JP6060579B2 - Resistance spot welding method - Google Patents

Resistance spot welding method Download PDF

Info

Publication number
JP6060579B2
JP6060579B2 JP2012203968A JP2012203968A JP6060579B2 JP 6060579 B2 JP6060579 B2 JP 6060579B2 JP 2012203968 A JP2012203968 A JP 2012203968A JP 2012203968 A JP2012203968 A JP 2012203968A JP 6060579 B2 JP6060579 B2 JP 6060579B2
Authority
JP
Japan
Prior art keywords
plate
welding
thick
thick plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012203968A
Other languages
Japanese (ja)
Other versions
JP2014057978A (en
Inventor
泰明 沖田
泰明 沖田
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012203968A priority Critical patent/JP6060579B2/en
Publication of JP2014057978A publication Critical patent/JP2014057978A/en
Application granted granted Critical
Publication of JP6060579B2 publication Critical patent/JP6060579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、複数枚の鋼板を重ね合わせたワーク、特に板厚比(=総厚/一番薄い板の板厚)の大きな板組みを抵抗スポット溶接する方法に関するものである。   The present invention relates to a method for resistance spot welding of a workpiece in which a plurality of steel plates are overlapped, particularly a plate assembly having a large plate thickness ratio (= total thickness / thickness of the thinnest plate).

一般に、重ね合わせられた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。例えば、自動車の製造にあたっては1台あたり数千点ものスポット溶接がなされている。この溶接法は、2枚以上の鋼板を重ね合わせ、その表面を直接、上下の電極で挟み圧力を加えながら、上下電極間に高電流の溶接電流を短時間通電して接合する方法である。高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部は、ナゲットと呼ばれ、両鋼板に電流を流した際に両鋼板の接触箇所で両鋼板が溶融し、凝固した部分であり、これにより両鋼板が点状に接合される。   In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining stacked steel plates. For example, in the manufacture of automobiles, several thousand spots are welded per vehicle. This welding method is a method in which two or more steel plates are overlapped, and the surface is directly sandwiched between the upper and lower electrodes and a high current welding current is applied between the upper and lower electrodes for a short time to join them. A spot-like weld is obtained by utilizing resistance heat generated by passing a high-current welding current. This point-like weld is called a nugget and is a part where both steel plates melt and solidify at the contact points of both steel plates when current is passed through both steel plates. The

また、自動車の部品構造をみると、例えばセンターピラーでは、アウターとインナーの間にリインフォースメントを挟み込んだ構造が採用されている。この構造では、単純な二枚重ねの鋼板をスポット溶接する場合と異なり、3枚以上の鋼板を重ね合わせてスポット溶接することが要求される。   Looking at the parts structure of an automobile, for example, a center pillar employs a structure in which a reinforcement is sandwiched between an outer and an inner. In this structure, unlike the case of spot welding of a simple two-ply steel plate, it is required to superimpose three or more steel plates for spot welding.

さらに、最近では、車体の衝突安全性の更なる向上要求にともない、リインフォースメントなどの高強度化、厚肉化が進み、外側に板厚の薄いアウター(薄板)を配置し、内側に板厚の厚いインナー、リインフォースメント(厚板)を組み合わせた板組みをスポット溶接することが必要となる場合が多い。なお、ここでは、板組みされた鋼板のうち、板厚が相対的に小さい鋼板を薄板と記載し、板厚の相対的に大きい鋼板を厚板と記載することとし、以下も同様の記載とする。   Furthermore, recently, with the demand for further improvement in collision safety of the car body, reinforcement and other strength has been increased, and a thin outer (thin plate) has been placed on the outside, and the thickness has been increased on the inside. Often, it is necessary to spot weld a plate assembly that combines thick inners and reinforcements (thick plates). Here, among the steel plates assembled in a plate, a steel plate having a relatively small thickness is referred to as a thin plate, a steel plate having a relatively large thickness is referred to as a thick plate, and the following is also the same description. To do.

このような板厚比(=板組みの全体厚/一番薄い板の板厚)の大きな板組みにおいて、従来のような、加圧力、溶接電流を一定の値としたままスポット溶接を行った場合には一番外側(電極チップと接触する側)の薄板と厚板の間に必要なサイズのナゲットが形成されにくく、健全な接合部を得るのが困難なことが知られている。とくに板厚比が5を超えるような板組みでは、この傾向が強い。   In such a plate assembly having a large plate thickness ratio (= total thickness of the plate assembly / thickness of the thinnest plate), spot welding was performed with a constant pressure and welding current as in the prior art. In this case, it is known that a nugget of a necessary size is difficult to be formed between the thin plate and the thick plate on the outermost side (the side in contact with the electrode tip), and it is difficult to obtain a sound joint. This tendency is particularly strong when the plate thickness ratio exceeds 5.

これは、電極チップによる冷却によって一番外側の薄板と厚板の間では温度が上がりにくいことが原因である。ナゲットは、電極間の中央付近から鋼板の固有抵抗により体積抵抗発熱にて形成されるが、ナゲットが薄板にまで成長する間に、電極間中央部に近い部分に位置する厚板と厚板間でのナゲットの成長が大きく、電極による加圧では抑えきれずに散りが発生するため、散り発生なく必要なサイズのナゲットを薄板−厚板間に得ることが困難となり、破壊試験をしたときに、薄板が剥離しやすい。   This is because the temperature hardly rises between the outermost thin plate and the thick plate due to cooling by the electrode tip. The nugget is formed by volume resistance heat generation due to the specific resistance of the steel plate from the center between the electrodes, but between the thick plate and the thick plate located near the center between the electrodes while the nugget grows to a thin plate The nugget grows at a large size, and it is difficult to obtain a nugget of the required size between the thin and thick plates without the occurrence of splattering. The thin plate is easy to peel off.

また、一番外側に配置される薄板がアウターの場合には、強度よりも成形性が重要となるため、使用される鋼板は軟鋼となることが多い。一方、厚板は強度補強部材であり高張力鋼板が使用される場合が多い。このような板組みでは、発熱する位置は、固有抵抗の高い高張力鋼板側に偏るため、厚板−薄板(軟鋼)間にはさらにナゲットが形成されにくくなる。   Further, when the outermost thin plate is the outer, formability is more important than strength, so the steel plate used is often mild steel. On the other hand, the thick plate is a strength reinforcing member, and a high-tensile steel plate is often used. In such a plate assembly, the position where heat is generated is biased toward the high-tensile steel plate having a high specific resistance, so that nuggets are more difficult to be formed between the thick plate and the thin plate (mild steel).

このような問題に対し、例えば、特許文献1では、重ね合わされた2枚の厚板にさらに薄板が重ねあわされた板厚比の大きな板組みにおいて、薄板の溶接すべき位置に部分的に一般部より一段高い座面を形成するとともに、薄板に対抗する電極は、先端を球面に形成し、溶接前期は低加圧力で、薄板の座面を押しつぶすようにして、薄板とこれと隣り合う厚板とを溶接し、その後、高加圧力で2枚の厚板同士を溶接することにより、薄板−厚板間にも必要なナゲットを得る技術が提案されている。   In order to deal with such a problem, for example, in Patent Document 1, in a plate assembly having a large plate thickness ratio in which a thin plate is further overlapped with two superposed thick plates, the thin plate is generally partially positioned at a position to be welded. In addition to forming a seat surface that is one step higher than the center, the electrode that opposes the thin plate is formed with a spherical tip at the tip, and in the first half of welding, the seat surface of the thin plate is crushed with a low applied pressure, so A technique for obtaining a necessary nugget between a thin plate and a thick plate by welding the plates and then welding the two thick plates with a high pressure force has been proposed.

また、特許文献2では、剛性の高い2枚の厚板の上に剛性の低い薄板を重ね合わせたワークを、一対の電極チップにより挟んでスポット溶接する方法において、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより、薄板−厚板間にもナゲットを得る技術が提案されている。   Further, in Patent Document 2, in a method in which a workpiece in which a thin plate with low rigidity is superimposed on two thick plates with high rigidity is sandwiched between a pair of electrode tips, the thin plate with the smallest rigidity is brought into contact. By making the tip diameter of the electrode tip smaller than the tip diameter of the electrode tip contacting the thick plate, the contact area between the thin plate and the electrode tip is made smaller than the contact area between the thick plate and the electrode. A technique for obtaining a nugget between a thin plate and a thick plate has been proposed.

また、特許文献3では、板厚比の大きな被溶接体をスポット溶接する方法において、被溶接体に第1の加圧力を負荷して溶接電流を流した後、一旦通電を停止し、被溶接体を挟んだまま、上記第1の加圧力よりも大きな第2の加圧力を負荷して再び溶接電流を流すことにより、そして望ましくは、上記第1の工程における溶接電流の電流値を、第1段階〜第3段階の3段階に変化させるとともに、第2段階の電流値を第1段階および第3段階の電流値よりも小さくすることにより、板厚比の大きい被溶接体の接合強度を向上させるというスポット溶接方法が提案されている。   Further, in Patent Document 3, in a method of spot welding a workpiece to be welded having a large thickness ratio, after applying a first pressing force to the workpiece and flowing a welding current, the energization is temporarily stopped and the workpiece to be welded is applied. With the body sandwiched between them, a second pressing force larger than the first pressing force is applied and a welding current is flowed again. Preferably, the current value of the welding current in the first step is set to a first value. While changing from the first stage to the third stage, the current value of the second stage is made smaller than the current values of the first stage and the third stage, the joint strength of the welded body having a large plate thickness ratio is increased. The spot welding method of improving is proposed.

特開2003−071569号公報JP 2003-071569 A 特開2003−251468号公報JP 2003-251468 A 特開2004−358500号公報JP 2004-358500 A

しかしながら、特許文献1に記載の抵抗スポット溶接方法では、厚板−厚板間に板隙があった場合に、薄板−厚板間にナゲットを形成させる1段目の通電期間中に、電極直下の厚板−厚板間において接触が生じると、そこで電流密度が急激に高まり、散りが発生するという問題がある。   However, in the resistance spot welding method described in Patent Document 1, when there is a gap between the thick plate and the thick plate, the first portion of the energization period in which the nugget is formed between the thin plate and the thick plate is directly below the electrode. When contact occurs between the thick plate and the thick plate, there is a problem in that the current density rapidly increases and scattering occurs.

また、特許文献2に記載の抵抗スポット溶接方法では、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより、薄板−厚板間にもナゲットを得ているが、薄板と電極チップとの接触面積が小さいことは電極により加圧される範囲が狭いことになり、厚板−厚板間に大きなナゲットを形成しようとすると散りが発生するという問題がある。   Moreover, in the resistance spot welding method described in Patent Document 2, the thin plate and the electrode tip are formed by making the tip diameter of the electrode tip that contacts the thin plate having the smallest rigidity smaller than the tip diameter of the electrode tip that contacts the thick plate. Nugget is obtained between the thin plate and the thick plate by making the contact area with the plate smaller than the contact area between the thick plate and the electrode, but the contact area between the thin plate and the electrode tip is small. As a result, there is a problem that the range in which pressure is applied becomes narrow, and when a large nugget is formed between the thick plate and the thick plate, scattering occurs.

また、特許文献3に記載の抵抗スポット溶接方法では、ナゲットを薄板−厚板間に形成することが可能となるが、鋼板間に板隙が存在する場合はナゲットの形成が困難となり、剥離試験を行ったときに薄板−厚板間に健全な接合部を得ることは困難になると考えられる。   In addition, in the resistance spot welding method described in Patent Document 3, it is possible to form a nugget between a thin plate and a thick plate. However, if a sheet gap exists between the steel plates, it becomes difficult to form the nugget, and a peeling test is performed. It is considered difficult to obtain a sound joint between the thin plate and the thick plate.

本発明は、上記のような事情に鑑みてなされたものであり、板厚の厚い重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板厚比の大きな板組みにおいて、板と板の間に板隙があった場合でも、薄板−厚板間と厚板−厚板間に健全な接合部を得ることができる抵抗スポット溶接方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in a plate assembly having a large plate thickness ratio in which a thin plate is overlaid on at least one of two or more thick plates overlaid with a large plate thickness, An object of the present invention is to provide a resistance spot welding method capable of obtaining sound joints between a thin plate and a thick plate and between a thick plate and a thick plate even when there is a gap between the plate and the plate.

本発明者らは、上記課題を達成するため、抵抗スポット溶接におけるナゲット形成に及ぼす各種要因について鋭意検討した。まず、重ね合わせた2枚以上の厚板の一方に薄板を重ね合わせた板厚比の大きな場合のスポット溶接を行った場合、薄板−厚板間に必要なサイズのナゲットが形成されにくいことが知られており、その解決には溶接前期の加圧力は小さくし、溶接中に加圧力を増加させることが有効であることを知見した。   In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting nugget formation in resistance spot welding. First, when spot welding is performed in the case of a large plate thickness ratio in which a thin plate is overlapped with one of two or more thick plates that are overlapped, it is difficult to form a nugget of a necessary size between the thin plate and the thick plate. It has been known that, in order to solve this problem, it is effective to reduce the applied pressure in the first stage of welding and increase the applied pressure during welding.

すなわち、溶接前期から高加圧力で加圧した場合、電極−薄板間、薄板−厚板間、厚板−厚板間の通電面積が広くなり、電流密度が低くなるため発熱し難く、さらに板厚比が大きな板組みの場合、薄板−厚板間は電極に近いために冷却され、より発熱し難い状態となる。このため、厚板−厚板間には必要なサイズのナゲットが形成されても、薄板−厚板間にはナゲットが形成されず、破壊試験を行なった場合に薄板が剥離しやすい。   That is, when high pressure is applied from the first stage of welding, the current-carrying area between the electrode and thin plate, between the thin plate and thick plate, and between the thick plate and thick plate becomes large, and the current density becomes low, so it is difficult to generate heat. In the case of a plate assembly having a large thickness ratio, the space between the thin plate and the thick plate is close to the electrode, so that it is cooled and is in a state where it is more difficult to generate heat. For this reason, even if a nugget of a necessary size is formed between the thick plate and the thick plate, no nugget is formed between the thin plate and the thick plate, and the thin plate is easily peeled off when a destructive test is performed.

一方、溶接前期に低い加圧力で溶接した場合は、電極−薄板間、薄板−厚板間、厚板−厚板間の通電面積が小さくなり、低い電流でも電流密度が高く発熱しやすくなる。特に電極と薄板の間の接触径が小さくなるように加圧力を低く設定することにより、電極−薄板間の接触部の電流密度が高くなるが、電極の冷却作用により電極−薄板間の発熱は抑制され、通電前期は電極からわずかに離れた電極の近傍における発熱が最も多くなる。板厚比の大きな板組みでは電極近傍の発熱域と薄板−厚板の境界が近い位置にあるため、低い加圧力下であれば、この発熱による熱膨張・変形が薄板−厚板間の接触径を減らし、電流密度が増加することにより、薄板−厚板間にナゲットが形成される。   On the other hand, when welding is performed at a low pressure in the first stage of welding, the current-carrying area between the electrode and the thin plate, between the thin plate and the thick plate, and between the thick plate and the thick plate is small, and the current density is high and the heat is easily generated. In particular, by setting the applied pressure low so that the contact diameter between the electrode and the thin plate is reduced, the current density at the contact portion between the electrode and the thin plate increases, but the heat generation between the electrode and the thin plate is caused by the cooling action of the electrode. In the first half of energization, the heat generation in the vicinity of the electrode slightly away from the electrode is the largest. In a plate assembly with a large plate thickness ratio, the heat generation area near the electrode and the boundary between the thin plate and the thick plate are close to each other. By reducing the diameter and increasing the current density, a nugget is formed between the thin plate and the thick plate.

しかしながら、低加圧力のままでは長時間通電しても電極近傍に形成された溶融部が鋼板表面にまで成長し、表散りが発生するようになる。また、厚板−厚板間も加圧力が小さいために、必要なナゲット径が得られる前に散りが発生する。   However, if the pressure is kept low, the melted portion formed in the vicinity of the electrode grows up to the surface of the steel plate even when the current is applied for a long time, and surface scattering occurs. Further, since the applied pressure is small between the thick plate and the thick plate, scattering occurs before the necessary nugget diameter is obtained.

そこで、低加圧力で溶接を開始し、溶接中に加圧力を増加させることで、上記の問題が解決し、板厚比が大きい板組みでも薄板−厚板間、厚板−厚板間それぞれに必要な径のナゲットを形成する溶接が可能となると考えた。溶接前期に低加圧力で短時間高電流通電することにより、薄板−厚板間にナゲットを形成させる。その後、溶接後期に加圧力を増加させることにより、電極−薄板間の通電面積の拡大と、電極による冷却作用の増加により、電極近傍でのナゲット形成は停止し、今度は電極間中央部付近に発熱域が移動し、厚板−厚板間にナゲットが形成される。加えて、加圧力が大きいことにより、電極による加圧面積も広がり、ナゲットが大きく成長しても散りが発生しにくくなる。   Therefore, by starting welding with a low pressure and increasing the pressure during welding, the above problems can be solved, and even between a thin plate and a thick plate, even between a thin plate and a thick plate, We thought that welding to form a nugget with a diameter required for the welding would be possible. A nugget is formed between a thin plate and a thick plate by applying a high current for a short time with a low pressure in the first stage of welding. After that, by increasing the applied pressure in the latter stage of welding, the nugget formation near the electrodes was stopped due to the expansion of the current-carrying area between the electrode and the thin plate and the increase of the cooling action by the electrodes. The heat generation area moves, and a nugget is formed between the thick plate and the thick plate. In addition, since the pressurizing force is large, the pressurization area by the electrode is widened, and even if the nugget grows greatly, it becomes difficult for scattering to occur.

以上により、板厚比が大きな板組みにおいても、薄板−厚板間、厚板−厚板間のそれぞれに必要なサイズのナゲットを得ることができる抵抗スポット溶接が可能となる。   As described above, even in a plate assembly having a large plate thickness ratio, resistance spot welding that can obtain nuggets of a necessary size between the thin plate and the thick plate and between the thick plate and the thick plate is possible.

しかしながら、重ね合わせた鋼板間に板隙が存在する場合は、溶接前期の低加圧での溶接において、板隙がなくならないために、溶接電流は隣の溶接点等、離れた位置にある鋼板間接触点に分流する。この場合は電極直下における溶接電流密度が、板隙のない場合と比較して低くなり、薄板−厚板間にナゲットが形成されにくくなる。一方、溶接前期の低加圧での溶接条件を板隙のある場合に合わせた場合には、板隙がない場合、あるいは溶接途中に板隙がつぶれてなくなった場合に、厚板−厚板間での電流密度が過剰となり、散りが発生する。   However, if there is a gap between the stacked steel sheets, the gap does not disappear in the low-pressure welding in the first half of welding, so the welding current is in a remote position such as the adjacent welding point. Shunt to the contact point. In this case, the welding current density immediately below the electrode is lower than that without a gap, and it is difficult to form a nugget between the thin plate and the thick plate. On the other hand, if the welding conditions at low pressure in the first stage of welding are matched with a gap, if there is no gap, or if the gap does not collapse during welding, The current density between them becomes excessive, and scattering occurs.

そこで、本発明者らは更に検討を重ねて、板隙の有無に関わらず、板厚比の大きな板組みにおいても薄板−厚板間、厚板−厚板間にナゲットを形成することを可能とする手法を見出した。   Therefore, the present inventors have further studied, and it is possible to form a nugget between a thin plate and a thick plate and between a thick plate and a thick plate even in a plate assembly having a large plate thickness ratio regardless of the presence or absence of a plate gap. And found a technique.

それは、重ね合わせた2枚の厚板の少なくとも一方に、厚板−厚板間に隙間が形成されるように凸部を設け、さらに厚板−厚板間に導電性を持たない樹脂を塗布した上で、上記の手法を適用するというものである。重ねられた薄板と厚板の間においては、溶接前期の低い加圧力でも薄板−厚板の間の板隙は潰されて電極直下にて接触し、高い電流密度を得ることができる。一方、重ね合わせた2枚の厚板−厚板間においては、凸部を設けたことにより剛性が高くなり、溶接前期の低加圧力の溶接においては、厚板−厚板間の板隙はつぶれ難く、かつ、導電性を持たない樹脂を厚板−厚板間に塗布しておくことにより、この樹脂が厚板−厚板間に設けられた隙間に溜まり、溶接前期の低い加圧力での溶接中の変形が生じても、電極直下の厚板−厚板間は電流が流れない。厚板−厚板間における電流は常に突部の外側における鋼板間の接触部、あるいは既に溶接した溶接点を通して流れることとなり、溶接前期の低加圧力での溶接中に散りが発生しにくくなる。その後、溶接後期に加圧力を増加させることにより、厚板−厚板間の導電性を持たない樹脂は電極直下から押し出され、溶接後期の大加圧力の溶接では、電極直下を直線的に電流が流れ、厚板−厚板間にナゲットを形成させることができる。   It is provided with a convex part on at least one of the two stacked thick plates so that a gap is formed between the thick plate and the thick plate, and a resin having no electrical conductivity is applied between the thick plate and the thick plate. After that, the above method is applied. Between the stacked thin plates and the thick plates, the plate gap between the thin plates and the thick plates is crushed and contacted directly under the electrodes even at a low pressure in the first stage of welding, and a high current density can be obtained. On the other hand, the rigidity between the two thick plates overlapped with each other increases due to the provision of the convex portion, and in the low pressure welding in the first stage of welding, the gap between the thick plates is large. By applying a resin that is not easily crushed and has no electrical conductivity between the thick plate and the thick plate, the resin accumulates in the gap provided between the thick plate and the thick plate, and the pressure applied during the first half of welding is low. Even if deformation occurs during welding, no current flows between the thick plate and the thick plate directly under the electrode. The electric current between the thick plate and the thick plate always flows through the contact portion between the steel plates on the outside of the protrusion or the welding point that has already been welded, and it is difficult for scattering to occur during welding at a low pressurizing force before the welding. After that, by increasing the applied pressure in the second half of welding, the resin that does not have electrical conductivity between the thick plate and the thick plate is pushed out from directly under the electrode. And a nugget can be formed between the plank and the plank.

また、薄板−厚板間においても、電極直下以外の場所における分流を減らすことは溶接前期の低加圧下での溶接中に薄板−厚板間にナゲットを形成する上で有効である。薄板−厚板間に樹脂の塗布は必須ではないが、導電性を持たない樹脂を塗布することがより好ましい。薄板−厚板間に導電性を持たない樹脂を塗布することにより、電極直下は電極による加圧で樹脂が押し出されて通電の経路が確保され、その外側は導電性を持たない樹脂により薄板−厚板間が絶縁されているため、薄板−厚板間の電極直下の電流密度を高めることが容易となり、健全なナゲットを形成することが容易になる。   In addition, reducing the diversion in a place other than just below the electrode between the thin plate and the thick plate is effective for forming a nugget between the thin plate and the thick plate during welding under low pressure in the first stage of welding. It is not essential to apply a resin between the thin plate and the thick plate, but it is more preferable to apply a resin having no conductivity. By applying a non-conductive resin between the thin plate and the thick plate, the resin is extruded under pressure by the electrode just below the electrode to secure a current path, and the outside of the thin plate is made of non-conductive resin. Since the thick plates are insulated, it is easy to increase the current density immediately below the electrode between the thin plates and the thick plates, and it is easy to form a healthy nugget.

なお、従来の抵抗スポット溶接方法では、電極間中央部付近に形成されるナゲットを、薄板−厚板間が溶融するまで大きく成長させる必要があり、過大な電流が必要となっていた。これに対して、上記の方法であれば、溶接前期に薄板−厚板間に健全な接合部が形成できるため、溶接後期は厚板−厚板間に必要な径のナゲットが形成できる条件であれば良く、溶接後期の加圧力に応じて適切な溶接電流値を選べばよい。溶接後期の加圧力は、厚板―厚板間の板隙を潰して導電性を持たない樹脂を押し出すに十分な加圧力を加える必要があり、これは鋼板強度や板隙の剛性により異なる。   In the conventional resistance spot welding method, it is necessary to grow a nugget formed near the center between the electrodes until the gap between the thin plate and the thick plate is melted, and an excessive current is required. On the other hand, in the case of the above method, a sound joint can be formed between the thin plate and the thick plate in the first stage of welding. What is necessary is just to select an appropriate welding current value according to the applied pressure in the latter stage of welding. It is necessary to apply sufficient pressure to crush the gap between the thick plates and extrude the resin without conductivity, and this depends on the strength of the steel plate and the rigidity of the gap.

本発明は、上記の考え方に基づいて想到されたものであり、以下のような特徴を有している。   The present invention has been conceived based on the above concept and has the following characteristics.

[1]重ね合わせた2枚の板厚の厚い鋼板の一方に、さらに板厚の薄い鋼板を重ね合わせた板組みを一対の電極によって挟み、加圧力を加えながら抵抗スポット溶接を行なうにあたり、電極直下においてその2枚の板厚の厚い鋼板の間に隙間が形成されるように、2枚の板厚の厚い鋼板の少なくとも一方に凸部を設けるとともに、さらに、その板厚の厚い2枚の鋼板の間には、導電性を持たない樹脂を介在させた上で、溶接工程を前期と後期に分け、溶接前期に前記2枚以上の板厚の厚い鋼板の間に介在する樹脂が電極直下から押し出されない低い加圧力で短時間の溶接を行ない、溶接後期に前記2枚以上の板厚の厚い鋼板の間に介在する樹脂が電極直下から押し出されるのに十分な高い加圧力で溶接を行なうことを特徴とする抵抗スポット溶接方法。   [1] When carrying out resistance spot welding while applying a pressing force by sandwiching a plate assembly in which a steel plate with a thinner plate thickness is further superposed on one of two stacked steel plates with a greater thickness, Protruding portions are provided on at least one of the two thick steel plates so that a gap is formed between the two thick steel plates immediately below the two thick steel plates. Between the steel plates, a non-conductive resin is interposed, and the welding process is divided into the first and second stages, and the resin interposed between the two or more thick steel plates in the first stage of welding is directly under the electrode. Welding is performed for a short time with a low pressure that is not extruded from, and welding is performed with a sufficiently high pressure so that the resin intervening between the two or more thick steel plates is extruded from directly below the electrode in the latter stage of welding. Resistance spot characterized by performing Contact method.

[2]一方に重ねられた板厚の薄い鋼板と板厚の厚い鋼板の間に導電性を持たない樹脂を介在させて溶接することを特徴とする前記[1]に記載の抵抗スポット溶接方法。   [2] The resistance spot welding method according to [1], wherein welding is performed with a non-conductive resin interposed between the thin steel plate and the thick steel plate that are stacked on one side. .

本発明によると、重ね合わせた2枚の板厚の厚い鋼板の少なくとも一方に板厚の薄い鋼板を重ね合わせた板厚比の大きな板組みを抵抗スポット溶接する場合において、薄板−厚板間と厚板−厚板間の両方に健全な接合部を形成する抵抗スポット溶接を行なうことが可能となる。   According to the present invention, in the case of resistance spot welding a plate assembly having a large plate thickness ratio in which a thin steel plate is superposed on at least one of two superposed thick steel plates, between the thin plate and the thick plate, It is possible to perform resistance spot welding that forms a sound joint between the thick plate and the thick plate.

本発明の一実施形態における溶接開始前の状態(板組み)を示す図である。It is a figure which shows the state (plate assembly) before the welding start in one Embodiment of this invention. 本発明の一実施形態における溶接前期のナゲット形成状態を示す図である。It is a figure which shows the nugget formation state of the welding first term in one Embodiment of this invention. 本発明の一実施形態における溶接後期のナゲット形成状態を示す図である。It is a figure which shows the nugget formation state of the welding latter stage in one Embodiment of this invention. 本発明の一実施形態における他の溶接開始前の状態(板組み)を示す図である。It is a figure which shows the state (plate assembly) before the other welding start in one Embodiment of this invention. 本発明の一実施形態における他の溶接開始前の状態(板組み)を示す図である。It is a figure which shows the state (plate assembly) before the other welding start in one Embodiment of this invention. 本発明の実施例における板組みを示す図である。It is a figure which shows the board assembly in the Example of this invention. 本発明の実施例において用いた凸部を有する鋼板(厚板)の形状を示す図である。It is a figure which shows the shape of the steel plate (thick board) which has the convex part used in the Example of this invention.

本発明の一実施形態を以下に述べる。   One embodiment of the present invention is described below.

本発明の一実施形態においては、図1に示すように、重ね合わせた2枚の板厚の厚い鋼板(厚板)12、13の上面に板厚の薄い鋼板(薄板)11を重ね合わせ、さらにその鋼板間に板隙(薄板11と厚板12の間に第1の板隙31、厚板12と厚板13の間に第2の板隙32)があるような板厚比の大きな板組み(ワーク)を、一対の電極(電極チップ)16、17で挟んで加圧力を加えながら抵抗スポット溶接する場合に、厚板12には、電極直下の厚板12と厚板13の間に隙間33が形成されるように、上に向いた凸部20を設け、さらに2枚の厚板12と厚板13の間に導電性を持たない樹脂14を塗布した板組み(ワーク)10Aとした上で、溶接を行う。   In one embodiment of the present invention, as shown in FIG. 1, a thin steel plate (thin plate) 11 is superposed on the upper surfaces of two superposed thick steel plates (thick plates) 12, 13. Further, the plate thickness ratio is large such that there is a plate gap (the first plate gap 31 between the thin plate 11 and the thick plate 12 and the second plate gap 32 between the thick plate 12 and the thick plate 13) between the steel plates. When a plate assembly (workpiece) is sandwiched between a pair of electrodes (electrode tips) 16 and 17 and is subjected to resistance spot welding while applying pressure, the thick plate 12 includes a gap between the thick plate 12 and the thick plate 13 immediately below the electrodes. A plate assembly (work) 10A in which a convex portion 20 facing upward is provided so that a gap 33 is formed, and a non-conductive resin 14 is applied between the two thick plates 12 and 13. Then, welding is performed.

そして、溶接工程を前期と後期に分け、溶接前期において、低い加圧力で加圧して、第1板隙31を潰した上で、短時間、高電流にて溶接を行なうことで、図2に示すように、薄板11−厚板12間にナゲット18が形成される。この低加圧の溶接前期において、板隙32に塗布されている導電性を持たない樹脂14は、凸部20の外側においては鋼板間から押し出され、溶接電流は凸部20の外側21を経由して流れる。一方、凸部20においては、形成される隙間33に樹脂14が溜まり、電極直下からは押し出されずに残る。このことによって、溶接前期の溶接中に溶接部の温度が上昇し、凸部20に形成された隙間33がつぶれる方向に変形が進んでも、導電性を持たない樹脂14により、凸部20において厚板12、13の間で溶接電流が直線的に流れる事はなく、ここでの散り発生を抑制することができる。   Then, the welding process is divided into the first half and the second half. In the first half of welding, the first plate gap 31 is crushed by pressurizing with a low pressure, and welding is performed at a high current for a short time. As shown, a nugget 18 is formed between the thin plate 11 and the thick plate 12. In this low pressure pre-welding pre-welding period, the non-conductive resin 14 applied to the gap 32 is pushed out from between the steel plates on the outside of the projection 20, and the welding current passes through the outside 21 of the projection 20. Then flow. On the other hand, in the convex part 20, the resin 14 accumulates in the gap 33 to be formed, and remains without being extruded from directly below the electrode. As a result, even if the temperature of the welded portion rises during welding in the first half of welding and the gap 33 formed in the convex portion 20 is deformed in a direction to be crushed, the resin 14 having no conductivity causes the thickness at the convex portion 20 to increase. The welding current does not flow linearly between the plates 12 and 13, and the occurrence of scattering here can be suppressed.

そして、溶接前期の通電終了後、溶接後期に加圧力を増加させて、凸部20に形成されていた隙間33を潰し、塗布されている導電性をもたない樹脂14を電極間から押し出した後、通電することにより、図3に示すように、厚板12−厚板13間にもナゲット19が形成される。   Then, after the energization in the first half of welding was completed, the applied pressure was increased in the second half of welding to crush the gap 33 formed in the convex portion 20, and the applied non-conductive resin 14 was pushed out between the electrodes. Thereafter, by energization, a nugget 19 is also formed between the thick plate 12 and the thick plate 13 as shown in FIG.

ここで、使用する樹脂14は導電性を持たないものであればよく、たとえば自動車の製造においてシーラントとして使用されているものや、ウェルドボンド工法にて使用されている接着剤でよい。接着剤の場合は溶接部の疲労特性や耐食性を向上させる効果も得られ、また、部品の剛性を上げる効果も得られる。たとえば熱硬化性エポキシ樹脂接着剤などが適用できる。   Here, the resin 14 to be used is not particularly limited as long as it does not have conductivity. For example, the resin 14 used as a sealant in the manufacture of an automobile or an adhesive used in a weld bond method may be used. In the case of an adhesive, the effect of improving the fatigue characteristics and corrosion resistance of the welded portion can be obtained, and the effect of increasing the rigidity of the part can be obtained. For example, a thermosetting epoxy resin adhesive can be applied.

このようにして、この実施形態では、溶接前期において、低い加圧力を加えることによって、板隙31における電流密度だけを高めてナゲット18を形成し、その後、溶接後期において、加圧力を増加させることで凸部20に形成した隙間33に溜まっていた導電性を持たない樹脂14を押し出すことにより、電極間を直線的に電流が流れるようにすることで、板隙31、32のある板厚比が大きい板組みでも、必要なナゲット径を持つナゲット18、19を、薄板11−厚板12間、厚板12−厚板13間のそれぞれに形成し、健全な接合部を形成する溶接が可能となる。   Thus, in this embodiment, by applying a low pressure in the first stage of welding, only the current density in the plate gap 31 is increased to form the nugget 18, and then the pressure is increased in the second stage of welding. By extruding the non-conductive resin 14 accumulated in the gap 33 formed in the convex portion 20 in such a manner that a current flows linearly between the electrodes, a thickness ratio with the gaps 31 and 32 is provided. Nuggets 18 and 19 having the required nugget diameter can be formed between the thin plate 11 and the thick plate 12 and between the thick plate 12 and the thick plate 13, respectively, even with a large plate assembly, and welding to form a sound joint is possible. It becomes.

上記のように、薄板11−厚板12間に溶融部(ナゲット)18を形成するには、溶接前期に低加圧力で高い溶接電流を流すことにより、電極近傍の薄板11−厚板12間付近を集中的に加熱することが重要となる。加圧力が2.0kNを超えると、高い電流を流したときに厚板12が高温となり強度が低下するため、厚板12−厚板13間の板隙32が潰れる方向に大きく変形し、その結果、薄板11も大きく変形することになり、薄板11−厚板12間の接触面積が大きく拡大することで電流密度が低下し、薄板11−厚板12間にナゲット18を形成することが難しくなる、あるいは、厚板12―厚板13間の導電性を持たない樹脂14が押し出されて電流が電極間を直線的に流れるようになるため、一気に厚板12―厚板13間の接触部分の電流密度が高まり、散りが発生することになる。よって、溶接前期の加圧力は2.0kN以下、さらに好ましくは1kN以下とするのが好ましい。さらに、溶接前期において数サイクル通電後に加圧力を低減させることは、通電中の厚板12、13の変形を抑える上で有効である。   As described above, in order to form the melted portion (nugget) 18 between the thin plate 11 and the thick plate 12, by passing a high welding current with a low pressurizing force in the first stage of welding, between the thin plate 11 and the thick plate 12 near the electrode. It is important to heat the neighborhood intensively. If the applied pressure exceeds 2.0 kN, the thick plate 12 becomes high temperature when a high current is passed, and the strength is lowered. Therefore, the plate gap 32 between the thick plate 12 and the thick plate 13 is greatly deformed, As a result, the thin plate 11 is also greatly deformed, the contact area between the thin plate 11 and the thick plate 12 is greatly enlarged, the current density is lowered, and it is difficult to form the nugget 18 between the thin plate 11 and the thick plate 12. Or because the resin 14 having no electrical conductivity between the thick plate 12 and the thick plate 13 is pushed out and the current flows linearly between the electrodes, the contact portion between the thick plate 12 and the thick plate 13 at once. The current density increases, and scattering occurs. Therefore, it is preferable that the applied pressure in the first stage of welding is 2.0 kN or less, more preferably 1 kN or less. Furthermore, reducing the applied pressure after several cycles of energization in the first half of welding is effective in suppressing deformation of the thick plates 12 and 13 during energization.

そして、上記では、厚板12に上に向いた凸部20を設けた板組み10Aとしていたが、厚板12と厚板13の間に隙間33が形成されるように、少なくとも厚板12と厚板13のいずれか一方に凸部20を設ければよく、図4に示すように、厚板13に下に向いた凸部20を設けた板組み10Bとしてもよいし、図5に示すように、厚板12に上に向いた凸部20を設けるとともに、厚板13に下に向いた凸部20を設けた板組み10Cとしてもよい。   In the above description, the plate assembly 10A has the thick plate 12 provided with the upwardly projecting protrusions 20. However, at least the thick plate 12 and the thick plate 12 are formed so that a gap 33 is formed between the thick plate 12 and the thick plate 13. It suffices to provide the convex portion 20 on either one of the thick plates 13, and as shown in FIG. 4, a plate assembly 10B in which the convex portion 20 facing downward is provided on the thick plate 13, or as shown in FIG. As described above, the thick plate 12 may be provided with the convex portion 20 facing upward, and the thick plate 13 may be provided with the convex portion 20 facing downward.

また、第1板隙31には導電性を持たない樹脂が塗布されることが好ましい。薄板11は板厚が薄いため溶接前期の低い加圧力でも押しつぶすことができ、このときに第1板隙31に塗布された導電性を持たない樹脂は電極直下から押し出され、電極直下の通電面積を狭く保ち、溶接初期におけるナゲット18の形成をより容易にさせることができる。   The first gap 31 is preferably coated with a resin having no conductivity. Since the thin plate 11 is thin, it can be crushed even with a low applied pressure in the first stage of welding. At this time, the non-conductive resin applied to the first gap 31 is pushed out from directly under the electrode, and the energized area directly under the electrode. , And the formation of the nugget 18 in the initial stage of welding can be made easier.

また、薄板11側の電極チップ16の先端を曲面とし、厚板13側の電極チップ17の先端を、厚板12−厚板13間に必要なナゲット径程度の径を持つ平面あるいは薄板11側の電極チップ16よりも大きな曲率半径をもつ曲面とすることがより好ましい。   The tip of the electrode tip 16 on the thin plate 11 side is a curved surface, and the tip of the electrode tip 17 on the thick plate 13 side is a flat or thin plate 11 side having a diameter of about the required nugget diameter between the thick plate 12 and the thick plate 13. More preferably, the electrode tip 16 is a curved surface having a larger radius of curvature.

薄板11側の電極チップ16の先端を曲面とし、厚板13側の電極チップ17の先端をより平坦にすることにより、低加圧力では薄板11への電極16の押し込み量が小さくなり、通電面積が狭くなることから、薄板11−厚板12間の電流密度が高くなり、薄板11−厚板12間でナゲット18が形成されやすくなる。また、薄板11側の電極16の先端を曲面とすることにより、溶接途中で加圧力を増大させることで、薄板11側の電極チップ16が加圧力を加えられる範囲が増大し、散り発生が抑制され、厚板12−厚板13間に必要な径を持つナゲット19を形成することが可能になる。   By making the tip of the electrode tip 16 on the thin plate 11 side a curved surface and making the tip of the electrode tip 17 on the thick plate 13 side flatter, the amount of pushing of the electrode 16 into the thin plate 11 is reduced at a low pressure, and the current-carrying area is reduced. Therefore, the current density between the thin plate 11 and the thick plate 12 becomes high, and the nugget 18 is easily formed between the thin plate 11 and the thick plate 12. In addition, by making the tip of the electrode 16 on the thin plate 11 side a curved surface, increasing the pressing force during welding increases the range in which the electrode tip 16 on the thin plate 11 side can apply the pressing force, thereby suppressing the occurrence of scattering. Thus, a nugget 19 having a necessary diameter between the thick plate 12 and the thick plate 13 can be formed.

ちなみに、本発明において用いる溶接装置は、一対の上下の電極チップで溶接する部分を挟み、加圧、通電するものであれば、加圧機構の種類(エアシリンダによるもの、サーボモータによるもの)や形式(定置式、ロボットガン)、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。   By the way, the welding apparatus used in the present invention can be any type of pressurizing mechanism (such as an air cylinder or servomotor) as long as it sandwiches a portion to be welded by a pair of upper and lower electrode tips, and pressurizes and energizes. There are no particular restrictions on the type (stationary, robot gun), type of power source (single-phase AC, AC inverter, DC inverter), etc.

また、溶接される鋼板は、強度レベル(軟鋼、高張力鋼板)にかかわらず適用可能であり、熱間プレス材や温間プレス材でも適用できる。また、裸鋼板だけでなく、たとえば、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、Al系めっき鋼板などの多くの種類のめっき鋼板に対しても適用することができる。   Moreover, the steel plate to be welded can be applied regardless of the strength level (soft steel, high-tensile steel plate), and can also be applied to a hot press material or a warm press material. Moreover, it can be applied not only to a bare steel plate but also to many types of plated steel plates such as an electrogalvanized steel plate, a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, and an Al-based plated steel plate.

本発明の効果を確認するために本発明例と比較例を実施した。   In order to confirm the effect of the present invention, the present invention example and the comparative example were carried out.

その板組みは、表1に示す板組みA〜Gであり、図6(a)〜(e)に示す基本板組みa〜eと表1に示す鋼板・板厚構成とで示されるものである。ここで、基本板組みa〜eは、いずれも(薄板11+厚板12+厚板13)の3枚重ねであり、そのうち、基本板組みa〜cは、図6(a)〜(c)に示すように、厚板12と厚板13の間に隙間33が形成されるように、厚板12と厚板13の少なくとも一方が図7に示すような形状の凸部20を有している。一方、基本板組みdは、図6(d)に示すように、厚板12が凸部20を有しているものの、下向きの凸部20で、厚板12−厚板13間に隙間が形成されない配置の板組みであり、基本板組みeは、図6(e)に示すように、厚板12、13が凸部20を有していない板組みである。   The plate assemblies are the plate assemblies A to G shown in Table 1, and are shown by the basic plate assemblies a to e shown in FIGS. 6A to 6E and the steel plate / plate thickness configurations shown in Table 1. is there. Here, each of the basic plate assemblies a to e is a three-layer stack of (thin plate 11 + thick plate 12 + thick plate 13), of which the basic plate assemblies a to c are shown in FIGS. 6 (a) to (c). As shown, at least one of the thick plate 12 and the thick plate 13 has a convex portion 20 as shown in FIG. 7 so that a gap 33 is formed between the thick plate 12 and the thick plate 13. . On the other hand, as shown in FIG. 6 (d), the basic plate assembly d has a convex portion 20, but the downward convex portion 20 has a gap between the thick plate 12 and the thick plate 13. The base plate assembly e is a plate assembly in which the thick plates 12 and 13 do not have the convex portion 20, as shown in FIG. 6 (e).

Figure 0006060579
Figure 0006060579

そして、1段目の溶接を溶接前期とし、2段目の溶接を溶接後期として、それぞれの場合における、上下の電極チップの形状、溶接前期(1段目)の加圧力、通電時間、溶接電流、溶接後期(2段目)の加圧力、通電時間、溶接電流は、それぞれ表2に示す条件にて溶接を行なった。また、1段目と2段目の溶接を溶接前期とし、3段目の溶接を溶接後期として、それぞれの場合における、上下の電極チップの形状、溶接前期(1段目、2段目)の加圧力、通電時間、溶接電流、溶接後期(3段目)の加圧力、通電時間、溶接電流は、それぞれ表3に示す条件にて溶接を行なった。なお、樹脂14は熱硬化型エポキシ樹脂接着剤とし、それぞれの板隙における塗布の有無を記載した。溶接条件は厚板12−厚板13間のナゲット径が4√t(t:2枚の厚板12、13のうちの薄い方の板厚(mm))mmとなるように設定した。溶接機は単相交流のサーボモータ加圧式抵抗スポット溶接機を使用した。   The first stage welding is the first stage of welding and the second stage welding is the second stage of welding. In each case, the shape of the upper and lower electrode tips, the welding pressure in the first stage of welding (first stage), the energizing time, the welding current Welding was performed under the conditions shown in Table 2 for the welding pressure (second stage), the energization time, and the welding current in the latter stage of welding. In addition, the first and second stages of welding are the first stage of welding, and the third stage of welding is the second stage of welding. In each case, the shape of the upper and lower electrode tips, the first stage of welding (first stage, second stage) Welding was performed under the conditions shown in Table 3 for the applied pressure, energizing time, welding current, applied pressure in the latter stage (third stage), energizing time, and welding current. The resin 14 was a thermosetting epoxy resin adhesive, and the presence or absence of application in each plate gap was described. The welding conditions were set such that the nugget diameter between the thick plate 12 and the thick plate 13 was 4√t (t: the thickness of the thinner one of the two thick plates 12 and 13 (mm)) mm. The welding machine used was a single-phase AC servo motor pressure resistance spot welder.

それぞれの場合における継手を評価した結果を表2、表3に示す。評価は、散り発生の有無による評価と、JIS Z 3001に規定されるピール試験にて行い、薄板11−厚板12間にプラグが形成された場合を良好(○)とし、プラグが形成されず界面破断したものを不良(×)とした。   Tables 2 and 3 show the results of evaluating the joints in each case. The evaluation is based on the evaluation based on the presence or absence of the occurrence of scattering and the peel test specified in JIS Z 3001, and the case where the plug is formed between the thin plate 11 and the thick plate 12 is good (◯), and the plug is not formed. What fractured at the interface was regarded as defective (x).

Figure 0006060579
Figure 0006060579

Figure 0006060579
Figure 0006060579

その結果、本発明例では、薄板11−厚板12間はプラグ破断となり、良好な溶接となっているが、比較例では、溶接前期において厚板12−厚板13が接触するため散りが発生するか、薄板11−厚板12間で剥離が生じ、良好な溶接継手が得られなかった。これにより、本発明の有効性が確認できる。   As a result, in the example of the present invention, the plug rupture occurs between the thin plate 11 and the thick plate 12, resulting in good welding. Or, peeling occurred between the thin plate 11 and the thick plate 12, and a good weld joint could not be obtained. Thereby, the effectiveness of the present invention can be confirmed.

なお、ここでは厚板12−厚板13間のナゲット径が4√tとなる場合について評価したが、本発明を実施する場合においては、厚板12−厚板13間のナゲット径は実施者が厚板−厚板間に必要とするナゲット径で行なえばよい。   Although the case where the nugget diameter between the thick plate 12 and the thick plate 13 is 4√t is evaluated here, in the case of carrying out the present invention, the nugget diameter between the thick plate 12 and the thick plate 13 is May be performed with the nugget diameter required between the thick plate and the thick plate.

10A 板組み(ワーク)
10B 板組み(ワーク)
10C 板組み(ワーク)
11 一枚目の鋼板(薄板)
12 二枚目の鋼板(厚板)
13 三枚目の鋼板(厚板)
14 導電性を持たない樹脂
16 薄板側の電極(電極チップ)
17 厚板側の電極(電極チップ)
18 薄板−厚板間のナゲット
19 厚板−厚板間のナゲット
20 凸部
21 凸部の外側
31 第1の板隙
32 第2の板隙
33 凸部による隙間
10A Board assembly (work)
10B Board assembly (work)
10C Board assembly (work)
11 First steel plate (thin plate)
12 Second steel plate (thick plate)
13 Third steel plate (thick plate)
14 Non-conductive resin 16 Thin plate side electrode (electrode chip)
17 Thick plate side electrode (electrode tip)
18 Nugget between thin plate and thick plate 19 Nugget between thick plate and thick plate 20 Convex portion 21 Outside of convex portion 31 First plate gap 32 Second plate gap 33 Clearance by convex portion

Claims (2)

重ね合わせた2枚の板厚の厚い鋼板の一方に、さらに板厚の薄い鋼板を重ね合わせた板組みを一対の電極によって挟み、加圧力を加えながら抵抗スポット溶接を行なうにあたり、電極直下においてその2枚の板厚の厚い鋼板の間に隙間が形成されるように、2枚の板厚の厚い鋼板の少なくとも一方に凸部を設けるとともに、さらに、その板厚の厚い2枚の鋼板の間には、導電性を持たない樹脂を介在させた上で、溶接工程を前期と後期に分け、溶接前期に前記2枚以上の板厚の厚い鋼板の間に介在する樹脂が電極直下から押し出されない低い加圧力で短時間の溶接を行ない、溶接後期に前記2枚以上の板厚の厚い鋼板の間に介在する樹脂が電極直下から押し出されるのに十分な高い加圧力で溶接を行なうことを特徴とする抵抗スポット溶接方法。   When carrying out resistance spot welding with a pair of electrodes sandwiched between a pair of two thick steel plates and a thin steel plate with a pair of electrodes, A convex portion is provided on at least one of the two thick steel plates so that a gap is formed between the two thick steel plates, and between the two thick steel plates. In this process, a non-conductive resin is interposed, and the welding process is divided into the first and second stages, and the resin interposed between the two or more thick steel plates is pushed out from directly under the electrode in the first half of welding. Welding for a short time with a low applied pressure, and welding with a sufficiently high applied pressure so that the resin interposed between the two or more thick steel plates is pushed out from directly under the electrode in the latter stage of welding. Features of resistance spot welding . 一方に重ねられた板厚の薄い鋼板と板厚の厚い鋼板の間に導電性を持たない樹脂を介在させて溶接することを特徴とする請求項1に記載の抵抗スポット溶接方法。   The resistance spot welding method according to claim 1, wherein welding is performed by interposing a resin having no electrical conductivity between the thin steel plate and the thick steel plate that are stacked on one side.
JP2012203968A 2012-09-18 2012-09-18 Resistance spot welding method Active JP6060579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203968A JP6060579B2 (en) 2012-09-18 2012-09-18 Resistance spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203968A JP6060579B2 (en) 2012-09-18 2012-09-18 Resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2014057978A JP2014057978A (en) 2014-04-03
JP6060579B2 true JP6060579B2 (en) 2017-01-18

Family

ID=50614953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203968A Active JP6060579B2 (en) 2012-09-18 2012-09-18 Resistance spot welding method

Country Status (1)

Country Link
JP (1) JP6060579B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906618B2 (en) * 2011-09-05 2016-04-20 Jfeスチール株式会社 Resistance spot welding method
CN107457477B (en) * 2017-08-22 2023-05-02 上海奥林汽车配件有限公司 Positioning welding electrode for welding automobile positioning hooks
JP6762445B1 (en) 2019-03-29 2020-09-30 株式会社神戸製鋼所 Spot welding method for aluminum material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193976U (en) * 1986-05-27 1987-12-09
JP3794300B2 (en) * 2001-08-30 2006-07-05 トヨタ車体株式会社 Spot welding method
JP5045238B2 (en) * 2007-05-23 2012-10-10 Jfeスチール株式会社 Resistance spot welding method
JP5261984B2 (en) * 2007-05-23 2013-08-14 Jfeスチール株式会社 Resistance spot welding method
JP5803116B2 (en) * 2011-01-31 2015-11-04 Jfeスチール株式会社 Indirect spot welding method

Also Published As

Publication number Publication date
JP2014057978A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5599553B2 (en) Resistance spot welding method
JP5468350B2 (en) Dissimilar metal plate joining method
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP6108030B2 (en) Resistance spot welding method
JP4961532B2 (en) Method and apparatus for joining dissimilar metals
JP3354321B2 (en) Automatic spot welding method for galvanized steel sheet
JP2007268604A (en) Resistance spot welding method
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
JP5261984B2 (en) Resistance spot welding method
JP6094079B2 (en) Resistance spot welding method
JP2006055898A (en) Resistance spot welding method
US20180361498A1 (en) Welding methods including formation of an intermediate joint using a solid state welding process
KR20190126098A (en) Method of manufacturing resistance spot welded joints
JPWO2016103375A1 (en) Dissimilar material joining structure and dissimilar material joining method
US20190329348A1 (en) Welding methods for joining light metal and high-strength steel using solid state and resistance spot welding processes
KR102127991B1 (en) Resistance spot welding method and welded structure
WO2015133099A1 (en) Resistive spot-welding method
JP5609966B2 (en) Resistance spot welding method
JP6060579B2 (en) Resistance spot welding method
JP5045238B2 (en) Resistance spot welding method
JP2009226446A (en) Spot welding method of dissimilar plates
JP5906618B2 (en) Resistance spot welding method
JP6160581B2 (en) Resistance spot welding method
JP2009226425A (en) Spot welding method of dissimilar plates
KR20190126099A (en) Method of manufacturing resistance spot welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250