED for emitting infrared rays for at least one position detection region of the plurality of the sensing element of the infrared temperature detector,
In the initial stage of heating, when the infrared LED emits infrared rays and the amount of infrared rays detected by the detection element that should detect infrared rays emitted from the infrared LEDs is lower than a predetermined value,
The notification unit, any of claims 1 to 3, characterized in that said infrared LED is broken, or obstacle alarm output information indicating that that have been placed on the IR LED heating cooker according to an item or.
前記報知部は音声出力部であることを特徴とする請求項に記載の加熱調理器。 The cooking device according to claim 7 , wherein the notification unit is an audio output unit. 前記報知部は表示部であることを特徴とする請求項に記載の加熱調理器。 The cooking device according to claim 7 , wherein the notification unit is a display unit. 前記赤外線LEDの赤外線放射方向は、前記複数の検知素子のうちのいずれかの検知領域に向けられていることを特徴とする請求項請求項9のいずれか一項に記載の加熱調理器。 The cooking device according to any one of claims 4 to 9 , wherein an infrared radiation direction of the infrared LED is directed to any detection region of the plurality of detection elements . . 前記赤外線LEDから放射される赤外線を反射させて前記複数の検知素子のうちのいずれかの検知領域に向ける反射板を備えたことを特徴とする請求項請求項9のいずれか一項に記載の加熱調理器。 In any one of claims 4 to claim 9, wherein the kite comprising a reflector to direct to one of the detection region of the plurality of sensing elements by reflecting infrared radiation emitted from the infrared LED The cooking device described. 前記赤外線LEDは加熱コイルの中心に設けられることを特徴とする請求項請求項11のいずれか一項に記載の加熱調理器。 The infrared LED cooking device according to any one of Claims 4 to 11, characterized in that it is provided in the center of the heating coil. 前記制御部は、加熱初期において、所定の周期で前記赤外線LEDを点滅させることを特徴とする請求項請求項12のいずれか一項に記載の加熱調理器。 The cooking device according to any one of claims 4 to 12 , wherein the control unit causes the infrared LED to blink at a predetermined cycle in the initial stage of heating.
JP2009125588A 2009-05-25 2009-05-25 Cooker Expired - Fee Related JP5047226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125588A JP5047226B2 (en) 2009-05-25 2009-05-25 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125588A JP5047226B2 (en) 2009-05-25 2009-05-25 Cooker

Publications (2)

Publication Number Publication Date
JP2010272481A JP2010272481A (en) 2010-12-02
JP5047226B2 true JP5047226B2 (en) 2012-10-10

Family

ID=43420331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125588A Expired - Fee Related JP5047226B2 (en) 2009-05-25 2009-05-25 Cooker

Country Status (1)

Country Link
JP (1) JP5047226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067754A (en) * 2019-11-29 2021-06-08 (주)쿠첸 Cooking apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250654B1 (en) * 2019-10-11 2021-05-12 (주)쿠첸 Cooking apparatus
KR102418390B1 (en) * 2020-12-01 2022-07-08 (주)쿠첸 Coocker including temperature sensor and operating method thereof
KR102418391B1 (en) * 2020-12-01 2022-07-08 (주)쿠첸 Coocker including temperature sensor and operating method thereof
CN114690820B (en) * 2022-03-30 2023-08-08 广东万和电气有限公司 Household appliance for kitchen and temperature compensation method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924720B2 (en) * 2001-07-13 2007-06-06 三菱電機株式会社 Induction heating cooker
JP2003264055A (en) * 2002-03-08 2003-09-19 Hitachi Hometec Ltd Heating cooker
JP4744582B2 (en) * 2008-11-05 2011-08-10 三菱電機株式会社 Cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067754A (en) * 2019-11-29 2021-06-08 (주)쿠첸 Cooking apparatus
KR102299433B1 (en) * 2019-11-29 2021-09-08 (주)쿠첸 Cooking apparatus

Also Published As

Publication number Publication date
JP2010272481A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5047226B2 (en) Cooker
CN102812298B (en) Heating device
JP6227162B2 (en) Induction heating cooker
JP4123036B2 (en) Cooker
JP5340479B2 (en) Induction heating cooker
EP3554322B1 (en) Toaster sensing device
JP2003264055A (en) Heating cooker
JP4744582B2 (en) Cooker
JP5036755B2 (en) Cooker
JP2008016203A (en) Induction heating cooker
JP4933989B2 (en) Induction heating cooker
JP5892895B2 (en) Cooker
JP5459080B2 (en) Induction heating cooker
JP2004241220A (en) Induction heating cooking device
JP5380172B2 (en) Induction heating cooker
JP5062013B2 (en) Induction heating cooker
JP6230712B2 (en) Induction heating cooker
JP5492690B2 (en) Induction heating cooker
JP5380171B2 (en) Induction heating cooker
JP5674894B2 (en) Induction heating cooker
JP2013254617A (en) Induction heating cooker
JP2013097936A (en) Induction heating cooker
JP5865010B2 (en) Induction heating cooker
WO2007148404A1 (en) Electromagnetic induction heating device
JP2007107739A (en) Heating cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees