JP5045238B2 - Resistance spot welding method - Google Patents

Resistance spot welding method Download PDF

Info

Publication number
JP5045238B2
JP5045238B2 JP2007136714A JP2007136714A JP5045238B2 JP 5045238 B2 JP5045238 B2 JP 5045238B2 JP 2007136714 A JP2007136714 A JP 2007136714A JP 2007136714 A JP2007136714 A JP 2007136714A JP 5045238 B2 JP5045238 B2 JP 5045238B2
Authority
JP
Japan
Prior art keywords
plate
thick plate
thick
welding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136714A
Other languages
Japanese (ja)
Other versions
JP2008290098A (en
Inventor
泰明 沖田
倫正 池田
守章 小野
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007136714A priority Critical patent/JP5045238B2/en
Publication of JP2008290098A publication Critical patent/JP2008290098A/en
Application granted granted Critical
Publication of JP5045238B2 publication Critical patent/JP5045238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、重ね合わせられた鋼板を抵抗スポット溶接する方法に関するものである。   The present invention relates to a method of resistance spot welding of stacked steel plates.

一般に、重ね合わせられた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。例えば、自動車の製造にあたっては1台あたり数千点ものスポット溶接がなされている。この溶接法は、2枚以上の鋼板を重ね合わせ、上下の電極で挟み加圧力を与えながら、上下電極間に大電流の溶接電流を短時間通電して接合する方法である。大電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部は、ナゲットと呼ばれ、両鋼板に電流を流した際に両鋼板の接触箇所で両鋼板が溶融し、凝固した部分であり、これにより両鋼板が点状に接合される。   In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining stacked steel plates. For example, in the manufacture of automobiles, several thousand spots are welded per vehicle. This welding method is a method in which two or more steel plates are overlapped and sandwiched between upper and lower electrodes and a large current is applied between the upper and lower electrodes for a short time to join them. A spot-like weld is obtained by utilizing resistance heat generated by passing a large welding current. This point-like weld is called a nugget and is a part where both steel plates melt and solidify at the contact points of both steel plates when current is passed through both steel plates. The

抵抗スポット溶接部の接合強度は、ナゲット径により左右されるため、所定の径以上のナゲット径を確保することが重要となってくる。一般に、加圧力、通電時間を一定とした場合には、ナゲット径は、溶接電流の増加にしたがって徐々に増加するが、ある値以上になると鋼板間に溶融金属が飛散する散りという現象が生じる。散りの発生は、危険である上に、溶接部周辺に散りが付着し外観を悪化させ、ナゲット径や継手引張強度にばらつきを生じさせ、継手部の品質が不安定になる。   Since the joint strength of the resistance spot welded portion depends on the nugget diameter, it is important to secure a nugget diameter equal to or larger than a predetermined diameter. In general, when the applied pressure and energization time are constant, the nugget diameter gradually increases as the welding current increases. However, when the value exceeds a certain value, a phenomenon occurs in which the molten metal scatters between the steel plates. The occurrence of scatter is dangerous and scatters around the weld and deteriorates the appearance, causing variations in the nugget diameter and joint tensile strength, resulting in unstable joint quality.

また、自動車の部品構造をみると、例えばセンターピラーでは、アウターとインナーとの間にリインフォースメントを挟み込んだ構造が採用されている。この構造では、単純な二枚重ねの鋼板をスポット溶接する場合と異なり、3枚以上の鋼板を重ね合わせてスポット溶接することが要求される。   Looking at the parts structure of an automobile, for example, a center pillar employs a structure in which a reinforcement is sandwiched between an outer and an inner. In this structure, unlike the case of spot welding of a simple two-ply steel plate, it is required to superimpose three or more steel plates for spot welding.

さらに、最近では、車体の衝突安全性の更なる向上要求にともない、リインフォースメントなどの高強度化、厚肉化が進み、外側に板厚の薄いアウター(薄板)を配置し、内側に板厚の厚いインナー、リインフォースメント(厚板)を組み合わせた板組みをスポット溶接することが必要となる場合が多い。なお、ここでは、薄板とは板組みされた鋼板のうち、板厚が相対的に小さい鋼板を薄板と記載し、板厚の相対的に大きい鋼板を厚板と記載することとし、以下も同様の記載とする。   Furthermore, recently, with the demand for further improvement in collision safety of the car body, reinforcement and other strength has been increased, and a thin outer (thin plate) has been placed on the outside, and the thickness has been increased on the inside. Often, it is necessary to spot weld a plate assembly that combines thick inners and reinforcements (thick plates). Here, among thin steel plates, a thin steel plate is referred to as a thin plate, a relatively large steel plate is referred to as a thick plate, and so on. It is said that.

このような板厚比(=板組みの全体厚/一番薄い板の板厚)の大きな板組みにおいて、従来のような、加圧力、溶接電流を一定の値としたままにするスポット溶接を行った場合には一番外側(電極チップと接触する側)の薄板と厚板の間に必要なサイズのナゲットが形成されにくいことが知られている。とくに板厚比が5を超えるような板組みでは、この傾向が強い。   In such a plate assembly with a large plate thickness ratio (= total thickness of the plate assembly / thickness of the thinnest plate), spot welding that keeps the applied pressure and welding current at a constant value as in the past. It is known that a nugget of a necessary size is difficult to be formed between the thin plate and the thick plate on the outermost side (the side in contact with the electrode tip). This tendency is particularly strong when the plate thickness ratio exceeds 5.

これは、電極チップによる冷却によって一番外側の薄板と厚板の間では温度が上がりにくいことが原因である。ナゲットは、電極間の中央付近から鋼板の固有抵抗により体積抵抗発熱にて形成されるが、ナゲットが薄板にまで成長するまでに、電極間中央部に近い部分に位置する厚板と厚板間でのナゲットの成長が大きく、電極による加圧では抑えきれずに散りが発生するため、散り発生なく必要なサイズのナゲットを薄板・厚板間に得ることが困難となる。   This is because the temperature hardly rises between the outermost thin plate and the thick plate due to cooling by the electrode tip. The nugget is formed by volume resistance heat generation due to the specific resistance of the steel plate from the center between the electrodes, but before the nugget grows to a thin plate, between the thick plate and the thick plate located near the center between the electrodes The nugget grows at a large distance, and it is difficult to obtain a nugget of a necessary size between the thin plate and the thick plate without the occurrence of scattering, because the nugget grows greatly and cannot be suppressed by pressing with an electrode.

また、一番外側に配置される薄板がアウターの場合には、強度よりも成形性が重要となるため、使用される鋼板は軟鋼となることが多い。一方、厚板は強度補強部材であり高張力鋼板が使用される場合が多い。このような板組みでは、発熱する位置は、固有抵抗の高い高張力鋼板側に偏るため、厚板−薄板(軟鋼)間にはさらにナゲットが形成されにくくなる。また、使用される鋼板がめっき鋼板となると、低温で溶融しためっき層が鋼板間の通電経路を拡大するため電流密度が減少し、薄板側でのナゲットの形成がさらに困難となる。   Further, when the outermost thin plate is the outer, formability is more important than strength, so the steel plate used is often mild steel. On the other hand, the thick plate is a strength reinforcing member, and a high-tensile steel plate is often used. In such a plate assembly, the position where heat is generated is biased toward the high-tensile steel plate having a high specific resistance, so that nuggets are more difficult to be formed between the thick plate and the thin plate (mild steel). Moreover, when the steel plate used becomes a plated steel plate, the plating layer melted at a low temperature expands the current-carrying path between the steel plates, thereby reducing the current density and making it more difficult to form a nugget on the thin plate side.

このような問題に対し、例えば、特許文献1では、重ねあわされた2枚の厚板にさらに薄板が重ねあわされた板厚比の大きな板組みにおいて、薄板の溶接すべき位置に部分的に一般部より一段高い座面を形成するとともに、薄板に対抗する電極は、先端を球面に形成し、溶接初期は低加圧力で、薄板の座面を押しつぶすようにして、薄板とこれと隣り合う厚板とを溶接し、その後、高加圧力で2枚の厚板同士を溶接することにより、薄板−厚板間にも必要なナゲットを得る技術が提案されている。   With respect to such a problem, for example, in Patent Document 1, in a plate assembly having a large plate thickness ratio in which a thin plate is further overlapped with two stacked thick plates, a part of the thin plate is to be welded. Forms a seat surface that is one step higher than the general part, and the electrode that opposes the thin plate is formed with a spherical tip at the beginning, with a low applied pressure at the initial stage of welding, crushing the seat surface of the thin plate, and adjacent to the thin plate There has been proposed a technique for obtaining a necessary nugget between a thin plate and a thick plate by welding the thick plate and then welding the two thick plates with high pressure.

また、特許文献2では、剛性の高い2枚の厚板の上に剛性の低い薄板を重ね合わせたワークを、一対の電極チップにより挟んでスポット溶接する方法において、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより,薄板−厚板間にもナゲットを得る技術が提案されている。   Further, in Patent Document 2, in a method in which a workpiece in which a thin plate with low rigidity is superimposed on two thick plates with high rigidity is sandwiched between a pair of electrode tips, the thin plate with the smallest rigidity is brought into contact. By making the tip diameter of the electrode tip smaller than the tip diameter of the electrode tip contacting the thick plate, the contact area between the thin plate and the electrode tip is made smaller than the contact area between the thick plate and the electrode. A technique for obtaining a nugget between a thin plate and a thick plate has been proposed.

また、特許文献3では、板厚比の大きな被溶接体をスポット溶接する方法において、被溶接体に第1の加圧力を負荷して溶接電流を流した後、一旦通電を停止し、被溶接体を挟んだまま、上記第1の加圧力よりも大きな第2の加圧力を負荷して再び溶接電流を流すことにより、そして望ましくは、上記第1の工程における溶接電流の電流値を、第1段階〜第3段階の3段階に変化させるとともに、第2段階の電流値を第1段階および第3段階の電流値よりも小さくすることにより、板厚比の大きい被溶接体の接合強度を向上させるというスポット溶接方法が提案されている。
特開2003−071569号公報 特開2003−251468号公報 特開2004−358500号公報
Further, in Patent Document 3, in a method of spot welding a workpiece to be welded having a large thickness ratio, after applying a first pressing force to the workpiece and flowing a welding current, the energization is temporarily stopped and the workpiece to be welded is applied. With the body sandwiched between them, a second pressing force larger than the first pressing force is applied and a welding current is flowed again. Preferably, the current value of the welding current in the first step is set to a first value. While changing from the first stage to the third stage, the current value of the second stage is made smaller than the current values of the first stage and the third stage, the joint strength of the welded body having a large plate thickness ratio is increased. The spot welding method of improving is proposed.
JP 2003-071569 A JP 2003-251468 A JP 2004-358500 A

しかしながら、特許文献1に記載の抵抗スポット溶接方法では、この場合ナゲットは形成されるが、薄板の溶接する部分に予め一般部より一段高い座面をプレスなどで形成する工程が必要となるという問題がある。   However, in the resistance spot welding method described in Patent Document 1, in this case, a nugget is formed, but a problem that a step of forming a seat surface that is one step higher than the general part in advance by a press or the like is required in the part to be welded of the thin plate. There is.

また、特許文献2に記載の抵抗スポット溶接方法では、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより、薄板−厚板間にもナゲットを得ているが、薄板と電極チップとの接触面積が小さいことは電極により加圧される範囲が狭いことになり、厚板−厚板間に大きなナゲットを形成しようとすると散りが発生するという問題がある。   Moreover, in the resistance spot welding method described in Patent Document 2, the thin plate and the electrode tip are formed by making the tip diameter of the electrode tip that contacts the thin plate having the smallest rigidity smaller than the tip diameter of the electrode tip that contacts the thick plate. Nugget is obtained between the thin plate and the thick plate by making the contact area with the plate smaller than the contact area between the thick plate and the electrode, but the contact area between the thin plate and the electrode tip is small. As a result, there is a problem that the range in which pressure is applied becomes narrow, and when a large nugget is formed between the thick plate and the thick plate, scattering occurs.

また、特許文献3に記載の抵抗スポット溶接方法では、高張力鋼板の厚板はプレス加工で精度を出すことが難しく、実際のワークでは、厚板−厚板間にギャップ(間隙)が存在する場合が多いことから、その場合、特許文献3に記載の抵抗スポット溶接方法では、初期に加圧力を低い状態で通電する必要があるが、ギャップの存在により、実施工が困難なことが多いと考えられる。   In addition, in the resistance spot welding method described in Patent Document 3, it is difficult to obtain a high-strength steel plate with high accuracy by pressing, and in an actual workpiece, there is a gap (gap) between the thick plate and the thick plate. Since there are many cases, in that case, in the resistance spot welding method described in Patent Document 3, it is necessary to energize in a state where the applied pressure is low in the initial stage. Conceivable.

本発明は、上記のような事情に鑑みてなされたものであり、重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた、板厚比の大きな板組みを抵抗スポット溶接する場合に、前記板組みのいずれかの鋼板と鋼板の間のキャップの存在の有無に関わらず、適正電流範囲(散りを発生させることなく必要な径を有するナゲットをすべての鋼板間に形成できる電流の範囲)が広い抵抗スポット溶接を行うことが可能な抵抗スポット溶接方法を提供することを目的とするものである。   The present invention has been made in view of the above-described circumstances, and when resistance spot welding is performed on a plate assembly having a large plate thickness ratio in which a thin plate is superimposed on at least one of two or more stacked thick plates. In addition, regardless of the presence or absence of a cap between any of the steel plates in the plate assembly, an appropriate current range (a current that can form a nugget having a required diameter without causing scattering is formed between all the steel plates. It is an object of the present invention to provide a resistance spot welding method capable of performing resistance spot welding with a wide range.

本発明者らは、上記課題を達成するため、抵抗スポット溶接におけるナゲット形成に及ぼす各種要因について鋭意検討した。重ね合わせた2枚以上の厚板の一方に薄板を重ね合わせた板厚比の大きな場合のスポット溶接において、薄板とそれと隣り合う厚板との間および厚板と厚板の間ともに必要なサイズのナゲットを形成するにあたり問題となるのは、薄板−厚板間にナゲットを形成することであり、そのためには溶接初期の加圧力は小さい加圧力とし、溶接中に加圧力を増加させることが有効であることを知見した。そして、その手段として、溶接中の電極チップの位置を固定することが有効であることを見出した。   In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting nugget formation in resistance spot welding. A nugget of the required size between the thin plate and the adjacent thick plate and between the thick plate and the thick plate in spot welding in the case of a large plate thickness ratio where the thin plate is overlapped with one of the two or more stacked thick plates When forming a nugget, it is effective to form a nugget between a thin plate and a thick plate. For this purpose, it is effective to increase the applied pressure during welding by reducing the applied pressure at the initial stage of welding. I found out that there was. And it discovered that it was effective as the means to fix the position of the electrode tip under welding.

すなわち、溶接初期から高加圧力で溶接した場合、薄板−厚板間、厚板−厚板間の通電面積が広くなり、電流密度が低くなるため、発熱し難く、さらに板厚比が大きな板組みの場合、薄板−厚板間は電極に近いために冷却され、より発熱し難い状態となる。このため、厚板−厚板間には必要なサイズのナゲットが形成されても、薄板−厚板間にはナゲットが形成されず、薄板−厚板間にナゲットが形成されるまで電流をあげると、厚板−厚板間で散りが発生する。したがって、板厚比が大きな場合は、薄板−厚板間、厚板−厚板間両方に必要なナゲットを散り発生なく形成できる適正電流範囲は狭くなる。   That is, when welding with high pressure from the beginning of welding, the current-carrying area between the thin plate and the thick plate and between the thick plate and the thick plate is widened and the current density is low, so it is difficult to generate heat and the plate has a large plate thickness ratio. In the case of the assembly, the thin plate-thick plate is close to the electrode and is cooled, so that it is difficult to generate heat. For this reason, even if a nugget of a necessary size is formed between the thick plate and the thick plate, no nugget is formed between the thin plate and the thick plate, and the current is increased until the nugget is formed between the thin plate and the thick plate. Then, scattering occurs between the thick plate and the thick plate. Therefore, when the plate thickness ratio is large, the appropriate current range in which the nuggets necessary between the thin plate and the thick plate and between the thick plate and the thick plate can be formed without being scattered becomes narrow.

一方、溶接初期に低い加圧力で溶接した場合は、薄板−厚板間、厚板−厚板間の通電面積が小さくなり、低い電流でも電流密度が高く発熱しやすくなり、薄板−厚板間も高温に加熱される。しかしながら、低加圧力のままでは加圧範囲が狭くなるため、ナゲットが小さい状態で散りが発生し、散り発生なく必要なサイズのナゲットが得られる適正電流範囲が狭くなる。   On the other hand, when welding with a low pressure at the initial stage of welding, the current-carrying area between the thin plate and thick plate and between the thick plate and thick plate is reduced, and the current density is high and heat is easily generated even at a low current. Are also heated to high temperatures. However, since the pressurizing range becomes narrow when the pressure is kept low, scattering occurs when the nugget is small, and an appropriate current range in which a nugget of a necessary size can be obtained without scattering is narrowed.

そこで、低加圧力で溶接を開始し、溶接中に加圧力を増加させることで、上記の問題を解決し、板厚比が大きい板組みでも広い適正電流範囲を持つ溶接が可能となる。溶接初期に低加圧力で通電することにより、薄板−厚板間、厚板−厚板間の両方が高温に加熱される。その後加圧力を増加させることにより通電面積が拡大し、薄板−厚板間での電流密度は減少するが、高温に加熱されていたことで鋼板の固有抵抗が大きく増加しているため、発熱しやすくなっており、薄板−厚板間にまでナゲットが成長しやすくなっている。加えて、加圧力が大きいことにより、電極による加圧面積も広がり、ナゲットが大きく成長しても散りが発生しにくくなる。   Therefore, by starting welding with a low applied pressure and increasing the applied pressure during welding, the above problems can be solved, and welding with a wide appropriate current range can be achieved even with a plate assembly having a large thickness ratio. By energizing with low pressure at the initial stage of welding, both the thin plate and the thick plate and between the thick plate and the thick plate are heated to a high temperature. After that, the energized area is increased by increasing the pressing force, and the current density between the thin plate and the thick plate decreases.However, because the specific resistance of the steel plate is greatly increased by being heated to a high temperature, it generates heat. The nugget is easy to grow between the thin plate and the thick plate. In addition, since the pressurizing force is large, the pressurization area by the electrode is widened, and even if the nugget grows greatly, it becomes difficult for scattering to occur.

以上により、板厚比が大きな板組みにおいても、薄板−厚板間、厚板−厚板間のそれぞれに必要なサイズのナゲットを散り発生なく得ることができる適正電流範囲の広い抵抗スポット溶接が可能となるが、更に検討を重ねて、鋼板間にギャップが存在する場合においても、溶接中の加圧力を増加させ、適正電流範囲の広い抵抗スポット溶接が可能となる方法を見出した。   As described above, even in a plate assembly with a large plate thickness ratio, resistance spot welding with a wide appropriate current range that can obtain a nugget of a necessary size between the thin plate and the thick plate and between the thick plate and the thick plate without being scattered. However, further investigations have been made, and even when there is a gap between the steel plates, a method has been found that enables resistance spot welding with a wide appropriate current range by increasing the applied pressure during welding.

具体的には、例えば、図1に示すように、重ね合わせた2枚の厚板12、13の上面に薄板11を重ね合わせた板厚比の大きな板組みで、かつ、厚板12−厚板13間にギャップ17が存在する板組みの場合、二つの電極21、22でワーク10を挟み、予め設定した低い初期加圧力Pでかつ低電流で通電を開始する。薄板11−厚板12間の点接触部16を電流が流れるため、この部分で電流密度が高くなり発熱が進行する。一方、厚板12−厚板13間ではギャップ17の存在により、図1中の矢印の示すように、厚板12および厚板13の接触部方向に大きく迂回して厚板12から厚板13へ流れる。この迂回した電流により厚板12と厚板13の接触部付近で鋼板の温度が上昇して変形しやすくなり、低い初期加圧力Pだけでは閉じることができなかったギャップ17が閉じられ、電極間距離が減少する。そして、図2に示すように、厚板12と厚板13が接して、電極間距離が減少したところで、電極21、22の位置を固定し、本通電を開始する。これは、通電を開始し鋼板が加熱されるときには熱膨張が生じるが、電極21、22の位置を固定して電極間距離を保持することでこの熱膨張を抑制することにより、板組みにかかる真の加圧力が増加することを利用するものである。   Specifically, for example, as shown in FIG. 1, a plate assembly having a large plate thickness ratio in which the thin plates 11 are superposed on the upper surfaces of the two superposed thick plates 12 and 13, and the thick plate 12 -thickness In the case of a plate assembly in which a gap 17 exists between the plates 13, the work 10 is sandwiched between the two electrodes 21 and 22, and energization is started with a preset low initial pressure P and a low current. Since current flows through the point contact portion 16 between the thin plate 11 and the thick plate 12, the current density is increased and heat generation proceeds in this portion. On the other hand, due to the presence of the gap 17 between the thick plate 12 and the thick plate 13, as shown by the arrow in FIG. To flow. Due to this bypassed current, the temperature of the steel plate rises near the contact portion between the thick plate 12 and the thick plate 13 and is easily deformed, and the gap 17 that could not be closed only by the low initial pressure P is closed, and the gap between the electrodes The distance decreases. Then, as shown in FIG. 2, when the thick plate 12 and the thick plate 13 are in contact with each other and the distance between the electrodes is reduced, the positions of the electrodes 21 and 22 are fixed, and the main energization is started. This is because thermal expansion occurs when energization is started and the steel sheet is heated. However, by fixing the positions of the electrodes 21 and 22 and maintaining the distance between the electrodes, this thermal expansion is suppressed and the plate assembly is applied. It takes advantage of the increase in true pressure.

本発明は、上記の考え方に基づいて想到されたものであり、以下のような特徴を有している。   The present invention has been conceived based on the above concept and has the following characteristics.

[1]重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板組みを一対の電極によって挟み加圧力を与えながら抵抗スポット溶接をするにあたり、加圧力が設定した値Pまで達した後、低電流での予備通電を開始し、前記重ね合わせた全ての板同士が接した時に前記電極の位置を固定した後、本通電を開始し、前記の電極位置の固定によって本通電開始後の板組みの熱膨張を抑制することで加圧力を増加させ、設定加圧力Pおよび加圧力の最大値Pmが、
Pm≧1.5×P
P≦4kN
となるようにすることを特徴とする抵抗スポット溶接方法。
[1] When resistance spot welding is performed while a plate assembly in which a thin plate is superimposed on at least one of two or more stacked thick plates is sandwiched between a pair of electrodes and a pressing force is applied, the pressing force reaches a set value P After that, the pre-energization at a low current is started, and after the stacked plates are in contact with each other, the position of the electrode is fixed, and then the main energization is started, and the main energization is started by fixing the electrode position. The pressing force is increased by suppressing the thermal expansion of the subsequent plate assembly, and the set pressing force P and the pressing force maximum value Pm are
Pm ≧ 1.5 × P
P ≦ 4kN
A resistance spot welding method characterized by:

[2]サーボモータによって加圧力を与えることとし、前記重ね合わせた全ての板同士が接したことの判断を、サーボモータに内蔵されたエンコーダで電極位置を読み取ることによって行うことを特徴とする前記[1]に記載の抵抗スポット溶接方法。   [2] The pressurizing force is applied by a servo motor, and it is determined by reading an electrode position with an encoder built in the servo motor that the stacked plates are in contact with each other. The resistance spot welding method according to [1].

[3]前記重ね合わせた全ての板同士が接していることの判断を、低電流での予備通電における電圧の変化に基づいて行うことを特徴とする前記[1]に記載の抵抗スポット溶接方法。   [3] The resistance spot welding method according to [1], wherein the determination that all the stacked plates are in contact with each other is made based on a change in voltage in preliminary energization at a low current. .

[4]本通電開始後、初期の数サイクルは、予め設定されている本通電設定電流よりも高い電流を流すことを特徴とする前記[1]〜[3]のいずれかに記載の抵抗スポット溶接方法。   [4] The resistance spot according to any one of [1] to [3], wherein a current higher than a preset main energization setting current is supplied in the initial several cycles after the main energization is started. Welding method.

本発明によると、重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせ、かつ、そのいずれかの鋼板と鋼板との間にギャップが存在する板厚比の大きな板組みを抵抗スポット溶接する場合でも、適正電流範囲(散りを発生させることなく必要な径を有するナゲットをすべての鋼板間に形成できる電流の範囲)が広い抵抗スポット溶接を簡易に行うことが可能となる。   According to the present invention, a thin plate is superposed on at least one of two or more superposed thick plates, and a plate assembly having a large plate thickness ratio in which a gap exists between any of the steel plates is a resistance spot. Even in the case of welding, it is possible to easily perform resistance spot welding with a wide appropriate current range (a current range in which a nugget having a necessary diameter can be formed between all steel plates without causing scattering).

本発明の実施の形態を以下に述べる。   Embodiments of the present invention will be described below.

本発明においては、例えば、図1に示すように、重ね合わせた2枚の厚板12、13の上面に薄板11を重ね合わせた板厚比の大きな板組みで、かつ、厚板12−厚板13間にギャップ17が存在する板組みを、一対の電極(電極チップ)21、22で挟んで加圧力を与えながら抵抗スポット溶接する場合に、まず、第1ステップとして、予め設定した低い初期加圧力Pでかつ低い電流で通電を開始し、薄板11−厚板12間で発熱させるとともに、ギャップ17を迂回して流れる厚板12−厚板13間の電流によって、厚板12、13を変形しやすくすることにより、厚板12−厚板13間のギャップ17を閉じる。このときの電極間距離をモニタリングし、図2に示すように、厚板12と厚板13が接して、接触部形状が安定するまで電極間距離が減少したところで、電極間距離の減少が停止するので、その位置で電極21、22を固定し、第2ステップとして、本通電を開始する。本通電開始時の加圧力は初期加圧力Pのままであり、低い加圧力となるが、電極21、22の位置の固定によって本通電開始後の板組みの熱膨張を抑制することで加圧力を次第に増加させ、その加圧力の最大値Pmが、Pm≧1.5×Pとなるようにしている。   In the present invention, for example, as shown in FIG. 1, a plate assembly having a large plate thickness ratio in which the thin plates 11 are superposed on the upper surfaces of the two superposed thick plates 12 and 13, and the thick plate 12 -thickness is used. When resistance plate welding is performed while applying a pressing force by sandwiching a plate assembly having a gap 17 between the plates 13 between a pair of electrodes (electrode tips) 21 and 22, first, as a first step, a low initial value set in advance The energization is started with a pressure P and a low current, heat is generated between the thin plate 11 and the thick plate 12, and the thick plates 12 and 13 are made to flow by the current between the thick plate 12 and the thick plate 13 flowing around the gap 17. By making it easy to deform, the gap 17 between the thick plate 12 and the thick plate 13 is closed. The distance between the electrodes at this time is monitored, and as shown in FIG. 2, when the distance between the electrodes decreases until the thick plate 12 and the thick plate 13 come into contact with each other and the contact portion shape is stabilized, the decrease in the distance between the electrodes stops. Therefore, the electrodes 21 and 22 are fixed at the positions, and the main energization is started as the second step. The applied pressure at the start of the main energization remains the initial applied pressure P and is a low applied pressure, but the pressure is increased by suppressing the thermal expansion of the plate assembly after the start of the main energization by fixing the positions of the electrodes 21 and 22. Is gradually increased so that the maximum value Pm of the applied pressure satisfies Pm ≧ 1.5 × P.

このように、第1ステップの通電で薄板11−厚板12間を発熱させていることに加え、本通電初期においては加圧力が低いことから、電極21−薄板11間、薄板11−厚板12間の接触径も小さく保たれ、薄板11−厚板12間が高温となっており、本通電において電極間中央部付近から成長するナゲット18が薄板11−厚板12間付近にも成長しやすくなっている。   Thus, in addition to generating heat between the thin plate 11 and the thick plate 12 by energization in the first step, since the applied pressure is low at the initial stage of the main energization, it is between the electrode 21 and the thin plate 11 and between the thin plate 11 and the thick plate. The contact diameter between the thin plates 11 is kept small, the temperature between the thin plate 11 and the thick plate 12 is high, and the nugget 18 that grows from the vicinity of the central portion between the electrodes in this energization also grows between the thin plate 11 and the thick plate 12. It has become easier.

このようにして、低加圧力で溶接を開始し、溶接中に加圧力を増加させることで、板厚比が大きい板組みでも適正電流範囲(散りを発生させることなく、必要なナゲット径D1、D2を持つナゲット18を、薄板11−厚板12間、厚板12−厚板13間のそれぞれに形成できる電流の範囲)の広い溶接を可能とすることができる。   In this way, welding is started at a low pressure, and by increasing the pressure during welding, even in a plate assembly having a large thickness ratio, an appropriate current range (necessary nugget diameter D1, The nugget 18 having D2 can be welded with a wide range of currents that can be formed between the thin plate 11 and the thick plate 12, and between the thick plate 12 and the thick plate 13, respectively.

なお、この電極の位置を固定する手法としては、可動側の電極(例えば、電極21)を固定する位置に機械的なストッパーを設けて行えばよいが、電極加圧機構がサーボモータ加圧式であれば、サーボモータにおける電極21先端の位置情報をフィードバックする手法も考えられる。電極位置の固定も電極21が全く動かないようにする必要はなく、電極間距離の増加を抑制できればよい。また、可動側の電極21の位置を固定しても、電極間距離はガンのアーム部等の剛性により変化するため、ガンのアーム部等の剛性により加圧力の増加量も変化する。高い剛性をもつガンであることが望ましいが、実際に溶接を行い、始めの設定加圧力Pに対して溶接中の加圧力増加による加圧力の最大値Pmが、Pm≧1.5×Pを満足し、かつP≦4kNを満足していればよい。P>4kNにおいては初期の加圧力が大きいために薄板11−厚板12間の通電面積が広くなり、かつ、電極との接触径が広がることにより電極による冷却の影響が大きくなるために、溶接電流を増加させても、薄板11−厚板12間を十分に加熱することが困難になる。また、Pm<1.5×Pでは加圧力増加による散り発生の抑制効果が小さい。   As a method for fixing the position of the electrode, a mechanical stopper may be provided at a position where the movable electrode (for example, the electrode 21) is fixed, but the electrode pressing mechanism is a servo motor pressing type. If there is, a method of feeding back the position information of the tip of the electrode 21 in the servo motor is also conceivable. It is not necessary to fix the electrode position so that the electrode 21 does not move at all, and it is sufficient that the increase in the distance between the electrodes can be suppressed. Even if the position of the movable electrode 21 is fixed, the distance between the electrodes changes depending on the rigidity of the arm portion of the gun and the like, and the amount of increase in the pressing force also changes depending on the rigidity of the arm portion of the gun. Although it is desirable that the gun has a high rigidity, the maximum value Pm of the pressurizing force due to the increase in the pressurizing force during welding is set to Pm ≧ 1.5 × P with respect to the initial set pressurizing force P. What is necessary is just to satisfy and P <= 4kN. When P> 4 kN, since the initial pressure is large, the current-carrying area between the thin plate 11 and the thick plate 12 is widened, and the influence of cooling by the electrode is increased by increasing the contact diameter with the electrode. Even if the current is increased, it is difficult to sufficiently heat the thin plate 11 and the thick plate 12. Further, when Pm <1.5 × P, the effect of suppressing the occurrence of scattering due to an increase in pressure is small.

また、厚板12−厚板13間のギャップ15が潰れて無くなったかどうかを判断するために行う、厚板12−厚板13間のギャップを閉じる過程における電極間距離のモニタリングの方法としては、サーボモータに内蔵されたエンコーダで電極位置を読み取ることによって行うことが最も容易である。すなわち、エンコーダで電極位置を読み取り、電極位置の変化がなくなったならば、重ね合わせた全ての板同士が接したと判断する。これは、重ね合わせた板同士にギャップが存在する場合も、存在しない場合も同様に判断できる。   In addition, as a method of monitoring the distance between the electrodes in the process of closing the gap between the thick plate 12 and the thick plate 13 to determine whether or not the gap 15 between the thick plate 12 and the thick plate 13 is crushed and lost, It is easiest to do this by reading the electrode position with an encoder built in the servo motor. That is, when the electrode position is read by the encoder and the change in the electrode position is eliminated, it is determined that all the overlapped plates are in contact with each other. This can be determined in the same manner whether or not there is a gap between the stacked plates.

その他に、外部にレーザ変位計等を取り付け、電極間距離をモニタリングして行う方法もありうる。   In addition, there may be a method in which a laser displacement meter or the like is attached outside and the distance between the electrodes is monitored.

さらに、定電流制御の抵抗スポット溶接機であれば、厚板12−厚板13間のギャップを閉じる過程における溶接電圧をモニタリングすることによっても、ギャップ17が閉じたかどうかの判定を行うことが可能である。これは、ギャップ17が閉じていない間における通電では、溶接電流はギャップ17を迂回して流れ、その迂回路における温度上昇により、抵抗が増大する。このことにより定電流制御の抵抗スポット溶接機においては電圧も上昇していく。ギャップ17が閉じた時点で、電極直下にも電流が流れるようになるため、通電面積が増大することにより抵抗が減少する。このとき電圧が減少するため、溶接電圧をモニタリングすることにより、ギャップ17が閉じたかどうかの判定を行うことができる。すなわち、低電流での予備通電における電圧が変化しなくなったらば、重ね合わせた全ての板同士が接したと判断する。これは、重ね合わせた板同士にギャップが存在する場合も、存在しない場合も同様に判断できる。   Furthermore, if it is a resistance spot welder with constant current control, it is possible to determine whether or not the gap 17 is closed by monitoring the welding voltage in the process of closing the gap between the thick plate 12 and the thick plate 13. It is. This is because when the energization is performed while the gap 17 is not closed, the welding current flows around the gap 17 and the resistance increases due to the temperature rise in the bypass. This increases the voltage in the resistance spot welder under constant current control. When the gap 17 is closed, a current also flows directly under the electrode, so that the resistance decreases as the energization area increases. Since the voltage decreases at this time, it is possible to determine whether or not the gap 17 is closed by monitoring the welding voltage. That is, if the voltage in the preliminary energization at a low current stops changing, it is determined that all the stacked plates are in contact with each other. This can be determined in the same manner whether or not there is a gap between the stacked plates.

また、本通電においては、その初期の数サイクルにおいて、予め設定されている本通電設定電流よりも高い電流を流すことがより効果的である。これは、本通電開始時は加圧力が低い状態であるため、電極と鋼板および鋼板と鋼板の接触面積が小さい状態にあり、電極近傍と鋼板−鋼板間にて発熱しやすい状況にあることから、この時に、高い電流を流すことにより、薄板11−厚板12間の温度を高温にまで上昇させることができ、それによって、薄板11−厚板12間にまでナゲットが成長しやすくなるからである。   In the main energization, it is more effective to flow a current higher than a preset main energization set current in the initial several cycles. This is because the applied pressure is low at the start of main energization, so the contact area between the electrode and the steel plate and the steel plate and the steel plate is small, and heat is likely to be generated near the electrode and between the steel plate and the steel plate. At this time, by flowing a high current, the temperature between the thin plate 11 and the thick plate 12 can be raised to a high temperature, and thereby, the nugget can easily grow between the thin plate 11 and the thick plate 12. is there.

さらに、薄板11側の電極チップ21の先端を曲面とし、厚板13側の電極チップ22の先端を厚板12−厚板13間に必要なナゲット径程度の径を持つ平面あるいは薄板11側の電極チップ21よりも大きな曲率半径をもつ曲面とすることがより好ましい。薄板11側の電極チップ21の先端を曲面とし、厚板13側の電極チップ22の先端をより平坦にすることにより、低加圧力では薄板11の変形が小さく抑制でき、通電面積が狭くなることから、薄板11−厚板12間の電流密度が高くなり、薄板11−厚板12間までナゲット18が成長しやすくなる。また、薄板11側の電極21の先端を曲面とすることにより、溶接途中で加圧力を増大させることで、薄板11側の電極チップ21が加圧力を与えられる範囲が増大し、散り発生が抑制され、厚板12−厚板13間に必要な径を持つナゲット19を形成することが可能になる。   Further, the tip of the electrode tip 21 on the thin plate 11 side is a curved surface, and the tip of the electrode tip 22 on the thick plate 13 side is a flat or thin plate 11 side having a necessary nugget diameter between the thick plate 12 and the thick plate 13. It is more preferable that the curved surface has a larger radius of curvature than the electrode tip 21. By making the tip of the electrode tip 21 on the thin plate 11 side a curved surface and making the tip of the electrode tip 22 on the thick plate 13 side flatter, deformation of the thin plate 11 can be suppressed to be small and the energization area becomes narrow. Therefore, the current density between the thin plate 11 and the thick plate 12 increases, and the nugget 18 easily grows between the thin plate 11 and the thick plate 12. In addition, by making the tip of the electrode 21 on the thin plate 11 side a curved surface, by increasing the pressurizing force during welding, the range in which the electrode tip 21 on the thin plate 11 side can be applied increases, and the occurrence of scattering is suppressed. Thus, a nugget 19 having a necessary diameter between the thick plate 12 and the thick plate 13 can be formed.

ちなみに、本発明において用いる溶接装置は、通電中の電極間距離の変動を抑制する加圧機構を有していることを必要とし、また、電極間距離を観測できることが必要となるが、前述したように、サーボモータ加圧式の溶接機であれば容易に行うことができる。また、一対の上下の電極チップで溶接する部分を挟み、加圧、通電するものであれば、加圧機構の形状(定置式、ロボットガン)、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。   Incidentally, the welding apparatus used in the present invention needs to have a pressurizing mechanism that suppresses fluctuations in the distance between electrodes during energization, and it is necessary to be able to observe the distance between electrodes. Thus, a servo motor pressurizing type welding machine can be easily performed. In addition, if the part to be welded is sandwiched between a pair of upper and lower electrode tips, and pressurizes and energizes, the shape of the pressurization mechanism (stationary, robot gun), type of power source (single-phase AC, AC inverter, DC) Inverter) and the like are not particularly limited.

また、溶接される鋼板は、強度レベル(軟鋼、強張力鋼板)や表面処理の有無(表面処理なし、めっき鋼板)にかかわらず適用可能であり、その板組みも、単純な3枚重ねはもちろん、板厚比が5を超えるような場合においても適用可能である。   In addition, the steel plates to be welded can be applied regardless of the strength level (soft steel, high-strength steel plate) or with or without surface treatment (no surface treatment, plated steel plate). The present invention can be applied even when the plate thickness ratio exceeds 5.

本発明の実施例1として、本発明例と比較例を実施した。   As Example 1 of the present invention, an example of the present invention and a comparative example were implemented.

本発明例では、サーボモータ加圧式スポット溶接装置を用いた。対象とした板組みは、図3および表1に示す板組みA(薄板11+厚板12+厚板13)であり、板厚比は7.6である。そして、厚板12と厚板13の間に厚さ1.2mmの鋼板スペーサ15、15を45mmの間隔Wをあけて挿入し、鋼板スペーサ15の部分を予め溶接して、ギャップ17を模擬的に形成した。そして、ギャップ17を閉じる過程における溶接電流は6kAとし、本通電の通電時間を20cycles(50Hz)、本通電設定電流を7kAとした。電極はDR型(先端径8mm、R40)を用いた。加圧力は溶接開始時における設定加圧力Pを3.4kNとし、ギャップ17が潰れた後に電極位置を固定し、実質の加圧力が増加するようにして、最大加圧力Pmを6.3kNとした。   In the example of the present invention, a servo motor pressure spot welding apparatus was used. The target plate assembly is plate assembly A (thin plate 11 + thick plate 12 + thick plate 13) shown in FIG. 3 and Table 1, and the plate thickness ratio is 7.6. Then, steel plate spacers 15 and 15 having a thickness of 1.2 mm are inserted between the thick plate 12 and the thick plate 13 with an interval W of 45 mm, and the portion of the steel plate spacer 15 is welded in advance to simulate the gap 17. Formed. The welding current in the process of closing the gap 17 was 6 kA, the energization time for main energization was 20 cycles (50 Hz), and the main energization setting current was 7 kA. The electrode was a DR type (tip diameter 8 mm, R40). The applied pressure is set to 3.4 kN at the start of welding, the electrode position is fixed after the gap 17 is crushed, and the actual applied pressure is increased so that the maximum applied pressure Pm is set to 6.3 kN. .

一方、比較例では、従来のエア加圧式抵抗スポット溶接機を用いた。対象とした板組みは、本発明例と同様であるが、ギャップ17は設けていない。そして、加圧力を6.3kN一定で溶接を行った。   On the other hand, in the comparative example, the conventional air pressurization type resistance spot welder was used. The target plate assembly is the same as that of the present invention example, but the gap 17 is not provided. Then, welding was performed with a constant pressure of 6.3 kN.

なお、ここで、適正電流範囲は、本通電における溶接時に散りが発生せず、かつ、ナゲットの断面を観察し、隣り合う2枚の鋼板のうち薄い方の鋼板の板厚をtとして、ナゲット径が4√t以上であることを満足するナゲットが得られる溶接電流範囲とした。   Here, the proper current range is such that no scattering occurs during welding in the main energization, and the cross section of the nugget is observed, and the thickness of the thinner one of the two adjacent steel plates is defined as t. The welding current range was such that a nugget satisfying that the diameter was 4√t or more was obtained.

そして、図4に、本発明例における本溶接の溶接電流とナゲット径の関係および適正電流範囲を示す。また、図5に、比較例における本溶接の溶接電流とナゲット径の関係を示す。   FIG. 4 shows the relationship between the welding current and nugget diameter of the main welding in the present invention example and the appropriate current range. FIG. 5 shows the relationship between the welding current and the nugget diameter of the main welding in the comparative example.

まず、図5に示すように、比較例では、ギャップがない板組みにもかかわらず、薄板11と厚板12の間にナゲットを形成するために高い電流を必要とし、4√t以上のサイズのナゲットを散り発生せずに得ることはできない。   First, as shown in FIG. 5, in the comparative example, a high current is required to form a nugget between the thin plate 11 and the thick plate 12 in spite of the plate assembly having no gap, and the size is 4√t or more. You can't get your nuggets without splashing.

一方、図4に示すように、本発明例では、薄板11と厚板12の間にも低い電流でナゲットが形成され、1kA以上の広い適正電流範囲を持つことがわかる。   On the other hand, as shown in FIG. 4, in the present invention example, it is understood that nuggets are formed with a low current between the thin plate 11 and the thick plate 12 and have a wide appropriate current range of 1 kA or more.

また、図6に、本発明例における溶接中の加圧力の時間的変化、電極間距離の時間的変化を測定した一例として、本溶接の溶接電流が9kAの場合の測定結果を示す。   FIG. 6 shows a measurement result when the welding current of the main welding is 9 kA as an example of measuring the temporal change of the applied pressure during welding and the temporal change of the interelectrode distance in the inventive example.

まず、低電流で通電を開始すると、スペーサ15を介して電流が流れ、鋼板温度が上昇することにより、鋼板が変形しやすくなり、電極間距離が徐々に減少していく。厚板12と厚板13の間のギャップ17が潰れて、厚板12と厚板13が接した時点で、それまでスペーサ15を介して流れていた電流が、電極間を最短距離で流れるようになり、電極間での発熱が多くなる。このことにより、電極間の溶接しようとする部分における変形が容易になり、電極間距離が大きく減少する。この状態で数サイクル通電し、厚板12と厚板13の間のなじみを良くしたところで、可動電極の位置を固定し、本通電を開始している。本通電を開始すると、電極位置を固定しているため、実質の加圧力が徐々に上昇する。本溶接中の加圧力が溶接初期は低く、溶接後期では高くなるため、薄板11−厚板12間、厚板12−厚板13間のそれぞれに必要なサイズのナゲットを得ることが容易になる。   First, when energization is started at a low current, current flows through the spacer 15 and the steel plate temperature rises, so that the steel plate is easily deformed, and the distance between the electrodes gradually decreases. When the gap 17 between the thick plate 12 and the thick plate 13 is crushed and the thick plate 12 and the thick plate 13 contact each other, the current that has been flowing through the spacer 15 so far flows between the electrodes at the shortest distance. And more heat is generated between the electrodes. This facilitates deformation at the portion to be welded between the electrodes, and the distance between the electrodes is greatly reduced. In this state, energization was performed for several cycles, and when the familiarity between the thick plate 12 and the thick plate 13 was improved, the position of the movable electrode was fixed and the main energization was started. When the main energization is started, since the electrode position is fixed, the actual pressurizing force gradually increases. Since the applied pressure during the main welding is low in the initial stage of welding and high in the latter stage of welding, it becomes easy to obtain nuggets of a necessary size between the thin plate 11 and the thick plate 12 and between the thick plate 12 and the thick plate 13. .

さらに、本発明の実施例2として、対象とする板組みを拡大して本発明例と比較例を実施した。   Furthermore, as Example 2 of the present invention, the present invention example and a comparative example were implemented by enlarging the target plate assembly.

その板組みは、図7(a)、(b)に示す板組みである。すなわち、図7(a)に示す板組みは、(薄板11+厚板12+厚板13)の3枚重ねであり、鋼板スペーサ15を用いて、適宜、薄板11−厚板12間に深さG1のギャップ、厚板12−厚板13間に深さG2のギャップを設けている。また、図7(b)に示す板組みは、(薄板11+厚板12+厚板13+薄板14)の4枚重ねであり、鋼板スペーサ15を用いて、適宜、薄板11−厚板12間に深さG1のギャップ、厚板12−厚板13間に深さG2のギャップ、厚板13−薄板14間に深さG3のギャップを設けている。   The plate assembly is the plate assembly shown in FIGS. 7 (a) and 7 (b). That is, the plate assembly shown in FIG. 7A is a three-layer stack of (thin plate 11 + thick plate 12 + thick plate 13), and the depth G1 is appropriately set between the thin plate 11 and the thick plate 12 using the steel plate spacer 15. A gap having a depth G2 is provided between the thick plate 12 and the thick plate 13. Further, the plate assembly shown in FIG. 7B is a four-layer stack of (thin plate 11 + thick plate 12 + thick plate 13 + thin plate 14), and a depth between the thin plate 11 and the thick plate 12 is appropriately determined using a steel plate spacer 15. A gap of depth G1, a gap of depth G2 between the thick plate 12 and the thick plate 13, and a gap of depth G3 between the thick plate 13 and the thin plate 14 are provided.

そして、表1に、使用した板組みNo.A〜Lの各板組みにおける板厚構成と板厚比およびギャップ寸法(ギャップ幅W、ギャップ深さG1、G2、G3)を示す。   Table 1 shows the plate assembly No. used. The plate thickness configuration, plate thickness ratio, and gap size (gap width W, gap depths G1, G2, and G3) in each of the plate assemblies A to L are shown.

また、表2に、それぞれの場合における、板組みNo、上下の電極チップの形状、ギャップを潰すための予通電の電流、本通電開始から5cycles/50Hz間での溶接電流2割増の有無、本溶接通電時間、本溶接開始時の設定加圧力P、溶接中の加圧力増加による最大加圧力Pm、Pm≧1.5Pの満足の有無を示す。   Table 2 shows the plate assembly No., the shape of the upper and lower electrode tips, the current of pre-energization for crushing the gap, the presence or absence of a 20% increase in welding current between 5 cycles / 50 Hz from the start of main energization, It shows whether or not the welding energizing time, the set pressure P at the start of main welding, the maximum pressure Pm due to the increase in pressure during welding, and Pm ≧ 1.5P are satisfied.

そして、それぞれの場合における適正電流範囲ΔIを調査し評価した結果を表2に示す。ちなみに、その評価は、溶接時に散りが発生せず、かつ、ナゲットの断面を観察し、隣り合う2枚の鋼板のうち薄い方の鋼板の板厚をtとして、ナゲット径が4√t以上であることを満足するナゲットが得られる溶接電流範囲を適正電流範囲ΔIとし、この適正電流範囲ΔIが1kA以上存在するものを良好(○)とし、適正電流範囲ΔIが1kA未満のものを不良(×)とした。   Table 2 shows the results of investigation and evaluation of the appropriate current range ΔI in each case. By the way, the evaluation is that no scattering occurs at the time of welding, the cross section of the nugget is observed, and the thickness of the thinner steel plate of two adjacent steel plates is t, and the nugget diameter is 4√t or more. A welding current range in which a nugget satisfying certain conditions is obtained is defined as an appropriate current range ΔI, a case where the proper current range ΔI is 1 kA or more is good (◯), and a case where the proper current range ΔI is less than 1 kA is defective (× ).

その結果、本発明例では、適正電流範囲ΔIが1kA以上で、良好な溶接となっているが、比較例では、適正電流範囲ΔIが1kA未満となり、実用に適さない。これにより、本発明の有効性が確認できる。   As a result, in the example of the present invention, the appropriate current range ΔI is 1 kA or more and good welding is achieved, but in the comparative example, the appropriate current range ΔI is less than 1 kA, which is not suitable for practical use. Thereby, the effectiveness of the present invention can be confirmed.

なお、ここでは適正電流範囲ΔIを4√t以上のサイズのナゲットが散り発生がなく得られる範囲と定義したが、これに限るものではなく、基準となるナゲット径は使用者の基準に合わせて3√tでも5√tでもよい。必要となるのは継手の強度であり、使用者の必要とする強度が確保できるかどうかの判断基準の1つとしてナゲット径を規定するものである。また、本発明は板厚比の大きな板組みの抵抗スポット溶接において、鋼板間にギャップが存在しても、薄板−厚板間にも十分な強度が得られる継手を形成する手法を提案するものであり、散りを発生させながら溶接しても本発明を外れるものではない。   Here, the proper current range ΔI is defined as a range in which nuggets having a size of 4√t or more can be obtained without being scattered, but the present invention is not limited to this, and the reference nugget diameter matches the user's standard. It may be 3√t or 5√t. What is needed is the strength of the joint, and the nugget diameter is specified as one of the criteria for judging whether the strength required by the user can be secured. In addition, the present invention proposes a technique for forming a joint that can provide sufficient strength even between a thin plate and a thick plate even when a gap exists between the steel plates in resistance spot welding of a plate assembly having a large plate thickness ratio. Therefore, the present invention does not deviate from the present invention even if welding is performed while causing scattering.

Figure 0005045238
Figure 0005045238

Figure 0005045238
Figure 0005045238

本発明の実施形態における溶接状態を説明する図である。It is a figure explaining the welding state in embodiment of this invention. 本発明の実施形態における溶接状態を説明する図である。It is a figure explaining the welding state in embodiment of this invention. 本発明の実施例1における板組みを示す図である。It is a figure which shows the board assembly in Example 1 of this invention. 本発明の実施例1における本発明例の説明図である。It is explanatory drawing of the example of this invention in Example 1 of this invention. 本発明の実施例1における比較例の説明図である。It is explanatory drawing of the comparative example in Example 1 of this invention. 本発明の実施例1における本発明例の説明図である。It is explanatory drawing of the example of this invention in Example 1 of this invention. 本発明の実施例2における板組みを示す図である。It is a figure which shows the board assembly in Example 2 of this invention.

符号の説明Explanation of symbols

10 板組み(ワーク)
11 一枚目の鋼板(薄板)
12 二枚目の鋼板(厚板)
13 三枚目の鋼板(厚板)
14 四枚目の鋼板(薄板)
15 鋼板スペーサ
16 薄板−厚板間の点接触部
17 厚板−厚板間のギャップ
18 ナゲット
21 電極(電極チップ)
22 電極(電極チップ)
10 Board assembly (work)
11 First steel plate (thin plate)
12 Second steel plate (thick plate)
13 Third steel plate (thick plate)
14 Fourth steel plate (thin plate)
15 Steel plate spacer 16 Point contact part between thin plate and thick plate 17 Gap between thick plate and thick plate 18 Nugget 21 Electrode (electrode tip)
22 Electrode (electrode tip)

Claims (4)

重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板組みを一対の電極によって挟み加圧力を与えながら抵抗スポット溶接をするにあたり、加圧力が設定した値Pまで達した後、低電流での予備通電を開始し、前記重ね合わせた全ての板同士が接した時に前記電極の位置を固定した後、本通電を開始し、前記の電極位置の固定によって本通電開始後の板組みの熱膨張を抑制することで加圧力を増加させ、設定加圧力Pおよび加圧力の最大値Pmが、
Pm≧1.5×P
P≦4kN
となるようにすることを特徴とする抵抗スポット溶接方法。
In performing resistance spot welding while sandwiching a plate assembly in which a thin plate is superimposed on at least one of two or more thick plates that are overlapped and applying a pressing force, the pressing force reaches a set value P, Pre-energization at a low current is started, and the position of the electrode is fixed when all the overlapped plates are in contact with each other. Then, the main energization is started, and the plate after the start of main energization is performed by fixing the electrode position. The pressurizing force is increased by suppressing the thermal expansion of the assembly, and the set pressurizing force P and the maximum value Pm of the pressurizing force are
Pm ≧ 1.5 × P
P ≦ 4kN
A resistance spot welding method characterized by:
サーボモータによって加圧力を与えることとし、前記重ね合わせた全ての板同士が接したことの判断を、サーボモータに内蔵されたエンコーダで電極位置を読み取ることによって行うことを特徴とする請求項1に記載の抵抗スポット溶接方法。   2. The pressurizing force is applied by a servo motor, and it is determined by reading an electrode position with an encoder built in the servo motor that the overlapping plates are in contact with each other. The resistance spot welding method as described. 前記重ね合わせた全ての板同士が接していることの判断を、低電流での予備通電における電圧の変化に基づいて行うことを特徴とする請求項1に記載の抵抗スポット溶接方法。   2. The resistance spot welding method according to claim 1, wherein the determination that all the superposed plates are in contact with each other is made based on a change in voltage during preliminary energization at a low current. 本通電開始後、初期の数サイクルは、予め設定されている本通電設定電流よりも高い電流を流すことを特徴とする請求項1〜3のいずれかに記載の抵抗スポット溶接方法。   The resistance spot welding method according to any one of claims 1 to 3, wherein a current higher than a preset main energization setting current is passed in the initial several cycles after the main energization is started.
JP2007136714A 2007-05-23 2007-05-23 Resistance spot welding method Active JP5045238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136714A JP5045238B2 (en) 2007-05-23 2007-05-23 Resistance spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136714A JP5045238B2 (en) 2007-05-23 2007-05-23 Resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2008290098A JP2008290098A (en) 2008-12-04
JP5045238B2 true JP5045238B2 (en) 2012-10-10

Family

ID=40165368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136714A Active JP5045238B2 (en) 2007-05-23 2007-05-23 Resistance spot welding method

Country Status (1)

Country Link
JP (1) JP5045238B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060579B2 (en) * 2012-09-18 2017-01-18 Jfeスチール株式会社 Resistance spot welding method
CN106457453B (en) * 2014-06-12 2019-01-08 杰富意钢铁株式会社 Resistance spot welding device and resistance spot welding method
JP6160581B2 (en) * 2014-08-19 2017-07-12 Jfeスチール株式会社 Resistance spot welding method
JP6516247B2 (en) * 2014-11-27 2019-05-22 ダイハツ工業株式会社 One side spot welding method
CN107427953B (en) * 2015-03-05 2019-10-08 杰富意钢铁株式会社 Resistance spot welding method and welding point
WO2016139952A1 (en) 2015-03-05 2016-09-09 Jfeスチール株式会社 Resistance spot welding device
CN115156681A (en) * 2022-07-14 2022-10-11 首钢集团有限公司 Resistance spot welding method for multilayer board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166160A (en) * 1996-12-06 1998-06-23 Mazda Motor Corp Spot welding method and equipment therefor
JP3847402B2 (en) * 1997-03-13 2006-11-22 本田技研工業株式会社 Resistance welding method
JP3651310B2 (en) * 1999-05-17 2005-05-25 日産自動車株式会社 Welding robot controller
JP2002096178A (en) * 2000-09-21 2002-04-02 Toyota Auto Body Co Ltd Spot welding device
JP3794300B2 (en) * 2001-08-30 2006-07-05 トヨタ車体株式会社 Spot welding method
JP4327508B2 (en) * 2003-06-04 2009-09-09 ダイハツ工業株式会社 Spot welding method and spot welding apparatus

Also Published As

Publication number Publication date
JP2008290098A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP3228414B1 (en) Resistance spot welding method
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP5045238B2 (en) Resistance spot welding method
JP5599553B2 (en) Resistance spot welding method
JP2007268604A (en) Resistance spot welding method
JP4543823B2 (en) Resistance spot welding method
JP3922263B2 (en) Method of manufacturing resistance spot welded joint
JP5261984B2 (en) Resistance spot welding method
JP5609966B2 (en) Resistance spot welding method
EP3342524B1 (en) Resistance spot welding method and method for manufacturing welded member
JP6094079B2 (en) Resistance spot welding method
KR20200118857A (en) Resistance spot welding method and manufacturing method of welding member
JP2002172469A (en) Spot welding method for high strength steel plate
JP5082249B2 (en) Resistance spot welding method
JP2016041441A (en) Resistance spot welding method
JP5906618B2 (en) Resistance spot welding method
JP6060579B2 (en) Resistance spot welding method
KR102622518B1 (en) Resistance spot welding method and weld member production method
JP2021112773A (en) Resistance spot welding method, method for manufacturing welding member, and welding apparatus
JP7476957B2 (en) Resistance Spot Welding Method
JP7416339B1 (en) Resistance spot welding spatter prediction method, resistance spot welding method, and manufacturing method of welded parts
KR20190009409A (en) Resistance spot welding electrode and its use
JP6658992B1 (en) Resistance spot welding method and method for manufacturing welded member
JP2023037221A (en) Spot welding joint, automobile component, and manufacturing method of spot welding joint
JPH1147946A (en) Production of tailored blank made of steel plate and aluminum alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250