JP3727385B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP3727385B2
JP3727385B2 JP23701895A JP23701895A JP3727385B2 JP 3727385 B2 JP3727385 B2 JP 3727385B2 JP 23701895 A JP23701895 A JP 23701895A JP 23701895 A JP23701895 A JP 23701895A JP 3727385 B2 JP3727385 B2 JP 3727385B2
Authority
JP
Japan
Prior art keywords
bearing
lubricating film
resin
weight
solid lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23701895A
Other languages
Japanese (ja)
Other versions
JPH0979262A (en
Inventor
文生 原口
弘 金山
荘司 神谷
真也 川上
博文 道岡
良雄 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP23701895A priority Critical patent/JP3727385B2/en
Publication of JPH0979262A publication Critical patent/JPH0979262A/en
Application granted granted Critical
Publication of JP3727385B2 publication Critical patent/JP3727385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用エンジンの滑り軸受などにコーティングされて用いられる潤滑膜をもつ滑り軸受に関する。
【0002】
【従来の技術】
自動車エンジンの滑り軸受材料としては、一般にアルミニウム合金やPb系オーバレイ付き銅鉛合金が用いられている。ところが近年は高出力及び高回転による自動車エンジンの高性能化が著しく、このような軸受材料では摺動性能が不十分となる場合がある。
【0003】
例えばアルミニウム合金軸受では、初期のなじみ性と耐異物特性が不十分である。またPb系オーバレイ付き銅鉛合金軸受では耐摩耗性や耐食性が充分でなく、複雑な製造工程を要するためコストが高いという不具合もある。
そこで特開平4−83914号公報には、アルミニウム系合金の表面に固体潤滑剤90〜55重量%とポリイミド系バインダ10〜45重量%とからなる潤滑膜を形成した滑り軸受材料が開示されている。このような潤滑膜を形成することにより、アルミニウム合金軸受の初期のなじみ性が向上し、優れた耐疲労性及び耐焼付性が発揮される。
【0004】
【発明が解決しようとする課題】
ところが上記公報に開示された潤滑膜をもつアルミニウム合金軸受では、耐疲労性、耐荷重性が十分でない。
本発明はこのような事情に鑑みてなされたものであり、耐疲労性、耐荷重性を一層向上させた滑り軸受を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明の滑り軸受は、銅系軸受合金から形成された軸受基体と、
熱硬化性樹脂及び膜形成補助剤の重量比が99〜70:1〜30で構成される熱硬化性バインダ70〜10重量%と固体潤滑剤30〜90重量%とからなるものが、該軸受基体表面に2〜10μ m の厚さで被覆形成された潤滑膜と、よりなることを特徴とする。
【0006】
【作用】
本発明の滑り軸受では、その軸受基体を銅系軸受合金で形成している。銅系軸受合金はアルミニウム合金に比較して硬く、使用条件下において受ける荷重による潤滑膜の塑性変形を抑制する。このため、激しい荷重や片当たりを受けた微小な箇所において潤滑膜の馴染みが生じ潤滑効果が得られやすい。このため、本発明の滑り軸受では、アルミニウム合金で形成された軸受基体の潤滑膜でみられる過大な摩耗が生じない。また、本発明の軸受基体の強度が高いため、軸受全体の疲労強度も向上する。
【0007】
【発明の実施態様】
本発明の滑り軸受は、軸受基体と潤滑膜とで構成されている。軸受基体は銅系軸受合金で形成されている。銅系軸受合金は銅を主成分とするもので、好ましくは10重量%以下のSn、Mn、Cr、Si、Ni、Al、Ag、Zn、Pおよび25重量%以下のPb、Biを含んだものである。10重量%以下を含有できるSn、Mn等は軸受の強度、耐磨耗性付与に寄与し、25重量%以下を含有できるPb、Biは軸受のなじみ性、耐凝着性付与に寄与する。具体的な銅系軸受合金としては、例えばCu−23Pb−3.5Sn、Cu−15Pb−3Snを挙げることができる。
【0008】
軸受基体はその固さが80〜180HV1の範囲がよい。固さが80HV1未満であると耐荷重性に劣り、逆に180HV1を越えると硬くなりすぎて、なじみ難くなる。なお、軸受基体は鋼板等の裏金に銅系軸受合金を積層したものでもよい。
潤滑膜は、固体潤滑剤30〜90重量%と熱硬化性バインダ70〜10重量%とからなりその厚さは2〜10μmである。潤滑膜を構成する固体潤滑剤としては、MoS2 ,WS2 ,h−BN,グラファイトの1種または2種以上を用いることができる。また、熱硬化性バインダとしてはポリイミド系樹脂,エポキシ樹脂及びフェノール樹脂の少なくとも1種を用いることができる。
【0009】
熱硬化性バインダが10重量%未満、すなわち、固体潤滑剤が90重量%を越える場合には、潤滑膜の強度が不足し、耐摩耗性が悪い。逆に、熱硬化性バインダが70重量%を越え、固体潤滑剤が30重量%未満の場合には、耐焼付き性が悪い。
潤滑膜の強度は2MPa以上であるのが好ましい。潤滑膜の強度は熱硬化性バインダの配合量を増加することにより得られるが、その分固体潤滑剤の配合量が少なくなり、耐焼付き性が低下する。本発明の方法では、潤滑膜を形成する際の焼成温度を高くすることにより、得られる潤滑膜を硬くかつ高強度としている。本発明の潤滑膜では180〜280℃で焼き付けている。なお、従来のアルミニウム軸受合金で形成された軸受基体の場合には、アルミニウム軸受合金が過時効となり軸受基体の強度が低下する。また、アルミニウム軸受合金中のSn等の低融点金属が液状となってしみ出る発汗が生じ、密着強度が得られない。このため180℃以上の高温で焼き付けた高強度の潤滑膜は得られなかった。
【0010】
バインダはポリイミド系樹脂,エポキシ樹脂及びフェノール樹脂から選ばれる。ポリイミド系樹脂としては、芳香族ポリイミド、ポリエーテルイミド、ポリエステルイミドまたは芳香族ポリアミドイミドあるいは、これらのジイソシアネート変性、BPDA変性、スルホン変性樹脂のワニスなどを使用することができる。また、バインダは前記熱硬化性樹脂とともに膜形成補助剤を併用する。膜形成補助剤はバインダと固体潤滑剤とを強固に一体化する。これにより固体潤滑剤の脱落を防止でき、摺動部表面に固体潤滑剤をより確実に保持でき、摺動初期に容易に流体潤滑膜を形成しやすくなり、初期のなじみ性に優れたものとなる。
【0011】
膜形成補助剤としては、エポキシ基を持つ化合物又はシランカップリング剤、チタンカップリング剤等を使用できる。膜形成補助剤は固体潤滑剤の表面に被覆する方法で配合される。
バインダを構成する熱硬化性樹脂と膜形成補助剤の重量比は、樹脂:膜形成補助剤=99〜70:1〜30とすることが望ましい。樹脂と膜形成補助剤の量がこの比の範囲を外れると、潤滑膜中における固体潤滑剤の保持性が低下し耐焼付性が低下する。なお膜形成補助剤をエポキシ基を持つ化合物又はシランカップリング剤から構成すれば、固体潤滑剤の保持性に特に優れるようになる。
【0012】
なお、潤滑膜の厚さとしては2〜10μmの範囲が好ましく、3〜8μmの範囲が特に好ましい。潤滑膜の厚さが2μmに達しないとなじみ性がほとんど期待できず、10μmより厚くなると耐疲労性が大幅に低下する。
【0013】
【実施例】
以下、実施例により具体的に説明する。
(実施例1〜6)
バインダとして、ポリアミドイミド樹脂(PAIと称する。)(「AI−10」テイジン、アモコ(株)製)を使用した。また、固体潤滑剤としてはMoS2 を用いた。固体潤滑剤は予め膜形成補助剤であるエポキシ化合物(「VG3101」三井石油化学(株)製)を溶かした溶液に浸漬し、その表面を処理した。
【0014】
表1に示すように、MoS2 およびポリアミドイミド樹脂をそれぞれ配合し、さらに適量の有機溶媒を加え、個々にボールミルに投入し、3時間粉砕混合して、実施例1〜6の6種類の潤滑膜形成用の混合組成物を調製した。
軸受基体としては、裏金鋼板上に銅系軸受合金からなるライニング材が焼結された半割円筒状のものを用いた。そして、銅系軸受合金として表1の実施例1〜6の6種類の組成のものを使用した。
【0015】
それぞれの軸受基体はその軸受表面を脱脂した後、表1に示す組み合わせに従い上記6種類から選ばれた潤滑膜形成用組成物をエアスプレーで約5μmの膜厚となるように吹き付け、その250℃で約30分間加熱硬化させて潤滑膜を形成した。このようにして、表1に示す実施例1〜6の6種類の滑り軸受を調製した。
【0016】
得られた本実施例1〜6の滑り軸受の斜視図を図1に、その要部断面図を図2に示す。これらの滑り軸受は、いずれも、厚さ1.2mmのSPCC製裏金1と、裏金1表面に焼結された厚さ0.3mmの銅系軸受合金製ライニング層2と、ライニング層2表面に形成された厚さ5×10-6mの潤滑膜3とから構成され、その軸受幅は20mmである。
【0017】
これらの滑り軸受について、耐焼付性試験と耐摩耗性試験を行い、焼付荷重と摩耗量を測定した。さらに、銅系軸受合金で形成されたライニング層の硬さおよび潤滑膜の強度もそれぞれ測定し結果を表1に示した。
耐焼付試験および疲労試験は、動荷重軸受試験機を用い、滑り軸受をS50C焼入れ材からなるシャフトと接触させ、潤滑油としてSAE7.5W30を使用し、まず面圧70MPaで107 回試験し、これに合格したものは次に面圧76MPaで107 回試験し、さらにこれに合格したものは86MPaで焼付く回数まで試験する方法を採用した。
【0018】
また耐摩耗性試験は、同じ動荷重軸受試験機を用い、潤滑油としてSAE7.5W30を使用し、面圧70MPaにて2000rpmで2時間回転させたときの摩耗量を測定した。
(比較例1〜3)
表1に示すように、比較例1として軸受合金にアルミニウム軸受合金を用いた滑り軸受を用いた。この比較例1の滑り軸受では、実施例2の滑り軸受と同じ潤滑膜組成を採用した。しかし焼付温度を180℃とした。従って比較例1の滑り軸受は、実施例2の滑り軸受と比較し、ライニング層の材質および焼成温度が異なり、他は同じである。
【0019】
比較例2としては固体潤滑剤が93重量%であり、潤滑膜強度が小さい軸受である。
比較例3としてはライニング層としてCu−30Pb−1Snを使用するとともに、潤滑膜を形成しなかった。
これら3種類の比較例の軸受合金も実施例の軸受合金と同じように試験し、その試験結果を表1に示した。
【0020】
【表1】

Figure 0003727385
【0021】
(評価)
表1から明らかなように、本発明の実施例の滑り軸受は、いずれも78MPaで7.2×106 回以上の優れた耐焼付性を示した。特に、実施例2の滑り軸受では86MPaで1.2×107 回まで焼付が生じず、極めて耐焼付性に優れているのが確認された。
【0022】
これに対して、比較例1のアルミニウム軸受合金を用いた滑り軸受では、78MPaの面圧で7×106 回で疲労破壊が生じた。また、潤滑膜強度の小さい比較例2および潤滑膜の無い比較例3の滑り軸受は70MPaという低い耐焼付性を示した。
摩耗量について、図3に示す潤滑膜強度と摩耗量との関係線図として示した。実施例の滑り軸受では、図3に示すように、潤滑膜強度が高いと摩耗量が逓減することがわかった。なお、比較例1の滑り軸受は、摩耗量が多い。これは焼付温度が低くかつ樹脂組成が少ないためであると考えられる。比較例2の場合、潤滑膜強度が小さいため、潤滑膜が消失し、比較例3では2時間の試験ができず、途中で焼きついてしまった。
【0023】
このように、本願発明の実施例に示す滑り軸受は、優れた耐焼付性および優れた耐磨耗性を持つものであった。
【0024】
【発明の効果】
本発明の滑り軸受は、耐焼付性能および耐摩耗性能が優れている。このため長期間に渡り安定して使用することができる。また、相手材の片当たりなどを吸収して初期焼付の発生が抑制されるので、耐久信頼性が大幅に向上する。またシャフトと軸受のクリアランスを一層小さくすることができるので、打音などを減少させることも可能である。
【図面の簡単な説明】
【図1】本発明の一実施例の滑り軸受の斜視図である。
【図2】本発明の一実施例の滑り軸受の要部断面図である。
【図3】潤滑膜の強度と磨耗量との関係を示すグラフである。
【符号の説明】
1:裏金 2:ライニング層 3:潤滑膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding bearing having a lubricating film that is coated on a sliding bearing of an automobile engine.
[0002]
[Prior art]
As a sliding bearing material for an automobile engine, an aluminum alloy or a copper lead alloy with a Pb-based overlay is generally used. However, in recent years, the performance of automobile engines has been significantly improved due to high output and high rotation, and such bearing materials may have insufficient sliding performance.
[0003]
For example, in an aluminum alloy bearing, initial conformability and foreign matter resistance are insufficient. In addition, copper lead alloy bearings with Pb-based overlays are not sufficient in wear resistance and corrosion resistance and require a complicated manufacturing process, resulting in high costs.
Japanese Laid-Open Patent Publication No. 4-83914 discloses a plain bearing material in which a lubricant film comprising 90 to 55% by weight of a solid lubricant and 10 to 45% by weight of a polyimide binder is formed on the surface of an aluminum alloy. . By forming such a lubricating film, the initial conformability of the aluminum alloy bearing is improved, and excellent fatigue resistance and seizure resistance are exhibited.
[0004]
[Problems to be solved by the invention]
However, the aluminum alloy bearing having the lubricating film disclosed in the above publication does not have sufficient fatigue resistance and load resistance.
This invention is made | formed in view of such a situation, and it aims at providing the slide bearing which improved fatigue resistance and load resistance further.
[0005]
[Means for Solving the Problems]
The sliding bearing of the present invention that solves the above-mentioned problems is a bearing base formed of a copper-based bearing alloy,
A bearing composed of a thermosetting binder of 70 to 10% by weight and a solid lubricant of 30 to 90% by weight, wherein the weight ratio of the thermosetting resin and the film forming auxiliary agent is 99 to 70: 1 to 30, is the bearing. And a lubricating film coated on the surface of the substrate to a thickness of 2 to 10 μm .
[0006]
[Action]
In the sliding bearing of the present invention, the bearing base is formed of a copper-based bearing alloy. Copper bearing alloys are harder than aluminum alloys, and suppress plastic deformation of the lubricating film due to the load received under operating conditions. For this reason, the lubrication film becomes familiar in a minute portion that receives a heavy load or a single contact, and a lubricating effect is easily obtained. For this reason, in the sliding bearing of the present invention, the excessive wear seen in the lubricating film of the bearing base formed of an aluminum alloy does not occur. Further, since the strength of the bearing base of the present invention is high, the fatigue strength of the entire bearing is also improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The sliding bearing of the present invention is composed of a bearing base and a lubricating film. The bearing base is made of a copper-based bearing alloy. The copper-based bearing alloy is mainly composed of copper, and preferably contains 10% by weight or less of Sn, Mn, Cr, Si, Ni, Al, Ag, Zn, P and 25% by weight or less of Pb and Bi. Is. Sn, Mn, and the like that can contain 10% by weight or less contribute to imparting strength and wear resistance of the bearing, and Pb and Bi that can contain 25% by weight or less contribute to imparting conformability and adhesion resistance of the bearing. Specific examples of the copper-based bearing alloy include Cu-23Pb-3.5Sn and Cu-15Pb-3Sn.
[0008]
The bearing base preferably has a hardness in the range of 80 to 180 HV1. If the hardness is less than 80 HV1, the load resistance is inferior, and conversely if it exceeds 180 HV1, it becomes too hard and becomes difficult to adapt. The bearing base may be a laminate of a copper bearing alloy on a back metal such as a steel plate.
The lubricating film is composed of 30 to 90% by weight of a solid lubricant and 70 to 10% by weight of a thermosetting binder, and the thickness thereof is 2 to 10 μm. As the solid lubricant constituting the lubricating film, one or more of MoS 2 , WS 2 , h-BN, and graphite can be used. Moreover, as a thermosetting binder, at least 1 sort (s) of a polyimide resin, an epoxy resin, and a phenol resin can be used.
[0009]
When the thermosetting binder is less than 10% by weight, that is, when the solid lubricant exceeds 90% by weight, the strength of the lubricating film is insufficient and the wear resistance is poor. On the contrary, when the thermosetting binder exceeds 70% by weight and the solid lubricant is less than 30% by weight, the seizure resistance is poor.
The strength of the lubricating film is preferably 2 MPa or more. The strength of the lubricating film can be obtained by increasing the blending amount of the thermosetting binder, but the blending amount of the solid lubricant is reduced correspondingly, and the seizure resistance is lowered. In the method of the present invention, the resulting lubricating film is hard and has high strength by raising the firing temperature when forming the lubricating film. The lubricating film of the present invention is baked at 180 to 280 ° C. In the case of a bearing base made of a conventional aluminum bearing alloy, the aluminum bearing alloy becomes over-aged and the strength of the bearing base is reduced. In addition, sweating occurs in which a low melting point metal such as Sn in the aluminum bearing alloy exudes in a liquid state, and adhesion strength cannot be obtained. For this reason, a high-strength lubricating film baked at a high temperature of 180 ° C. or higher could not be obtained.
[0010]
The binder is selected from polyimide resin, epoxy resin and phenol resin. As the polyimide resin, aromatic polyimide, polyetherimide, polyesterimide or aromatic polyamideimide, or diisocyanate-modified, BPDA-modified, sulfone-modified resin varnish, or the like can be used. The binder also uses a film forming auxiliary together with the thermosetting resin. The film forming aid firmly integrates the binder and the solid lubricant. As a result, it is possible to prevent the solid lubricant from falling off, to hold the solid lubricant more securely on the surface of the sliding part, to easily form a fluid lubricating film at the initial stage of sliding, and to have excellent initial conformability. Become.
[0011]
As the film forming aid, a compound having an epoxy group, a silane coupling agent, a titanium coupling agent, or the like can be used. The film forming aid is blended by a method of coating the surface of the solid lubricant.
The weight ratio of the thermosetting resin constituting the binder and the film forming auxiliary agent is desirably resin: film forming auxiliary agent = 99 to 70: 1 to 30. When the amount of the resin and the film forming auxiliary agent is out of the range of this ratio, the retention of the solid lubricant in the lubricating film is lowered and the seizure resistance is lowered. If the film forming auxiliary agent is composed of a compound having an epoxy group or a silane coupling agent, the retention property of the solid lubricant is particularly excellent.
[0012]
The thickness of the lubricating film is preferably in the range of 2 to 10 μm, and particularly preferably in the range of 3 to 8 μm. If the thickness of the lubricating film does not reach 2 μm, the conformability can hardly be expected, and if it exceeds 10 μm, the fatigue resistance is greatly reduced.
[0013]
【Example】
Hereinafter, specific examples will be described.
(Examples 1-6)
Polyamideimide resin (referred to as PAI) (“AI-10” Teijin, manufactured by Amoco) was used as the binder. Further, MoS 2 was used as the solid lubricant. The solid lubricant was immersed in a solution in which an epoxy compound (“VG3101” manufactured by Mitsui Petrochemical Co., Ltd.), which is a film forming auxiliary agent, was previously dissolved, and the surface was treated.
[0014]
As shown in Table 1, each of MoS 2 and polyamideimide resin was blended, an appropriate amount of an organic solvent was added, and each was put into a ball mill, and pulverized and mixed for 3 hours. A mixed composition for film formation was prepared.
As the bearing base, a half-cylindrical cylindrical body in which a lining material made of a copper-based bearing alloy was sintered on a back metal plate was used. And the thing of six types of compositions of Examples 1-6 of Table 1 was used as a copper-type bearing alloy.
[0015]
Each bearing substrate is degreased on its bearing surface, and then sprayed with a lubricating film forming composition selected from the above six types according to the combinations shown in Table 1 by air spraying to a film thickness of about 5 μm, at 250 ° C. And cured for about 30 minutes to form a lubricating film. In this manner, six types of plain bearings of Examples 1 to 6 shown in Table 1 were prepared.
[0016]
FIG. 1 is a perspective view of the obtained plain bearings of Examples 1 to 6, and FIG. Each of these plain bearings has a 1.2 mm thick SPCC backing metal 1, a 0.3 mm thick copper bearing alloy lining layer 2 sintered on the surface of the backing metal 1, and a lining layer 2 surface. The formed lubricating film 3 having a thickness of 5 × 10 −6 m is formed, and its bearing width is 20 mm.
[0017]
These sliding bearings were subjected to seizure resistance test and wear resistance test, and the seizure load and the amount of wear were measured. Further, the hardness of the lining layer formed of the copper bearing alloy and the strength of the lubricating film were also measured, and the results are shown in Table 1.
The seizure resistance test and fatigue test were performed using a dynamic load bearing tester, the sliding bearing was brought into contact with a shaft made of S50C quenching material, SAE7.5W30 was used as a lubricating oil, and first tested 10 7 times at a surface pressure of 70 MPa, Those that passed this test were tested 10 7 times at a surface pressure of 76 MPa, and those that passed this test were tested up to the number of times of seizure at 86 MPa.
[0018]
In the wear resistance test, the same dynamic load bearing tester was used, SAE7.5W30 was used as the lubricating oil, and the amount of wear when rotated at 2000 rpm for 2 hours at a surface pressure of 70 MPa was measured.
(Comparative Examples 1-3)
As shown in Table 1, as Comparative Example 1, a sliding bearing using an aluminum bearing alloy as a bearing alloy was used. In the sliding bearing of Comparative Example 1, the same lubricating film composition as that of the sliding bearing of Example 2 was adopted. However, the baking temperature was 180 ° C. Therefore, the sliding bearing of Comparative Example 1 is the same as the sliding bearing of Example 2 except for the material of the lining layer and the firing temperature.
[0019]
As Comparative Example 2, the solid lubricant is 93% by weight and the bearing has a low lubricating film strength.
In Comparative Example 3, Cu-30Pb-1Sn was used as the lining layer, and no lubricating film was formed.
The bearing alloys of these three types of comparative examples were also tested in the same manner as the bearing alloys of the examples, and the test results are shown in Table 1.
[0020]
[Table 1]
Figure 0003727385
[0021]
(Evaluation)
As is clear from Table 1, all of the slide bearings of the examples of the present invention exhibited excellent seizure resistance of 7.2 × 10 6 times or more at 78 MPa. In particular, in the sliding bearing of Example 2, seizure did not occur up to 1.2 × 10 7 times at 86 MPa, and it was confirmed that it was extremely excellent in seizure resistance.
[0022]
On the other hand, in the sliding bearing using the aluminum bearing alloy of Comparative Example 1, fatigue failure occurred at 7 × 10 6 times at a surface pressure of 78 MPa. Moreover, the sliding bearings of Comparative Example 2 having a low lubricating film strength and Comparative Example 3 having no lubricating film exhibited seizure resistance as low as 70 MPa.
The wear amount is shown as a relationship diagram between the lubricating film strength and the wear amount shown in FIG. In the sliding bearing of the example, as shown in FIG. 3, it was found that the wear amount gradually decreases when the lubricating film strength is high. Note that the sliding bearing of Comparative Example 1 has a large amount of wear. This is considered to be because the baking temperature is low and the resin composition is small. In the case of the comparative example 2, since the lubricating film strength was small, the lubricating film disappeared, and in the comparative example 3, the test for 2 hours could not be performed, and it burned in the middle.
[0023]
Thus, the sliding bearing shown in the examples of the present invention had excellent seizure resistance and excellent wear resistance.
[0024]
【The invention's effect】
The slide bearing of the present invention is excellent in seizure resistance and wear resistance. For this reason, it can be used stably over a long period of time. Further, since the occurrence of initial seizure is suppressed by absorbing the contact of a piece of the counterpart material, the durability reliability is greatly improved. Further, since the clearance between the shaft and the bearing can be further reduced, it is possible to reduce the hitting sound and the like.
[Brief description of the drawings]
FIG. 1 is a perspective view of a sliding bearing according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of a slide bearing according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the strength of a lubricating film and the amount of wear.
[Explanation of symbols]
1: Back metal 2: Lining layer 3: Lubricating film

Claims (5)

銅系軸受合金から形成された軸受基体と、
熱硬化性樹脂及び膜形成補助剤の重量比が99〜70:1〜30で構成される熱硬化性バインダ70〜10重量%と固体潤滑剤30〜90重量%とからなるものが、該軸受基体表面に2〜10μ m の厚さで被覆形成された潤滑膜と、
よりなることを特徴とする滑り軸受。
A bearing base formed from a copper-based bearing alloy;
A bearing composed of a thermosetting binder of 70 to 10% by weight and a solid lubricant of 30 to 90% by weight, wherein the weight ratio of the thermosetting resin and the film forming auxiliary agent is 99 to 70: 1 to 30, is the bearing. A lubricating film coated on the surface of the substrate with a thickness of 2 to 10 μm ;
A sliding bearing characterized by comprising:
前記熱硬化性樹脂はポリアミドイミド樹脂であり、前記膜形成補助剤はエポキシ化合物である請求項1記載の滑り軸受。The sliding bearing according to claim 1, wherein the thermosetting resin is a polyamide-imide resin, and the film forming auxiliary agent is an epoxy compound. 前記固体潤滑剤はMoS2,WS2,h−BN,グラファイトの1種または2種以上で形成され、前記熱硬化性バインダはポリイミド系樹脂、エポキシ樹脂及びフェノール樹脂の少なくとも1種で形成されている請求項1記載の滑り軸受。The solid lubricant is formed of one or more of MoS 2 , WS 2 , h-BN, and graphite, and the thermosetting binder is formed of at least one of a polyimide resin, an epoxy resin, and a phenol resin. The plain bearing according to claim 1. 前記軸受基体の固さは80〜180HV1である請求項1記載の滑り軸受。  The sliding bearing according to claim 1, wherein the bearing base has a hardness of 80 to 180 HV1. 前記潤滑膜の強度は2MPa以上である請求項1記載の滑り軸受。  The sliding bearing according to claim 1, wherein the lubricating film has a strength of 2 MPa or more.
JP23701895A 1995-09-14 1995-09-14 Plain bearing Expired - Lifetime JP3727385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23701895A JP3727385B2 (en) 1995-09-14 1995-09-14 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23701895A JP3727385B2 (en) 1995-09-14 1995-09-14 Plain bearing

Publications (2)

Publication Number Publication Date
JPH0979262A JPH0979262A (en) 1997-03-25
JP3727385B2 true JP3727385B2 (en) 2005-12-14

Family

ID=17009174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23701895A Expired - Lifetime JP3727385B2 (en) 1995-09-14 1995-09-14 Plain bearing

Country Status (1)

Country Link
JP (1) JP3727385B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106779A (en) * 1997-10-03 1999-04-20 Taiho Kogyo Co Ltd Solid lubricating film composition and plain bearing material using the same
JP4560921B2 (en) * 2000-09-07 2010-10-13 オイレス工業株式会社 Rack and pinion steering system
JP2004019759A (en) 2002-06-14 2004-01-22 Daido Metal Co Ltd Sliding member
JP4285634B2 (en) 2003-02-20 2009-06-24 大同メタル工業株式会社 Sliding member
AT501878B1 (en) 2005-04-29 2008-05-15 Miba Gleitlager Gmbh BEARING ELEMENT
CN100364718C (en) * 2005-06-23 2008-01-30 上海交通大学 Method for preparing sliding bearing of nano AI2O3/polyimide friction compound material
JP2007031501A (en) * 2005-07-25 2007-02-08 Nok Kluber Kk Composition for slide member
JP4890839B2 (en) * 2005-11-22 2012-03-07 大同メタル工業株式会社 Multi-layer sliding member and method for forming coating layer of sliding member
JP4650893B2 (en) 2006-03-31 2011-03-16 大同メタル工業株式会社 Plain bearing
AT503986B1 (en) 2006-08-02 2008-05-15 Miba Gleitlager Gmbh LAYER LAYER FOR A BEARING ELEMENT
JP4420940B2 (en) 2007-06-15 2010-02-24 大同メタル工業株式会社 Dry lubricating coating composition and sliding bearing using the dry lubricating coating composition as a sliding layer
JP5127331B2 (en) * 2007-07-13 2013-01-23 大同メタル工業株式会社 Dry lubricating coating composition and sliding bearing using the dry lubricating coating composition as a sliding layer
JP5248379B2 (en) 2009-03-17 2013-07-31 日立オートモティブシステムズ株式会社 Piston of internal combustion engine provided with multi-layer coating composition and surface treatment method of the piston
TWM409219U (en) * 2010-10-14 2011-08-11 Animal Bikes Inc Bicycle pedal assembly
DE102011113748B4 (en) 2011-09-14 2019-05-02 Adient Luxembourg Holding S.À R.L. Method for producing a vehicle seat fitting
JP5858845B2 (en) * 2012-03-29 2016-02-10 大豊工業株式会社 Plain bearing
JP5897961B2 (en) * 2012-03-30 2016-04-06 大豊工業株式会社 Plain bearing
AT15974U1 (en) * 2016-09-01 2018-10-15 Miba Gleitlager Austria Gmbh Method for producing a multilayer sliding bearing element
JP6941476B2 (en) * 2017-05-22 2021-09-29 大豊工業株式会社 Resin material for sliding members and sliding members
AT15618U3 (en) * 2017-08-18 2018-08-15 Miba Gleitlager Austria Gmbh Method for producing a multilayer sliding bearing element

Also Published As

Publication number Publication date
JPH0979262A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JP3727385B2 (en) Plain bearing
JP3054589B2 (en) Bearing structure of plain bearing
US5525246A (en) Sliding-Bearing Material
US5279638A (en) Sliding material
JP5001646B2 (en) Plain bearing
US6334914B2 (en) Copper alloy sliding material
JP3133209B2 (en) Composition for forming lubricating film and sliding bearing using the same
US6652675B2 (en) Copper alloy sliding material
US6305847B1 (en) Sliding bearing
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP2002061652A (en) Sliding bearing
JPH08199327A (en) Swash plate for swash plate type compressor
US20030173000A1 (en) Sliding material
US5334460A (en) CU-PB system alloy composite bearing having overlay
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
JPH01307512A (en) Multilayer aluminum alloy plain bearing and its manufacture
JPH01316514A (en) Multilayer sliding material
GB2273747A (en) Bearings
JP3416049B2 (en) Coating material for sliding part and piston ring
JP3472198B2 (en) Plain bearing
JP2001343022A (en) Double sliding material
JP2778646B2 (en) Plain bearing
JP2005233267A (en) Slide bearing for internal combustion engine
JP3042539B2 (en) Sliding material
JPH0555729B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term