JP5042466B2 - Direct receiving connecting rod and manufacturing method thereof - Google Patents

Direct receiving connecting rod and manufacturing method thereof Download PDF

Info

Publication number
JP5042466B2
JP5042466B2 JP2005158806A JP2005158806A JP5042466B2 JP 5042466 B2 JP5042466 B2 JP 5042466B2 JP 2005158806 A JP2005158806 A JP 2005158806A JP 2005158806 A JP2005158806 A JP 2005158806A JP 5042466 B2 JP5042466 B2 JP 5042466B2
Authority
JP
Japan
Prior art keywords
connecting rod
alloy
overlay
mos
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005158806A
Other languages
Japanese (ja)
Other versions
JP2006336674A (en
Inventor
貴志 冨川
桂己 山本
節 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP2005158806A priority Critical patent/JP5042466B2/en
Publication of JP2006336674A publication Critical patent/JP2006336674A/en
Application granted granted Critical
Publication of JP5042466B2 publication Critical patent/JP5042466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/127Details of intermediate layers, e.g. nickel dams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/50Lubricating properties
    • F16C2202/54Molybdenum disulfide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/206Multilayer structures, e.g. sleeves comprising a plastic lining with three layers

Description

本発明は、コンロッドに関するものであり、さらに詳しく述べるならば、内燃機関のコネクティングロッドの大端部に連結される半割円形すべり軸受を介さずに直接クランクシャフトを支承する直受コンロッド、ならびにその製造方法に関するものである。
クランシャフトには、S50CQTなどの炭素鋼、SCM440QTなどの合金鋼、V添加S45Cなどの非調質鋼、FCD70などの鋳鉄が用いられ、軟窒化などの表面処理が施されることがある。コンロッドには、炭素鋼、合金鋼、非調質鋼、焼結鍛造鋼などが用いられる。
The present invention relates to a connecting rod. More specifically, the present invention relates to a direct receiving connecting rod that directly supports a crankshaft without using a half-circular plain bearing connected to the large end of a connecting rod of an internal combustion engine, and its It relates to a manufacturing method.
The cran shaft is made of carbon steel such as S50CQT, alloy steel such as SCM440QT, non-heat treated steel such as V-added S45C, cast iron such as FCD70, and may be subjected to surface treatment such as soft nitriding. Carbon steel, alloy steel, non-heat treated steel, sintered forged steel, etc. are used for the connecting rod.

特許文献1、特開平10−339316号公報には、コンロッド大端部の本体側に軸受を設け、キャップ側は軸受を設けずクランクシャフトを直受けとし、場合によっては、キャップ側にメッキ又はスパッタによるSnもしくはPb系オーバレイあるいは樹脂系コーティングを設けることが開示されている。さらに、すべり軸受銅合金をコンロッド摺動面に溶射する直受け構造も公知である。このように、すべり軸受を廃止した直受け構造とすることにより、特に裏金分の重量が減ることによりコンロッド及びクランクシャフトの合計重量に対して数%の軽量化を実現することが期待されている。   In JP-A-10-339316, a bearing is provided on the main body side of the connecting rod large end, a bearing is not provided on the cap side, and the crankshaft is directly received. Providing a Sn or Pb based overlay or a resin based coating. Further, a direct receiving structure in which a sliding bearing copper alloy is sprayed onto a connecting rod sliding surface is also known. In this way, by adopting a direct receiving structure that eliminates the sliding bearing, it is expected to achieve a weight reduction of several percent with respect to the total weight of the connecting rod and the crankshaft, particularly by reducing the weight of the back metal. .

特許文献1に説明されているディーゼルエンジンの作動条件は、コンロッド本体側の軸受に加えられる面圧は80〜110MPa、コンロッド本体とは反対側のキャップ側の面圧は20〜 25MPa程度である。このような条件を考慮して特許文献1ではキャップ側のみを直受け構造としている。さらに、SnもしくはPb系オーバレイあるいは樹脂系コーティングを設けたキャップ側も上記20 〜25MPaの面圧下で作動することが考慮されている。   The operating condition of the diesel engine described in Patent Document 1 is that the surface pressure applied to the bearing on the connecting rod body side is 80 to 110 MPa, and the surface pressure on the cap side opposite to the connecting rod body is about 20 to 25 MPa. In consideration of such conditions, in Patent Document 1, only the cap side has a direct receiving structure. Furthermore, it is considered that the cap side provided with the Sn or Pb-based overlay or the resin-based coating operates under the surface pressure of 20 to 25 MPa.

非特許文献1、日本トライボロジー学会トライボロジー会議予稿集(東京1999-5、A12、固体潤滑オーバレイ付きエンジン用すべり軸受材料の開発(第1報))によると、すべり軸受用Al合金(Al-12.5Sn-2.7Si-1Cu-0.2Cr-2Pb圧延材)の上に、流体潤滑を形成し易く、初期なじみ性が良好なオーバレイとして、MoS2を添加したエポキシ樹脂をスプレーで塗布焼付すると、面圧78MPaでも焼付かないことが報告されている。 According to Non-Patent Document 1, Proceedings of Tribology Conference of Japan Tribology Society (Tokyo 1999-5, A12, Development of Slide Bearing Materials for Engines with Solid Lubrication Overlay (1st Report)), Al Alloys for Slide Bearings (Al-12.5Sn) -2.7Si-1Cu-0.2Cr-2Pb rolled material), MoS 2 added epoxy resin is applied and baked by spraying as an overlay with good fluid lubrication and good initial conformability. However, it has been reported that it does not burn.

Al-20%Sn-0〜3%Cuの組成をもつアルミニウムすべり軸受合金に、必要によりAl2O3粒子を分散させたものを、陰極スパッタにより支持体上に成膜して、摺動層とすることは、特許文献2、特開昭55-81147号公報に記載されている。このスパッタAl-Sn系合金は硬さがHv130であり、荷重170N/mm2(170MPa)、160℃、250時間の試験条件において全く摩耗しないと述べている特許文献2の記載からは、スパッタAl-Sn系合金は、いわゆる軸受材料としては優れているが、摩滅を利用するオーバレイとしては不適切であるとの評価が導かれる。 An aluminum sliding bearing alloy having a composition of Al-20% Sn-0 to 3% Cu, with Al 2 O 3 particles dispersed as necessary, is deposited on the support by cathode sputtering, and a sliding layer Is described in Japanese Patent Application Laid-Open No. 55-81147. This sputtered Al-Sn alloy has a hardness of Hv130 and is described in Patent Document 2 which states that it does not wear at all under the test conditions of load 170 N / mm 2 (170 MPa), 160 ° C., 250 hours. Although the -Sn alloy is excellent as a so-called bearing material, it is estimated that it is not suitable as an overlay utilizing wear.

低炭素鋼裏金にアルミニウム合金を圧延したバイメタル上に、Si0.5〜6%、Pb5〜40%、Sn0.5〜10%、残部Alからなるアルミニウム合金オーバレイをスパッタリングにより形成することが特許文献3、特開平7-90551号公報に提案されている。特許文献3で提案されたオーバレイ用スパッタAl系合金は通常の溶製法では合金化が困難なPbをアルミニウムに多量に添加することにより、合金全体の硬度を下げ、なじみ性を発現したものである。スパッタされたオーバレイは微細均一な組織と高い硬度を有するために耐摩耗性及び耐疲労性が良好であることは特許文献2から明らかであるが、特許文献3の実施例における焼付かない最高面圧1350kg/cm2(13MPa)は比較的低い。これは多量のPb添加によると考えられる。
特開平10−339316号公報 特開昭55−81147号公報 特開平7−90551号公報 特開平 7−247493号公報 日本トライボロジー学会トライボロジー会議予稿集(東京1999-5、A12、固体潤滑オーバレイ付きエンジン用コンロッドけ材料の開発(第1報) 自動車技術Vol59, No.2, 2005,p25〜28
Patent Document 3 discloses that an aluminum alloy overlay comprising Si 0.5 to 6%, Pb 5 to 40%, Sn 0.5 to 10%, and the balance Al is formed on a bimetal obtained by rolling an aluminum alloy on a low carbon steel backing metal. Japanese Patent Laid-Open No. 7-90551. The overlay sputtered Al-based alloy proposed in Patent Document 3 is one in which a large amount of Pb, which is difficult to be alloyed by an ordinary melting method, is added to aluminum, thereby reducing the overall hardness of the alloy and expressing the familiarity. . Although it is clear from Patent Document 2 that the sputtered overlay has a fine and uniform structure and high hardness, it is clear from Patent Document 2 that the maximum surface pressure without seizure in the embodiment of Patent Document 3 1350kg / cm 2 (13MPa) is relatively low. This is thought to be due to the addition of a large amount of Pb.
JP 10-339316 A JP-A-55-81147 Japanese Patent Laid-Open No. 7-90551 JP-A-7-247493 Tribology Conference Proceedings of the Japan Society of Tribology (Tokyo 1999-5, A12, Development of connecting rod materials for engines with solid lubricant overlay (1st report) Automotive Technology Vol59, No.2, 2005, p25 ~ 28

本出願人は非特許文献1のすべり軸受を工業化し、軸受面圧保証性能が80〜100MPaの量産車に半円形すべり軸受(いわゆる「メタル」)として組込んでいる。その後100〜120MPaの面圧保証性能の要求に対応する開発を行っていた過程で、非特許文献1で提案されているMoS2系コーティング軸受は、100MPaを超える高面圧下では摺動性能が十分でないことが分かった。具体的に述べると、MoS2系コーティングによるなじみ作用がほとんど実現できない。そこで、この現象について次のように考察した。一般に、オーバレイのなじみ性はアブレーシブ摩耗により説明ができ、オーバレイの硬さが低い方がなじみ性が良好になる。すなわち、軟質オーバレイほどアブレーシブ摩耗が起こり易くなり、相手軸の凹凸になじむ性質が顕著になるとの説明が可能である。一方、一般に荷重は、アブレーシブ摩耗を促進する傾向があるのでなじみ性を良好にするように思われるが、結果としては、なじみ性を損なっている。 The present applicant industrialized the plain bearing of Non-Patent Document 1 and incorporated it as a semi-circular plain bearing (so-called “metal”) in a mass-produced vehicle having a bearing surface pressure guarantee performance of 80 to 100 MPa. In the process of developing to meet the required surface pressure guarantee performance of 100 to 120MPa, the MoS 2 -coated bearing proposed in Non-Patent Document 1 has sufficient sliding performance under high surface pressure exceeding 100MPa. I understood that it was not. More specifically, the familiarity of MoS 2 coatings can hardly be realized. Therefore, this phenomenon was considered as follows. In general, the conformability of the overlay can be explained by abrasive wear, and the conformability becomes better when the hardness of the overlay is lower. In other words, it can be explained that the softer the overlay, the more likely the abrasive wear occurs, and the more prominent the property of adapting to the unevenness of the counterpart shaft. On the other hand, the load generally tends to promote abrasive wear, so it seems to have good compatibility, but as a result, the compatibility is impaired.

直受け構造コンロッドにおいて、従来のPb,Snもしくは樹脂系オーバレイの耐面圧性能は、20 〜25MPa(特許文献1)程度であり、又Al-Pb系オーバレイは13MPa(特許文献3)程度であり、半円形すべり軸受の耐面圧性能よりはかなり低いと考えられている。   In the direct receiving structure connecting rod, the surface pressure resistance performance of the conventional Pb, Sn or resin-based overlay is about 20-25 MPa (Patent Document 1), and the Al-Pb overlay is about 13 MPa (Patent Document 3). It is considered to be considerably lower than the surface pressure resistance performance of the semicircular plain bearing.

そこで、本発明者らは、直受け構造のコンロッドにおいて、高面圧下の摺動性能を改良することにつき鋭意検討した結果、公知技術の組合わせにより所期の改良ができ、逆に組合わせることが好ましくない公知技術があることを究明した。 Therefore, as a result of intensive studies on improving the sliding performance under high surface pressure in the connecting rod having a direct receiving structure, the present inventors can improve the expected by combining known techniques, and conversely combine them. Has been found that there are unfavorable known techniques.

本発明に係るコンロッドは、コンロッド摺動面の全面にAl-Sn系
合金をスパッタにて被着し、該Al-Sn系合金上にMoS2-樹脂系オーバレイを塗布焼付した
ことを特徴とする。以下、本発明の特徴を説明する。
The connecting rod according to the present invention is characterized in that an Al—Sn alloy is deposited on the entire sliding surface of the connecting rod by sputtering, and a MoS 2 -resin overlay is applied and baked on the Al—Sn alloy. . The features of the present invention will be described below.

特許文献2で述べられているスパッタAl-Sn系合金の摩耗試験条件は非常に厳しいので、この条件で摩耗しないスパッタAl-Sn系合金の耐摩耗性は非常にすぐれていると言える。一般的Al圧延合金を比較考慮すると、耐摩耗性がすぐれているAl-Si系合金でも多少は摩耗するから、スパッタAl-Sn系合金は組織が微細化しているために耐摩耗性が著しく向上したと考えられる。   Since the wear test conditions of the sputtered Al—Sn alloy described in Patent Document 2 are very severe, it can be said that the wear resistance of the sputtered Al—Sn alloy that does not wear under these conditions is very good. Compared with general Al rolled alloys, even Al-Si alloys with excellent wear resistance wear somewhat, so the sputtered Al-Sn alloy has a refined structure, so the wear resistance is significantly improved. It is thought that.

本発明者らは、スパッタAl-Sn系合金は耐摩耗性がすぐれているために、非特許文献1のMoS2系コーティングオーバレイと組合わせると、直受け構造コンロッドのオーバレイとして活用するとの着想を抱いた。このような着想を抱いた背景は、MoS2+樹脂系コーティングオーバレイを施さないスパッタAl-Sn系合金の摺動特性を研究したところ、特許文献2で報告されているように全く摩耗が起こらないということはないが、顕著な摩耗現象としては、高荷重下での相手軸との片当りにより摩耗問題が起こることを見出した。このスパッタAl-Sn系合金の片当り摩耗をMoS2+樹脂系コーティングオーバレイにより解決できる可能性があった。 Since the present inventors have excellent wear resistance, the sputtered Al—Sn alloy has the idea that when combined with the MoS 2 coating overlay of Non-Patent Document 1, it is used as an overlay for a direct receiving structure connecting rod. embraced. The background behind this idea is that when the sliding characteristics of a sputtered Al—Sn alloy without MoS 2 + resin-based coating overlay were studied, no abrasion occurred as reported in Patent Document 2. However, it has been found that as a remarkable wear phenomenon, a wear problem occurs due to contact with the mating shaft under a high load. The uneven contact wear of the sputtered Al-Sn alloy had a possibility to solve the MoS 2 + resin coating overlay.

従来、すべり軸受の片当り摩耗対策としては次の手段が実施されている。
(1)軸受の加工精度向上
(2)オーバレイによる被覆
(3)クラウニング加工(非特許文献2、第28頁)
Conventionally, the following means have been implemented as countermeasures against wear per piece of a slide bearing.
(1) Improvement of bearing processing accuracy (2) Covering with overlay (3) Crowning (Non-Patent Document 2, page 28)

まず、対策(1)は、すべり軸受でも加工精度上の限界があり、コンロッドの場合はすべり軸受よりも加工工数が大きいから、直受コンロッドには応用困難である。
次に、対策(3)では、片当りが起こり易い軸方向端部の軸受と軸とのクリアランスを大きくするように、例えば半割形状バイメタルを異形型加工する。しかしながら、この加工方法は非常に複雑であり、また直受コンロッドには応用困難である。
First, the measure (1) has a limit in processing accuracy even with a slide bearing, and in the case of a connecting rod, the number of processing steps is larger than that of a sliding bearing, so that it is difficult to apply to a direct receiving connecting rod.
Next, in measure (3), for example, a half-shaped bimetal is deformed so as to increase the clearance between the shaft and the bearing at the end in the axial direction where contact is likely to occur. However, this processing method is very complicated and is difficult to apply to a direct receiving connecting rod.

非特許文献1で提案されたMoS2系コーティングオーバレイは対策(2)に相当し、直受コンロッドにも応用できるが、高面圧下では機能しない。しかしながら、意外にも、下地にスパッタAl-Sn系合金を成膜すると、片当り摩耗が防止できることが分かった。すなわち、単独では、スパッタAl-Sn系合金はなじみ作用が乏しくかつ片当り摩耗を起こし易く、一方MoS2+PAI(PI)系オーバレイ単独はまったく片当り摩耗対策にならないが、これらを組合わせることにより、耐面圧性能が良好になった。また、従来から使用されているCu-Sn系すべり軸受合金は、上記スパッタAl-Sn系合金及び/又はMoS2+PAI(PI)系オーバレイと組合わせると、片当たり性能に有効でないことが分かった。これら一連の現象の原因は、アブレーシブ摩耗が起こっているオーバレイ表面の硬さが下地の影響を受けていることと想定されるが、摩耗機構の解明はこれからの課題である。
以上の従来技術及び本発明者の知見を整理すると、従来からあるスパッタAl-Sn系合金及び固体潤滑オーバレイはいずれも高面圧下での性能が不足するが、これらを組合わせることで、初期、片当り時のなじみ性及び初期、片当り時の耐焼付性を確保することができた。続いて、本発明の好ましい実施態様を説明する。
The MoS 2 coating overlay proposed in Non-Patent Document 1 corresponds to measure (2) and can be applied to a direct receiving connecting rod, but does not function under high surface pressure. Surprisingly, however, it has been found that if a sputtered Al—Sn alloy film is formed on the underlayer, wear per piece can be prevented. That is, by itself, sputtered Al-Sn alloys have poor conformability and are likely to cause wear per piece, while MoS 2 + PAI (PI) overlay alone does not provide a measure for wear per piece, but these must be combined. As a result, the surface pressure resistance was improved. Further, Cu-Sn-based plain bearing alloy which has been used conventionally, when combined with the sputtering Al-Sn-based alloy and / or MoS 2 + PAI (PI) based overlay, it found not effective in partial contact performance It was. It is assumed that the cause of these series of phenomena is that the hardness of the overlay surface on which abrasive wear has occurred is influenced by the substrate, but elucidation of the wear mechanism is a future issue.
When the above prior art and the knowledge of the present inventor are arranged, the conventional sputtered Al-Sn alloy and the solid lubricating overlay are both insufficient in performance under high surface pressure. It was possible to secure the conformability at the time of piece contact and the seizure resistance at the time of initial contact. Subsequently, preferred embodiments of the present invention will be described.

図1は、本発明に係る直受コンロッドの断面図を示し、図中、1はコンロッド、1aは本体、1bはキャップ、2はスパッタAl-Sn系合金、3はMoS2+樹脂系オーバレイ(以下「固体潤滑剤オーバレイ」という),5は1aと1bを組み付けるボルトである。図2は層構造を示す。なお、スパッタAl-Sn系合金2とコンロッドの中間に密着性を高めるために、コンロッドにNi系、Ni-Cr系中間層をメッキ、スパッタなどにより設け、あるいはNi系自溶合金を溶射することができる。 FIG. 1 shows a cross-sectional view of a direct receiving connecting rod according to the present invention, in which 1 is a connecting rod, 1a is a main body, 1b is a cap, 2 is a sputtered Al—Sn alloy, 3 is a MoS 2 + resin overlay ( 5 is a bolt for assembling 1a and 1b. FIG. 2 shows the layer structure. In order to improve adhesion between the sputtered Al—Sn alloy 2 and the connecting rod, a Ni-based or Ni—Cr-based intermediate layer is provided on the connecting rod by plating, sputtering, or Ni-based self-fluxing alloy is sprayed. Can do.

本発明の好ましい実施態様によると、スパッタAl-Sn系合金2の硬さがHV40〜100であり、かつ固体潤滑剤オーバレイ3の硬さがHV10〜60である。これらの範囲が好ましい理由は、スパッタAl-Sn系合金2及び固体潤滑剤オーバレイ3の硬さが上記下限未満であると、耐疲労性が低下し、上限を超えるとなじみ性が低下する。より好ましくは、スパッタAl-Sn系合金2の硬さがHV50〜80であり、かつ固体潤滑剤オーバレイ3の硬さがHV15〜25である。   According to a preferred embodiment of the present invention, the hardness of the sputtered Al—Sn alloy 2 is HV 40-100 and the hardness of the solid lubricant overlay 3 is HV 10-60. The reason why these ranges are preferable is that when the hardness of the sputtered Al—Sn alloy 2 and the solid lubricant overlay 3 is less than the above lower limit, the fatigue resistance decreases, and when the hardness exceeds the upper limit, the conformability decreases. More preferably, the hardness of the sputtered Al—Sn alloy 2 is HV50-80, and the hardness of the solid lubricant overlay 3 is HV15-25.

本発明の他の好ましい実施態様によると、スパッタAl-Sn系合金の厚さが5〜500μmであり、かつ固体潤滑剤オーバレイの厚さが3〜20μmである。これらの範囲が好ましい理由はスパッタAl-Sn系合金については、下限未満ではコンロッドとクランクシャフトが直接接触する危険があり、上限を超えるとコスト上昇を招く。
固体潤滑剤オーバレイについては下限未満では流体潤滑が達成される前にオーバレイが初期摩滅し、一方上限を超えると流体潤滑達成時点でAl-Sn系合金が十分に表出しないために、耐摩耗性や耐疲労性が不十分になる。より好ましくは、スパッタAl-Sn系合金の厚さが10〜50μmであり、かつ固体潤滑剤オーバレイの厚さが5〜15μmである。
According to another preferred embodiment of the present invention, the thickness of the sputtered Al—Sn alloy is 5 to 500 μm and the thickness of the solid lubricant overlay is 3 to 20 μm. The reason why these ranges are preferable is that for sputtered Al—Sn alloys, there is a risk of direct contact between the connecting rod and the crankshaft if it is less than the lower limit, and if it exceeds the upper limit, cost increases.
If the solid lubricant overlay is less than the lower limit, the overlay is initially worn before fluid lubrication is achieved, whereas if the upper limit is exceeded, the Al-Sn alloy is not fully exposed when the fluid lubrication is achieved. And fatigue resistance becomes insufficient. More preferably, the thickness of the sputtered Al—Sn alloy is 10 to 50 μm, and the thickness of the solid lubricant overlay is 5 to 15 μm.

本発明のAl-Sn系合金の組成は5 〜50 質量%Sn、0〜1 質量%Ni、0〜3 質量%Cu、残部Al及び不可避的不純物であり、また前記オーバレイの好ましい組成は50〜90質量%MoS2、残部ポリアミドイミド(PAI)又はポリイミド(PI)である。Al-Sn系合金においては、Sn含有量が 5 質量%未満ではなじみ性が低下し、50 質量%を超えると強度が低くなる。Ni,Cuの成分は硬質微粒子として存在した耐摩耗性を高めるが、上限を超えると硬くなり過ぎてなじみ性が損なわれ焼付きが生じやすくなる。 ここで、Ni,Cuは任意成分であり、含有しないことも可能である。前記オーバレイは上記範囲において、低摩擦性と接着強度が良好になるが、MoS2の含有量が下限未満では潤滑性能が低下し、上限を超えると脆くなり剥離しやすくなる。より好ましくは、Al-Sn系合金の組成が10〜30質量%Sn、0〜0.1質量%Ni、0〜1質量%Cu、残部Al及び不可避的不純物であり、また前記オーバレイの組成が60〜85 質量%MoS2、残部ポリアミドイミド又はポリイミドである。 The composition of the Al—Sn alloy of the present invention is 5 to 50 mass% Sn, 0 to 1 mass% Ni, 0 to 3 mass% Cu, the balance Al and inevitable impurities, and the preferred composition of the overlay is 50 to 50 mass%. 90% by mass MoS 2 , balance polyamideimide (PAI) or polyimide (PI). In an Al-Sn alloy, the conformability decreases when the Sn content is less than 5% by mass, and the strength decreases when the Sn content exceeds 50% by mass. The components of Ni and Cu enhance the wear resistance existing as hard fine particles, but if they exceed the upper limit, they become too hard and the conformability is impaired and seizure is likely to occur. Here, Ni and Cu are optional components and may be omitted. The overlay has good low friction and good adhesive strength in the above range, but if the MoS 2 content is less than the lower limit, the lubrication performance is lowered, and if it exceeds the upper limit, it becomes brittle and easily peels off. More preferably, the composition of the Al—Sn alloy is 10 to 30 mass% Sn, 0 to 0.1 mass% Ni, 0 to 1 mass% Cu, the balance Al and unavoidable impurities, and the composition of the overlay is 60 to 85% by mass MoS 2 , balance polyamideimide or polyimide.

スパッタはAl-Sn母合金板または、Al,Sn別々の配した合金板を陰極ターゲットとしてArイオン を衝突させて、金属原子をたたき出してコンロッド摺動面(陽極) に被着させる。このスパッタ法自体は特許文献2,3で公知である。
固体潤滑剤オーバレイの塗布焼付は、固体潤滑剤と樹脂に必要により溶剤を混合したものをスプレー、印刷などにより成膜し、その後150〜250℃で焼付けることにより行い、非特許文献1や特許文献4、特開平7−247493号公報で公知である。
上記したスパッタは、図3に示すようにコンロッド本体1aとキャップ1bを組み付けられた状態のコンロッド1のボアを棒状ターゲット10が貫通した状態で行うと、これら1a,1bの当接する面での摺動層の食い違いをなくすることができる。
Sputtering uses an Al-Sn mother alloy plate or an Al / Sn separate alloy plate as a cathode target to bombard Ar ions to knock out metal atoms and deposit them on the connecting rod sliding surface (anode). This sputtering method itself is known in Patent Documents 2 and 3.
The coating and baking of the solid lubricant overlay is performed by spraying, printing, etc., a mixture of solid lubricant and resin, if necessary, and then baking at 150-250 ° C. It is known from Document 4 and JP-A-7-247493.
Sputtering described above is performed when the rod-shaped target 10 penetrates the bore of the connecting rod 1 with the connecting rod body 1a and the cap 1b assembled as shown in FIG. The discrepancy of the dynamic layer can be eliminated.

また、上記したスパッタは、図4に示すようにコンロッド本体1aとキャップ1bとに分割した状態で行うこともできる。コンロッド本体1a及びキャップ1bは、ヒータ11により真空チャンバー20内で加熱されるチャンバー状治具12a,12bに保持され、かつヒータ11とともに水平面内で回転される。これらのコンロッド本体1a及びキャップ1bに面するように配置されたAlターゲット13及びSnターゲット14は電源15に接続されている。この電源15とは反対電荷を帯びたArガスは真空チャンバー20内でターゲット13,14に衝突して、それぞれAl蒸気16及びSn蒸気17が発生する。これらの蒸気は混合されてAl-Sn層2としてコンロッド1上に成膜される。コンロッド本体1a及びキャップ1bを分割した状態でコンロッドの処理を行うことで、量産化した場合には作業効率がよく、さらにスパッタ後にコンロッド本体1aとキャップ1bとを組み付けた際に合わせ面付近の膜厚が減少し、これがリリーフのような役割を果たすことで、摺動時に異物排出性を向上させることができる。
続いて、実験例によりさらに詳しく本発明を説明する。
Further, the above-described sputtering can be performed in a state where the connecting rod main body 1a and the cap 1b are divided as shown in FIG. The connecting rod body 1a and the cap 1b are held by chamber-like jigs 12a and 12b heated in the vacuum chamber 20 by the heater 11, and are rotated together with the heater 11 in a horizontal plane. The Al target 13 and the Sn target 14 arranged so as to face the connecting rod body 1a and the cap 1b are connected to a power source 15. The Ar gas having a charge opposite to that of the power source 15 collides with the targets 13 and 14 in the vacuum chamber 20 to generate Al vapor 16 and Sn vapor 17, respectively. These vapors are mixed and formed on the connecting rod 1 as an Al—Sn layer 2. By processing the connecting rod with the connecting rod body 1a and the cap 1b separated, work efficiency is improved when mass-produced, and the film near the mating surface when the connecting rod body 1a and the cap 1b are assembled after sputtering. The thickness is reduced, and this plays a role like a relief, so that it is possible to improve the foreign matter discharging property when sliding.
Subsequently, the present invention will be described in more detail by experimental examples.

表1に示す層構造のコンロッド相当供試材につき次の条件で往復摺動試験を行った。なお、それぞれの特性は次のとおりである。
コンロッド相当基材:SS400、Ni-30%Cr中間層0.5〜1μmスパッタ
スパッタAl-Sn合金:HV70 、厚さ 20 μm、Sn20質量%
固体潤滑剤オーバレイ:MoS2とポリアミドイミドの混合物を厚さ6 μmに塗布したもの(硬度HV20)。但し、ポリアミドイミドは日立化成社が製造した、次の材料規格のものである。 伸び: 25℃で7〜20% ,200℃で20%以上
引張強度: 25℃で70〜110MPa ,200℃で15MPa以上
なお、比較例としてすべり軸受合金溶射構造に対応する供試材を用意した(比較例3〜5)。
A reciprocating sliding test was conducted on the connecting rod-corresponding specimens shown in Table 1 under the following conditions. Each characteristic is as follows.
Connecting rod equivalent substrate: SS400, Ni-30% Cr intermediate layer 0.5-1μm sputter sputtered Al-Sn alloy: HV70, thickness 20μm, Sn20% by mass
Solid lubricant overlay: A mixture of MoS 2 and polyamideimide applied to a thickness of 6 μm (hardness HV20). However, the polyamide imide has the following material specifications manufactured by Hitachi Chemical Co., Ltd. Elongation: 7-20% at 25 ° C, 20% or more at 200 ° C
Tensile strength: 70 to 110 MPa at 25 ° C., 15 MPa or more at 200 ° C. In addition, specimens corresponding to a sliding bearing alloy sprayed structure were prepared as comparative examples (Comparative Examples 3 to 5).

試験条件
油種 :CF4 10W-30
油温 :140℃
荷重 :70MPa 繰り返し数107回→78MPa 繰り返し数107→86MPa 焼き付くまで
回転数 :3000 r/min
相手軸(クランクシャフト相当):S55C
Test conditions <br/> Oil type: CF4 10W-30
Oil temperature: 140 ° C
Load: 70MPa repeated several 10 7 times → 78MPa repeated several 10 7 → 86MPa seizure rotation speed up to: 3000 r / min
Mating shaft (equivalent to crankshaft): S55C

表1に示す試験結果から、本発明実施例1〜3の耐焼付性は良好であることが分かり、最も層数が多い比較例3と同等以上の性能を達し、さらに86MPaの焼付き疲労発生面圧はコンロッド本体側に要求される性能を十分に満たしている。
それぞれの比較例については次のような評価が得られる。
(イ)固体潤滑剤単層(比較例1)は性能が最も悪い。
(ロ)スパッタAl-Sn系合金単層(比較例2)は耐疲労性が最も悪い。
(ハ)銅系軸受合金を固体潤滑剤で被覆した比較例3は非特許文献1に近似する技術であり、従来技術の達成性能レベルを示している。
(ニ)比較例3は比較例4よりすぐれているが、層数が多く軽量化の観点からは最善とはいえないので比較例とした。
(ホ)Al-Sn系合金はCu系すべり軸受合金のオーバレイとしては適していない(比較例5)。
From the test results shown in Table 1, it can be seen that the seizure resistance of Examples 1 to 3 of the present invention is good, and the performance equivalent to or higher than that of Comparative Example 3 having the largest number of layers is achieved, and further 86 MPa seizure fatigue occurs. The surface pressure sufficiently satisfies the performance required for the connecting rod body.
The following evaluation is obtained for each comparative example.
(A) The solid lubricant single layer (Comparative Example 1) has the worst performance.
(B) Sputtered Al—Sn alloy single layer (Comparative Example 2) has the worst fatigue resistance.
(C) Comparative Example 3 in which a copper-based bearing alloy is coated with a solid lubricant is a technique that approximates Non-Patent Document 1, and shows the level of performance achieved by the conventional technique.
(D) Although Comparative Example 3 is superior to Comparative Example 4, it is a comparative example because it has a large number of layers and is not the best from the viewpoint of weight reduction.
(E) Al-Sn alloys are not suitable as overlays for Cu-based plain bearing alloys (Comparative Example 5).

次の条件で、表1の層構造を設けたコネクティングロッドを軸受に対して斜め(傾き角度0.08°)に固定した片当り試験を行い、試験の結果を図5に示す。
試験条件
油種 :CF4 10W-30
油温 :140℃
荷重 :0.5ton漸増
回転数 :3000 r/min
Under the following conditions, a contact test was performed in which the connecting rod having the layer structure shown in Table 1 was fixed obliquely (tilt angle 0.08 °) with respect to the bearing, and the test results are shown in FIG.
Test condition Oil type: CF4 10W-30
Oil temperature: 140 ° C
Load: 0.5ton gradually increasing Rotation speed: 3000 r / min

図5から、本発明実施例の片当り条件下での焼付き荷重は最も高いことが分かる。それぞれの比較例については次のような評価が得られる。
(イ)固体潤滑剤単層(比較例1)は性能が最も悪い。
(ロ)スパッタAl-Sn系合金単層(比較例2)はかなり性能を向上する。
(ハ)銅系軸受合金を固体潤滑剤で被覆した比較例3は非特許文献1に近似する技術であり、従来技術の達成性能レベルを示している。実施例と比較例3を対比すると、銅系すべり軸受合金は耐片当り性能を良くするのではなく、むしろ悪くしていることが分かる。
(ニ)比較例4は比較例1とほぼ同じであり、性能が悪い。
(ホ)固体潤滑剤オーバレイがない比較例5は中位の性能である。
From FIG. 5, it can be seen that the seizure load under the one-piece condition of the embodiment of the present invention is the highest. The following evaluation is obtained for each comparative example.
(A) The solid lubricant single layer (Comparative Example 1) has the worst performance.
(B) Sputtered Al—Sn alloy single layer (Comparative Example 2) significantly improves performance.
(C) Comparative Example 3 in which a copper-based bearing alloy is coated with a solid lubricant is a technique that approximates Non-Patent Document 1, and shows the level of performance achieved by the conventional technique. Comparing Example and Comparative Example 3, it can be seen that the copper-based plain bearing alloy does not improve the per-piece resistance performance but rather deteriorates it.
(D) Comparative Example 4 is almost the same as Comparative Example 1 and has poor performance.
(E) Comparative Example 5 having no solid lubricant overlay has a medium performance.

以上説明したように、本発明の摺動層は、耐面圧性能及び耐片当り摩耗性能が優れており、コンロッド本体側にも設けることができる。したがって、本発明による直受コンロッドは非特許文献1でコンロッドよりもさらに軽量化を図ることができる。   As described above, the sliding layer of the present invention has excellent surface pressure resistance and wear resistance per piece, and can be provided on the connecting rod body side. Therefore, the direct receiving connecting rod according to the present invention can be further reduced in weight as compared with the connecting rod in Non-Patent Document 1.

本発明に係るコンロッドの形態を示す図面である。It is drawing which shows the form of the connecting rod which concerns on this invention. 図1のコンロッドの層構造を示す図面である。2 is a drawing showing a layer structure of the connecting rod of FIG. 組み付けられたコンロッド摺動面にAl-Sn系合金をスパッタで被着する装置の概念図である。It is a conceptual diagram of the apparatus which deposits Al-Sn type alloy by sputtering to the assembled connecting rod sliding surface. コンロッド本体とキャップとに分割したそれぞれの摺動面にAl-Sn系合金をスパッタで被着する装置の概念図である。It is a conceptual diagram of the apparatus which deposits an Al-Sn type alloy by sputtering on each sliding surface divided | segmented into the connecting rod main body and the cap. 片当り試験の結果を示すグラフである。It is a graph which shows the result of a one-piece test.

符号の説明Explanation of symbols

1―コンロッド
2−スパッタAl-Sn系合金
3―MoS2+樹脂系オーバレイ
1-Connecting rod 2-Sputtered Al-Sn alloy 3-MoS 2 + resin overlay

Claims (7)

コンロッドの本体側及びキャップ側の摺動面にスパッタにて被着されたAl-Sn系合金と、該Al-Sn系合金上に塗布焼付されたMoS 2 -樹脂系オーバレイとからなる直受層を有する直受コンロッドであって、前記Al-Sn系合金の組成が5〜50質量%Sn、0〜1(0を含む)質量%Ni、0〜3質量%(0を含む)質量%Cu、残部Al及び不可避的不純物であることを特徴とする直受コンロッド。 Direct receiving layer comprising an Al-Sn alloy deposited by sputtering on the main rod side and cap side sliding surfaces of the connecting rod, and a MoS 2 -resin-based overlay coated and baked on the Al-Sn alloy The composition of the Al-Sn alloy is 5-50 mass% Sn, 0-1 (including 0) mass% Ni, 0-3 mass% (including 0) mass% Cu. A direct receiving connecting rod characterized by remaining Al and inevitable impurities . 前記Al-Sn系合金の硬さがHV40〜100であり、かつ前記MoS2−樹脂系オーバレイの硬さがHV10〜60であることを特徴とする請求項1記載の直受コンロッド。 2. The direct connection connecting rod according to claim 1, wherein the hardness of the Al—Sn alloy is HV 40 to 100, and the hardness of the MoS 2 -resin overlay is HV 10 to 60. 前記Al-Sn系合金の厚さが5〜500μmであり、かつ前記MoS2−樹脂系オーバレイの厚さが3〜20μmであることを特徴とする請求項1又は2記載の直受コンロッド。 The thickness of the Al-Sn-based alloy is 5 to 500 [mu] m, and the MoS 2 - claim 1 or 2 straight-receiving connecting rod according thickness of the resin-based overlay is characterized by a 3 to 20 [mu] m. 前記MoS 2 −樹脂系オーバレイの組成が50〜90質量%MoS2、残部ポリアミドイミド及びポリイミドの1種以上であることを特徴とする請求項1から3までの何れか1項記載の直受コンロッド。 The MoS 2 - straight-receiving connecting rod according to any one of composition 50 to 90 wt% MoS 2 resin based overlay, claim 1, characterized in that the balance polyamide imide, and one or more polyimide to 3 . コンロッド本体とキャップとが組み付けられた状態のコンロッドの前記本体側及びキャップ側の内面にクランクシャフトとの摺動面を加工し、その後5〜50質量%Sn、残部Al及び不可避的不純物からなるAl-Sn系合金をスパッタにて被着し、該Al-Sn系合金上にMoS2-樹脂系オーバレイを塗布焼付することを特徴とする直受コンロッドの製造方法。 The sliding surface with the crankshaft is processed on the inner surface of the main body side and the cap side of the connecting rod in a state where the connecting rod main body and the cap are assembled, and then 5 to 50 mass% Sn, the remaining Al and Al consisting of inevitable impurities A method for producing a direct receiving connecting rod, comprising: depositing a -Sn alloy by sputtering and coating and baking a MoS 2 -resin overlay on the Al-Sn alloy. コンロッド本体とキャップとが組み付けられた状態のコンロッドの前記本体側及びキャップ側の内面にクランクシャフトとの摺動面を加工し、その後コンロッド本体とキャップとに分割した状態で、5〜50質量%Sn、残部Al及び不可避的不純物からなるAl-Sn系合金をスパッタにて被着し、該Al-Sn系合金上にMoS2-樹脂系オーバレイを塗布焼付することを特徴とする直受コンロッドの製造方法。 In a state in which processing the sliding surfaces of the connecting rod main body and the cap and the crankshaft to the inner surface of the main body and the cap side of the state of the connecting rod is assembled, and then divided into a connecting rod body and the cap, 5 to 50 mass% A direct receiving connecting rod characterized in that an Al-Sn alloy composed of Sn, the balance Al and inevitable impurities is deposited by sputtering, and a MoS 2 -resin overlay is applied and baked on the Al-Sn alloy. Production method. 組み付け状態で合わせ面となる前記コンロッドの本体側及びキャップ側の内面にAl-Sn系合金をスパッタにて被着し、該Al-Sn系合金上にMoS2-樹脂系オーバレイを塗布焼付することを特徴とする請求項6記載の直受コンロッドの製造方法。 The Al-Sn alloy is sputter-deposited on the inner surface of the connecting rod on the main body side and cap side of the connecting rod that becomes the mating surface in the assembled state, and the MoS 2 -resin overlay is applied and baked on the Al-Sn alloy. The manufacturing method of the direct receiving connecting rod of Claim 6 characterized by these.
JP2005158806A 2005-05-31 2005-05-31 Direct receiving connecting rod and manufacturing method thereof Expired - Fee Related JP5042466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158806A JP5042466B2 (en) 2005-05-31 2005-05-31 Direct receiving connecting rod and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158806A JP5042466B2 (en) 2005-05-31 2005-05-31 Direct receiving connecting rod and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006336674A JP2006336674A (en) 2006-12-14
JP5042466B2 true JP5042466B2 (en) 2012-10-03

Family

ID=37557408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158806A Expired - Fee Related JP5042466B2 (en) 2005-05-31 2005-05-31 Direct receiving connecting rod and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5042466B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055366A1 (en) * 2004-12-10 2006-06-14 Mahle International Gmbh Connecting rod for an internal combustion engine and method for coating its sliding bearing surfaces
JP5033432B2 (en) * 2007-01-30 2012-09-26 株式会社豊田自動織機 Sliding parts
AT508962A1 (en) * 2009-11-05 2011-05-15 Miba Gleitlager Gmbh METHOD FOR PRODUCING A SLIDING BEARING ELEMENT
JP4766721B1 (en) 2011-01-14 2011-09-07 アネスト岩田株式会社 Film forming method and apparatus for scroll type fluid machine
JP4824833B1 (en) * 2011-01-14 2011-11-30 アネスト岩田株式会社 Scroll type fluid machine and method and apparatus for forming elastic film thereof
KR102241852B1 (en) * 2019-12-31 2021-04-20 주식회사 이노션테크 Coating materials and Coating System for Members of Eco-friendly Hybride Car
CN114369799A (en) * 2021-12-17 2022-04-19 中国船舶重工集团公司第七一一研究所 Composite coating for surface of engine connecting rod, preparation method of composite coating and engine connecting rod

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160318U (en) * 1980-04-30 1981-11-30
JP2838032B2 (en) * 1993-07-20 1998-12-16 大同メタル工業株式会社 High load sliding bearing material and method of manufacturing the same
JP3133209B2 (en) * 1994-03-10 2001-02-05 トヨタ自動車株式会社 Composition for forming lubricating film and sliding bearing using the same
JPH10339316A (en) * 1997-06-06 1998-12-22 Taiho Kogyo Co Ltd Connecting rod
JP4541954B2 (en) * 2005-04-01 2010-09-08 大豊工業株式会社 Plain bearing

Also Published As

Publication number Publication date
JP2006336674A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4541954B2 (en) Plain bearing
US7572521B2 (en) Aluminum alloy for surfaces which are subjected to extreme stresses due to friction
JP5042466B2 (en) Direct receiving connecting rod and manufacturing method thereof
US9435376B2 (en) Multi-layered plain bearing
JP5292279B2 (en) Plain bearing
JPWO2009069703A1 (en) Combination structure of piston ring and cylinder liner of internal combustion engine
JP3727385B2 (en) Plain bearing
GB2270722A (en) Bearings.
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
US5413875A (en) Copper alloy sliding bearing with high-strength back metal
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JP3570607B2 (en) Sliding member
US6357919B1 (en) Plain bearing
US8182742B2 (en) Bearing materials
JP2705782B2 (en) Bearing metal for large engines
GB2403780A (en) Sliding member
JP2778646B2 (en) Plain bearing
JP2006057674A (en) Sliding member and piston ring
JP4725229B2 (en) Combination sliding member, and internal combustion engine and plain bearing mechanism using the same
US6740426B2 (en) Sliding member with composite plating film
JP2535105B2 (en) Sliding bearing with composite plating film
US5766777A (en) Composite copper alloy bearing
JPS6220916A (en) Plain bearing
JPH07118778A (en) Aluminum slide bearing
JPH04236297A (en) Anti-seizing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees