JP5043352B2 - Building soundness judgment system - Google Patents

Building soundness judgment system Download PDF

Info

Publication number
JP5043352B2
JP5043352B2 JP2006079980A JP2006079980A JP5043352B2 JP 5043352 B2 JP5043352 B2 JP 5043352B2 JP 2006079980 A JP2006079980 A JP 2006079980A JP 2006079980 A JP2006079980 A JP 2006079980A JP 5043352 B2 JP5043352 B2 JP 5043352B2
Authority
JP
Japan
Prior art keywords
triangle
building
measured
difference
soundness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006079980A
Other languages
Japanese (ja)
Other versions
JP2007256036A (en
JP2007256036A5 (en
Inventor
守 水谷
一明 小野
登志夫 嶋
弘明 龍神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2006079980A priority Critical patent/JP5043352B2/en
Publication of JP2007256036A publication Critical patent/JP2007256036A/en
Publication of JP2007256036A5 publication Critical patent/JP2007256036A5/ja
Application granted granted Critical
Publication of JP5043352B2 publication Critical patent/JP5043352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、GPSを利用して建造物の健全性を判定する建造物健全性判定システムに関する。   The present invention relates to a building soundness determination system that determines the soundness of a building using GPS.

GPSを利用してビルや家屋が林立する市街地で国土調査および用地測量を行うことができるGPS測量機がある(特許文献1参照)。測量機は、GPS衛生からの衛星電波を受信するGPSアンテナと、衛星電波を受信処理するGPS受信機と、GPSアンテナの三次元座標を算出するコンピュータとから形成されている。測量機では、ビルの屋上からGPSアンテナを張り出し、鉛直器で地上におけるアンテナの位置決めをして衛星電波の受信を行う。この測量機は、アンテナの周辺に障害物がなくなるから、GPS衛星が地上のどの位置に存在しても、アンテナが衛星電波を受信することができる。
特開平9−203636号公報
There is a GPS surveying instrument that can perform national land surveys and site surveys in an urban area where buildings and houses are forested using GPS (see Patent Document 1). The surveying instrument is formed of a GPS antenna that receives satellite radio waves from GPS hygiene, a GPS receiver that receives and processes satellite radio waves, and a computer that calculates the three-dimensional coordinates of the GPS antenna. The surveying instrument projects a GPS antenna from the roof of the building, positions the antenna on the ground with a vertical instrument, and receives satellite radio waves. In this surveying instrument, since there are no obstacles around the antenna, the antenna can receive satellite radio waves regardless of the position of the GPS satellite on the ground.
JP-A-9-203636

地震や台風、地殻変動等の自然災害または火災や土地の掘削による陥没等の人的災害が起こった後、それら災害に襲われた建造物を引き続き使用することができるかを判定することは、被災地における救援活動や復旧活動を進める上で極めて重要である。また、耐用年数が経過した建造物の使用可能性を判定することは、その建造物の建て替えを検討するために必要である。しかし、前記公報に開示のGPS測量機では、それら災害が起こった後における建造物の健全性を判定することや耐用年数が経過した建造物の使用可能性を判定することはできない。   After a natural disaster such as an earthquake, typhoon, or crustal movement, or a human disaster such as a collapse caused by a fire or excavation of land, it can be determined whether or not the buildings affected by the disaster can continue to be used. This is extremely important in promoting relief and recovery activities in the affected areas. In addition, it is necessary to determine the availability of a building whose useful life has passed in order to consider rebuilding the building. However, the GPS surveying instrument disclosed in the above publication cannot determine the soundness of a building after the occurrence of such a disaster or the availability of a building whose useful life has passed.

本発明の目的は、GPSを利用して建造物の健全性を判定することができる建造物健全性判定システムを提供することにある。   An object of the present invention is to provide a building soundness determination system that can determine the soundness of a building using GPS.

前記課題を解決するための本発明は、建造物の屋上の複数の測定ポイントに設置された複数のGPSアンテナ・受信機と、GPSアンテナ・受信機がGPS衛星から受信した観測データに基づいてGPSアンテナ間の基線ベクトルを算出する計算機とを備え、基線ベクトルに囲繞された区域が三角形を形成するように各GPSアンテナが屋上に配置された建造物健全性判定システムである。このシステムの計算機は、基線ベクトルによって画成された初期の基準三角形を記憶するとともに、前記基準三角形の記憶時から所定時間経過後に算出した前記基線ベクトルによって画成される実測三角形を記憶する形状記憶手段と、三次元座標を用いて前記基準三角形と前記実測三角形とを立体画像として表示する表示手段と、前記実測三角形前記基準三角形と比較する比較手段と、前記比較手段によって比較した前記基準三角形と前記実測三角形との比較要素の相違点を用いて前記建造物の残留変形を測定する測定手段と、前記残留変形の値によって前記建造物の健全性を判定する判定手段とを有する。 In order to solve the above-mentioned problems, the present invention provides a plurality of GPS antennas / receivers installed at a plurality of measurement points on the roof of a building, and GPS data based on observation data received from GPS satellites by the GPS antenna / receiver. And a calculator for calculating a baseline vector between the antennas, wherein each GPS antenna is arranged on the roof so that the area surrounded by the baseline vector forms a triangle. The computer of this system stores an initial reference triangle defined by a baseline vector, and a shape memory for storing an actually measured triangle defined by the baseline vector calculated after a lapse of a predetermined time from the storage of the reference triangle Means for displaying the reference triangle and the measured triangle as a three-dimensional image using three-dimensional coordinates, comparison means for comparing the measured triangle and the reference triangle, and the reference compared by the comparison means Measuring means for measuring residual deformation of the building using a difference between the comparison element between the triangle and the actually measured triangle; and determination means for determining the soundness of the building based on the value of the residual deformation .

本発明の一例として、建造物健全性判定システムでは、建造物近傍における地上の座標確定ポイントに基準局が設置され、基準局が誤差推定値を測定し、GPSアンテナ・受信機が誤差推定値を用いて擬似距離を補正しつつ測位計算を実行する。   As an example of the present invention, in a building soundness determination system, a reference station is installed at a ground coordinate determination point in the vicinity of a building, the reference station measures an error estimated value, and a GPS antenna / receiver uses the error estimated value. The positioning calculation is executed while correcting the pseudo distance.

本発明の他の一例としては、基準三角形と実測三角形との比較要素が基線ベクトルによって画成された基準三角形と実測三角形との各辺の長さ寸法であり、残留変形の値が基準三角形と実測三角形との各辺の長さ寸法の差であり、判定手段では、基準三角形と実測三角形との各辺の長さ寸法の差が第1の基準値を超えている場合に健全性なしと判定するAs another example of the present invention, the comparison element between the reference triangle and the measured triangle Ri length Der of each side of the reference triangle and the measured triangle defined by baseline vector, the value of residual deformation reference triangle The difference between the length dimensions of each side between the measured triangle and the measured triangle, and the judging means is not sound when the difference in the length dimension of each side between the reference triangle and the measured triangle exceeds the first reference value. Is determined .

本発明の他の一例としては、基準三角形と実測三角形との比較要素が基線ベクトルによって画成された基準三角形と実測三角形との各内角であり、残留変形の値が基準三角形と実測三角形との各内角の差であり、判定手段では、基準三角形と実測三角形との各内角の差が第2の基準値を超えている場合に健全性なしと判定する。なお、内角とは、基準三角形と実測三角形との各辺がなす角度である。 As another example of the present invention, Ri each interior angle der comparison elements between the reference triangle and the measured triangle a reference triangle defined by the baseline vector and the measured triangle, the value of residual deformation is the reference triangle and the measured triangle The determination means determines that there is no soundness when the difference between the internal angles of the reference triangle and the actually measured triangle exceeds the second reference value. The interior angle is an angle formed by each side of the reference triangle and the actually measured triangle.

本発明の他の一例としては、基準三角形と実測三角形との比較要素が基線ベクトルによって画成された基準三角形と実測三角形との比高であり、残留変形の値が基準三角形と実測三角形との比高の差であり、判定手段では、基準三角形と実測三角形との比高の差が第3の基準値を超えている場合に健全性なしと判定する。
なお、比高とは、基準三角形と実測三角形との垂直方向の高さ寸法である。
As another example of the present invention, the comparison element between the reference triangle and the measured triangle Ri relative height der between the reference triangle and the measured triangle defined by baseline vector, the value of residual deformation is the reference triangle and the measured triangle The determination means determines that there is no soundness when the difference in the ratio height between the reference triangle and the actually measured triangle exceeds the third reference value.
The specific height is the height dimension in the vertical direction between the reference triangle and the actually measured triangle.

本発明にかかる建造物健全性判定システムによれば、建造物の残留変形の測定手段として、実測三角形を基準三角形と比較したときの比較要素の相違点を用いるから、自然災害や人的災害が起こった後の建造物の傾きや捻れ、座屈等の変形を見落とすことなく調査することができ、それら災害が起こった後の建造物の健全性を確実に判定することができる。また、耐用年数が経過した後の建造物の傾きや捻れ、座屈等の変形を調査することができ、その建造物の今後の使用可能性を判定することができる。システムは、GPSを利用して基準三角形と実測三角形とを形象し、それら三角形の相違点を抽出するから、目視では不可能なわずかな残留変形を確実に検出することができる。このシステムは、基線ベクトルに囲繞された区域が三角形を形成するように各GPSアンテナ・受信機を建造物の屋上に配置するだけなので、システムの設定に手間がかからず、さらに、システムを容易に移設することができる。   According to the building soundness determination system according to the present invention, as a means for measuring the residual deformation of a building, the difference between the comparison elements when the actually measured triangle is compared with the reference triangle is used. It is possible to investigate without overlooking deformations such as tilt, twist and buckling of the building after it has occurred, and it is possible to reliably determine the soundness of the building after such a disaster has occurred. In addition, it is possible to investigate the inclination, twist, buckling, and other deformations of the building after the useful life has elapsed, and to determine the future availability of the building. Since the system uses the GPS to form the reference triangle and the actually measured triangle and extracts the difference between the triangles, it is possible to reliably detect a slight residual deformation that is impossible with visual observation. In this system, each GPS antenna / receiver is simply placed on the rooftop of the building so that the area surrounded by the baseline vector forms a triangle. Can be relocated.

建造物近傍における地上の座標確定ポイントに設置された基準局が誤差推定値を測定し、GPSアンテナ・受信機が誤差推定値を用いて擬似距離を補正しつつ測位計算を実行する建造物健全性判定システムは、擬似距離の誤差を補正することによって測定精度を向上させることができ、自然災害や人的災害が起こった後または耐用年数が経過した後の建造物のわずかな残留変形を確実に検出することができる。   A building station soundness judgment in which a reference station installed at a ground coordinate determination point in the vicinity of a building measures an error estimate, and a GPS antenna / receiver corrects a pseudorange using the error estimate and performs a positioning calculation. The system can improve measurement accuracy by correcting for pseudo-range errors and reliably detect small residual deformations of buildings after natural or man-made disasters or after the end of their useful lives can do.

基準三角形と実測三角形との比較要素が基線ベクトルによって画成されたそれら三角形の各辺の長さ寸法である建造物健全性判定システムは、実測三角形の各辺の長さ寸法が基準三角形のそれと相違する場合、自然災害または人的災害が起こった後の建造物や耐用年数が経過した建造物に傾きや捻れ、座屈等の残留変形が生じたことが判り、基準三角形と実測三角形との各辺の長さ寸法を比較することによって建造物の健全性を確実に判定することができる。   The building health judgment system in which the comparison element between the reference triangle and the measured triangle is the length dimension of each side of the triangle defined by the baseline vector, the length dimension of each side of the measured triangle is that of the reference triangle. If there is a difference, it can be seen that there is a residual deformation such as tilt, twist, buckling, etc. in the building after the natural disaster or human disaster has occurred or in the building where the service life has passed. By comparing the length dimension of each side, the soundness of the building can be reliably determined.

基準三角形と実測三角形との比較要素が基線ベクトルによって画成されたそれら三角形の各内角である建造物健全性判定システムは、実測三角形の各内角の角度が基準三角形のそれと相違する場合、自然災害または人的災害が起こった後の建造物や耐用年数が経過した建造物に傾きや捻れ、座屈等の残留変形が生じたことが判り、基準三角形と実測三角形との各内角の角度を比較することによって建造物の健全性を確実に判定することができる。   A building soundness judgment system in which the comparison elements of the reference triangle and the measured triangle are the interior angles of the triangles defined by the baseline vector is a natural disaster if the angle of each interior angle of the measured triangle is different from that of the reference triangle. Or, it can be understood that residual deformation such as tilting, twisting, buckling, etc. has occurred in a building after a human disaster has occurred, or in a building that has reached the end of its useful life, and the angle of each internal angle between the reference triangle and the measured triangle is compared. By doing so, the soundness of the building can be reliably determined.

基準三角形と実測三角形との比較要素が基線ベクトルによって画成されたそれら三角形の比高である建造物健全性判定システムは、実測三角形の垂直方向の高さ寸法が基準三角形のそれと相違する場合、自然災害または人的災害が起こった後の建造物や耐用年数が経過した建造物に傾きや捻れ、座屈等の残留変形が生じたことが判り、基準三角形と実測三角形との比高を比較することによって建造物の健全性を確実に判定することができる。   A building soundness determination system in which the comparison element between the reference triangle and the measured triangle is the specific height of those triangles defined by the baseline vector, the vertical height dimension of the measured triangle is different from that of the reference triangle, Comparing the relative height of the reference triangle and the actual measurement triangle, it can be seen that there is a residual deformation such as tilt, twist, buckling, etc. in a building after a natural disaster or human disaster or a building that has passed its useful life By doing so, the soundness of the building can be reliably determined.

添付の図面を参照し、本発明に係る建造物健全性判定システムの詳細を説明すると、以下のとおりである。図1,2は、一例として示す建造物健全性判定システム10が設置されたビルディング17(以下、ビルという)の概略図と、GPS衛星11とGPSアンテナ12A〜12Dとの相関関係の一例を示す図とであり、図3は、アンテナ12A〜12Dどうしの間に延びる基線ベクトル15A〜15Eのイメージ図である。図1では、GPS受信機13とコンピュータ14との図示を省略している。   The details of the building soundness determination system according to the present invention will be described with reference to the accompanying drawings. 1 and 2 are schematic diagrams of a building 17 (hereinafter referred to as a building) in which a building soundness determination system 10 shown as an example is installed, and an example of a correlation between a GPS satellite 11 and GPS antennas 12A to 12D. FIG. 3 is an image diagram of the base line vectors 15A to 15E extending between the antennas 12A to 12D. In FIG. 1, illustration of the GPS receiver 13 and the computer 14 is omitted.

このシステム10は、GPS衛星11(図2参照)が発信した衛星電波を受信するGPSアンテナ12A〜12Dと、GPSアンテナ12A〜12Dに接続されたGPS受信機13と、GPS受信機13に接続されたコンピュータ14(計算機)(図3参照)とから構成されている。図1のシステム10におけるGPS測位法は、スタティック測位(干渉測位)を採用している。このシステム10では、4台のアンテナ12A〜12Dと受信機13とを使用して同時時間帯に観測することにより、多数の基線ベクトル15A〜15Eを同時に求めることができる。測定される基線ベクトル15A〜15Eの数は、図3に示すように、4本である。基線ベクトル15A〜15Eに囲繞された区域は三角形を呈する。   This system 10 is connected to a GPS antenna 12A to 12D that receives satellite radio waves transmitted from a GPS satellite 11 (see FIG. 2), a GPS receiver 13 connected to the GPS antennas 12A to 12D, and a GPS receiver 13. Computer 14 (computer) (see FIG. 3). The GPS positioning method in the system 10 of FIG. 1 employs static positioning (interference positioning). In this system 10, by using four antennas 12 </ b> A to 12 </ b> D and the receiver 13 and observing at the same time zone, a large number of baseline vectors 15 </ b> A to 15 </ b> E can be obtained simultaneously. The number of measured baseline vectors 15A to 15E is four as shown in FIG. The area surrounded by the baseline vectors 15A to 15E has a triangular shape.

GPS衛星11は、地上約20200kmの上空を周期約11時間58分2秒で周回している。衛星11は、6つの軌道面に4機ずつ計24機配備され、地球上のどの位置からでも常時4機以上の衛星11が幾何学的配置のもとで観測できるように運用されている。衛星11は、衛星電波(搬送波、PRNコード、航法メッセージ)を生成し、生成した衛星電波を3つのブロックに分割して発信している。   The GPS satellite 11 orbits about 20200 km above the ground at a cycle of about 11 hours 58 minutes 2 seconds. A total of 24 satellites 11 are arranged in six orbital planes, and a total of 24 satellites 11 are operated so that four or more satellites 11 can always be observed in a geometrical arrangement from any position on the earth. The satellite 11 generates satellite radio waves (carrier wave, PRN code, navigation message), and transmits the generated satellite radio waves divided into three blocks.

GPSアンテナ12A〜12Dは、ビル16(被測定建造物)の屋上17に設置され、各アンテナ12A〜12Dを結ぶ線分(基線ベクトル15A〜15E)が正四角形を形成するように屋上17に配置、固定されている。線分によって形成された四角形は斜線によって二等分され、同一形状の2つの三角形18A,18Bが形成されている。なお、それらアンテナ12A〜12Dを結ぶ線分が正四角形を形成するようにアンテナ12A〜12Dを配置する必要はなく、線分が菱形や台形を形成するようにアンテナ12A〜12Dが配置されてもよい。アンテナ12A〜12Dは、GPS衛星11で生成された衛星電波を受信し、受信した衛星電波をGPS受信機13に出力する。   The GPS antennas 12A to 12D are installed on the roof 17 of the building 16 (building to be measured), and are arranged on the roof 17 so that line segments (base line vectors 15A to 15E) connecting the antennas 12A to 12D form a regular square. It has been fixed. The quadrangle formed by the line segment is divided into two equal parts by diagonal lines, and two triangles 18A and 18B having the same shape are formed. It is not necessary to arrange the antennas 12A to 12D so that the line segments connecting the antennas 12A to 12D form a regular square. Even if the antennas 12A to 12D are arranged so that the line segments form a rhombus or a trapezoid. Good. The antennas 12 </ b> A to 12 </ b> D receive satellite radio waves generated by the GPS satellite 11 and output the received satellite radio waves to the GPS receiver 13.

GPS受信機13は、入力された衛星電波を増幅かつ周波数変換し、十分なレベルの電波とした後、コード同期回路でコードの同期(電波伝搬時間の検出)を行う。受信機13は、受信しようとする衛星と同一のC/Aコードパターン基準搬送波(レプリカ)を発生させ、そのタイミングを調整して衛星電波と同期をとる。受信機13では、生成したコードと受信した衛星コードとの相関がもっとも高くなるように時刻を移動させる。相関がもっとも高くなったときにレプリカと衛星電波とが同期し、受信機13が航法メッセージを復調する。次に、受信機13は、測位に用いる搬送波位相を再生する。受信機13は、衛星電波からコードと航法メッセージとを除去し、フィルタリングをかけた後、再生搬送波(サイン波)を得る。再生搬送波は位相同期回路に出力され、受信機13が発生させた搬送波レプリカと比較して2つの波間の位相差(衛星からの搬送波の位相と受信機内搬送波レプリカの位相との差)が測定される。位相差は、位相カウンタに入力され、位相カウンタで積算される。位相差の測定は、受信機時計の秒信号に合わせてあらかじめ設定された時刻間隔(エポック間隔)で行われる。   The GPS receiver 13 amplifies and converts the frequency of the input satellite radio wave to a sufficient level of radio wave, and then synchronizes the code (detects the radio wave propagation time) with a code synchronization circuit. The receiver 13 generates the same C / A code pattern reference carrier (replica) as the satellite to receive, adjusts the timing, and synchronizes with the satellite radio wave. The receiver 13 moves the time so that the correlation between the generated code and the received satellite code is the highest. When the correlation becomes the highest, the replica and the satellite radio wave are synchronized, and the receiver 13 demodulates the navigation message. Next, the receiver 13 reproduces the carrier phase used for positioning. The receiver 13 removes the code and the navigation message from the satellite radio wave, performs filtering, and then obtains a reproduced carrier wave (sine wave). The regenerated carrier wave is output to the phase synchronization circuit, and the phase difference between the two waves (difference between the phase of the carrier wave from the satellite and the phase of the carrier replica in the receiver) is measured as compared with the carrier wave replica generated by the receiver 13. The The phase difference is input to the phase counter and accumulated by the phase counter. The phase difference is measured at a time interval (epoch interval) set in advance according to the second signal of the receiver clock.

スタティック測位(干渉測位)では、図1に示すように、ビル16の屋上17の複数の測定ポイントPにGPSアンテナ12A〜12DとGPS受信機13とを設置して観測を行い、GPS衛星11が天空を移動する位置変化を利用して整数値バイアスを決定する。整数値バイアスによる基線ベクトル15A〜15Eの多重解は、図2に示すように、3組の二重位相差をとる4個の衛星11の位置によって決まる。なお、衛星11の移動によって多重解も移動するが、真の解だけは不動点となる。これを利用し、一定時間連続して観測することで不動点を見つけ出し、基線ベクトル15A〜15Eと整数値バイアスとを同時に確定する。スタティック側位は、位相差積算値を観測量として側位計算を行う。しかし、整数倍の不確定性があるため、衛星11と受信機13との時計誤差を完全に除去しなければならない。そこで、スタティック測位では、位相差積算値を衛星11どうしで差をとるとともに、位相差積算値を受信機13どうしで差をとることによって、衛星11と受信機13とに起因する誤差を解消している。   In static positioning (interference positioning), as shown in FIG. 1, GPS antennas 12A to 12D and a GPS receiver 13 are installed at a plurality of measurement points P on the roof 17 of the building 16 for observation. The integer bias is determined using the position change moving in the sky. The multiple solutions of the baseline vectors 15A to 15E due to the integer bias are determined by the positions of the four satellites 11 having three sets of double phase differences as shown in FIG. Note that multiple solutions move as the satellite 11 moves, but only the true solution becomes a fixed point. Using this, a fixed point is found by observing continuously for a certain period of time, and the baseline vectors 15A to 15E and the integer value bias are determined simultaneously. The static side position is calculated by using the phase difference integrated value as an observation amount. However, since there is an uncertainty of an integral multiple, the clock error between the satellite 11 and the receiver 13 must be completely removed. Therefore, in the static positioning, the difference between the phase difference integrated values between the satellites 11 and the difference between the phase difference integrated values between the receivers 13 are taken to eliminate errors caused by the satellites 11 and the receivers 13. ing.

コンピュータ14は、中央処理装置(CPU)とキャッシュメモリとを有する。コンピュータ14は、インターフェイス(有線19)または無線19によってGPS受信機13に接続されている(図3参照)。コンピュータ14には、キーボード20やディスプレイ21が設置され、大容量ハードディスクが内蔵されている。コンピュータ14には、図示はしていないが、プリンタがインターフェイスを介して接続されている。キャッシュメモリの内部アドレスファイルには、このシステムを実行するためのプログラムと、GPS受信機13が観測した観測データを使用して基線解析計算を実行する基線解析アプリケーションとが格納されている。中央処理装置は、オペレーティングシステムによる制御に基づいて、内部アドレスファイルに格納されたプログラムを起動し、プログラムに従ってこのシステムの形状記憶手段や基準値記憶手段、表示手段、比較手段、測定手段、判定手段、出力手段を実行する。 The computer 14 has a central processing unit (CPU) and a cache memory. The computer 14 is connected to the GPS receiver 13 by an interface (wired 19) or wireless 19 (see FIG. 3). The computer 14 is provided with a keyboard 20 and a display 21 and has a built-in large capacity hard disk. Although not shown, a printer is connected to the computer 14 via an interface. A cache memory internal address file stores a program for executing this system and a baseline analysis application for executing baseline analysis calculation using observation data observed by the GPS receiver 13. The central processing unit starts a program stored in the internal address file based on control by the operating system, and in accordance with the program, shape storage means, reference value storage means, display means , comparison means, measurement means, determination means of this system , Execute the output means.

コンピュータ14では、キーボード20を介して内部アドレスファイルに格納された各データを随時変更することができる。なお、コンピュータ14は、携帯用のそれを測定時に持ち込んで、GPS受信機13に接続することもでき、GPS受信機13に接続した状態でビル16の一室に設置することもできる。基線解析アプリケーションは、GPS受信機13が記録した搬送波位相や擬似距離等のデータを解析して基線ベクトルを計算する機能の他に、観測計算を作成するための衛星観測条件計算機能や三次元網平均計算機能を有し、各種測量用ツールを保有している。   In the computer 14, each data stored in the internal address file can be changed at any time via the keyboard 20. Note that the computer 14 can be brought in at the time of measurement and connected to the GPS receiver 13, or can be installed in a room of the building 16 while being connected to the GPS receiver 13. The baseline analysis application analyzes the data such as carrier phase and pseudorange recorded by the GPS receiver 13 and calculates a baseline vector, as well as a satellite observation condition calculation function for creating an observation calculation and a three-dimensional network. It has an average calculation function and possesses various surveying tools.

コンピュータ14による基線ベクトル15A〜15Eの解析の一例を説明すると、以下のとおりである。コンピュータ14は、GPS受信機13から観測ポイントP毎の観測データ(位相データや擬似距離、航法メッセージ)を読み込んだ後、観測時刻(エポック)毎に2つの観測ポイントPにおける同じ衛星毎の位相差を計算する(受信機間一重位相差)。次に、2つの衛星11に関する一重位相差の差をとり、二重位相差を計算する。さらに、エポック間での二重位相差の差をとり、三重位相差(あるエポックの二重位相差とその1つ前のエポックの二重位相差との差)を計算する(位相差の計算)。GPS受信機13から読み込んだ航法メッセージの軌道情報からエポック毎の衛星位置を計算する(衛星位置の計算)。三重位相差と衛星11の位置データとから最小二乗法によって概略の基線ベクトルを計算する(概略の基線ベクトル計算)。そして、三重位相差によって求めた基線ベクトルを近似値として、二重位相差による整数値バイアスの推定と基線ベクトルの計算とを最小二乗法によって行う(整数値バイアス推定と基線ベクトル計算)。整数値バイアスの推定を行った後、整数値バイアスを整数値に固定して最小二乗法によって基線ベクトルを再び計算する(バイアスの整数化)。最終的に計算された基線ベクトルと衛星位置とをもとに理論的な観測値(二重位相差)を作る(統計量の計算)。最終的に計算された基線ベクトルの結果に対して標準偏差等の統計量の評価を行い、基線ベクトル15A〜15Eを決定する。   An example of analysis of the baseline vectors 15A to 15E by the computer 14 will be described as follows. The computer 14 reads the observation data (phase data, pseudorange, navigation message) for each observation point P from the GPS receiver 13, and then the phase difference for the same satellite at the two observation points P at each observation time (epoch). Is calculated (single phase difference between receivers). Next, the difference of the single phase difference regarding the two satellites 11 is taken, and the double phase difference is calculated. Furthermore, the difference of the double phase difference between epochs is taken, and the triple phase difference (difference between the double phase difference of one epoch and the double phase difference of the previous epoch) is calculated (calculation of phase difference) ). The satellite position for each epoch is calculated from the orbit information of the navigation message read from the GPS receiver 13 (satellite position calculation). An approximate baseline vector is calculated from the triple phase difference and the position data of the satellite 11 by the least square method (approximate baseline vector calculation). Then, using the baseline vector obtained by the triple phase difference as an approximate value, estimation of the integer value bias and calculation of the baseline vector by the double phase difference are performed by the least square method (integer value bias estimation and baseline vector calculation). After the integer value bias is estimated, the baseline vector is calculated again by the least square method with the integer value bias fixed to an integer value (bias integerization). Create theoretical observations (double phase difference) based on the finally calculated baseline vector and satellite position (calculation of statistics). A statistic such as a standard deviation is evaluated with respect to the finally calculated baseline vector result to determine the baseline vectors 15A to 15E.

図4,5は、コンピュータ14のディスプレイ21に表示された基準三角形22と実測三角形23とを示す図である。図5では、それら三角形22,23が三次元座標に表示されている。このシステム10では、ビル16の屋上にGPSアンテナ12A〜12DとGPS受信機13とを設置した直後、受信機13から入力された観測データを使用してコンピュータ14が基線ベクトル15A〜15Eを決定する。コンピュータ14は、基線ベクトル15A〜15Eを使用して、ベクトル15A〜15Eによって画成される二次元または三次元空間上の初期基準三角形22(2つの三角形)を形象する。コンピュータ14は、基準三角形22を形象すると、それをメモリに格納する(形状記憶手段)。コンピュータ14は、基準三角形22を格納してから所定期間経過後に再び基線ベクトル15A〜15Eを決定し、再度決定した基線ベクトル15A〜15Eを使用して、ベクトル15A〜15Eによって画成される二次元または三次元空間上の実測三角形23(2つの三角形)を形象する。コンピュータ14は、実測三角形23を形象すると、それをメモリに格納する(形状記憶手段)。実測三角形23を形象するための所定期間に特に限定はなく、期間を自由に決めることができる。たとえば、期間を週単位や月単位、年単位で定めることができるのみならず、地震や台風、地殻変動等の自然災害または火災や土地の掘削による陥没等の人的災害が起こった直後とすることもできる。   4 and 5 are diagrams showing the reference triangle 22 and the actually measured triangle 23 displayed on the display 21 of the computer 14. In FIG. 5, these triangles 22 and 23 are displayed in three-dimensional coordinates. In this system 10, immediately after the GPS antennas 12 </ b> A to 12 </ b> D and the GPS receiver 13 are installed on the roof of the building 16, the computer 14 determines the baseline vectors 15 </ b> A to 15 </ b> E using the observation data input from the receiver 13. . The computer 14 uses the baseline vectors 15A-15E to form an initial reference triangle 22 (two triangles) in a two-dimensional or three-dimensional space defined by the vectors 15A-15E. When the computer 14 forms the reference triangle 22, it stores it in a memory (shape storage means). The computer 14 determines the baseline vectors 15A to 15E again after a lapse of a predetermined period after storing the reference triangle 22, and uses the determined baseline vectors 15A to 15E to define the two-dimensional vectors defined by the vectors 15A to 15E. Alternatively, it represents the actually measured triangle 23 (two triangles) in the three-dimensional space. When the computer 14 forms the actual measurement triangle 23, it stores it in the memory (shape storage means). There is no particular limitation on the predetermined period for forming the actual measurement triangle 23, and the period can be freely determined. For example, not only can the period be determined in units of weeks, months, or years, but also immediately after a natural disaster such as an earthquake, typhoon, or crustal deformation, or a human disaster such as a fire or depression caused by excavation of land. You can also.

コンピュータ14は、基準三角形22と実測三角形23とを比較する(比較手段)。比較手段によってそれら三角形22,23を比較したコンピュータ14は、基準三角形22と実測三角形23との比較要素の相違点を抽出し、抽出した相違点によってビル16の残留変形を測定し(測定手段)、さらに、残留変形の値によってビル16の健全性を判定する(判定手段)。なお、健全性とは、ビル16が継続して使用可能か、今後何年の使用に耐えられるか、どの部分の補強が必要か、建て替える必要があるか等を意味する。また、基準三角形22と実測三角形23との比較要素は、基準三角形22と実測三角形23との各辺の長さ寸法、基準三角形22と実測三角形23との各内角の角度、基準三角形22と実測三角形23との比高(垂直方向の高さ寸法)、基準三角形22に対する実測三角形23の水平方向の移動寸法である。   The computer 14 compares the reference triangle 22 and the actually measured triangle 23 (comparison means). The computer 14 that compares the triangles 22 and 23 with the comparison means extracts the difference of the comparison element between the reference triangle 22 and the actual measurement triangle 23, and measures the residual deformation of the building 16 based on the extracted difference (measurement means). Further, the soundness of the building 16 is determined based on the residual deformation value (determination means). The soundness means whether the building 16 can be used continuously, how many years it can be used in the future, which part needs reinforcement, rebuilding, and the like. The comparison elements between the reference triangle 22 and the actual measurement triangle 23 are the length dimensions of the sides of the reference triangle 22 and the actual measurement triangle 23, the angles of the internal angles between the reference triangle 22 and the actual measurement triangle 23, and the reference triangle 22 and the actual measurement triangle 23. The specific height with respect to the triangle 23 (the height dimension in the vertical direction) and the movement dimension in the horizontal direction of the actually measured triangle 23 with respect to the reference triangle 22.

コンピュータ14は、図4に示すように、基準三角形22と実測三角形23とを平面画像としてディスプレイ21に表示する(表示手段)。ディスプレイ21には、図示はしていないが、基準三角形22の各辺(A−B辺,A−D辺,B−D辺,B−C辺,C−D辺)の長さ寸法が表示され、実測三角形23の各辺(A−B辺,A−D辺,B−D辺,B−C辺,C−D辺)の長さ寸法が表示され、さらに、基準三角形22の各辺の長さ寸法と実測三角形23の各辺の長さ寸法との差(基準三角形22のA−B辺の長さ寸法と実測三角形23のA−B辺の長さ寸法との差,基準三角形22のA−D辺の長さ寸法と実測三角形23のA−D辺の長さ寸法との差,基準三角形22のB−D辺の長さ寸法と実測三角形23のB−D辺の長さ寸法との差,基準三角形22のB−C辺の長さ寸法と実測三角形23のB−C辺の長さ寸法との差,基準三角形22のC−D辺の長さ寸法と実測三角形23のC−D辺の長さ寸法との差)が表示される(出力手段)。 As shown in FIG. 4, the computer 14 displays the reference triangle 22 and the actually measured triangle 23 on the display 21 as planar images (display means) . Although not shown, the display 21 displays the length dimension of each side (AB side, AD side, BD side, BC side, CD side) of the reference triangle 22. The length dimension of each side (AB side, AD side, BD side, BC side, CD side) of the measured triangle 23 is displayed, and each side of the reference triangle 22 is displayed. The difference between the length dimension of each side of the measured triangle 23 (the difference between the length dimension of the reference triangle 22 on the AB side and the length of the AB side of the measured triangle 23, the reference triangle The difference between the length dimension of the A-D side of 22 and the length dimension of the A-D side of the measured triangle 23, the length dimension of the BD side of the reference triangle 22 and the length of the BD side of the measured triangle 23 The difference between the length dimension of the reference triangle 22, the length dimension of the BC side of the reference triangle 22 and the length dimension of the BC side of the measured triangle 23, the length dimension of the reference triangle 22 along the CD side and the measured triangle The difference between the length of the C-D sides 3) is displayed (output means).

また、ディスプレイ21には、図示はしていないが、基準三角形22の内角の角度(θ1,θ2,θ3,θ4,θ5,θ6)が表示され、実測三角形23の内角の角度(θ1,θ2,θ3,θ4,θ5,θ6)が表示され、さらに、基準三角形22の内角の角度と実測三角形23の内角の角度との差(基準三角形22の角度θ1と実測三角形23の角度θ1との差,基準三角形22の角度θ2と実測三角形23の角度θ2との差,基準三角形22の角度θ3と実測三角形23の角度θ3との差,基準三角形22の角度θ4と実測三角形23の角度θ4との差,基準三角形22の角度θ5と実測三角形23の角度θ5との差,基準三角形22の角度θ6と実測三角形23の角度θ6との差)が表示される(出力手段)。コンピュータ14は、図4の画像をメモリに格納するとともに、基準三角形22と実測三角形23との各辺の長さ寸法、それら三角形22,23の各辺の長さ寸法の差、基準三角形22と実測三角形23との内角の角度、それら三角形22,23の内角の角度の差をメモリに格納する。   Although not shown, the internal angles of the reference triangle 22 (θ1, θ2, θ3, θ4, θ5, θ6) are displayed on the display 21, and the internal angles of the measured triangle 23 (θ1, θ2, etc.) are displayed. θ3, θ4, θ5, θ6) are displayed, and further, the difference between the angle of the inner angle of the reference triangle 22 and the angle of the inner angle of the measured triangle 23 (the difference between the angle θ1 of the reference triangle 22 and the angle θ1 of the measured triangle 23, Difference between angle θ2 of reference triangle 22 and angle θ2 of measured triangle 23, difference between angle θ3 of reference triangle 22 and angle θ3 of measured triangle 23, difference between angle θ4 of reference triangle 22 and angle θ4 of measured triangle 23 , The difference between the angle θ5 of the reference triangle 22 and the angle θ5 of the measured triangle 23, and the difference between the angle θ6 of the reference triangle 22 and the angle θ6 of the measured triangle 23) are displayed (output means). The computer 14 stores the image of FIG. 4 in a memory, and the length dimension of each side of the reference triangle 22 and the actually measured triangle 23, the difference in length dimension of each side of the triangles 22 and 23, the reference triangle 22 and The internal angle of the measured triangle 23 and the difference between the internal angles of the triangles 22 and 23 are stored in the memory.

コンピュータ14は、図5に示すように、三次元座標を用いて基準三角形22と実測三角形23とを立体画像としてディスプレイ21に表示する(表示手段)。ディスプレイ21には、図示はしていないが、基準三角形22の各点(A点,B点,C点,D点)のX,Y,Z軸における座標が表示され、実測三角形23の各点(A点,B点,C点,D点)のX,Y,Z軸における座標が表示される。さらに、基準三角形22の各点に対する実測三角形23の各点のX,Y,Z軸方向への移動寸法±(基準三角形22のA点に対する実測三角形23のA点のX,Y,Z軸方向への移動寸法、基準三角形22のB点に対する実測三角形23のB点のX,Y,Z軸方向への移動寸法、基準三角形22のC点に対する実測三角形23のC点のX,Y,Z軸方向への移動寸法、基準三角形22のD点に対する実測三角形23のD点のX,Y,Z軸方向への移動寸法)が表示される。コンピュータ14は、図5の画像をメモリに格納するとともに、基準三角形22と実測三角形23との各点の座標、それら三角形22,23の各点のX,Y,Z軸方向への移動寸法をメモリに格納する。コンピュータ14は、図4,5の画像をプリンタを介して印刷し、各辺の長さ寸法の差や内角の角度の差、各点のX,Y,Z軸方向への移動寸法をプリンタを介して印刷する(出力手段)。 As shown in FIG. 5, the computer 14 displays the reference triangle 22 and the actually measured triangle 23 on the display 21 as a three-dimensional image using the three-dimensional coordinates (display means) . Although not shown, the display 21 displays the coordinates of the points (A point, B point, C point, D point) of the reference triangle 22 in the X, Y, and Z axes, and each point of the measured triangle 23. The coordinates on the X, Y, and Z axes of (A point, B point, C point, and D point) are displayed. Further, the movement dimension in the X, Y, Z axis direction of each point of the actual measurement triangle 23 with respect to each point of the reference triangle 22 (the X, Y, Z axis directions of the A point of the actual measurement triangle 23 with respect to the A point of the reference triangle 22 , Movement dimension in the X, Y, and Z axis directions of the point B of the measured triangle 23 relative to the point B of the reference triangle 22, and X, Y, Z of the point C of the measured triangle 23 relative to the point C of the reference triangle 22 The movement dimension in the axial direction and the movement dimension in the X, Y, and Z axis directions of the D point of the measured triangle 23 with respect to the D point of the reference triangle 22 are displayed. The computer 14 stores the image of FIG. 5 in a memory, and also determines the coordinates of the points of the reference triangle 22 and the actually measured triangle 23 and the movement dimensions of the points of the triangles 22 and 23 in the X, Y, and Z axis directions. Store in memory. The computer 14 prints the images of FIGS. 4 and 5 through the printer, and displays the difference in the length dimension of each side, the difference in the angle of the inner angle, and the movement dimension of each point in the X, Y, and Z axis directions. Printing (output means).

コンピュータ14は、基準三角形22の各辺の長さ寸法と実測三角形23のそれとの差(残留変形の値)、基準三角形22の内角の角度と実測三角形23のそれとの差(残留変形の値)、基準三角形22の比高と実測三角形23のそれとの差(残留変形の値)(A点,B点,C点,D点のY軸方向の移動量)、基準三角形22の各点に対する実測三角形23の各点のX,Z軸方向へ(水平方向)の移動寸法から、ビル16の健全性を判定し、判定結果(健全性あり、または、健全性なし)を出力する。健全性を判断するそれら差の基準値(第1〜第3の基準値)はあらかじめコンピュータ14に設定されている。コンピュータ14のメモリには、基準三角形22と実測三角形23との各辺の長さ寸法の差の第1の基準値が格納され(第1基準値記憶手段)、基準三角形と実測三角形との各内角の差の第2の基準値が格納されているとともに(第2基準値記憶手段)、基準三角形と実測三角形との比高の差の第3の基準値が格納されている(第3基準値記憶手段)。
健全性判断の具体例を例示すると、以下のとおりである。たとえば、基準三角形22の各辺の長さ寸法と実測三角形23のそれとの差が±10mm(第1の基準値)を超過し、かつ、基準三角形22の内角の角度と実測三角形23のそれとの差が±2度(第2の基準値)を超過した場合、ビル16が水平方向へ捻転してねじれ、垂直方向へ座屈を起こし、残留変形が大きく、健全性なしと判定する。また、基準三角形22の比高と実測三角形23のそれとの差が±3cm(第3の基準値)を超過した場合、ビル16が垂直方向へ座屈を起こし、残留変形が大きく、健全性なしと判定する。さらに、基準三角形22の各点に対する実測三角形23の各点のX,Z軸方向への移動寸法が±3cmを超過した場合、ビル16が水平方向へ変形し、残留変形が大きく、健全性なしと判定する。コンピュータ14は、判定結果をメモリに格納する。なお、第1〜第3の基準値は、測定する建造物の大きさや種類、アンテナ12A〜12Dの設置位置、災害の大小、建造物に築年数等の各要素によって異なり、例示の基準値に限定されず、自由に設定することができる。コンピュータ14では、それら基準値をキーボード20を使って設定、変更する。
The computer 14 determines the difference between the length dimension of each side of the reference triangle 22 and that of the measured triangle 23 (residual deformation value) , and the difference between the internal angle of the reference triangle 22 and that of the measured triangle 23 (residual deformation value). The difference between the specific height of the reference triangle 22 and that of the measurement triangle 23 (residual deformation value) (the amount of movement in the Y-axis direction of points A, B, C, and D) and the measurement of each point of the reference triangle 22 The soundness of the building 16 is determined from the movement dimension of each point of the triangle 23 in the X and Z axis directions (horizontal direction) , and the determination result (having soundness or not sounding) is output. The reference values (first to third reference values) of these differences for determining soundness are set in the computer 14 in advance. The memory of the computer 14 stores a first reference value of the difference in length dimension between the sides of the reference triangle 22 and the measured triangle 23 (first reference value storage means), and stores each of the reference triangle and the measured triangle. The second reference value of the difference in interior angle is stored (second reference value storage means), and the third reference value of the difference in the relative height between the reference triangle and the actually measured triangle is stored (third reference value). Value storage means).
A specific example of soundness judgment is exemplified as follows. For example, the difference between the length dimension of each side of the reference triangle 22 and that of the measured triangle 23 exceeds ± 10 mm (first reference value) , and the angle of the inner angle of the reference triangle 22 and that of the measured triangle 23 When the difference exceeds ± 2 degrees (second reference value) , it is determined that the building 16 twists in the horizontal direction and twists, buckles in the vertical direction, has a large residual deformation, and is not sound. In addition, if the difference between the specific height of the reference triangle 22 and that of the measured triangle 23 exceeds ± 3 cm (third reference value) , the building 16 is buckled in the vertical direction, the residual deformation is large, and there is no soundness. Is determined. Furthermore, when the movement dimension in the X and Z axis directions of each point of the measured triangle 23 with respect to each point of the reference triangle 22 exceeds ± 3 cm, the building 16 is deformed in the horizontal direction, the residual deformation is large, and there is no soundness. Is determined. The computer 14 stores the determination result in the memory. The first to third reference values are different depending on factors such as the size and type of the building to be measured, the installation position of the antennas 12A to 12D, the magnitude of the disaster, the age of the building, and the like. It is not limited and can be set freely. In the computer 14, these reference values are set and changed using the keyboard 20.

図1に示す建造物健全性判定システム10は、実測三角形22と基準三角形23とを比較したときの比較要素の相違点を用いてビル16の残留変形を測定し、残留変形の値からビル16の健全性を判定するから、自然災害や人的災害が起こった後のビル16の傾きや捻れ、座屈等の変形を見落とすことなく調査することができ、それら災害が起こった後のビル16の健全性を確実に判定することができる。また、耐用年数が経過した後のビル16の傾きや捻れ、座屈等の変形を調査することができ、ビル16の今後の使用可能性を判定することができる。このシステム10は、GPSを利用して基準三角形22と実測三角形23とを形象し、それら三角形22,23の相違点を抽出するから、目視では不可能なわずかな残留変形を確実に検出することができる。また、基線ベクトル15A〜15Eに囲繞された区域が三角形22,23を形成するように各GPSアンテナ12A〜12Dをビル16の屋上17に配置するだけなので、システム10の設定に手間がかからず、さらに、システム10を容易に移設することができる。   The building soundness determination system 10 shown in FIG. 1 measures the residual deformation of the building 16 using the difference between the comparison elements when the measured triangle 22 and the reference triangle 23 are compared, and the building 16 is determined from the residual deformation value. The health of the building 16 can be investigated without overlooking deformations such as tilt, twist, buckling, etc. of the building 16 after a natural disaster or human disaster has occurred, and the building 16 after such a disaster has occurred. Can be reliably determined. Further, it is possible to investigate the inclination, twist, buckling, and other deformations of the building 16 after the useful life has elapsed, and to determine the future availability of the building 16. Since this system 10 forms a reference triangle 22 and an actually measured triangle 23 using GPS and extracts the difference between the triangles 22 and 23, it can reliably detect a slight residual deformation that cannot be visually observed. Can do. Further, since the GPS antennas 12A to 12D are simply arranged on the roof 17 of the building 16 so that the areas surrounded by the baseline vectors 15A to 15E form the triangles 22 and 23, the setting of the system 10 is not time-consuming. Furthermore, the system 10 can be easily relocated.

このシステム10は、実測三角形23の各辺の長さ寸法が基準三角形22のそれと相違する場合、実測三角形23の各内角の角度が基準三角形22のそれと相違する場合、実測三角形23の垂直方向の高さ寸法が基準三角形22のそれと相違する場合、実測三角形23の各点が基準三角形22の各点に対して水平方向へ移動する場合、自然災害または人的災害が起こった後のビル16や耐用年数が経過したビル16に傾きや捻れ、座屈等の残留変形が生じたことが判るから、基準三角形22と実測三角形23とを比較することによってビル16の健全性を確実に判定することができる。   In the system 10, when the length dimension of each side of the actual measurement triangle 23 is different from that of the reference triangle 22, the angle of each internal angle of the actual measurement triangle 23 is different from that of the reference triangle 22. When the height dimension is different from that of the reference triangle 22, when each point of the measured triangle 23 moves in the horizontal direction with respect to each point of the reference triangle 22, the building 16 after a natural disaster or human disaster occurs Since it can be seen that residual deformation such as tilt, twist, buckling, etc. has occurred in the building 16 whose service life has passed, the soundness of the building 16 can be reliably determined by comparing the reference triangle 22 with the measured triangle 23. Can do.

図6,7は、他の一例として示す建造物健全性判定システム30が設置されたビル16の概略図と、ディファレンシャル測位の説明図とであり、図8は、アンテナ12A〜12Cどうしの間に延びる基線ベクトル15A〜15Cのイメージ図である。図6では、GPS受信機13とコンピュータ14との図示を省略している。このシステム30は、図1のそれと同様に、衛星11から発信された衛星電波を受信するGPSアンテナ12A〜12Cと、GPSアンテナ12A〜12Cに接続されたGPS受信機13と、GPS受信機13にインターフェイス(有線19)または無線19を介して接続されたコンピュータ14(計算機)(図8参照)とから構成されている。   6 and 7 are a schematic diagram of a building 16 in which a building soundness determination system 30 shown as another example is installed, and an explanatory diagram of differential positioning, and FIG. 8 is between antennas 12A to 12C. It is an image figure of the baseline vectors 15A-15C extended. In FIG. 6, illustration of the GPS receiver 13 and the computer 14 is omitted. Similar to that of FIG. 1, the system 30 includes GPS antennas 12 </ b> A to 12 </ b> C that receive satellite radio waves transmitted from the satellite 11, a GPS receiver 13 that is connected to the GPS antennas 12 </ b> A to 12 </ b> C, and a GPS receiver 13. The computer 14 (computer) (refer FIG. 8) connected via the interface (wired 19) or the radio | wireless 19 is comprised.

図6のシステム30では、ビル16(被測定建造物)の近傍における地上31の座標確定ポイントQに基準局32(GPSアンテナおよびGPS受信機)が設置されている。このシステム30におけるGPS測位法は、ディファレンシャル測位を採用している。このシステム30では、3台のGPSアンテナ12A〜12CとGPS受信機13とを使用して同時時間帯に観測することにより、多数の基線ベクトル15A〜15Cを同時に求めることができる。測定される基線ベクトル15A〜15Cの数は、図3に示すように、3本である。基線ベクトル15A〜15Cに囲繞された区域は三角形18を呈する。アンテナ12A〜12Cは、ビル16の屋上17に設置され、各アンテナ12A〜12Cを結ぶ線分(基線ベクトル15A〜15C)が三角形18を形成するように屋上17に配置、固定されている。それらアンテナ12A〜12Cを結ぶ線分が形成する三角形18は、正三角形や二等辺三角形、直角三角形等のいずれの形状であってもよい。なお、このシステム30におけるGPS衛星11やGPSアンテナ12A〜12C、GPS受信機13、コンピュータ14は、図1のそれらと同一であるから、それらの説明は省略する。   In the system 30 of FIG. 6, a reference station 32 (a GPS antenna and a GPS receiver) is installed at a coordinate determination point Q of the ground 31 in the vicinity of a building 16 (a building to be measured). The GPS positioning method in this system 30 employs differential positioning. In this system 30, by using three GPS antennas 12A to 12C and the GPS receiver 13 and observing at the same time zone, a large number of baseline vectors 15A to 15C can be obtained simultaneously. The number of baseline vectors 15A to 15C to be measured is three as shown in FIG. The area surrounded by the baseline vectors 15A-15C presents a triangle 18. The antennas 12A to 12C are installed on the roof 17 of the building 16, and are arranged and fixed on the roof 17 so that line segments (base line vectors 15A to 15C) connecting the antennas 12A to 12C form a triangle 18. The triangle 18 formed by the line segment connecting the antennas 12A to 12C may be any shape such as a regular triangle, an isosceles triangle, a right triangle, and the like. The GPS satellite 11, the GPS antennas 12A to 12C, the GPS receiver 13, and the computer 14 in this system 30 are the same as those shown in FIG.

GPS受信機13は、入力された衛星電波を増幅かつ周波数変換し、十分なレベルの電波とした後、コード同期回路でコードの同期(電波伝搬時間の検出)を行う。受信機13は、受信しようとする衛星11と同一のC/Aコードパターン基準搬送波(レプリカ)を発生させ、そのタイミングを調整して衛星電波と同期をとる。受信機13では、生成したコードと受信した衛星コードとの相関がもっとも高くなるように時刻を移動させる。相関がもっとも高くなったときにレプリカと衛星電波とが同期し、受信機13が航法メッセージを復調する。このとき、受信機13内で発生したC/Aコード時刻が衛星電波の到達時間となり、それによって受信機13が電波伝搬時間を算出する。受信機13は、電波伝搬時間に光速をかけて擬似距離を算出する。しかし、前記擬似距離には、受信機時計の誤差が残る。   The GPS receiver 13 amplifies and converts the frequency of the input satellite radio wave to a sufficient level of radio wave, and then synchronizes the code (detects the radio wave propagation time) with a code synchronization circuit. The receiver 13 generates the same C / A code pattern reference carrier (replica) as the satellite 11 to be received, adjusts the timing thereof, and synchronizes with the satellite radio wave. The receiver 13 moves the time so that the correlation between the generated code and the received satellite code is the highest. When the correlation becomes the highest, the replica and the satellite radio wave are synchronized, and the receiver 13 demodulates the navigation message. At this time, the C / A code time generated in the receiver 13 becomes the arrival time of the satellite radio wave, and the receiver 13 calculates the radio wave propagation time accordingly. The receiver 13 calculates the pseudo distance by multiplying the radio wave propagation time by the speed of light. However, a receiver clock error remains in the pseudorange.

ディファレンシャル測位では、擬似距離の前記誤差を補正することによって測位精度を向上させる。最初に擬似距離の誤差を推定するため、測地座標が正確に求められた座標確定ポイントQに基準局32を設置し、基準局32が各衛星11からの衛星電波を観測して観測距離(生の擬似距離L1)を求める。一方、基準局32の測地座標は正確にわかっており、航法メッセージで送られる軌道情報から計算した衛星位置座標に基づいて、衛星11と基準局32のアンテナ(観測ポイントQ)との間の幾何学的距離L2が算出される。したがって、擬似距離L1から幾何学的距離L2を引くことにより、擬似距離誤差の誤差推定値L3(補正量)を求めることができる。ディファレンシャル測位では、観測している各衛星11についての誤差推定値L3を、衛星11を介して各観測ポイントPのGPS受信機13に送信する。受信機13は、この誤差推定値L3を使用してそれが受信した擬似距離L4を補正し、測位計算を行う。なお、基準局32は、各衛星11についての誤差推定値L3を直接受信機13に送信することもでき、誤差推定値L3をコンピュータ14を介して受信機13に送信することもできる。   In differential positioning, the positioning accuracy is improved by correcting the error of the pseudorange. First, in order to estimate the error of the pseudorange, the reference station 32 is installed at the coordinate determination point Q where the geodetic coordinates are accurately obtained, and the reference station 32 observes the satellite radio wave from each satellite 11 to observe the observation distance (raw pseudorange). Find the distance L1). On the other hand, the geodetic coordinates of the reference station 32 are known accurately, and the geometrical relationship between the satellite 11 and the antenna (observation point Q) of the reference station 32 is based on the satellite position coordinates calculated from the orbit information sent in the navigation message. A distance L2 is calculated. Therefore, by subtracting the geometric distance L2 from the pseudo distance L1, the error estimated value L3 (correction amount) of the pseudo distance error can be obtained. In the differential positioning, an error estimated value L3 for each observed satellite 11 is transmitted to the GPS receiver 13 at each observation point P via the satellite 11. The receiver 13 corrects the pseudo distance L4 received by the error estimated value L3 and performs positioning calculation. Note that the reference station 32 can also transmit the error estimation value L3 for each satellite 11 directly to the receiver 13, and can also transmit the error estimation value L3 to the receiver 13 via the computer 14.

図9,10は、コンピュータ14のディスプレイ21に表示された基準三角形22と実測三角形23とを示すである。図10では、それら三角形22,23が三次元座標に表示されている。このシステム30では、ビル16の屋上17にGPSアンテナ12A〜12CとGPS受信機13とを設置し、さらに基準局32を設置した直後、受信機13から入力された観測データを使用してコンピュータ14が基線ベクトル15A〜15Cを決定する。コンピュータ14のキャッシュメモリに格納された基線解析アプリケーションは、GPS受信機13が記録した擬似距離L4のデータを解析して基線ベクトル15A〜15Cを計算する。コンピュータ14は、基線ベクトル15A〜15Cを使用して、ベクトル15A〜15Cによって画成される二次元または三次元空間上の初期基準三角形22を形象する。コンピュータ14は、基準三角形22を形象すると、それをメモリに格納する(形状記憶手段)。コンピュータ14は、基準三角形22を格納してから所定期間経過後に再び基線ベクトル15A〜15Cを決定し、再度決定した基線ベクトル15A〜15Cを使用して、ベクトル15A〜15Cによって画成される二次元または三次元空間上の実測三角形23を形象する。コンピュータ14は、実測三角形23を形象すると、それをメモリに格納する(形状記憶手段)。   9 and 10 show the reference triangle 22 and the actually measured triangle 23 displayed on the display 21 of the computer 14. In FIG. 10, these triangles 22 and 23 are displayed in three-dimensional coordinates. In this system 30, the GPS antennas 12 </ b> A to 12 </ b> C and the GPS receiver 13 are installed on the roof 17 of the building 16, and immediately after the reference station 32 is installed, the computer 14 uses the observation data input from the receiver 13. Baseline vectors 15A-15C are determined. The baseline analysis application stored in the cache memory of the computer 14 analyzes the pseudo distance L4 data recorded by the GPS receiver 13 and calculates baseline vectors 15A to 15C. The computer 14 uses the baseline vectors 15A-15C to represent the initial reference triangle 22 in the two-dimensional or three-dimensional space defined by the vectors 15A-15C. When the computer 14 forms the reference triangle 22, it stores it in a memory (shape storage means). The computer 14 determines the baseline vectors 15A to 15C again after a lapse of a predetermined period after storing the reference triangle 22, and uses the determined baseline vectors 15A to 15C to define the two-dimensional vectors defined by the vectors 15A to 15C. Alternatively, the measured triangle 23 in a three-dimensional space is formed. When the computer 14 forms the actual measurement triangle 23, it stores it in the memory (shape storage means).

コンピュータ14は、基準三角形22と実測三角形23とを比較する(比較手段)。それら三角形22,23を比較したコンピュータ14は、基準三角形22と実測三角形23との比較要素の相違点を抽出し、抽出した相違点によってビル16の残留変形を測定し(測定手段)、さらに、残留変形の値によってビル16の健全性を判定する(判定手段)。基準三角形22と実測三角形23との比較要素は、基準三角形22と実測三角形23との各辺の長さ寸法、基準三角形22と実測三角形23との各内角の角度、基準三角形22と実測三角形23との比高(垂直方向の高さ寸法)、基準三角形22に対する実測三角形23の水平方向の移動寸法である。   The computer 14 compares the reference triangle 22 and the actually measured triangle 23 (comparison means). The computer 14 that compares the triangles 22 and 23 extracts the difference of the comparison element between the reference triangle 22 and the actually measured triangle 23, measures the residual deformation of the building 16 based on the extracted difference (measuring means), and The soundness of the building 16 is determined based on the residual deformation value (determination means). The comparison elements of the reference triangle 22 and the measured triangle 23 are the length dimension of each side of the reference triangle 22 and the measured triangle 23, the angle of each internal angle between the reference triangle 22 and the measured triangle 23, the reference triangle 22 and the measured triangle 23. And the horizontal dimension of the measured triangle 23 with respect to the reference triangle 22.

コンピュータ14は、図9に示すように、基準三角形22と実測三角形23とを平面画像としてディスプレイ21に表示する(表示手段)。ディスプレイ21には、図示はしていないが、基準三角形22の各辺(A−B辺,B−C辺,A−C辺)の長さ寸法が表示され、実測三角形23の各辺(A−B辺,B−C辺,A−C辺)の長さ寸法が表示され、さらに、基準三角形22の各辺の長さ寸法と実測三角形23の各辺の長さ寸法との差(基準三角形22のA−B辺の長さ寸法と実測三角形23のA−B辺の長さ寸法との差,基準三角形22のB−C辺の長さ寸法と実測三角形23のB−C辺の長さ寸法との差,基準三角形22のA−C辺の長さ寸法と実測三角形23のA−C辺の長さ寸法との差)が表示される(出力手段)。 As shown in FIG. 9, the computer 14 displays the reference triangle 22 and the actually measured triangle 23 on the display 21 as a planar image (display means) . Although not shown, the display 21 displays the length of each side (AB side, BC side, and AC side) of the reference triangle 22, and each side (A -B side, B-C side, and A-C side) are displayed, and the difference between the length dimension of each side of the reference triangle 22 and the length dimension of each side of the measured triangle 23 (reference) The difference between the length dimension of the A-B side of the triangle 22 and the length dimension of the A-B side of the measured triangle 23, the length dimension of the B-C side of the reference triangle 22 and the B-C side of the measured triangle 23 The difference from the length dimension, the difference between the length dimension of the reference triangle 22 on the A-C side and the length dimension of the measured triangle 23 on the A-C side) is displayed (output means).

また、ディスプレイ21には、図示はしていないが、基準三角形22の内角の角度(θ1,θ2,θ3)が表示され、実測三角形23の内角の角度(θ1,θ2,θ3)が表示され、さらに、基準三角形22の内角の角度と実測三角形23の内角の角度との差(基準三角形22の角度θ1と実測三角形23の角度θ1との差,基準三角形22の角度θ2と実測三角形23の角度θ2との差,基準三角形22の角度θ3と実測三角形23の角度θ3との差)が表示される(出力手段)。コンピュータ14は、図9の画像をメモリに格納するとともに、基準三角形22と実測三角形23との各辺の長さ寸法、それら三角形22,23の各辺の長さ寸法の差、基準三角形22と実測三角形23との内角の角度、それら三角形22,23の内角の角度の差をメモリに格納する。   Although not shown, the display 21 displays the internal angles (θ1, θ2, θ3) of the reference triangle 22, and the internal angles (θ1, θ2, θ3) of the actually measured triangle 23. Further, the difference between the internal angle of the reference triangle 22 and the internal angle of the measured triangle 23 (the difference between the angle θ1 of the reference triangle 22 and the angle θ1 of the measured triangle 23, the angle θ2 of the reference triangle 22 and the angle of the measured triangle 23) The difference from θ2 and the difference between the angle θ3 of the reference triangle 22 and the angle θ3 of the measured triangle 23 are displayed (output means). The computer 14 stores the image of FIG. 9 in a memory, and the length dimension of each side of the reference triangle 22 and the actually measured triangle 23, the difference in length dimension of each side of the triangles 22 and 23, the reference triangle 22 and The internal angle of the measured triangle 23 and the difference between the internal angles of the triangles 22 and 23 are stored in the memory.

コンピュータ14は、図10に示すように、三次元座標を用いて基準三角形22と実測三角形23とを立体画像としてディスプレイ21に表示する(表示手段)。ディスプレイ21には、図示はしていないが、基準三角形22の各点(A点,B点,C点)のX,Y,Z軸における座標が表示され、実測三角形23の各点(A点,B点,C点)のX,Y,Z軸における座標が表示される。さらに、基準三角形の各点に対する実測三角形の各点のX,Y,Z軸方向への移動寸法±(基準三角形22のA点に対する実測三角形23のA点のX,Y,Z軸方向への移動寸法、基準三角形22のB点に対する実測三角形23のB点のX,Y,Z軸方向への移動寸法、基準三角形22のC点に対する実測三角形23のC点のX,Y,Z軸方向への移動寸法)が表示される。コンピュータ14は、図10の画像をメモリに格納するとともに、基準三角形22と実測三角形23との各点の座標、それら三角形22,23の各点のX,Y,Z軸方向への移動寸法メモリに格納する。コンピュータ14は、図9,10の画像をプリンタを介して印刷し、各辺の長さ寸法の差や内角の角度の差、各点のX,Y,Z軸方向への移動寸法をプリンタを介して印刷する(出力手段)。 As shown in FIG. 10, the computer 14 displays the reference triangle 22 and the actually measured triangle 23 on the display 21 as a three-dimensional image using the three-dimensional coordinates (display means) . Although not shown in the figure, the coordinates on the X, Y, and Z axes of each point (point A, point B, and point C) of the reference triangle 22 are displayed on the display 21, and each point (point A) of the measured triangle 23 is displayed. , B, C) are displayed on the X, Y, and Z axes. Furthermore, the movement dimension of each point of the measured triangle in the X, Y, Z axis direction with respect to each point of the reference triangle ± (the point A of the measured triangle 23 with respect to the point A of the reference triangle 22 in the X, Y, Z axis direction) Movement dimension, movement dimension in the X, Y, Z axis direction of the B point of the measurement triangle 23 with respect to the B point of the reference triangle 22, X, Y, Z axis direction of the C point of the measurement triangle 23 with respect to the C point of the reference triangle 22 Is displayed. The computer 14 stores the image of FIG. 10 in a memory, coordinates of points of the reference triangle 22 and the actually measured triangle 23, and movement dimension memories of the points of the triangles 22 and 23 in the X, Y, and Z axis directions. To store. The computer 14 prints the images shown in FIGS. 9 and 10 through a printer, and displays the difference in the length dimension of each side, the difference in the internal angle, and the movement dimension of each point in the X, Y, and Z axis directions. Printing (output means).

コンピュータ14は、基準三角形22の各辺の長さ寸法と実測三角形23のそれとの差(残留変形の値)、基準三角形22の内角の角度と実測三角形23のそれとの差(残留変形の値)、基準三角形22の比高と実測三角形23のそれとの差(残留変形の値)(A点,B点,C点のY軸方向の移動寸法)、基準三角形22の各点に対する実測三角形23の各点のX,Z軸方向へ(水平方向)の移動寸法から、ビル16の健全性を判定し、判定結果(健全性あり、または、健全性なし)を出力する。コンピュータ14は、判定結果をメモリに格納する。健全性を判断するためのそれら差の基準値(第1〜第3の基準値)は、図1のシステム10と同様に、あらかじめコンピュータ14に設定されている。第1〜第3の基準値は、測定する建造物の大きさや種類、アンテナ12A〜12Cの設置位置、災害の大小、建造物に築年数等の各要素を考慮して自由に設定することができる。 The computer 14 determines the difference between the length dimension of each side of the reference triangle 22 and that of the measured triangle 23 (residual deformation value) , and the difference between the internal angle of the reference triangle 22 and that of the measured triangle 23 (residual deformation value). The difference between the specific height of the reference triangle 22 and that of the measured triangle 23 (residual deformation value) (the movement dimension in the Y-axis direction of points A, B, and C), the measured triangle 23 for each point of the reference triangle 22 The soundness of the building 16 is determined from the movement dimension of each point in the X and Z axis directions (horizontal direction) , and the determination result (having soundness or not sounding) is output. The computer 14 stores the determination result in the memory. The reference values (first to third reference values) of these differences for determining the soundness are set in the computer 14 in advance as in the system 10 of FIG. The first to third reference values can be freely set in consideration of factors such as the size and type of the building to be measured, the installation positions of the antennas 12A to 12C, the magnitude of the disaster, and the age of the building. it can.

図6に示す建造物健全性判定システム30は、実測三角形22と基準三角形23とを比較したときの比較要素の相違点を用いてビル16の健全性の残留変形を測定し、残留変形の値からビル16の健全性を判定するから、自然災害や人的災害が起こった後のビル16の傾きや捻れ、座屈等の変形を見落とすことなく調査することができ、それら災害が起こった後のビル16の健全性を確実に判定することができる。また、耐用年数が経過した後のビル16の傾きや捻れ、座屈等の変形を調査することができ、ビル16の今後の使用可能性を判定することができる。このシステム30は、GPSを利用して基準三角形22と実測三角形23とを形象し、それら三角形22,23の相違点を抽出するから、目視では不可能なわずかな残留変形を確実に検出することができる。また、基線ベクトル15A〜15Cに囲繞された区域が三角形18を形成するように各GPSアンテナ12A〜12Cをビル16の屋上17に配置するだけなので、システム30の設定に手間がかからず、さらに、システム30を容易に移設することができる。   The building soundness determination system 30 shown in FIG. 6 measures the residual deformation of the soundness of the building 16 by using the difference between the comparison elements when the measured triangle 22 and the reference triangle 23 are compared, and the value of the residual deformation. Because the health of the building 16 is judged from the above, it is possible to investigate without overlooking the deformation of the building 16 after a natural disaster or human disaster has occurred, such as tilt, twist, buckling, etc. The soundness of the building 16 can be reliably determined. Further, it is possible to investigate the inclination, twist, buckling, and other deformations of the building 16 after the useful life has elapsed, and to determine the future availability of the building 16. Since this system 30 forms a reference triangle 22 and an actually measured triangle 23 using GPS and extracts the difference between the triangles 22 and 23, it can reliably detect a slight residual deformation that cannot be visually observed. Can do. In addition, since the GPS antennas 12A to 12C are simply arranged on the roof 17 of the building 16 so that the areas surrounded by the baseline vectors 15A to 15C form a triangle 18, the setting of the system 30 is not troublesome. The system 30 can be easily relocated.

このシステム30は、ビル16の近傍における地上31の座標確定ポイントQに設置された基準局32が誤差推定値L3を測定し、各測定ポイントPに設置されたGPS受信機13が誤差推定値L3を用いて擬似距離L4を補正しつつ測位計算を実行するから、擬似距離L4の誤差を補正することによって測定精度を向上させることができ、ビル16のわずかな残留変形を確実に検出することができる。   In this system 30, the reference station 32 installed at the coordinate determination point Q of the ground 31 near the building 16 measures the error estimated value L3, and the GPS receiver 13 installed at each measurement point P uses the error estimated value L3. Since the positioning calculation is executed while correcting the pseudo distance L4, the measurement accuracy can be improved by correcting the error of the pseudo distance L4, and the slight residual deformation of the building 16 can be reliably detected. .

このシステム30は、実測三角形23の各辺の長さ寸法が基準三角形22のそれと相違する場合、実測三角形23の各内角の角度が基準三角形22のそれと相違する場合、実測三角形23の垂直方向の高さ寸法が基準三角形22のそれと相違する場合、実測三角形23の各点が基準三角形22の各点に対して水平方向へ移動する場合、自然災害または人的災害が起こった後のビル16や耐用年数が経過したビル16に傾きや捻れ、座屈等の変形が生じたことが判るから、基準三角形22と実測三角形23とを比較することによってビル16の健全性を確実に判定することができる。   In the system 30, when the length dimension of each side of the actual measurement triangle 23 is different from that of the reference triangle 22, the angle of each internal angle of the actual measurement triangle 23 is different from that of the reference triangle 22. When the height dimension is different from that of the reference triangle 22, when each point of the measured triangle 23 moves in the horizontal direction with respect to each point of the reference triangle 22, the building 16 after a natural disaster or human disaster occurs Since it can be seen that the building 16 that has reached the end of its useful life has undergone deformation such as tilting, twisting, and buckling, it is possible to reliably determine the soundness of the building 16 by comparing the reference triangle 22 with the measured triangle 23. it can.

図1および図6に示すシステム10,39では、GPSアンテナ12A〜12Dがビル16の屋上17に設置されているが、ビル16の屋上17のみならず、学校や病院の屋上、発電所の屋上、一般家屋の屋根等のあらゆる建造物に設置することができる。   In the systems 10 and 39 shown in FIGS. 1 and 6, the GPS antennas 12A to 12D are installed on the roof 17 of the building 16, but not only the roof 17 of the building 16, but also the roof of a school or hospital, the roof of a power plant. It can be installed in any building such as a roof of a general house.

一例として示す建造物健全性判定システムが設置されたビルディングの概略図。The schematic of the building in which the building soundness judgment system shown as an example was installed. GPS衛星とGPSアンテナとの相関関係の一例を示す図。The figure which shows an example of the correlation of a GPS satellite and a GPS antenna. アンテナどうしの間に延びる基線ベクトルのイメージ図。An image diagram of a baseline vector extending between antennas. ディスプレイに表示された基準三角形と実測三角形とを示す図。The figure which shows the reference | standard triangle and actual measurement triangle which were displayed on the display. ディスプレイに表示された基準三角形と実測三角形とを示す図。The figure which shows the reference | standard triangle and actual measurement triangle which were displayed on the display. 他の一例として示す建造物健全性判定システムが設置されたビルの概略図。The schematic of the building in which the building soundness determination system shown as another example was installed. ディファレンシャル側位の説明図。Explanatory drawing of a differential side position. アンテナどうしの間に延びる基線ベクトルのイメージ図。An image diagram of a baseline vector extending between antennas. ディスプレイに表示された基準三角形と実測三角形とを示す図。The figure which shows the reference | standard triangle and actual measurement triangle which were displayed on the display. ディスプレイに表示された基準三角形と実測三角形とを示す図。The figure which shows the reference | standard triangle and actual measurement triangle which were displayed on the display.

10 建造物健全性判定システム
11 GPS衛星
12A〜12D GPSアンテナ
13 GPS受信機
14 コンピュータ(計算機)
15 基線ベクトル
16 ビルディング(建造物)
17 屋上
22 基準三角形
23 実測三角形
30 建造物健全性判定システム
31 地上
32 基準局
P 測定ポイント
Q 座標確定ポイント
DESCRIPTION OF SYMBOLS 10 Building soundness determination system 11 GPS satellite 12A-12D GPS antenna 13 GPS receiver 14 Computer (computer)
15 Baseline vector 16 Building
17 Rooftop 22 Reference triangle 23 Measured triangle 30 Building soundness judgment system 31 Ground 32 Reference station P Measurement point Q Coordinate determination point

Claims (5)

建造物の屋上の複数の測定ポイントに設置された複数のGPSアンテナ・受信機と、前記GPSアンテナ・受信機がGPS衛星から受信した観測データに基づいてGPSアンテナ間の基線ベクトルを算出する計算機とを備え、前記基線ベクトルに囲繞された区域が三角形を形成するように各GPSアンテナが前記屋上に配置され、
前記計算機が、前記基線ベクトルによって画成された初期の基準三角形を記憶するとともに、前記基準三角形の記憶時から所定時間経過後に算出した前記基線ベクトルによって画成される実測三角形を記憶する形状記憶手段と、三次元座標を用いて前記基準三角形と前記実測三角形とを立体画像として表示する表示手段と、前記実測三角形前記基準三角形と比較する比較手段と、前記比較手段によって比較した前記基準三角形と前記実測三角形との比較要素の相違点を用いて前記建造物の残留変形を測定する測定手段と、前記残留変形の値によって前記建造物の健全性を判定する判定手段とを有する建造物健全性判定システム。
A plurality of GPS antennas / receivers installed at a plurality of measurement points on the roof of the building, and a calculator for calculating a baseline vector between the GPS antennas based on observation data received from GPS satellites by the GPS antenna / receiver; Each GPS antenna is arranged on the rooftop so that the area surrounded by the baseline vector forms a triangle,
A shape storage means for storing an initial reference triangle defined by the baseline vector and a measured triangle defined by the baseline vector calculated after elapse of a predetermined time from the storage of the reference triangle. Display means for displaying the reference triangle and the measured triangle as a three-dimensional image using three-dimensional coordinates, comparison means for comparing the measured triangle and the reference triangle, and the reference triangle compared by the comparison means And a measuring unit for measuring the residual deformation of the building using a difference between the comparison triangle and the measured triangle, and a determination unit for determining the soundness of the building based on the value of the residual deformation Sex determination system.
前記建造物健全性判定システムでは、前記建造物近傍における地上の座標確定ポイントに基準局が設置され、前記基準局が誤差推定値を測定し、前記GPSアンテナ・受信機が前記誤差推定値を用いて擬似距離を補正しつつ測位計算を実行する請求項1記載の建造物健全性判定システム。   In the building soundness determination system, a reference station is installed at a ground coordinate determination point in the vicinity of the building, the reference station measures an error estimated value, and the GPS antenna / receiver simulates using the error estimated value. The building soundness determination system according to claim 1, wherein the positioning calculation is performed while correcting the distance. 前記基準三角形と前記実測三角形との比較要素が、前記基線ベクトルによって画成された前記基準三角形と前記実測三角形との各辺の長さ寸法であり、前記残留変形の値が、前記基準三角形と前記実測三角形との各辺の長さ寸法の差であり、前記判定手段では、前記基準三角形と前記実測三角形との各辺の長さ寸法の差が第1の基準値を超えている場合に健全性なしと判定する請求項1または請求項2に記載の建造物健全性判定システム。 Comparative Element of the actual triangular and the reference triangle, Ri length Der of each side of the reference triangle and the actual triangle defined by the base line vector, the value of the residual deformation, the reference triangle And a difference in length dimension of each side between the measured triangle, and in the determination means, a difference in length dimension of each side between the reference triangle and the measured triangle exceeds a first reference value. building soundness determination system according to claim 1 or claim 2 judges that no soundness. 前記基準三角形と前記実測三角形との比較要素が、前記基線ベクトルによって画成された前記基準三角形と前記実測三角形との各内角であり、前記残留変形の値が、前記基準三角形と前記実測三角形との各内角の差であり、前記判定手段では、前記基準三角形と前記実測三角形との各内角の差が第2の基準値を超えている場合に健全性なしと判定する請求項1ないし請求項3いずれかに記載の建造物健全性判定システム。 Comparative Element of the actual triangular and the reference triangle, Ri each interior angle der between the reference triangle and the actual triangle defined by the base line vector, the value of the residual deformation, the actual triangle and the reference triangle The determination means determines that the soundness is not sound when the difference between the internal angles of the reference triangle and the actually measured triangle exceeds a second reference value. Item 4. The building soundness determination system according to any one of Items 3 to 3. 前記基準三角形と前記実測三角形との比較要素が、前記基線ベクトルによって画成された前記基準三角形と前記実測三角形との比高であり、前記残留変形の値が、前記基準三角形と前記実測三角形との比高の差であり、前記判定手段では、前記基準三角形と前記実測三角形との比高の差が第3の基準値を超えている場合に健全性なしと判定する請求項1ないし請求項3いずれかに記載の建造物健全性判定システム。 Comparative Element of the actual triangular and the reference triangle, Ri relative height der between the reference triangle and the actual triangle defined by the base line vector, the value of the residual deformation, the actual triangle and the reference triangle The determination means determines that the soundness is not sound when the difference in the specific height between the reference triangle and the actually measured triangle exceeds a third reference value. Item 4. The building soundness determination system according to any one of Items 3 to 3.
JP2006079980A 2006-03-23 2006-03-23 Building soundness judgment system Active JP5043352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079980A JP5043352B2 (en) 2006-03-23 2006-03-23 Building soundness judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079980A JP5043352B2 (en) 2006-03-23 2006-03-23 Building soundness judgment system

Publications (3)

Publication Number Publication Date
JP2007256036A JP2007256036A (en) 2007-10-04
JP2007256036A5 JP2007256036A5 (en) 2008-12-25
JP5043352B2 true JP5043352B2 (en) 2012-10-10

Family

ID=38630438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079980A Active JP5043352B2 (en) 2006-03-23 2006-03-23 Building soundness judgment system

Country Status (1)

Country Link
JP (1) JP5043352B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982740B2 (en) * 2011-06-27 2016-08-31 株式会社大林組 Measuring system, calculation device, lift-up method and slide method
EP3109674B1 (en) * 2014-02-21 2019-03-27 Furuno Electric Co., Ltd. Structure displacement detection device, structure displacement sharing system, structure displacement detection method and structure displacement detection program
JP2017015400A (en) * 2015-06-26 2017-01-19 アイサンテクノロジー株式会社 System and method for detecting electric wave interference and positioning system
FR3038068B1 (en) * 2015-06-29 2020-02-07 Altran Technologies - Altran METHOD OF DETECTION OF AN EARTHQUAKE AND SYSTEM IMPLEMENTING THE SAME
CN105510069B (en) * 2015-12-04 2018-08-07 山东大学 Automate true triaxial Intelligent assembly physical analog test apparatus system and test method
CN106501826B (en) * 2016-09-14 2017-08-25 申研 Satellite positioning method during a kind of high-precision real
CN106705830A (en) * 2017-01-17 2017-05-24 中建局集团建设发展有限公司 Beidou satellite-based super high-rise building high-precision deformation monitoring system and monitoring method
CN106908807B (en) * 2017-02-28 2020-06-05 清华大学 Pseudo code modulation navigation positioning and deformation monitoring, monitoring terminal, monitoring center, navigation receiver and code data management center
JP7075572B2 (en) * 2017-04-12 2022-05-26 清水建設株式会社 Displacement measurement method and displacement measurement system
JP2020003407A (en) * 2018-06-29 2020-01-09 パナソニックIpマネジメント株式会社 Structure monitoring server and structure monitoring system
JP7402400B2 (en) * 2019-12-27 2023-12-21 一般社団法人防災減災技術開発機構 Strain measurement device, strain measurement program, and strain measurement method
CN111141205B (en) * 2020-01-08 2021-12-21 南通四建集团有限公司 Building deformation monitoring and early warning method and system based on Beidou/GNSS high-precision positioning

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532267B2 (en) * 1994-11-18 2004-05-31 古野電気株式会社 Positioning system
JPH0933633A (en) * 1995-07-24 1997-02-07 Mitsui Constr Co Ltd Gps measuring device
JPH09203636A (en) * 1996-01-25 1997-08-05 Paafuekuto Keisoku:Kk Gps survey apparatus for use in city area
JPH1062169A (en) * 1996-08-23 1998-03-06 Maeda Corp Detector and detecting method of known point by gps survey
JP2003057327A (en) * 2001-08-09 2003-02-26 Matsushita Electric Ind Co Ltd Navigation satellite signal receiver
JP3734792B2 (en) * 2002-12-06 2006-01-11 富士通株式会社 Program for causing computer to perform processing in correction information acquisition apparatus and correction information acquisition method
JP2005121464A (en) * 2003-10-16 2005-05-12 Mitsubishi Space Software Kk Server, system, method and program for monitoring structure, and computer readable recording medium recording program for monitoring structure

Also Published As

Publication number Publication date
JP2007256036A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP5043352B2 (en) Building soundness judgment system
JP2007256036A5 (en)
JP5340543B2 (en) System for judging the soundness of temporary structures
Vigny et al. Present‐day crustal deformation around Sagaing fault, Myanmar
Xu et al. High-rate multi-GNSS attitude determination: experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9. 0 earthquake
US20160198286A1 (en) Sensor installation location determination support system and sensor installation location determination support method
JP5028096B2 (en) Soundness judgment system for long structures
EP3109674B1 (en) Structure displacement detection device, structure displacement sharing system, structure displacement detection method and structure displacement detection program
CN103630914A (en) GNSS baseline solution reference satellite selecting method
KR20060056357A (en) Altitude aiding in a satellite positioning system
WO2023092865A1 (en) Area reconstruction method and system
RU2560094C2 (en) Method of determining propagation speed and direction of arrival of ionospheric perturbation
Heinz et al. Analysis of different reference plane setups for the calibration of a mobile laser scanning system
WO2016017261A1 (en) Positioning position testing system
AU2012282397B2 (en) Method of representing possible movements of a structure for an apparatus of smartphone type
JP5566598B2 (en) Navigation system comprising a device for detecting inaccuracy
KR100515162B1 (en) System for realtime monitoring of disaster by global positioning system and inertial navigation system and method for management thereof
JP2006090912A (en) Positioning device, information distributing device, positioning method, and information distributing method
JP5566599B2 (en) Navigation system having a device for detecting inaccuracy
JP2003329440A (en) Ground displacement positioning system
Meisina et al. Choice of surveying methods for landslides monitoring
Choudhury et al. A survey of techniques and algorithms in deformation monitoring applications and the use of the Locata technology for such applications
KR20220120507A (en) Position displacement monitoring method using GNSS and sensor data and a constant measurement system for hazardous areas using the same
Zhang et al. Underground mining intelligent response and rescue systems
CN114167469A (en) Vehicle navigation information monitoring method and device based on 5G/GNSS combination

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350