JP5045656B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5045656B2
JP5045656B2 JP2008303988A JP2008303988A JP5045656B2 JP 5045656 B2 JP5045656 B2 JP 5045656B2 JP 2008303988 A JP2008303988 A JP 2008303988A JP 2008303988 A JP2008303988 A JP 2008303988A JP 5045656 B2 JP5045656 B2 JP 5045656B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
boiling
compressor
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303988A
Other languages
Japanese (ja)
Other versions
JP2010127560A (en
Inventor
典穂 岡座
由樹 山岡
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008303988A priority Critical patent/JP5045656B2/en
Publication of JP2010127560A publication Critical patent/JP2010127560A/en
Application granted granted Critical
Publication of JP5045656B2 publication Critical patent/JP5045656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加熱した湯を貯湯タンクに貯えて給湯を行うヒートポンプ給湯機に関し、特に蒸発器が着霜する可能性のある運転条件での運転方法に関する。   The present invention relates to a heat pump water heater that supplies hot water by storing heated hot water in a hot water storage tank, and particularly relates to an operation method under an operating condition in which an evaporator may be frosted.

従来のヒートポンプ給湯機は、冷凍サイクルを利用して水を加熱する熱源ユニットと貯湯タンクユニットとから構成されている。熱源ユニットは、冷媒を高温、高圧に圧縮する圧縮機と、圧縮機で圧縮された冷媒により低温の水を加熱する放熱器と、放熱器で冷却された冷媒を減圧する減圧器と、減圧器で減圧した冷媒を蒸発させる蒸発器とを備えている。   A conventional heat pump water heater is composed of a heat source unit that heats water using a refrigeration cycle and a hot water storage tank unit. The heat source unit includes a compressor that compresses the refrigerant to high temperature and high pressure, a radiator that heats low-temperature water using the refrigerant compressed by the compressor, a decompressor that decompresses the refrigerant cooled by the radiator, and a decompressor And an evaporator for evaporating the refrigerant depressurized in.

熱源ユニットと貯湯タンクユニットとは、貯湯タンクユニット内に備えられた貯湯タンクの下部の低温水が、熱源ユニット内の放熱器に供給され、その後、放熱器で加熱された湯が、貯湯タンクの上部に供給されるように、給水ポンプを介して水配管により接続されている。貯湯タンクには、下部の低温水と上部の高温水とが混合層を介して共存して貯えられる。   The heat source unit and the hot water storage tank unit are configured such that the low temperature water in the lower part of the hot water storage tank provided in the hot water storage tank unit is supplied to the radiator in the heat source unit, and then the hot water heated by the radiator is It is connected by water piping via a water supply pump so that it may be supplied to the upper part. In the hot water storage tank, low temperature water at the bottom and high temperature water at the top are stored together through a mixed layer.

ヒートポンプ給湯機は、予め定められた温度(設定沸上温度)まで、低温水を加熱する沸上運転を行う。設定沸上温度は、貯湯タンクの上下方向に一定の間隔で設置された温度センサの検知値に基づいて予測した貯湯量や、前日までの使用湯量などから決定される。例えば、使用湯量が多い場合には、設定沸上温度を約85℃とし、使用湯量が少ない場合には、設定沸上温度を約65℃とする。   The heat pump water heater performs a boiling operation for heating low-temperature water to a predetermined temperature (set boiling temperature). The set boiling temperature is determined from the amount of hot water predicted based on detection values of temperature sensors installed at regular intervals in the vertical direction of the hot water storage tank, the amount of hot water used up to the previous day, and the like. For example, when the amount of hot water used is large, the set boiling temperature is about 85 ° C., and when the amount of hot water used is small, the set boiling temperature is about 65 ° C.

ヒートポンプ給湯機を、外気温度が低く外気中に水分の多い条件で、沸上運転を継続すると、蒸発器に着霜が生じ、加熱能力が低下することがある。   If the heat pump water heater is kept in a boiling operation under conditions where the outside air temperature is low and there is a lot of moisture in the outside air, the evaporator may form frost and the heating capacity may be reduced.

従来、蒸発器についた霜を効率よく除霜できる運転方法として、蒸発器が着霜した場合や、蒸発器が着霜する可能性のある運転条件では、沸上運転時の設定沸上温度を上昇させ、放熱器に貯えられる熱量を増加させる方法が提案されている(例えば、特許文献1参照)。   Conventionally, as an operation method that can efficiently defrost the frost on the evaporator, the set boiling temperature during the boiling operation can be set in the case where the evaporator is frosted or in the operating conditions where the evaporator may be frosted. A method for increasing the amount of heat stored in the radiator has been proposed (for example, see Patent Document 1).

これによれば、放熱器に貯えられる熱量を利用して、除霜運転時に速やかに蒸発器の霜を溶かすことができる。   According to this, the amount of heat stored in the radiator can be used to quickly melt the frost in the evaporator during the defrosting operation.

また、別の従来の運転方法として、除霜運転に入る直前に、設定沸上温度や圧縮機の吐出温度を上昇させる除霜準備運転を行い、放熱器に貯えられる熱量を増加させる方法も提案されている(例えば、特許文献2参照)。   Also, as another conventional operation method, a method of increasing the amount of heat stored in the radiator by performing a defrost preparation operation to increase the set boiling temperature or the discharge temperature of the compressor immediately before entering the defrost operation is also proposed. (For example, refer to Patent Document 2).

さらに、従来の技術では、蒸発器が着霜する運転条件か否かを判定するのに、外気温や蒸発温度や吸入温度が所定の温度以下となることを判定条件として用いている。
特開2008−20147号公報 特開2007−333341号公報
Furthermore, in the conventional technique, in order to determine whether or not the operating condition is that the evaporator is frosted, the determination is made that the outside air temperature, the evaporation temperature, or the suction temperature is equal to or lower than a predetermined temperature.
JP 2008-20147 A JP 2007-333341 A

本来、貯湯タンク内に貯えられる高温水は、均一な温度であるのが望ましい。貯湯タンク内の高温水の温度が不均一となると、使用者が台所やお風呂で湯を使用する際に、湯の温度変化が大きくなる不具合や、貯湯タンクの上下方向に一定の間隔で設置された温度センサの検知値に基づいて貯湯タンク内の貯湯量を予測する際に、予測貯湯量の誤差が大きくなる不具合が生じる。   Originally, it is desirable that the high-temperature water stored in the hot water storage tank has a uniform temperature. If the temperature of the hot water in the hot water storage tank is uneven, when the user uses hot water in the kitchen or bath, the hot water temperature changes greatly, and the hot water tank is installed at regular intervals in the vertical direction. When the amount of hot water stored in the hot water storage tank is predicted based on the detected value of the temperature sensor, there is a problem that an error in the predicted amount of hot water storage becomes large.

特許文献1に記載の技術によれば、設定沸上温度を変更することで、貯湯タンク内に貯えられる高温水の温度が不均一になるという課題がある。また、特許文献2に記載の技術によれば、沸上運転、除霜準備運転、除霜運転の3つの運転モードを行うことで、運転モードが切り替わる過渡状態で、放熱器で加熱される湯の温度が不安定となり、その結果、貯湯タンクに貯えられる高温水の温度が不均一になるという課題がある。   According to the technique described in Patent Document 1, there is a problem that the temperature of the high-temperature water stored in the hot water storage tank becomes nonuniform by changing the set boiling temperature. Moreover, according to the technique described in Patent Document 2, hot water heated by a radiator in a transient state in which the operation mode is switched by performing three operation modes of boiling operation, defrost preparation operation, and defrost operation. As a result, the temperature of the hot water stored in the hot water storage tank becomes uneven.

さらに、従来の蒸発器が着霜する運転条件か否かを判定するのに用いている判定条件では、外気中に水分が少なく実際には蒸発器14に着霜しない条件でも、外気温度が低いために、蒸発器が着霜する運転条件であると誤判定することがあった。このため、不必要な除霜運転が行なわれ、貯湯タンク内に貯えられる高温水の温度が不均一になるという課題がある。   Furthermore, in the determination conditions used to determine whether or not the conventional evaporator is in an operating condition for frosting, the outside air temperature is low even under conditions where there is little moisture in the outside air and in fact the frost does not form on the evaporator 14. Therefore, it may be erroneously determined that the operating condition is that the evaporator is frosted. For this reason, an unnecessary defrosting operation is performed, and there is a problem that the temperature of the high-temperature water stored in the hot water storage tank becomes uneven.

上記従来の課題を解決するために、本発明は、貯湯タンクに貯えられる高温水が不均一となることなく、かつ、効率の良い沸上運転と除霜運転とを実現できるヒートポンプ給湯機を提供することを目的とする。   In order to solve the above-described conventional problems, the present invention provides a heat pump water heater that can realize efficient boiling operation and defrosting operation without causing high-temperature water stored in a hot water storage tank to be uneven. The purpose is to do.

前記従来の課題を解決するために、本発明は、圧縮機、放熱器、減圧器、蒸発器から形成される冷凍サイクルと、制御手段とを備え、前記制御手段は、前記蒸発器に付着した霜を除霜する除霜運転の必要性を判定する除霜運転判定手段を有し、前記放熱器で所定の設定温度に水を加熱する沸上運転の運転中に、前記除霜運転判定手段が前記除霜運転を必要と判定した場合に前記除霜運転を行うとともに、前記除霜運転終了後に再び沸上運転を行う場合には、前記除霜運転開始前の沸上運転より、前記圧縮機の吐出温度を上昇させて行うことを特徴とするヒートポンプ給湯機で、設定沸上温度を変更することなく、吐出温度を上昇させているので、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。 In order to solve the conventional problems, the present invention includes a refrigeration cycle formed of a compressor, a radiator, a decompressor, and an evaporator, and a control unit, and the control unit is attached to the evaporator. The defrosting operation determining means for determining the necessity of the defrosting operation for defrosting the frost, and the defrosting operation determining means during the operation of the boiling operation in which water is heated to a predetermined set temperature by the radiator. When the defrosting operation is determined to be necessary, the defrosting operation is performed, and when the boiling operation is performed again after the defrosting operation is completed , the compression is performed more than the boiling operation before the defrosting operation is started. The heat pump water heater is characterized by raising the discharge temperature of the machine, and the discharge temperature is raised without changing the set boiling temperature, so the temperature of the hot water stored in the hot water storage tank is Efficient boiling operation and defrosting without becoming uniform Door can be carried out.

また、沸上運転中には目標吐出温度を変更せず、除霜運転が行われた直後の沸上運転から目標吐出温度を変更するので、沸上運転中に過渡状態となり放熱器で加熱される湯の温度が不安定となることがないため、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   In addition, the target discharge temperature is not changed during the boiling operation, and the target discharge temperature is changed from the boiling operation immediately after the defrosting operation is performed. Since the temperature of the hot water does not become unstable, efficient boiling operation and defrosting operation can be performed without the temperature of the hot water stored in the hot water storage tank becoming uneven.

本発明によれば、貯湯タンクに貯えられる高温水が不均一となることなく、かつ、効率の良い沸上運転と除霜運転とを実現できるヒートポンプ給湯機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high temperature water stored in a hot water storage tank can be provided, and the heat pump water heater which can implement | achieve efficient boiling operation and defrost operation can be provided.

第1の発明は、圧縮機、放熱器、減圧器、蒸発器から形成される冷凍サイクルと、制御手段とを備え、前記制御手段は、前記蒸発器に付着した霜を除霜する除霜運転の必要性を
判定する除霜運転判定手段を有し、前記放熱器で所定の設定温度に水を加熱する沸上運転の運転中に、前記除霜運転判定手段が前記除霜運転を必要と判定した場合に前記除霜運転を行うとともに、前記除霜運転終了後に再び沸上運転を行う場合には、前記除霜運転開始前の沸上運転より、前記圧縮機の吐出温度を上昇させて行うことを特徴とするもので、設定沸上温度を変更することなく、吐出温度を上昇させているので、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。
1st invention is equipped with the refrigerating cycle formed from a compressor, a heat radiator, a decompressor, and an evaporator, and a control means, The said control means defrost operation which defrosts the frost adhering to the said evaporator The need for
A defrosting operation determining unit for determining, and when the defrosting operation determining unit determines that the defrosting operation is necessary during the operation of the boiling operation in which water is heated to a predetermined set temperature by the radiator. When the defrosting operation is performed and the boiling operation is performed again after the defrosting operation is finished , the discharge temperature of the compressor is increased from the boiling operation before the defrosting operation is started. Since the discharge temperature is increased without changing the set boiling temperature, the temperature of the high-temperature water stored in the hot water tank is not uneven, and efficient boiling operation and removal are performed. Frost operation can be performed.

また、沸上運転中には目標吐出温度を変更せず、除霜運転が行われた直後の沸上運転から目標吐出温度を変更するので、沸上運転中に過渡状態となり放熱器で加熱される湯の温度が不安定となることがないため、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   In addition, the target discharge temperature is not changed during the boiling operation, and the target discharge temperature is changed from the boiling operation immediately after the defrosting operation is performed. Since the temperature of the hot water does not become unstable, efficient boiling operation and defrosting operation can be performed without the temperature of the hot water stored in the hot water storage tank becoming uneven.

第2の発明は、除霜運転終了後の沸上運転は、圧縮機の目標吐出温度を上昇させるとともに、前記圧縮機の目標周波数を低下させて行うことを特徴とするもので、目標吐出温度を上昇させるとともに、目標周波数を低下させているので、加熱能力が変化する不具合もなく、かつ、設定沸上温度を変更することなく、吐出温度を上昇させているので、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   The second invention is characterized in that the boiling operation after the completion of the defrosting operation is performed by raising the target discharge temperature of the compressor and lowering the target frequency of the compressor. Since the target frequency is lowered and the discharge temperature is raised without changing the heating temperature and without changing the set boiling temperature, it can be stored in the hot water storage tank. Efficient boiling operation and defrosting operation can be performed without the temperature of the high-temperature water becoming uneven.

また、沸上運転中には目標吐出温度や目標周波数を変更せず、除霜運転が行われた直後の沸上運転から目標吐出温度や目標周波数を変更するので、沸上運転中に過渡状態となり放熱器で加熱される湯の温度が不安定となることがないため、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   In addition, the target discharge temperature and target frequency are not changed during the boiling operation, and the target discharge temperature and target frequency are changed from the boiling operation immediately after the defrosting operation is performed. Therefore, the temperature of the hot water heated by the radiator does not become unstable, so the temperature of the hot water stored in the hot water storage tank does not become uneven, and efficient boiling operation and defrosting operation are performed. It can be carried out.

第3の発明は、放熱器に流入する水の温度を検知する入水温度検知手段と、蒸発器に流入する空気の温度を検知する外気温度検知手段とを備え、前記入水温度検知手段が検知した入水温度と、前記外気温度検知手段が検知した外気温度と、沸上設定温度とに基づいて、圧縮機の目標吐出温度を決定することを特徴とするもので、入水温度、外気温度、設定沸上温度が変化しても、最適な吐出温度となり、効率の良い沸上運転と除霜運転とを行うことができる。   The third invention includes an incoming water temperature detecting means for detecting the temperature of the water flowing into the radiator and an outside air temperature detecting means for detecting the temperature of the air flowing into the evaporator, and the incoming water temperature detecting means detects the temperature. The target discharge temperature of the compressor is determined based on the received water temperature, the outside air temperature detected by the outside air temperature detecting means, and the boiling set temperature, and the water inlet temperature, the outside air temperature, the setting Even if the boiling temperature changes, the optimum discharge temperature is obtained, and efficient boiling operation and defrosting operation can be performed.

第4の発明は、放熱器に流入する水の温度を検知する入水温度検知手段と、蒸発器に流入する空気の温度を検知する外気温度検知手段とを備え、前記入水温度検知手段が検知した入水温度と、前記外気温度検知手段が検知した外気温度と、沸上設定温度とに基づいて、圧縮機の目標周波数を決定することを特徴とするもので、入水温度、外気温度、設定沸上温度が変化しても、最適な圧縮機の目標周波数となり、効率の良い沸上運転と除霜運転とを行うことができる。   4th invention is equipped with the incoming water temperature detection means which detects the temperature of the water which flows into a radiator, and the external temperature detection means which detects the temperature of the air which flows into an evaporator, The said incoming water temperature detection means detects The target frequency of the compressor is determined based on the received water temperature, the outside air temperature detected by the outside air temperature detecting means, and the boiling upper set temperature, and the water temperature, the outside air temperature, the set boiling temperature are determined. Even if the upper temperature changes, the optimum target frequency of the compressor is obtained, and efficient boiling operation and defrosting operation can be performed.

第5の発明は、蒸発器の温度を検知する蒸発器温度検知手段を備え、蒸発器温度検知手段が検知した蒸発器温度が所定時間内に所定温度以上低下したとき、除霜運転を行うことを特徴とするもので、除霜運転を行う必要がある運転条件か否かの判定条件には、沸上運転中の蒸発器温度の時間的変化傾向を用いているため、実際に蒸発器が着霜していないのに、除霜運転を行う必要がある運転条件であると誤判定することがないので、不必要な除霜運転が行なわれることがなく、貯湯タンク内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   5th invention is equipped with the evaporator temperature detection means which detects the temperature of an evaporator, and performs defrost operation, when the evaporator temperature detected by the evaporator temperature detection means falls more than predetermined temperature within predetermined time. Since the time-dependent change tendency of the evaporator temperature during the boiling operation is used as the determination condition as to whether or not the operation condition requires the defrosting operation, the evaporator is actually High temperature water that is stored in the hot water storage tank without unnecessary defrosting operation because there is no misjudgment that it is an operating condition that requires defrosting operation even though it is not frosted. Efficient boiling operation and defrosting operation can be performed without causing the temperature of the water to become uneven.

第6の発明は、所定の除霜時間以上継続した除霜運転が行われた場合には、次回の沸上運転は、圧縮機の吐出温度を上昇させて行うことを特徴とするもので、圧縮機の吐出温度
が高くなるために、沸上運転中に圧縮機や放熱器に貯えられる熱量が増加する。この結果、次回の沸上運転の直後の除霜運転では、蒸発器に供給される熱量が増加し、効率よく蒸発器の霜を溶かすことができ、除霜運転の効率が良くなる。
The sixth invention is characterized in that when the defrosting operation is continued for a predetermined defrosting time or more, the next boiling operation is performed by increasing the discharge temperature of the compressor. Since the discharge temperature of the compressor increases, the amount of heat stored in the compressor and the radiator during the boiling operation increases. As a result, in the defrosting operation immediately after the next boiling operation, the amount of heat supplied to the evaporator increases, the frost of the evaporator can be melted efficiently, and the efficiency of the defrosting operation is improved.

第7の発明は、所定の運転時間内に、除霜運転が所定の回数以上行われた場合には、次回の沸上運転は、圧縮機の吐出温度を上昇させて行うことを特徴とするもので、圧縮機の吐出温度が高くなるために、沸上運転中に圧縮機や放熱器に貯えられる熱量が増加する。この結果、次回の沸上運転の直後の除霜運転では、蒸発器に供給される熱量が増加し、効率よく蒸発器の霜を溶かすことができ、除霜運転の効率が良くなる。   The seventh invention is characterized in that when the defrosting operation is performed a predetermined number of times or more within a predetermined operation time, the next boiling operation is performed by increasing the discharge temperature of the compressor. However, since the discharge temperature of the compressor becomes high, the amount of heat stored in the compressor and the radiator during the boiling operation increases. As a result, in the defrosting operation immediately after the next boiling operation, the amount of heat supplied to the evaporator increases, the frost of the evaporator can be melted efficiently, and the efficiency of the defrosting operation is improved.

以下、添付の図面を参照しつつ本発明の実施の形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態1のヒートポンプ給湯機の構成概略図である。ヒートポンプ給湯機は、冷凍サイクルを利用して水を加熱する熱源ユニット50と貯湯タンクユニット51とから構成されている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of the heat pump water heater of the first embodiment. The heat pump water heater includes a heat source unit 50 that heats water using a refrigeration cycle and a hot water storage tank unit 51.

熱源ユニット50は、冷媒を高温、高圧に圧縮する圧縮機11と、圧縮機11で圧縮された冷媒により低温の水を加熱する放熱器12と、放熱器12で冷却された冷媒を減圧する減圧器13と、減圧器13で減圧した冷媒を蒸発させる蒸発器14とを備えている。圧縮機11、放熱器12、減圧器13および蒸発器14は、この順で冷媒が循環するように冷媒配管15によって相互に接続され冷凍サイクル回路を構成している。   The heat source unit 50 includes a compressor 11 that compresses the refrigerant to a high temperature and a high pressure, a radiator 12 that heats low-temperature water using the refrigerant compressed by the compressor 11, and a decompression that depressurizes the refrigerant cooled by the radiator 12. And an evaporator 14 for evaporating the refrigerant decompressed by the decompressor 13. The compressor 11, the radiator 12, the decompressor 13, and the evaporator 14 are connected to each other by a refrigerant pipe 15 so that the refrigerant circulates in this order, thereby constituting a refrigeration cycle circuit.

冷凍サイクル回路には、二酸化炭素(R744)が冷媒として充填されている。また、蒸発器14に隣接する形でファン16が設けられている。ファン16は、蒸発器14で冷媒と熱交換するべき外気を蒸発器14に供給する。   The refrigeration cycle circuit is filled with carbon dioxide (R744) as a refrigerant. A fan 16 is provided adjacent to the evaporator 14. The fan 16 supplies the outside air to be exchanged with the refrigerant in the evaporator 14 to the evaporator 14.

熱源ユニット50と貯湯タンクユニット51とは、貯湯タンクユニット51内に備えられた貯湯タンク30下部の低温の水が、熱源ユニット50内の放熱器12に供給され、その後、放熱器12で加熱された湯が、貯湯タンク30の上部に供給されるように、給水ポンプ31を介して水配管32により接続されている。   In the heat source unit 50 and the hot water storage tank unit 51, low-temperature water in the lower part of the hot water storage tank 30 provided in the hot water storage tank unit 51 is supplied to the radiator 12 in the heat source unit 50 and then heated by the radiator 12. The hot water is connected by a water pipe 32 via a water supply pump 31 so that hot water is supplied to the upper part of the hot water storage tank 30.

放熱器12は、主に、冷媒流路12a、水流路12bから構成されている。冷媒流路12aと水流路12bは、それぞれの管内を流れる冷媒と水が対向流となるように流れ、効率よく冷媒と水が熱交換するように構成されている。   The radiator 12 mainly includes a refrigerant channel 12a and a water channel 12b. The refrigerant flow path 12a and the water flow path 12b are configured so that the refrigerant and water flowing in the respective tubes flow in opposite directions, and the refrigerant and water exchange heat efficiently.

また、圧縮機11の出口から放熱器12の入口までのいずれかの位置での冷媒温度を検知する吐出温度検知手段21と、蒸発器14の冷媒入口から冷媒出口までのいずれかの位置での冷媒温度を検知する蒸発器温度検知手段22と、蒸発器14に流入する外気の温度を検知する外気温度検知手段23と、放熱器12に流入する水の温度を検知する入水温度検知手段24と、放熱器12から流出する湯の温度を検知する出湯温度検知手段25とが設けられている。   Further, the discharge temperature detecting means 21 for detecting the refrigerant temperature at any position from the outlet of the compressor 11 to the inlet of the radiator 12, and at any position from the refrigerant inlet to the refrigerant outlet of the evaporator 14 An evaporator temperature detecting means 22 for detecting the refrigerant temperature, an outside air temperature detecting means 23 for detecting the temperature of the outside air flowing into the evaporator 14, and an incoming water temperature detecting means 24 for detecting the temperature of the water flowing into the radiator 12. A hot water temperature detecting means 25 for detecting the temperature of hot water flowing out of the radiator 12 is provided.

さらに、吐出温度検知手段21や蒸発器温度検知手段22などの検知値に基づき、圧縮機11の周波数や、減圧器13の開度や、ファン16や給水ポンプ31の回転数などを制御する制御手段40が設けられている。制御手段40には、除霜運転を行う必要がある運転条件であるかを判定する除霜運転判定手段41と、除霜運転判定手段41が除霜運転を行う必要がある運転条件であると判定した場合と、それ以外の場合とで、異なる沸上運転を行うように制御する沸上運転制御手段42とが設けられている。   Further, control for controlling the frequency of the compressor 11, the opening of the decompressor 13, the rotational speed of the fan 16 and the water supply pump 31, etc., based on the detected values of the discharge temperature detecting means 21 and the evaporator temperature detecting means 22. Means 40 are provided. In the control means 40, the defrosting operation determining means 41 for determining whether or not the operating condition is necessary to perform the defrosting operation, and the operating condition for which the defrosting operation determining means 41 is required to perform the defrosting operation. A boiling operation control means 42 is provided for controlling so as to perform different boiling operations depending on whether the determination is made or not.

なお、圧縮機11には、スクロール式、レシプロ式、ロータリ式などの容積式の流体機構を採用できる。放熱器12には、二重管式、プレート式などの熱交換器が採用できる。蒸発器14は、フィンチューブ型熱交換器に代表される空気熱交換器である。   The compressor 11 may employ a positive displacement fluid mechanism such as a scroll type, a reciprocating type, or a rotary type. A heat exchanger such as a double tube type or a plate type can be adopted as the radiator 12. The evaporator 14 is an air heat exchanger represented by a fin tube type heat exchanger.

上述のように構成されたヒートポンプ給湯機の主な動作について説明する。   The main operation of the heat pump water heater configured as described above will be described.

まず、沸上運転について説明する。制御手段40は、貯湯タンク30に設置された温度センサ(図示せず)の検知値に基づいて予測した貯湯量や、前日までの使用湯量などから設定沸上温度を決定する。沸上運転制御手段42は、入水温度検知手段24が検知した入水温度と、外気温度検知手段23が検知した外気温度と、設定沸上温度と、除霜運転判定手段41の判定結果に基づいて、圧縮機11の目標周波数と目標吐出温度を、予め定められたテーブルから選択する。これにより、入水温度、外気温度、設定沸上温度が変化しても、最適な圧縮機11の目標周波数や吐出温度となるように制御できる。   First, the boiling operation will be described. The control means 40 determines the set boiling temperature from the amount of hot water predicted based on the detected value of a temperature sensor (not shown) installed in the hot water storage tank 30, the amount of hot water used up to the previous day, and the like. The boiling operation control means 42 is based on the incoming water temperature detected by the incoming water temperature detection means 24, the outside air temperature detected by the outside air temperature detection means 23, the set boiling temperature, and the determination result of the defrosting operation determination means 41. The target frequency and target discharge temperature of the compressor 11 are selected from a predetermined table. Thereby, even if the incoming water temperature, the outside air temperature, and the set boiling temperature change, it is possible to control so that the optimum target frequency and discharge temperature of the compressor 11 are obtained.

圧縮機11は目標周波数となるように制御手段40により運転される。圧縮機11により冷媒は圧縮され、高温高圧状態となる。そして、圧縮機11の周波数が目標周波数に達した後、圧縮機11の吐出温度(吐出温度検知手段21の検知値)が目標吐出温度となるように、減圧器13の開度は制御手段40により制御される。高温高圧状態となった冷媒は、放熱器12の冷媒流路12aを流れる際に、放熱器12の水流路12bを流れる水に放熱し冷却される。   The compressor 11 is operated by the control means 40 so as to reach the target frequency. The refrigerant is compressed by the compressor 11 to be in a high temperature and high pressure state. Then, after the frequency of the compressor 11 reaches the target frequency, the opening degree of the decompressor 13 is controlled by the control means 40 so that the discharge temperature of the compressor 11 (detected value of the discharge temperature detecting means 21) becomes the target discharge temperature. Controlled by When the refrigerant in the high temperature and high pressure state flows through the refrigerant channel 12 a of the radiator 12, it dissipates heat to the water flowing through the water channel 12 b of the radiator 12 and is cooled.

放熱器12を流出した冷媒は減圧器13で減圧され低温低圧の気液二相状態となり、蒸発器14に供給される。蒸発器14で、冷媒は、ファン16によって送り込まれた外気によって加熱され、気液二相またはガス状態となる。蒸発器14を流出した冷媒は、再び、圧縮機11に吸入される。   The refrigerant that has flowed out of the radiator 12 is decompressed by the decompressor 13, becomes a low-temperature and low-pressure gas-liquid two-phase state, and is supplied to the evaporator 14. In the evaporator 14, the refrigerant is heated by the outside air sent by the fan 16 to be in a gas-liquid two-phase or gas state. The refrigerant that has flowed out of the evaporator 14 is again sucked into the compressor 11.

一方、水は、給湯タンク30の底部から給水ポンプ31により放熱器12の水流路12bへ送り込まれ、放熱器12の冷媒流路12aを流れる冷媒により加熱され、高温のお湯となる。そのお湯は水配管32を通って、貯湯タンク30の頂部から貯められる。このとき、給水ポンプ31は、放熱器12から流出する湯の温度である出湯温度(出湯温度検知手段25の検知値)が設定沸上温度となるように、制御手段40により制御される。   On the other hand, the water is sent from the bottom of the hot water supply tank 30 to the water flow path 12b of the radiator 12 by the water supply pump 31, and is heated by the refrigerant flowing through the refrigerant flow path 12a of the radiator 12 to become hot hot water. The hot water is stored from the top of the hot water storage tank 30 through the water pipe 32. At this time, the feed water pump 31 is controlled by the control means 40 so that the hot water temperature (the detected value of the hot water temperature detection means 25) which is the temperature of the hot water flowing out from the radiator 12 becomes the set boiling temperature.

次に、除霜運転について説明する。ヒートポンプ給湯機は、外気温度が低く外気中に水分の多い条件で、沸上運転を継続していると、蒸発器14に霜が生じ、加熱能力が低下する恐れがある。除霜運転とは、そのような場合に、蒸発器14の霜を溶かす運転である。除霜運転の方法は、例えば、ファン16および給水ポンプ31の回転数を低減し、減圧器13の開度を沸上運転時より大きくする方法がある。これによれば、圧縮機11を出た冷媒は、沸上運転中に圧縮機11や放熱器12に貯えられた熱を蒸発器14に供給し、この結果、蒸発器14の霜を溶かすことができる。蒸発器14の霜が融けると、除霜運転を終了し、再び沸上運転を行う。   Next, the defrosting operation will be described. When the heat pump water heater continues the boiling operation under a condition where the outside air temperature is low and the outside air has a lot of moisture, frost is generated in the evaporator 14 and the heating capacity may be reduced. The defrosting operation is an operation for melting the frost of the evaporator 14 in such a case. As a method for the defrosting operation, for example, there is a method in which the rotation speed of the fan 16 and the water supply pump 31 is reduced and the opening of the decompressor 13 is made larger than that in the boiling operation. According to this, the refrigerant that has left the compressor 11 supplies the heat stored in the compressor 11 and the radiator 12 to the evaporator 14 during the boiling operation, and as a result, melts the frost in the evaporator 14. Can do. When the frost in the evaporator 14 melts, the defrosting operation is terminated and the boiling operation is performed again.

沸上運転と、必要に応じて除霜運転の2つの運転モードを繰り返し行い、貯湯タンク30に設置された温度センサ(図示せず)の検知値から、貯湯タンク30内に必要なお湯が貯まったと判定されるまで、運転を継続する。   Two operation modes of boiling operation and defrosting operation are repeatedly performed as necessary, and necessary hot water is stored in the hot water storage tank 30 from a detection value of a temperature sensor (not shown) installed in the hot water storage tank 30. Continue driving until it is determined that

上記説明した除霜運転と沸上運転の具体的な制御方法について、図2のフローチャートを用いて説明する。本実施の形態では、運転開始前や運転開始直後には、除霜運転を行う必要がある条件であるか否かは判定できないため、除霜運転判定手段41は、一旦、除霜運転を行う必要はない運転条件であると判定する。   A specific control method for the defrosting operation and the boiling operation described above will be described with reference to the flowchart of FIG. In the present embodiment, since it is not possible to determine whether the defrosting operation needs to be performed before the start of operation or immediately after the start of operation, the defrosting operation determination unit 41 temporarily performs the defrosting operation. It is determined that the operating condition is not necessary.

このため、フローチャートのステップ101で、沸上運転制御手段42は、入水温度と外気温度と設定沸上温度と除霜運転判定手段41の除霜運転を行う必要がある運転条件ではないとの判定結果とに基づいて、圧縮機11の目標周波数A(Hz−A)と目標吐出温度A(Td−A)を、予め定められたテーブルから選択する。   For this reason, in step 101 of the flowchart, the boiling operation control means 42 is determined not to be an operation condition that requires the incoming water temperature, the outside air temperature, the set boiling temperature, and the defrosting operation of the defrosting operation determining means 41 to be performed. Based on the result, the target frequency A (Hz-A) and the target discharge temperature A (Td-A) of the compressor 11 are selected from a predetermined table.

ステップ102では、沸上運転Aを開始する。沸上運転Aでは、圧縮機11は目標周波数A(Hz−A)となるように、また、減圧器13の開度は圧縮機11の吐出温度が目標吐出温度A(Td−A)となるように、制御手段40により制御される。ステップ103で、蒸発器温度検知手段22により、蒸発器14の温度を検知する。   In step 102, boiling operation A is started. In the boiling operation A, the compressor 11 has the target frequency A (Hz-A), and the opening of the decompressor 13 is such that the discharge temperature of the compressor 11 becomes the target discharge temperature A (Td-A). As described above, it is controlled by the control means 40. In step 103, the temperature of the evaporator 14 is detected by the evaporator temperature detecting means 22.

ステップ104では、ステップ103で検知した現在の蒸発器温度(Te(現在))と、予め定められた時間(t0)前のステップ103が検知した蒸発器温度(Te(t0時間前))との差である蒸発器温度変化量(ΔTe)を計算する。そして、ステップ105で、ステップ104で計算した蒸発器温度変化量(ΔTe)が、予め定められた温度変化量(ΔTe0)以上であるか否かを判定する。蒸発器温度変化量(ΔTe)が、所定の温度変化量(ΔTe0)以上であれば、蒸発器14に付いた霜が成長して、蒸発器14の温度が下がりつつあると考えられる。   In step 104, the current evaporator temperature (Te (current)) detected in step 103 and the evaporator temperature (Te (t0 hours before)) detected in step 103 before a predetermined time (t0). An evaporator temperature change amount (ΔTe) which is a difference is calculated. In step 105, it is determined whether or not the evaporator temperature change amount (ΔTe) calculated in step 104 is equal to or greater than a predetermined temperature change amount (ΔTe0). If the evaporator temperature change amount (ΔTe) is equal to or greater than the predetermined temperature change amount (ΔTe0), it is considered that the frost attached to the evaporator 14 grows and the temperature of the evaporator 14 is decreasing.

このため、除霜運転判定手段41は、除霜運転を行う必要がある運転条件と判断し、ステップ106に進む。一方、蒸発器温度変化量(ΔTe)が、所定の温度変化量(ΔTe0)未満であれば、除霜運転を行う必要がない運転条件と判断し、ステップ101に戻り、沸上運転Aを継続する。ステップ106では、除霜運転を開始し、予め定められた判定条件(図示せず)を満たせば、除霜運転を終了する。除霜運転終了後、再び沸上運転を行う。   For this reason, the defrosting operation determination means 41 determines that the operating condition requires the defrosting operation, and proceeds to step 106. On the other hand, if the evaporator temperature change amount (ΔTe) is less than the predetermined temperature change amount (ΔTe0), it is determined that there is no need to perform the defrosting operation, and the routine returns to step 101 to continue the boiling operation A. To do. In step 106, the defrosting operation is started, and if a predetermined determination condition (not shown) is satisfied, the defrosting operation is terminated. After the defrosting operation is completed, the boiling operation is performed again.

ただし、本実施の形態では、除霜運転終了後の沸上運転を、沸上運転Bとして、除霜運転が行われる以前の沸上運転Aとは異なる沸上運転を行うように制御する。すなわち、ステップ107では、沸上運転制御手段42は、入水温度と外気温度と設定沸上温度と除霜運転判定手段41の除霜運転を行う必要がある運転条件であるとの判定結果とに基づいて、圧縮機11の目標周波数B(Hz−B)と目標吐出温度B(Td−B)を、予め定められたテーブルから選択する。   However, in the present embodiment, the boiling operation after the completion of the defrosting operation is set as the boiling operation B so as to perform a boiling operation different from the boiling operation A before the defrosting operation is performed. That is, in step 107, the boiling operation control means 42 is based on the determination result that the incoming water temperature, the outside air temperature, the set boiling temperature, and the defrosting operation of the defrosting operation determining means 41 are necessary. Based on this, a target frequency B (Hz-B) and a target discharge temperature B (Td-B) of the compressor 11 are selected from a predetermined table.

ここで、目標吐出温度B(Td−B)は、目標吐出温度A(Td−A)より高くなるように設定されており、また、目標周波数B(Hz−B)は、目標周波数A(Hz−A)と同じか、低くなるように設定されている。沸上運転Aでは、圧縮機11は目標周波数B(Hz−B)となるように、減圧器13の開度は圧縮機11の吐出温度が目標吐出温度B(Td−B)となるように、制御手段40により制御される。   Here, the target discharge temperature B (Td-B) is set to be higher than the target discharge temperature A (Td-A), and the target frequency B (Hz-B) is the target frequency A (Hz). It is set to be the same as or lower than -A). In the boiling operation A, the compressor 11 has a target frequency B (Hz-B), and the opening of the decompressor 13 is such that the discharge temperature of the compressor 11 becomes the target discharge temperature B (Td-B). Controlled by the control means 40.

ステップ109で、蒸発器14の温度を検知する。ステップ110では、ステップ109で検知した現在の蒸発器温度(Te(現在))と、予め定められた時間(t1)前のステップ109が検知した蒸発器温度(Te(t1時間前))の差である蒸発器温度変化量(ΔTe’)を計算する。そして、ステップ111で、ステップ110で計算した蒸発器温度変化量(ΔTe’)が、予め定められた温度変化量(ΔTe1)以上であるか否かを判定する。   In step 109, the temperature of the evaporator 14 is detected. In step 110, the difference between the current evaporator temperature (Te (current)) detected in step 109 and the evaporator temperature (Te (t1 hour ago)) detected in step 109 before a predetermined time (t1). An evaporator temperature change amount (ΔTe ′) is calculated. In step 111, it is determined whether the evaporator temperature change amount (ΔTe ′) calculated in step 110 is equal to or greater than a predetermined temperature change amount (ΔTe1).

蒸発器温度変化量(ΔTe’)が、所定の温度変化量(ΔTe1)以上であれば、除霜運転判定手段41は、除霜運転を行う必要がある運転条件と判断し、ステップ106に戻り、再び除霜運転を実施する。一方、蒸発器温度変化量(ΔTe’)が、所定の温度変化量(ΔTe1)未満であれば、除霜運転を行う必要がない運転条件と判断し、ステップ1
12に進む。
If the evaporator temperature change amount (ΔTe ′) is equal to or greater than the predetermined temperature change amount (ΔTe1), the defrosting operation determination means 41 determines that the operating condition requires the defrosting operation, and returns to step 106. Then, the defrosting operation is performed again. On the other hand, if the evaporator temperature change amount (ΔTe ′) is less than the predetermined temperature change amount (ΔTe1), it is determined that there is no need to perform the defrosting operation, and Step 1
Proceed to 12.

ステップ112では、沸上運転Bの運転時間が予め定められた時間(t2)以上か否かを判定する。ステップ112で、沸上運転Bの運転時間が所定の時間(t2)未満の場合には、ステップ107に戻り、沸上運転Bを継続する。一方、沸上運転Bの運転時間が所定の時間(t2)以上の場合には、再び、除霜運転を行う必要がない運転条件となったと判断し、ステップ101に戻り、沸上運転Aに移行する。   In step 112, it is determined whether or not the operation time of the boiling operation B is equal to or longer than a predetermined time (t2). In step 112, when the operation time of the boiling operation B is less than the predetermined time (t2), the process returns to step 107 and the boiling operation B is continued. On the other hand, when the operation time of the boiling operation B is equal to or longer than the predetermined time (t2), it is determined again that the operation condition is not necessary to perform the defrosting operation, the process returns to Step 101, and the boiling operation A is started. Transition.

ここで、所定時間(t2)を十分長い時間に設定しておけば、沸上運転Bから沸上運転Aへの移行、すなわち、沸上運転中の目標吐出温度や目標周波数の変更は、ほとんど起こらない。図2のフローチャートは、予め定められた判定条件(図示せず)で、貯湯タンク30内に必要なお湯が貯まったと判定されるまで、沸上運転A、または、沸上運転Bと除霜運転を繰り返し行う。   Here, if the predetermined time (t2) is set to a sufficiently long time, the transition from the boiling operation B to the boiling operation A, that is, the change of the target discharge temperature and the target frequency during the boiling operation is almost the same. Does not happen. The flowchart of FIG. 2 shows the boiling operation A or the boiling operation B and the defrosting operation until it is determined that necessary hot water has accumulated in the hot water storage tank 30 under a predetermined determination condition (not shown). Repeat.

このような制御を行なうことで、沸上運転Bでは、圧縮機11の吐出温度が通常の沸上運転(沸上運転A)より高くなるために、沸上運転中に圧縮機11や放熱器12に貯えられる熱量が増加する。この結果、沸上運転Bの直後の除霜運転では、蒸発器14に供給される熱量が増加し、効率よく蒸発器14の霜を溶かすことができ、除霜運転の効率が良くなる。   By performing such control, in the boiling operation B, the discharge temperature of the compressor 11 becomes higher than the normal boiling operation (boiling operation A). Therefore, the compressor 11 and the radiator are disposed during the boiling operation. The amount of heat stored in 12 increases. As a result, in the defrosting operation immediately after the boiling operation B, the amount of heat supplied to the evaporator 14 is increased, the frost of the evaporator 14 can be efficiently melted, and the efficiency of the defrosting operation is improved.

なお、沸上運転Bでの目標吐出温度B(Td−B)をあまり高くすると、沸上運転Bの運転中の効率が低下してしまい、除霜運転の効率が良くなっても、沸上運転と除霜運転の総合的な効率は低下する恐れがある。このため、目標吐出温度B(Td−B)は、沸上運転と除霜運転の総合的な効率が良くなるように設定するのが望ましい。   Note that if the target discharge temperature B (Td-B) in the boiling operation B is too high, the efficiency during the operation of the boiling operation B decreases, and even if the efficiency of the defrosting operation is improved, The overall efficiency of operation and defrosting operation may decrease. For this reason, it is desirable to set the target discharge temperature B (Td−B) so as to improve the overall efficiency of the boiling operation and the defrosting operation.

また、沸上運転Bでの目標吐出温度B(Td−B)を高くすることにより、沸上運転Bでの加熱能力が、沸上運転Aでの加熱能力より高くなることがある。加熱能力が高くなることは、所定量のお湯をつくるのに必要な運転時間が変わってしまうなど、必ずしも良いことではないので、沸上運転Bで設定する目標周波数B(Hz−B)を、沸上運転Aで設定する目標周波数A(Hz−A)より低くすることが望ましい。   Further, by increasing the target discharge temperature B (Td−B) in the boiling operation B, the heating capacity in the boiling operation B may be higher than the heating capacity in the boiling operation A. Higher heating capacity is not necessarily a good thing, such as changing the operation time required to make a predetermined amount of hot water, so the target frequency B (Hz-B) set in the boiling operation B is It is desirable to make it lower than the target frequency A (Hz-A) set in the boiling operation A.

本実施の形態によれば、設定沸上温度を変更することなく、吐出温度を上昇させているので、貯湯タンク30内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   According to the present embodiment, the discharge temperature is raised without changing the set boiling temperature, so that the temperature of the high-temperature water stored in the hot water storage tank 30 does not become uneven, and efficient boiling is achieved. An upper operation and a defrosting operation can be performed.

また、沸上運転中には目標吐出温度や目標周波数を変更せず、除霜運転が行われた直後の沸上運転から目標吐出温度や目標周波数を変更するので、沸上運転中に過渡状態となり放熱器12で加熱される湯の温度が不安定となることがないため、貯湯タンク30内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   In addition, the target discharge temperature and target frequency are not changed during the boiling operation, and the target discharge temperature and target frequency are changed from the boiling operation immediately after the defrosting operation is performed. Since the temperature of hot water heated by the radiator 12 does not become unstable, the temperature of the hot water stored in the hot water storage tank 30 does not become uneven, and efficient boiling operation and defrosting operation are performed. And can be done.

さらに、目標吐出温度を上昇させるとともに、目標周波数を低下させているので、加熱能力が変化する不具合もない。また、除霜運転を行う必要がある運転条件か否かの判定条件には、沸上運転中の蒸発器14の温度の時間的変化傾向を用いているので、沸上運転前には判定することはできない。   Furthermore, since the target discharge temperature is raised and the target frequency is lowered, there is no problem that the heating capacity changes. Moreover, since the temporal change tendency of the temperature of the evaporator 14 during the boiling operation is used as the determination condition as to whether or not the operation condition requires the defrosting operation, the determination is made before the boiling operation. It is not possible.

しかし、実際に蒸発器14が着霜していないのに、除霜運転を行う必要がある運転条件であると誤判定することがないので、不必要な除霜運転が行なわれることがなく、貯湯タンク30内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   However, since the evaporator 14 is not actually frosted, it is not erroneously determined that the operating condition is necessary to perform the defrosting operation, so that unnecessary defrosting operation is not performed. Efficient boiling operation and defrosting operation can be performed without the temperature of the hot water stored in the hot water storage tank 30 becoming uneven.

(実施の形態2)
本実施の形態2を、図3のフローチャートを用いて説明する。図3において、図2と同様のステップは図2と同一番号を付し、その説明は省略する。
(Embodiment 2)
The second embodiment will be described with reference to the flowchart of FIG. In FIG. 3, the same steps as those in FIG. 2 are denoted by the same reference numerals as those in FIG.

ステップ106まで進むと、除霜運転を開始し、予め定められた判定条件(図示せず)を満たせば、除霜運転を終了する。除霜運転終了後、ステップ201に進む。ステップ201では、除霜時間を予め定められた時間(t3)と比較し、所定時間(t3)より短ければ、実際には蒸発器14にほとんど着霜していないのに、除霜運転が行なわれたと判断し、ステップ101に戻り、ステップ101以降、再び沸上運転Aを行う。一方、除霜時間が所定時間(t3)より長い場合には、ステップ107に進み、ステップ107以降で、沸上運転Bを行う。   When the process proceeds to step 106, the defrosting operation is started, and if a predetermined determination condition (not shown) is satisfied, the defrosting operation is terminated. It progresses to step 201 after completion | finish of a defrost operation. In step 201, the defrosting time is compared with a predetermined time (t3). If the defrosting time is shorter than the predetermined time (t3), the defrosting operation is actually performed although the evaporator 14 is hardly frosted. It returns to step 101, and after step 101, boiling operation A is performed again. On the other hand, when the defrosting time is longer than the predetermined time (t3), the process proceeds to step 107, and the boiling operation B is performed after step 107.

本実施の形態によれば、実施の形態1で説明した効果に加えて、除霜運転を行う必要がある運転条件か否かの判定条件に、実際に蒸発器14の霜を溶かす除霜運転が行なわれたか否かを基準としているので、蒸発器14が着霜していないのに、除霜運転を行う必要がある運転条件であると誤判定することがない。   According to the present embodiment, in addition to the effect described in the first embodiment, the defrosting operation that actually melts the frost of the evaporator 14 in the determination condition as to whether or not the operation condition requires the defrosting operation. Therefore, it is not erroneously determined that the operating condition requires the defrosting operation even though the evaporator 14 is not frosted.

このため、不必要な除霜運転が行なわれることがないので、より一層、貯湯タンク30内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   For this reason, since unnecessary defrosting operation is not performed, the temperature of the high-temperature water stored in the hot water storage tank 30 is further non-uniform, and efficient boiling operation and defrosting operation are performed. It can be performed.

(実施の形態3)
本実施の形態3を、図4のフローチャートを用いて説明する。図4において、図2と同様の動作は説明を省略する。
(Embodiment 3)
The third embodiment will be described with reference to the flowchart of FIG. In FIG. 4, the description of the same operation as in FIG. 2 is omitted.

運転前の準備として、ステップ301では、除霜回数のカウントをリセットし、ステップ302では、運転時間の計測タイマーをリセットした後、運転時間の計測を開始する。ステップ303で、沸上運転制御手段42は、入水温度と外気温度と設定沸上温度と除霜運転判定手段41の除霜運転を行う必要がある運転条件ではないとの判定結果とに基づいて、圧縮機11の目標周波数A(Hz−A)と目標吐出温度A(Td−A)を、予め定められたテーブルから選択する。   As preparation before operation, in step 301, the count of the number of defrosts is reset, and in step 302, measurement of the operation time is started after resetting the operation time measurement timer. In step 303, the boiling operation control means 42 is based on the incoming water temperature, the outside air temperature, the set boiling temperature, and the determination result that the defrost operation of the defrost operation determination means 41 is not necessary. The target frequency A (Hz-A) and the target discharge temperature A (Td-A) of the compressor 11 are selected from a predetermined table.

ステップ304では、沸上運転Aを開始する。沸上運転Aでは、圧縮機11は目標周波数A(Hz−A)となるように、また、減圧器13の開度は圧縮機11の吐出温度が目標吐出温度A(Td−A)となるように、制御手段40により制御される。図示を省略したステップによって除霜が必要と判断された場合には、ステップ305で除霜運転を実施し、予め定められた判定条件(図示せず)を満たせば、除霜運転を終了し、除霜運転終了後、ステップ306に進む。   In step 304, the boiling operation A is started. In the boiling operation A, the compressor 11 has the target frequency A (Hz-A), and the opening of the decompressor 13 is such that the discharge temperature of the compressor 11 becomes the target discharge temperature A (Td-A). As described above, it is controlled by the control means 40. If it is determined that defrosting is necessary in a step that is not shown, the defrosting operation is performed in step 305, and if the predetermined determination condition (not shown) is satisfied, the defrosting operation is terminated. It progresses to step 306 after completion | finish of a defrost operation.

ステップ306では、除霜回数のカウントを1つ追加する。ステップ307では、除霜回数を予め定められた回数(n0)と比較し、所定回数(n0)未満であれば、ステップ301に戻り、ステップ301以降、再び沸上運転Aを行う。   In step 306, one defrosting count is added. In step 307, the defrosting frequency is compared with a predetermined frequency (n0). If the defrosting frequency is less than the predetermined frequency (n0), the process returns to step 301 and the boiling operation A is performed again after step 301.

一方、除霜回数が所定回数(n0)以上の場合には、ステップ308に進む。ステップ308では、運転時間を予め定められた時間(t4)と比較し、所定時間(t4)より長ければ、頻繁に除霜運転を行う必要がない運転条件であると判断し、ステップ301に戻り、ステップ301以降、再び沸上運転Aを行う。   On the other hand, when the defrosting frequency is equal to or greater than the predetermined frequency (n0), the process proceeds to step 308. In step 308, the operation time is compared with a predetermined time (t4). If the operation time is longer than the predetermined time (t4), it is determined that the operation condition does not require frequent defrosting operation, and the process returns to step 301. After step 301, the boiling operation A is performed again.

一方、運転時間が所定時間(t4)より短い場合には、ステップ309に進む。ステッ
プ309では、除霜運転終了後の沸上運転を、沸上運転Bとして、除霜運転が行われる以前の沸上運転Aとは異なる沸上運転を行うように制御する。
On the other hand, if the operation time is shorter than the predetermined time (t4), the process proceeds to step 309. In step 309, the boiling operation after the completion of the defrosting operation is set as a boiling operation B, and the boiling operation different from the boiling operation A before the defrosting operation is performed is controlled.

すなわち、沸上運転制御手段42は、入水温度と外気温度と設定沸上温度と除霜運転判定手段41の除霜運転を行う必要がある運転条件であるとの判定結果とに基づいて、圧縮機11の目標周波数B(Hz−B)と目標吐出温度B(Td−B)を、予め定められたテーブルから選択する。   That is, the boiling operation control means 42 compresses based on the incoming water temperature, the outside air temperature, the set boiling temperature, and the determination result that the defrost operation of the defrost operation determination means 41 is necessary. The target frequency B (Hz-B) and the target discharge temperature B (Td-B) of the machine 11 are selected from a predetermined table.

ここで、目標吐出温度B(Td−B)は、目標吐出温度A(Td−A)より高くなるように設定されており、また、目標周波数B(Hz−B)は、目標周波数A(Hz−A)と同じか、低くなるように設定されている。ステップ310では、沸上運転Bを開始する。沸上運転Bでは、圧縮機11は目標周波数B(Hz−B)となるように、減圧器13の開度は圧縮機11の吐出温度が目標吐出温度B(Td−B)となるように、制御手段40により制御される。   Here, the target discharge temperature B (Td-B) is set to be higher than the target discharge temperature A (Td-A), and the target frequency B (Hz-B) is the target frequency A (Hz). It is set to be the same as or lower than -A). In step 310, the boiling operation B is started. In the boiling operation B, the opening degree of the decompressor 13 is set so that the discharge temperature of the compressor 11 becomes the target discharge temperature B (Td-B) so that the compressor 11 becomes the target frequency B (Hz-B). Controlled by the control means 40.

本実施の形態によれば、実施の形態1で説明した効果に加えて、除霜運転を行う必要がある運転条件か否かの判定条件に、除霜運転が頻繁に行なわれることを基準としているので、蒸発器14が着霜していないのに、除霜運転を行う必要がある運転条件であると誤判定することがない。   According to the present embodiment, in addition to the effects described in the first embodiment, on the basis of the fact that the defrosting operation is frequently performed as the determination condition as to whether or not the operation condition requires the defrosting operation. Therefore, it is not erroneously determined that the operating conditions require the defrosting operation even though the evaporator 14 is not frosted.

このため、不必要な除霜運転が行なわれることがないので、より一層、貯湯タンク30内に貯えられる高温水の温度が不均一になることなく、効率の良い沸上運転と除霜運転とを行うことができる。   For this reason, since unnecessary defrosting operation is not performed, the temperature of the high-temperature water stored in the hot water storage tank 30 is further non-uniform, and efficient boiling operation and defrosting operation are performed. It can be performed.

本発明のヒートポンプ給湯機は、家庭用、業務用を問わず広い用途に適用することができる。   The heat pump water heater of the present invention can be applied to a wide range of uses regardless of home use or business use.

本発明の実施の形態1におけるヒートポンプ給湯機の概略構成図1 is a schematic configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. 同運転制御のフローチャートFlow chart of the operation control 本発明の実施の形態2の運転制御のフローチャートFlowchart of operation control according to Embodiment 2 of the present invention 本発明の実施の形態3の運転制御のフローチャートFlowchart of operation control according to Embodiment 3 of the present invention

11 圧縮機
12 放熱器
13 減圧器
14 蒸発器
16 ファン
21 吐出温度検知手段
22 蒸発器温度検知手段
23 外気温度検知手段
24 入水温度検知手段
25 出湯温度検知手段
30 貯湯タンク
31 給水ポンプ
40 制御手段
41 除霜運転判定手段
42 沸上運転制御手段
50 熱源ユニット
51 貯湯タンクユニット
DESCRIPTION OF SYMBOLS 11 Compressor 12 Radiator 13 Decompressor 14 Evaporator 16 Fan 21 Discharge temperature detection means 22 Evaporator temperature detection means 23 Outside air temperature detection means 24 Incoming water temperature detection means 25 Hot water temperature detection means 30 Hot water storage tank 31 Water supply pump 40 Control means 41 Defrosting operation determination means 42 Boiling operation control means 50 Heat source unit 51 Hot water storage tank unit

Claims (7)

圧縮機、放熱器、減圧器、蒸発器から形成される冷凍サイクルと、制御手段とを備え、前記制御手段は、前記蒸発器に付着した霜を除霜する除霜運転の必要性を判定する除霜運転判定手段を有し、前記放熱器で所定の設定温度に水を加熱する沸上運転の運転中に、前記除霜運転判定手段が前記除霜運転を必要と判定した場合に前記除霜運転を行うとともに、前記除霜運転終了後に再び沸上運転を行う場合には、前記除霜運転開始前の沸上運転より、前記圧縮機の吐出温度を上昇させて行うことを特徴とするヒートポンプ給湯機。 A refrigeration cycle formed from a compressor, a radiator, a decompressor, and an evaporator, and a control unit are provided, and the control unit determines the necessity of a defrosting operation for defrosting the frost attached to the evaporator. When the defrosting operation determining unit determines that the defrosting operation is necessary during the boiling operation in which water is heated to a predetermined set temperature by the radiator, the defrosting operation determining unit is included. When the frost operation is performed and the boiling operation is performed again after the defrost operation is completed , the discharge temperature of the compressor is increased from the boiling operation before the defrost operation is started. Heat pump water heater. 除霜運転終了後の沸上運転は、圧縮機の目標吐出温度を上昇させるとともに、前記圧縮機の目標周波数を低下させて行うことを特徴とする請求項1に記載のヒートポンプ給湯機。 2. The heat pump water heater according to claim 1, wherein the boiling operation after the defrosting operation is performed by increasing the target discharge temperature of the compressor and decreasing the target frequency of the compressor. 放熱器に流入する水の温度を検知する入水温度検知手段と、蒸発器に流入する空気の温度を検知する外気温度検知手段とを備え、前記入水温度検知手段が検知した入水温度と、前記外気温度検知手段が検知した外気温度と、沸上設定温度とに基づいて、圧縮機の目標吐出温度を決定することを特徴とする請求項1または2に記載のヒートポンプ給湯機。 An incoming water temperature detecting means for detecting the temperature of water flowing into the radiator, and an outside air temperature detecting means for detecting the temperature of air flowing into the evaporator, the incoming water temperature detected by the incoming water temperature detecting means, The heat pump water heater according to claim 1 or 2, wherein the target discharge temperature of the compressor is determined based on the outside air temperature detected by the outside air temperature detecting means and the boiling upper set temperature. 放熱器に流入する水の温度を検知する入水温度検知手段と、蒸発器に流入する空気の温度を検知する外気温度検知手段とを備え、前記入水温度検知手段が検知した入水温度と、前記外気温度検知手段が検知した外気温度と、沸上設定温度とに基づいて、圧縮機の目標周波数を決定することを特徴とする請求項2に記載のヒートポンプ給湯機。 An incoming water temperature detecting means for detecting the temperature of water flowing into the radiator, and an outside air temperature detecting means for detecting the temperature of air flowing into the evaporator, the incoming water temperature detected by the incoming water temperature detecting means, 3. The heat pump water heater according to claim 2, wherein the target frequency of the compressor is determined based on the outside air temperature detected by the outside air temperature detecting means and the set boiling temperature. 蒸発器の温度を検知する蒸発器温度検知手段を備え、蒸発器温度検知手段が検知した蒸発器温度が所定時間内に所定温度以上低下したとき、除霜運転を行うことを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 An evaporator temperature detecting means for detecting the temperature of the evaporator is provided, and a defrosting operation is performed when the evaporator temperature detected by the evaporator temperature detecting means falls below a predetermined temperature within a predetermined time. The heat pump water heater according to any one of 1 to 4. 所定の除霜時間以上継続した除霜運転が行われた場合には、次回の沸上運転は、圧縮機の吐出温度を上昇させて行うことを特徴とする請求項1〜5のいずれか1項に記載のヒートポンプ給湯機。 6. When the defrosting operation continued for a predetermined defrosting time or longer is performed, the next boiling operation is performed by increasing the discharge temperature of the compressor. The heat pump water heater according to item. 所定の運転時間内に、除霜運転が所定の回数以上行われた場合には、次回の沸上運転は、
圧縮機の吐出温度を上昇させて行うことを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプ給湯機。
If the defrosting operation is performed more than a predetermined number of times within the predetermined operation time, the next boiling operation is
The heat pump water heater according to any one of claims 1 to 6, wherein the discharge is performed by increasing a discharge temperature of the compressor.
JP2008303988A 2008-11-28 2008-11-28 Heat pump water heater Expired - Fee Related JP5045656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303988A JP5045656B2 (en) 2008-11-28 2008-11-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303988A JP5045656B2 (en) 2008-11-28 2008-11-28 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2010127560A JP2010127560A (en) 2010-06-10
JP5045656B2 true JP5045656B2 (en) 2012-10-10

Family

ID=42328091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303988A Expired - Fee Related JP5045656B2 (en) 2008-11-28 2008-11-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5045656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494699A (en) * 2017-04-04 2019-11-22 三菱电机株式会社 The outdoor unit of heat pump water heater
CN111550950A (en) * 2020-05-18 2020-08-18 南京工程学院 Solution spraying defrosting air source heat pump and ice source heat pump coupling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494699A (en) * 2017-04-04 2019-11-22 三菱电机株式会社 The outdoor unit of heat pump water heater
CN110494699B (en) * 2017-04-04 2021-04-13 三菱电机株式会社 Outdoor unit of heat pump type water heater
CN111550950A (en) * 2020-05-18 2020-08-18 南京工程学院 Solution spraying defrosting air source heat pump and ice source heat pump coupling system
CN111550950B (en) * 2020-05-18 2021-12-14 南京工程学院 Solution spraying defrosting air source heat pump and ice source heat pump coupling system

Also Published As

Publication number Publication date
JP2010127560A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN106765673B (en) Heat pump system and defrosting control method thereof
CN106461253B (en) Air conditioner and defrosting operation method thereof
CN102449408B (en) Air-conditioning device
JP3598809B2 (en) Refrigeration cycle device
US8590326B2 (en) Refrigeration cycle apparatus
JP6323431B2 (en) Air conditioner
JP6580149B2 (en) Refrigeration cycle equipment
JP2010127568A (en) Abnormality detection device and refrigerating cycle device including the same
JP6071648B2 (en) Air conditioner
JP5274174B2 (en) Air conditioner
JP2011027286A (en) Air conditioner
JP2010145020A (en) Heat pump device, and heat pump water heater and air conditioner loaded with the same
JP6749471B2 (en) Air conditioner
JP6103212B2 (en) Air conditioner
JP2013200085A (en) Air conditioner
WO2015075882A1 (en) Heat pump cycle device
JP2011257098A (en) Heat pump cycle device
JP5045656B2 (en) Heat pump water heater
JP5366764B2 (en) Cooling device and refrigeration cycle device
JP7292048B2 (en) water heater
JP2016133257A (en) Air-conditioner
WO2017122264A1 (en) Air conditioner
JP5516332B2 (en) Heat pump type hot water heater
WO2019215878A1 (en) Air conditioner
JP2016080201A (en) Electronic control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees