JP5041534B2 - A method for manufacturing a honeycomb-shaped porous body. - Google Patents

A method for manufacturing a honeycomb-shaped porous body. Download PDF

Info

Publication number
JP5041534B2
JP5041534B2 JP2007526838A JP2007526838A JP5041534B2 JP 5041534 B2 JP5041534 B2 JP 5041534B2 JP 2007526838 A JP2007526838 A JP 2007526838A JP 2007526838 A JP2007526838 A JP 2007526838A JP 5041534 B2 JP5041534 B2 JP 5041534B2
Authority
JP
Japan
Prior art keywords
formula
water
substrate
organic solvent
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007526838A
Other languages
Japanese (ja)
Other versions
JPWO2006112358A1 (en
Inventor
政嗣 下村
賢 田中
浩 藪
英数 山崎
裕久 外園
由佳子 福平
博章 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Fujifilm Corp
Teijin Ltd
Original Assignee
Hokkaido University NUC
Fujifilm Corp
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Fujifilm Corp, Teijin Ltd filed Critical Hokkaido University NUC
Priority to JP2007526838A priority Critical patent/JP5041534B2/en
Publication of JPWO2006112358A1 publication Critical patent/JPWO2006112358A1/en
Application granted granted Critical
Publication of JP5041534B2 publication Critical patent/JP5041534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/1213Constructional arrangements comprising photonic band-gap structures or photonic lattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、微細な周期構造を持つハニカム状多孔質体の製造方法に関する。  The present invention relates to a method for manufacturing a honeycomb-shaped porous body having a fine periodic structure.

微細な周期構造を持つ構造体は、電子工学、光学およびバイオテクノロジーなどの様々な分野において有用な材料である。電子工学の分野では、電界トランジスタのチャネルの微細化技術に伴って、100nm以下の微細な周期構造を持つ電子材料の作製プロセスが実用化されている(非特許文献1)。光学の分野では、回折格子やフォトニック結晶などの微細な周期構造を持つ構造体が、次世代の光機能素子として注目されている(非特許文献2)。また、光の波長以下の周期構造を有する微細な周期構造を持つ薄膜は、可視光領域で透明であり、光の散乱などを防止する効果が期待される。さらに、近年、再生医療分野においても、微細な周期構造を持つ構造体表面の微細構造が培養細胞の増殖に影響を与えるなどの報告がなされている(非特許文献3)。  A structure having a fine periodic structure is a useful material in various fields such as electronics, optics, and biotechnology. In the field of electronics, a process for producing an electronic material having a fine periodic structure of 100 nm or less has been put into practical use along with a technique for miniaturizing a channel of an electric field transistor (Non-Patent Document 1). In the field of optics, a structure having a fine periodic structure such as a diffraction grating or a photonic crystal has attracted attention as a next-generation optical functional element (Non-patent Document 2). Further, a thin film having a fine periodic structure having a periodic structure equal to or less than the wavelength of light is transparent in the visible light region, and is expected to have an effect of preventing light scattering and the like. Furthermore, in recent years, in the field of regenerative medicine, it has been reported that the fine structure on the surface of a structure having a fine periodic structure affects the growth of cultured cells (Non-patent Document 3).

微細な周期構造を持つ構造体を作製する従来技術としては、フォトリソグラフィーやソフトリソグラフィー(非特許文献4)などが知られている。この様な方法は、原料となる物質を細かく切断することによって微細な周期構造を持つ構造体を作製するものであり、トップダウン型の作製プロセスと呼ばれる。一般的に、トップダウン型の作製プロセスは分子間結合を切断することを基本としているため、本質的に高エネルギーを必要とする。そのため、このプロセスは多段階の工程を必要とする高コストなプロセスであり、また回折限界など、単純な周期構造を有する構造体を作製する方法としては、解決すべき問題が多い。  As conventional techniques for producing a structure having a fine periodic structure, photolithography, soft lithography (Non-Patent Document 4), and the like are known. Such a method produces a structure having a fine periodic structure by finely cutting a material as a raw material, and is called a top-down production process. In general, a top-down fabrication process is based on breaking intermolecular bonds, and thus essentially requires high energy. Therefore, this process is an expensive process that requires multi-step processes, and there are many problems to be solved as a method of manufacturing a structure having a simple periodic structure such as a diffraction limit.

これに対して、材料を分子レベルから積み上げることで微細な周期構造を有する構造体を作製する試みがなされている。例えば、10nmスケールの微細構造を有する構造体の作製プロセスとして、ブロックコポリマーの相分離が知られている(非特許文献5)。相溶性の異なる2種以上の高分子の末端を共有結合でつなげたブロックコポリマーは、相溶性と各セグメントの長さによって、相分離構造の周期を変化させることができる。しかしながら、この方法も複雑な有機合成プロセスを必要とし、さらに合成できるブロックコポリマーの種類も限られている。  On the other hand, an attempt has been made to produce a structure having a fine periodic structure by stacking materials from the molecular level. For example, phase separation of a block copolymer is known as a process for producing a structure having a 10 nm scale microstructure (Non-patent Document 5). In the block copolymer in which the ends of two or more kinds of polymers having different compatibility are connected by a covalent bond, the period of the phase separation structure can be changed depending on the compatibility and the length of each segment. However, this method also requires a complicated organic synthesis process, and the types of block copolymers that can be synthesized are limited.

他にも、サブミクロンのコロイド微粒子を集積することで2次元、3次元の周期構造を有する構造体を作製する方法(非特許文献6)、これを鋳型にすることでインバースドオパール構造を有する構造体を作製する方法(非特許文献7)が報告されているが、これらの方法には、単一粒径の微粒子を調製しなくてはならず、また、型を取った後に鋳型を分解しなくてはならないなど、様々なプロセス上の問題がある。  In addition, a method for producing a structure having a two-dimensional and three-dimensional periodic structure by accumulating submicron colloidal fine particles (Non-Patent Document 6), and having an inverted opal structure by using this as a template Although methods for producing structures (Non-Patent Document 7) have been reported, in these methods, fine particles having a single particle size must be prepared, and the mold is disassembled after taking the mold. There are various process problems, such as that that must be done.

これらの方法とは異なる原理に基づく方法として、水滴を鋳型として簡便にハニカム状の微細な周期構造を有する構造体(ハニカム状多孔質体)を作製する方法が報告されている(特許文献1)。具体的には、高分子の非水性有機溶媒溶液の表面上に水滴を結露させ、該水滴を鋳型としてハニカム状多孔質体を調製するものである。
ゲルジンゲら、IEEEスペクトラム(IEEE Spectrum)1989年、第89巻、第43頁。 ノダら、ネイチャー(Nature)、2000年、第407巻、第608頁。 チェンら、サイエンス(Science)、1997年、第276巻、1425頁 ホワイトサイズら、Angew.Chem.Int.Ed.,1998年、第37巻、第550−575頁 アルブレヒトら,マクロモレキュール(Macromolecules)、2002年、第35巻、第8106−8110頁 グら、ラングミュア(Langmuir)、第17巻、第6751−6753頁。 カルソら、ラングミュア(Langmuir)、1999年、第15巻、第8276−8281頁 特開平8−311231号公報
As a method based on a principle different from these methods, there has been reported a method for easily producing a structure having a fine honeycomb periodic structure (honeycomb porous body) using water droplets as a mold (Patent Document 1). . Specifically, water droplets are condensed on the surface of a polymer non-aqueous organic solvent solution, and a honeycomb-shaped porous body is prepared using the water droplets as a template.
Gelzinge et al., IEEE Spectrum 1989, 89, 43. Noda et al., Nature, 2000, 407, 608. Chen et al., Science, 1997, 276, 1425 White Size et al., Angew. Chem. Int. Ed. 1998, 37, 550-575. Albrecht et al., Macromolecules, 2002, 35, 8106-8110. Lang et al., Volume 17, pp. 6751-6753. Carso et al., Langmuir, 1999, 15: 8276-8281 Japanese Patent Laid-Open No. 8-311231

しかし、上記いずれの方法においても、多孔質体の孔径を均一にし、それにより品質の高い微細な周期構造を持つ構造体を製造することについては、注意が払われていない。  However, in any of the above methods, no attention is paid to the production of a structure having a fine periodic structure with high quality by making the pore diameter of the porous body uniform.

本発明の目的は、水滴を鋳型として微細な周期構造を持つ構造体であるハニカム状多孔質体を製造する方法において、多孔質体の孔径を実質的に均一にするための技術を提供することにある。  An object of the present invention is to provide a technique for making the pore diameter of a porous body substantially uniform in a method for manufacturing a honeycomb-shaped porous body that is a structure having a fine periodic structure using water droplets as a mold. It is in.

本発明者らは、水滴を鋳型とするハニカム状多孔質体の作製方法において、非水溶性ポリマーの水不溶性有機溶媒溶液に一定の界面張力を有する界面活性剤を存在させることによって、多孔質体の孔径のばらつきを抑制し、高品質なハニカム状多孔質体を製造できることを見出し、本発明を完成した。  In the method for producing a honeycomb-shaped porous body using water droplets as a template, the present inventors have made a porous body by causing a surfactant having a constant interfacial tension to be present in a water-insoluble organic solvent solution of a water-insoluble polymer. The inventors have found that it is possible to produce a high-quality honeycomb porous body by suppressing variation in the pore diameter of the present invention.

本発明は、以下の製造方法を提供するものである。  The present invention provides the following manufacturing method.

1)水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解した、水に対する界面張力が10〜20mN/mである水不溶性有機溶媒溶液をガラス製もしくは金属製の基板に塗布して該溶液の薄膜を調製する工程、および該基板上の薄膜から有機溶媒を蒸発させる工程を含む、非水溶性ポリマー物質からなるハニカム状多孔質体の製造方法。1) A water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and having an interfacial tension with respect to water of 10 to 20 mN / m is applied to a glass or metal substrate. A method for producing a honeycomb-shaped porous body made of a water-insoluble polymer substance, comprising a step of preparing a thin film of a solution and a step of evaporating an organic solvent from the thin film on the substrate.

2)界面活性剤が、式(I)または式(II)で表される化合物から選択される1種以上の界面活性剤である、1)に記載の製造方法。2) The production method according to 1), wherein the surfactant is one or more surfactants selected from compounds represented by formula (I) or formula (II).

式(I)

Figure 0005041534
(式中、n:mは1:0〜10:1である)。Formula (I)
Figure 0005041534
(Where n: m is 1: 0 to 10: 1).

式(II)

Figure 0005041534
(式中、RならびにRはそれぞれ独立にC11〜C17の脂肪族炭化水素基から選ばれ、RはN(CH又はNHから選ばれる)。Formula (II)
Figure 0005041534
(In the formula, R 1 and R 2 are each independently selected from C 11 to C 17 aliphatic hydrocarbon groups, and R 3 is selected from N + (CH 3 ) 3 or NH 3 ).

3)式(I)の界面活性剤が、共重合比=1:10〜10:1、分子量=2万〜50万のポリ(ドデシルアクリルアミド−co−6−アミノカプロイックアクリルアミド)である、2)に記載の製造方法。3) The surfactant of the formula (I) is poly (dodecylacrylamide-co-6-aminocaproic acrylamide) having a copolymerization ratio = 1: 10 to 10: 1 and a molecular weight = 20,000 to 500,000. ) Manufacturing method.

4)式(II)で表される界面活性剤が、ジオレイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン又はジミリストイルホスファチジルコリンである、2)に記載の製造方法。4) The production method according to 2), wherein the surfactant represented by the formula (II) is dioleyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine, or dimyristoyl phosphatidylcholine.

5)界面活性剤が式(III)又は式(IV)で表される化合物から選択される1種以上の界面活性剤である、1)に記載の製造方法。5) The production method according to 1), wherein the surfactant is one or more surfactants selected from compounds represented by formula (III) or formula (IV).

式(III)

Figure 0005041534
式(IV)
Figure 0005041534
(前記式(III)並びに式(IV)中、RはR’又はR’Oを表し、R’は水素原子又は4〜22個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又はハロアルコキシ基を表し、Aは1〜50個の炭素原子を有する脂肪族の二価基を表し、nは0〜6の整数を表し、Xは−COOM、−SOM、−PO(OM)又はその塩もしくは水酸基を表し、Mは水素原子または塩を形成しうるカチオン若しくはカチオン分子を表し、Rは水素原子または炭素数4〜22個の脂肪族炭化水素基を表わし、式(III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異なる上記R、A、n及びXを有するコポリマーでもよく、式(IV)の化合物は各モノマー単位でそれぞれ同一の又は異なる上記R、A、n及びXを有するランダムコポリマーでもよい)
6)界面活性剤が式(V)で表される化合物から選択される1種以上の界面活性剤である、1)に記載の製造方法。
Figure 0005041534
(前記式(V)中、Rは炭素数が1〜50の脂肪族炭化水素又は芳香族炭化水素を表し、Xは−SOM、−COOM又は−PO(OM)で表される酸性基またはそれらの塩を示し、Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す)
7)相対湿度30%以上の湿度を有する流速0.1〜100L/分の気流下に薄膜を置いて溶媒の蒸発を行う、1)に記載の製造方法。Formula (III)
Figure 0005041534
Formula (IV)
Figure 0005041534
(In the formula (III) and the formula (IV), R represents R ′ or R′O, and R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, a halogen, a hydroxy group, Represents an alkoxy group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, X represents —COOM, —SO 3 M, — PO (OM) 2 or a salt or hydroxyl group thereof, M represents a hydrogen atom or a cation or cation molecule capable of forming a salt, and R 2 O represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms. The compound of the formula (III) may be a homopolymer consisting of a single monomer or a copolymer having the above R, A, n and X different in monomer units, and the compound of the formula (IV) may be the same or different in each monomer unit Different Or a random copolymer having the above R, A, n and X)
6) The production method according to 1), wherein the surfactant is one or more surfactants selected from compounds represented by formula (V).
Figure 0005041534
(In the formula (V), R 4 represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms, and X is represented by —SO 3 M, —COOM, or —PO (OM) 2. An acidic group or a salt thereof, and M represents a hydrogen atom or a cation or a cation molecule capable of forming a salt)
7) The production method according to 1), wherein the solvent is evaporated by placing a thin film in an air flow having a relative humidity of 30% or more and a flow rate of 0.1 to 100 L / min.

8)基板を一軸方向に移動させながら水不溶性有機溶媒溶液を基板に塗布して薄膜の調製を行う、1)または7)に記載の製造方法。8) The production method according to 1) or 7), wherein the thin film is prepared by applying a water-insoluble organic solvent solution to the substrate while moving the substrate in a uniaxial direction.

9)アルキル化シランカップリング剤で表面を修飾した基板を用いる、1)、7)または8)に記載の方法。9) The method according to 1), 7) or 8), wherein a substrate whose surface is modified with an alkylated silane coupling agent is used.

本発明のハニカム多孔質体を連続的に製造する装置を示す。The apparatus which manufactures the honeycomb porous body of the present invention continuously is shown. 実施例1における操作ならびに装置の全体図を示す。FIG. 1 shows an overall view of operations and devices in Embodiment 1. FIG. 実施例1で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。左が溶液(A)から得られたハニカム状多孔質体、右が溶液(B)から得られたハニカム状多孔質体である。The optical microscope image of the honeycomb porous body of the present invention obtained in Example 1 is shown. The left is a honeycomb-like porous body obtained from the solution (A), and the right is a honeycomb-like porous body obtained from the solution (B). 溶液(C)から調製したハニカム状多孔質体の光学顕微鏡像を示す。The optical microscope image of the honeycomb-shaped porous body prepared from the solution (C) is shown. 実施例2で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。The optical microscope image of the honeycomb porous body of the present invention obtained in Example 2 is shown. 実施例3で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。The optical microscope image of the honeycomb porous body of the present invention obtained in Example 3 is shown. 実施例4で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。The optical microscope image of the honeycomb porous body of the present invention obtained in Example 4 is shown. 実施例5で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。図中のバーはスケールバー(10μm)The optical microscope image of the honeycomb porous body of the present invention obtained in Example 5 is shown. The bar in the figure is a scale bar (10 μm) 実施例6で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。図下のバーはスケールバー(10μm)である。The optical microscope image of the honeycomb porous body of the present invention obtained in Example 6 is shown. The lower bar is a scale bar (10 μm).

本発明の方法は、水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解した、水に対する界面張力が10〜20mN/mである水不溶性有機溶媒溶液を、ガラス製もしくは金属製の基板に塗布して該溶液の薄膜を調製する工程、および該基板上の薄膜から有機溶媒を蒸発させる工程を含む、非水溶性ポリマー物質からなるハニカム状多孔質体の製造方法に関する。この方法は、高分子の非水性有機溶媒溶液の表面上に水滴を結露させ、該水滴を鋳型としてハニカム状多孔質体を調製することをその基本とする方法である。  According to the method of the present invention, a water-insoluble organic solvent solution having a water-insoluble organic solvent and a surfactant dissolved in a water-insoluble organic solvent and having an interfacial tension with respect to water of 10 to 20 mN / m is obtained from a glass or metal substrate. The present invention relates to a method for manufacturing a honeycomb-shaped porous body made of a water-insoluble polymer substance, which includes a step of applying a thin film on the substrate to prepare a thin film of the solution and a step of evaporating an organic solvent from the thin film on the substrate. In this method, water droplets are condensed on the surface of a polymer non-aqueous organic solvent solution, and a honeycomb porous body is prepared using the water droplets as a template.

また本発明におけるハニカム状多孔質体(ハニカム構造体あるいはハニカムシートとも呼ばれる)とは、非水溶性の高分子(ポリマー)でできた多孔性の薄膜であって、膜の垂直方向に向けられたサブミクロンスケールないしミクロンスケールの微少な孔(くぼみを含む)が膜の平面方向に蜂の巣状に(ハニカム状に)設けられているものをいう。孔は膜を垂直方向に貫通していてもよく、また平面方向に存在する周囲の孔と膜の内部で連通していてもよい。この様なハニカム状という規則的な配置で孔が設けられている多孔質の薄膜は、孔の口径、形状あるいは深さなどがまちまちである不規則な孔を有する通常の多孔質体とは全く異なる構造体として理解される。  In the present invention, a honeycomb-like porous body (also referred to as a honeycomb structure or a honeycomb sheet) is a porous thin film made of a water-insoluble polymer (polymer) and is oriented in the vertical direction of the film. Submicron-scale or micron-scale minute holes (including dents) are provided in a honeycomb shape (honeycomb shape) in the plane direction of the film. The holes may penetrate the film in the vertical direction, or may communicate with surrounding holes existing in the planar direction inside the film. A porous thin film in which pores are provided in such a regular arrangement such as a honeycomb shape is completely different from a normal porous body having irregular pores in which the pore diameter, shape or depth varies. Understood as a different structure.

本発明におけるハニカム状多孔質体の形状としては、膜厚が0.01μm〜100μm、好ましくは0.1μm〜50μm、より好ましくは1μm〜20μmであり、孔径が0.001μm〜100μm、好ましくは0.1μm〜50μm、より好ましくは1μm〜20μm、特に好ましくは5μm〜10μmである。  As the shape of the honeycomb-shaped porous body in the present invention, the film thickness is 0.01 μm to 100 μm, preferably 0.1 μm to 50 μm, more preferably 1 μm to 20 μm, and the pore diameter is 0.001 μm to 100 μm, preferably 0. .1 μm to 50 μm, more preferably 1 μm to 20 μm, and particularly preferably 5 μm to 10 μm.

この様な構造的特徴を有するハニカム状多孔質体は、高分子の非水性有機溶媒溶液表面上に水滴を結露させ、該水滴を鋳型としてハニカム状の多孔質体を調製する方法、例えば特許文献1、特開2001−157475、特開2002−347107あるいは特開2002−335949に記載された方法によって調製することができる。  A honeycomb-shaped porous body having such a structural feature is a method for forming a honeycomb-shaped porous body by condensing water droplets on the surface of a polymer non-aqueous organic solvent solution and using the water droplets as a template, for example, Patent Document 1, JP-A No. 2001-157475, JP-A No. 2002-347107 or JP-A No. 2002-335949.

本発明の製造方法を構成する工程のひとつは、水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解した、水に対する界面張力が10〜20mN/mである水不溶性有機溶媒溶液を、ガラス製もしくは金属製の基板に塗布して該溶液の薄膜を調製する工程である。  One of the steps constituting the production method of the present invention is a water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and the interfacial tension with respect to water is 10 to 20 mN / m. This is a step of preparing a thin film of the solution by applying to a glass or metal substrate.

本発明で利用することのできる水不溶性有機溶媒としては、溶媒表面に結露した水滴を保持し得る程度の水不溶性を有し、大気圧下の沸点が0〜150℃、好ましくは10〜50℃であれば、何れも利用可能である。具体的には、四塩化炭素、ジクロロメタン、クロロホルム等のハロゲン化炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、酢酸エチル、酢酸ブチル等のエステル類、メチルイソブチルケトン等の非水溶性のケトン類、二硫化炭素などを挙げることができる。  The water-insoluble organic solvent that can be used in the present invention is water-insoluble enough to retain water droplets condensed on the solvent surface, and has a boiling point of 0 to 150 ° C., preferably 10 to 50 ° C. under atmospheric pressure. Any of them can be used. Specifically, halogenated hydrocarbons such as carbon tetrachloride, dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and water-insoluble such as methyl isobutyl ketone. Examples thereof include ketones and carbon disulfide.

これらの中から、具体的に使用するポリマー(次項で述べる)に対する溶解性を考慮して、適宜選択して使用することができる。  Among these, it can be appropriately selected and used in consideration of solubility in the polymer to be specifically used (described in the next section).

本発明で使用する非水溶性ポリマーは、水に不溶性でかつ上記の水不溶性有機溶媒に可溶な、あるいは後述する本願発明で使用される界面活性剤の存在下で同有機溶媒に溶解し得るポリマーであればいずれも使用することができ、製造されるハニカム状多孔質体に期待される機能あるいは特性を与え得るポリマーを、適宜選択して使用することができる。  The water-insoluble polymer used in the present invention is insoluble in water and soluble in the above water-insoluble organic solvent, or can be dissolved in the same organic solvent in the presence of the surfactant used in the present invention described later. Any polymer can be used, and a polymer that can provide the functions or characteristics expected of the honeycomb porous body to be produced can be appropriately selected and used.

例えば、ポリ乳酸やポリヒドロキシ酪酸のような生分解性ポリマー、脂肪族ポリカーボネート、両親媒性ポリマー、光機能性ポリマー、電子機能性ポリマーなどを挙げることができる。  Examples thereof include biodegradable polymers such as polylactic acid and polyhydroxybutyric acid, aliphatic polycarbonates, amphiphilic polymers, photofunctional polymers, and electronic functional polymers.

上記の水不溶性有機溶媒と非水溶性ポリマーとの具体的な組み合わせの例としては、例えばポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアルキルシロキサン、ポリメタクリル酸メチルなどのポリアルキルメタクリレートまたはポリアルキルアクリレート、ポリブタジエン、ポリイソプレン、ポリ(N−ビニルカルバゾール)、ポリ乳酸、ポリ(ε−カプロラクトン)、ポリアルキルアクリルアミド、およびこれらの共重合体よりなる群から選ばれるポリマーに対しては、四塩化炭素、ジクロロメタン、クロロホルム、ベンゼン、トルエン、キシレン、二硫化炭素などの有機溶媒を組み合わせて使用することができる。  Examples of specific combinations of the water-insoluble organic solvent and the water-insoluble polymer include, for example, polyalkyl methacrylate or polyalkyl acrylate such as polystyrene, polycarbonate, polysulfone, polyethersulfone, polyalkylsiloxane, and polymethyl methacrylate. For a polymer selected from the group consisting of polybutadiene, polyisoprene, poly (N-vinylcarbazole), polylactic acid, poly (ε-caprolactone), polyalkylacrylamide, and copolymers thereof, A combination of organic solvents such as dichloromethane, chloroform, benzene, toluene, xylene, carbon disulfide can be used.

本発明では、非水溶性ポリマーを、水不溶性有機溶媒に対して0.01g/L〜50g/L、好ましくは0.1g/L〜10g/Lとなる様に溶解して使用すればよく、このポリマー濃度は、製造されるハニカム状多孔質体に求める特性、物性並びに使用する溶媒に応じて、適宜定めることができる。  In the present invention, the water-insoluble polymer may be used dissolved in a water-insoluble organic solvent so as to be 0.01 g / L to 50 g / L, preferably 0.1 g / L to 10 g / L. This polymer concentration can be determined as appropriate according to the properties and physical properties required for the honeycomb-shaped porous body to be produced and the solvent used.

本発明で使用可能な界面活性剤は、好ましくは式(I)又は式(II)で表される化合物から選択される1種以上の界面活性剤である。  The surfactant that can be used in the present invention is preferably one or more surfactants selected from compounds represented by formula (I) or formula (II).

式(I)

Figure 0005041534
(式中、n:mは1:0〜10:1である)。Formula (I)
Figure 0005041534
(Where n: m is 1: 0 to 10: 1).

式(II)

Figure 0005041534
(式中、RならびにRはそれぞれ独立にC11〜C17の脂肪族炭化水素基から選ばれ、RはN(CH又はNHから選ばれる)。Formula (II)
Figure 0005041534
(In the formula, R 1 and R 2 are each independently selected from C 11 to C 17 aliphatic hydrocarbon groups, and R 3 is selected from N + (CH 3 ) 3 or NH 3 ).

式(I)の化合物においては、n:m=1:0、4:1又は10:1の化合物の使用が好ましく、特に共重合比=1:10〜10:1、分子量=2万〜50万であるポリ(ドデシルアクリルアミド−co−6−アミノカプロイックアクリルアミド)(Cap)の使用が好ましい。また、式(II)の化合物としては、R、R=C1123、R=N(CHであるジミリストイルホスファチジルコリン(DMPC)の、R、R=C1531、R=N(CH)であるジパルミトイルホスファチジルコリン(DPPC)もしくはR、R=C1733、R=NHであるジオレイルホスファチジルエタノールアミン(DOPE)の使用が好ましい。In the compound of the formula (I), it is preferable to use a compound of n: m = 1: 0, 4: 1 or 10: 1, particularly a copolymerization ratio = 1: 10 to 10: 1 and a molecular weight = 20,000 to 50. Preference is given to using poly (dodecylacrylamide-co-6-aminocaproic acrylamide) (Cap). The compound of formula (II), R 1, R 2 = C 11 H 23, R 3 = N + (CH 3) 3 in which dimyristoyl phosphatidylcholine (DMPC), R 1, R 2 = C 15 Use of dipalmitoylphosphatidylcholine (DPPC) where H 31 , R 3 = N + (CH 3 ) or dioleylphosphatidylethanolamine (DOPE) where R 1 , R 2 = C 17 H 33 , R 3 = NH 3 preferable.

これらの界面活性剤は何れも公知の物質であり、例えばアルドリッチなどから購入することができる他、西田らの方法(Polymer Journal誌、第34巻、第166頁、2002年)に従って製造することもできる。  These surfactants are all known substances, and can be purchased, for example, from Aldrich, etc., and can also be produced according to the method of Nishida et al. (Polymer Journal, 34, 166, 2002). it can.

また本発明では、式(III)又は式(IV)で表される界面活性剤も利用可能である。  In the present invention, a surfactant represented by formula (III) or formula (IV) can also be used.

式(III)

Figure 0005041534
式(IV)
Figure 0005041534
前記式(III)並びに式(IV)中、RはR’又はR’Oを表し、R’は水素原子又は4〜22個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又はハロアルコキシ基を表し、Aは1〜50個の炭素原子を有する脂肪族の二価基を表し、nは0〜6の整数を表し、Xは−COOM、−SOM、−PO(OM)又はその塩もしくは水酸基を表し、Mは水素原子または塩を形成しうるカチオン若しくはカチオン分子を表し、Rは水素原子または炭素数4〜22個の脂肪族炭化水素基を表わし、式(III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異なる上記R、A、n及びXを有するコポリマーでもよく、式(IV)の化合物は各モノマー単位でそれぞれ同一の又は異なる上記R、A、n及びXを有するランダムコポリマーでもよい。Formula (III)
Figure 0005041534
Formula (IV)
Figure 0005041534
In the formula (III) and the formula (IV), R represents R ′ or R′O, and R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, halogen, hydroxy group, alkoxy. A group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, and X represents —COOM, —SO 3 M, —PO (OM) 2 or a salt thereof or a hydroxyl group thereof, M represents a hydrogen atom or a cation or a cation molecule capable of forming a salt, R 2 O represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, The compound of the formula (III) may be a homopolymer consisting of a single monomer or a copolymer having the above R, A, n and X different in monomer units, and the compound of the formula (IV) may be the same or different in each monomer unit. Or a random copolymer having the above R, A, n and X.

前記R’で表される4〜22個の炭素原子を有する脂肪族炭化水素基は直鎖でも分枝鎖でもよく、また不飽和性結合を有していてもよく、さらに前記脂肪族炭化水素基の2種以上の混在していてもよい。  The aliphatic hydrocarbon group having 4 to 22 carbon atoms represented by R ′ may be linear or branched, and may have an unsaturated bond, and the aliphatic hydrocarbon group. Two or more kinds of groups may be mixed.

前記R’で表される脂肪族炭化水素基の炭素原子数としては、6〜18個が好ましい。その例としてはブチル、アミル、ヘキシル、オクチル、ノニル、ドデシル、又はオクタデシル等のアルキル基、シス−9−オクタデセニル基などのアルケニル基等が挙げられる。またハロゲンとしてはCl、Br、Iなど、アルコキシ基としてはアルキル部分の炭素原子は4〜22個が好ましく、例えばオクチロキシ基、ヘキシロキシ基、ドデシロキシ基、β−ヒドロキシエトキシなどを、ハロアルコキシ基としてはアルキル部分の炭素原子は4〜22個が好ましく、例えばβ−クロルエトキシ、β−ブロモエトキシなどを挙げることができる。またR’はヒドロキシ基でもよい。  The number of carbon atoms of the aliphatic hydrocarbon group represented by R ′ is preferably 6 to 18. Examples thereof include alkyl groups such as butyl, amyl, hexyl, octyl, nonyl, dodecyl, and octadecyl, and alkenyl groups such as cis-9-octadecenyl. In addition, as halogen, Cl, Br, I, etc., as an alkoxy group, the alkyl part preferably has 4 to 22 carbon atoms. For example, octyloxy group, hexyloxy group, dodecyloxy group, β-hydroxyethoxy, etc., as haloalkoxy group, The number of carbon atoms in the alkyl moiety is preferably 4 to 22, and examples thereof include β-chloroethoxy and β-bromoethoxy. R 'may be a hydroxy group.

前記Aで表される1〜50個の炭素原子を有する脂肪族の二価基としては、例えばアルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基、又はアルキレンオキシ−アルキレン基等の二価基が挙げられ、具体的にはエチレン、トリメチレン、オクタメチレン、エチレンオキシ、ポリエチレンオキシ、ポリプロピレンオキシ、エチレンオキシ−トリメチレン基等が挙げられる。  Examples of the aliphatic divalent group having 1 to 50 carbon atoms represented by A include a divalent group such as an alkylene group, an alkyleneoxy group, a polyalkyleneoxy group, or an alkyleneoxy-alkylene group. Specific examples include ethylene, trimethylene, octamethylene, ethyleneoxy, polyethyleneoxy, polypropyleneoxy, and ethyleneoxy-trimethylene groups.

前記Xで表される−COOM、−SOM、及び−PO(OM)のいずれかの酸性基並びにその塩における前記Mとしては、例えばナトリウムイオン、カリウムイオン、リチウムイオン等のアルカリ土類金属イオン、カルシウムイオン、バリウムイオン、アンモニウムイオン、銀イオン、カドミウムイオン等の遷移金属イオン、炭素数1〜4のアルキルアンモニウム、四級化アンモニウムイオン又はその誘導体が挙げられる。In the acidic group of any one of —COOM, —SO 3 M, and —PO (OM) 2 represented by X and the salt thereof, the M includes, for example, an alkaline earth such as sodium ion, potassium ion, lithium ion and the like Examples thereof include transition metal ions such as metal ions, calcium ions, barium ions, ammonium ions, silver ions and cadmium ions, alkylammoniums having 1 to 4 carbon atoms, quaternized ammonium ions or derivatives thereof.

前記式(IV)で表される化合物としては、前記式(III)で表されるモノマー単位を5モル%〜95モル%含むことが好ましく、10モル%〜90モル%含むことがより好ましい。  The compound represented by the formula (IV) preferably contains 5 mol% to 95 mol%, more preferably 10 mol% to 90 mol% of the monomer unit represented by the formula (III).

前記式(III)ならびに式(IV)におけるモノマー単位としては、例えば、下記のものが挙げられる。

Figure 0005041534
ただし、上記式中、Rは炭素数4〜22個の脂肪族炭化水素基を表わす。分子量は特に限定されないが、600〜10,000が好ましく、900〜5,000がより好ましい。Examples of the monomer unit in the formula (III) and the formula (IV) include the following.
Figure 0005041534
In the above formula, R 0 represents an aliphatic hydrocarbon group having 4 to 22 carbon atoms. Although molecular weight is not specifically limited, 600-10,000 are preferable and 900-5,000 are more preferable.

以下、好ましい重合体の具体例を示す。

Figure 0005041534
Figure 0005041534
Figure 0005041534
Figure 0005041534
さらに本発明では、式(V)で表される化合物から選択される1種以上の界面活性剤を使用することもできる。Specific examples of preferred polymers are shown below.
Figure 0005041534
Figure 0005041534
Figure 0005041534
Figure 0005041534
Furthermore, in this invention, 1 or more types of surfactant selected from the compound represented by Formula (V) can also be used.

式(V)

Figure 0005041534
(前記式(V)中、Rは炭素数が1〜50の脂肪族炭化水素又は芳香族炭化水素を表し、Xは−SOM、−COOM又は−PO(OM)で表される酸性基またはそれらの塩を示し、Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す)。Mは前記の通りである。Formula (V)
Figure 0005041534
(In the formula (V), R 4 represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms, and X is represented by —SO 3 M, —COOM, or —PO (OM) 2. An acidic group or a salt thereof, and M represents a hydrogen atom or a cation or a cation molecule capable of forming a salt). M is as described above.

これらの化合物の合成方法としては、特に制限はなく、目的に応じて適宜公知の合成方法から選択することができ、例えば、アルキルフェノールのホルマリン重縮合体の合成としては、工業化学雑誌第66巻、391頁(1963年)、油化学第12巻625頁(1963年)に記載されている方法が挙げられ、スルホン酸の導入方法としては、例えば、工業化学雑誌第73巻563頁(1970年)、同第59巻221頁(1956年)及びJ.Am.Chem.Soc.第77巻、2496頁(1955年)等に記載されている方法が挙げられる。  The method for synthesizing these compounds is not particularly limited and can be appropriately selected from known synthetic methods according to the purpose. For example, as a synthesis of a formalin polycondensate of alkylphenol, Industrial Chemical Journal Vol. 66, 391 (1963), Oil Chemistry, Vol. 12, 625 (1963). Examples of methods for introducing sulfonic acid include Industrial Chemical Journal, Vol. 73, 563 (1970). 59, 221 (1956) and J. Am. Chem. Soc. 77, 2496 (1955) and the like.

本発明は、水不溶性有機溶媒に上記の非水溶性ポリマーと界面活性剤とを溶解させた、水に対する界面張力が10〜20mN/mである水不溶性有機溶媒溶液を使用する。本発明における界面張力は、懸滴法と呼ばれる液体の界面張力を測定する方法によって測定される表面張力を意味する。この方法において、表面張力に関する一般的な教科書、例えばドゥジェンヌ・ブロシャールーヴィアール・ケレ著「表面張力の物理学」(吉岡書店)第57頁に示されるように、その原理と具体的な手法は周知である。より簡便には、協和界面科学株式会社(http://www.face−kyowa.co.jp/j/interface_chemistry/005.html)製の界面張力測定装置PD−Wを用いて測定することができる。  The present invention uses a water-insoluble organic solvent solution in which the water-insoluble organic solvent and the surfactant are dissolved in a water-insoluble organic solvent, and the interfacial tension with respect to water is 10 to 20 mN / m. The interfacial tension in the present invention means the surface tension measured by a method for measuring the interfacial tension of a liquid called the hanging drop method. In this method, as shown in a general textbook on surface tension, for example, Physics of Surface Tension (Yoshioka Shoten), page 57, by Dugenne Brosher Louvier Kele, its principle and concrete The technique is well known. More simply, it can be measured using an interfacial tension measuring device PD-W manufactured by Kyowa Interface Science Co., Ltd. (http://www.face-kyowa.co.jp/j/interface_chemistry/005.html). .

本発明の溶液の界面張力に関しては、非水溶性ポリマーそれ自体は溶液の界面張力にほとんど影響を与えず、従って使用される水不溶性有機溶媒と界面活性剤との組み合わせならびに溶液中の界面活性剤の濃度によって設定することができる。その組み合わせと濃度は、界面活性剤を水不溶性有機溶媒に溶解して水不溶性溶液を調製し、その界面張力を懸滴法で測定して決定すればよい。好適な例としては、クロロホルムやジクロロメタン等のハロゲン化炭化水素溶媒あるいはトルエンやベンゼン等の芳香族炭化水素に対しては、DOPEあるいはCapの使用を挙げることができる。  With respect to the interfacial tension of the solution of the present invention, the water-insoluble polymer itself has little effect on the interfacial tension of the solution, and therefore the combination of the water-insoluble organic solvent and the surfactant used as well as the surfactant in the solution. Can be set according to the concentration of The combination and concentration may be determined by dissolving a surfactant in a water-insoluble organic solvent to prepare a water-insoluble solution and measuring the interfacial tension by the hanging drop method. Preferable examples include the use of DOPE or Cap for halogenated hydrocarbon solvents such as chloroform and dichloromethane or aromatic hydrocarbons such as toluene and benzene.

本発明で利用可能な基板の材料としては、ガラスやシリコンなどを挙げることができる。この場合、用いられる水不溶性有機溶媒に対する基板自体の濡れ性が、基板上に形成される薄膜の厚みに影響を与え得る。  Examples of the substrate material that can be used in the present invention include glass and silicon. In this case, the wettability of the substrate itself with respect to the water-insoluble organic solvent used can affect the thickness of the thin film formed on the substrate.

そのため、水不溶性有機溶媒溶液との親和性が高い基板、あるいは表面に水不溶性有機溶媒溶液との親和性を高めることのできる加工を施した基板の使用が好ましい。この様な基板の濡れ性の改良は、基板材料と使用する水不溶性有機溶媒との組み合わせに合わせて、自体公知の方法、例えばガラス製や金属製の基板に対するアルキル化シランカップリング処理やチオール化合物による単分子膜形成処理などを利用することができる。  Therefore, it is preferable to use a substrate having a high affinity with a water-insoluble organic solvent solution, or a substrate whose surface has been subjected to processing capable of increasing the affinity with a water-insoluble organic solvent solution. Such improvement of the wettability of the substrate is achieved by a method known per se, for example, an alkylated silane coupling treatment or a thiol compound for a glass or metal substrate, in accordance with the combination of the substrate material and the water-insoluble organic solvent to be used. A monomolecular film forming process by the above can be used.

例えば、クロロホルムなどの疎水性有機溶媒を用いる場合の基板としては、十分に洗浄されたSi基板や、アルキル化シランカップリング剤などで表面を修飾したガラス基板などの使用が好ましい。  For example, as a substrate when using a hydrophobic organic solvent such as chloroform, it is preferable to use a sufficiently cleaned Si substrate, a glass substrate whose surface is modified with an alkylated silane coupling agent, or the like.

本発明では、上記に例示したような非水溶性ポリマーと界面活性剤とを含む水不溶性有機溶媒溶液を基板に塗付して、同溶液の薄膜を形成させるが、その際の塗付厚としては、10μm〜5mmであればよい。薄すぎては製造後のハニカム状多孔質体の強度の点で、厚すぎては孔の形成効率の点で、それぞれ支障となり得る。  In the present invention, a water-insoluble organic solvent solution containing a water-insoluble polymer and a surfactant as exemplified above is applied to a substrate to form a thin film of the same solution. May be 10 μm to 5 mm. If it is too thin, it may be a problem in terms of strength of the honeycomb-shaped porous body after manufacture, and if it is too thick, it may be a problem in terms of formation efficiency of pores.

基板に水不溶性有機溶媒溶液を塗付する方法としては、基板に上記の水不溶性有機溶媒溶液を滴下する方法の他、バーコート、ディップコート、スピンコート法などを挙げることができ、バッチ式、連続式の何れも利用することができる。  As a method of applying a water-insoluble organic solvent solution to a substrate, in addition to the above-described method of dropping the water-insoluble organic solvent solution onto a substrate, a bar coat, a dip coat, a spin coat method, and the like can be given. Any of the continuous types can be used.

本発明では、微細孔を有するハニカム状多孔質体を製造するという観点から、移動可能な基板に水不溶性有機溶媒溶液を塗付して薄膜を調製する方法が好ましい。例えば、図1に示すような装置を利用することで、かかる方法を実施し得る。図1の装置は、所定の速度で図の右から左方向に移動可能な基板1と、基板1上に設けた金属板2と、所定の相対湿度を有する空気を吹き付けるノズル3を有している。ここで、金属板2は、所望の薄膜厚に相当する間隙を伴って基板1の上に設置される。  In the present invention, from the viewpoint of producing a honeycomb-shaped porous body having fine pores, a method of preparing a thin film by applying a water-insoluble organic solvent solution to a movable substrate is preferable. For example, such a method can be implemented by using an apparatus as shown in FIG. The apparatus of FIG. 1 has a substrate 1 that can move from the right to the left in the drawing at a predetermined speed, a metal plate 2 provided on the substrate 1, and a nozzle 3 that blows air having a predetermined relative humidity. Yes. Here, the metal plate 2 is placed on the substrate 1 with a gap corresponding to a desired thin film thickness.

この装置では、予め水不溶性有機溶媒溶液を塗付した基板1を金属板の下側をくぐらせることで、基板1に塗付された薄膜の厚さを、基板1と金属板2との間隙とほぼ等しい厚みへと調整することができる。基板1の移動速度は、0.1μm〜10mm/秒、特に1〜5mm/秒へと調節することが望ましい。  In this apparatus, the thickness of the thin film applied to the substrate 1 is changed between the substrate 1 and the metal plate 2 by passing the substrate 1 previously coated with the water-insoluble organic solvent solution under the metal plate. The thickness can be adjusted to be approximately equal to It is desirable to adjust the moving speed of the substrate 1 to 0.1 μm to 10 mm / second, particularly 1 to 5 mm / second.

この装置原理を用いると、基板上に形成されるハニカム状多孔質体を連続的に基板から回収することができるので、本発明のハニカム状多孔質体の工業的生産方法としても有利である。  When this device principle is used, the honeycomb porous body formed on the substrate can be continuously recovered from the substrate, which is advantageous as an industrial production method for the honeycomb porous body of the present invention.

この様にして基板上に置いた薄膜から水不溶性有機溶媒を蒸発させることで、非水溶性ポリマーからなるハニカム状多孔質体を製造することができる。その際、溶媒の蒸発速度を調節することで、ハニカム状多孔質体の孔径を100nm以下とすることができる。特に、相対湿度30%以上の湿度を有する流速0.1〜100L/分、好ましくは1.0〜50L/分の気流下に上記の基板上の薄膜を置いて水不溶性有機溶媒を蒸発させることで、1〜100nmの範囲内の均一な孔径を有する高品質なハニカム状多孔質体を製造することもできる。  By evaporating the water-insoluble organic solvent from the thin film placed on the substrate in this manner, a honeycomb-like porous body made of a water-insoluble polymer can be produced. At that time, by adjusting the evaporation rate of the solvent, the pore diameter of the honeycomb porous body can be made 100 nm or less. In particular, the water-insoluble organic solvent is evaporated by placing the thin film on the substrate in an air flow having a relative humidity of 30% or more and a flow rate of 0.1 to 100 L / min, preferably 1.0 to 50 L / min. Thus, a high-quality honeycomb porous body having a uniform pore diameter in the range of 1 to 100 nm can be produced.

この方法は、相対湿度が30%以上である気流下に水不溶性有機溶媒溶液の薄膜を置くことで溶媒を速やかに蒸発させるとともに、溶媒表面で結露する水滴の成長を抑制して、ハニカム状多孔質体に100nmより小さい孔を設けるものである。かかる方法における気流の流速は、用いる溶媒の揮発度や基板上の薄膜の厚さに応じて適宜調製すればよいが、概ね0.1〜100L/分、好ましくは1.0〜50L/分とすればよい。また、気流方向に対する薄膜の配置の仕方としては、基板上の薄膜に対して斜め上方向から、あるいは垂直方向から気流を当たるような配置では、気流による風圧によって薄膜に歪みや亀裂が発生することもあり得る。その様な場合には、薄膜は、気流に対して基板上の有機溶媒溶液の薄膜を平行に、あるいは上方向に生じさせることが好ましい。この場合、気流はその上流からの陽圧あるいは下流からの負圧の何れによって発生させても構わない。例えば、基板に向けて設置したノズルから所定の空気を噴射しても、基板上部の空気を一方向から吸引しても、何れでも良い。  In this method, a thin film of a water-insoluble organic solvent solution is placed in an air stream having a relative humidity of 30% or more to quickly evaporate the solvent and suppress the growth of water droplets that are condensed on the surface of the solvent. The material is provided with pores smaller than 100 nm. The airflow rate in such a method may be appropriately adjusted according to the volatility of the solvent used and the thickness of the thin film on the substrate, but is generally 0.1 to 100 L / min, preferably 1.0 to 50 L / min. do it. In addition, as for the arrangement of the thin film with respect to the air flow direction, in the arrangement where the air flow is applied obliquely upward or perpendicular to the thin film on the substrate, the thin film may be distorted or cracked by the wind pressure due to the air flow. There is also a possibility. In such a case, it is preferable that the thin film is formed in parallel or upward with a thin film of the organic solvent solution on the substrate with respect to the airflow. In this case, the air flow may be generated by either positive pressure from the upstream side or negative pressure from the downstream side. For example, either predetermined air may be ejected from a nozzle installed toward the substrate, or air above the substrate may be sucked from one direction.

本発明によれば、100μm四方のハニカム状多孔質体における孔径の標準偏差が10%以下の、高品質なハニカム状多孔質体を製造することができる。また、溶媒の蒸発を一定の気流下で行うことにより、1nm〜100μmという微細な孔径を有し、かつその孔径の標準偏差が10%以下の、高品質なハニカム状多孔質体を製造することができる。この様なハニカム状多孔質体は、フォトニック結晶、反射防止膜、光拡散板等の光学フィルム、パターン化されたレジストや電極の鋳型等の電子材料、さらには細胞培養基板、均一な孔径を利用した分離膜などに利用することができる。  According to the present invention, it is possible to manufacture a high-quality honeycomb-shaped porous body having a standard deviation of pore diameter of 10% or less in a 100-μm square honeycomb-shaped porous body. In addition, a high-quality honeycomb porous body having a fine pore diameter of 1 nm to 100 μm and a standard deviation of the pore diameter of 10% or less is obtained by evaporating the solvent under a constant air flow. Can do. Such a honeycomb-shaped porous body has a photonic crystal, an antireflection film, an optical film such as a light diffusing plate, an electronic material such as a patterned resist or an electrode mold, a cell culture substrate, and a uniform pore size. It can be used for the separation membrane used.

以下に実施例を示し、本発明の詳細を説明する。ただし、これらの実施例は何ら本発明を限定するものではない。  The following examples illustrate the details of the present invention. However, these examples do not limit the present invention.

非水溶性ポリマーとしてポリ(ε−カプロラクトン)(和光純薬、分子量7万〜10万)を、界面活性剤としてn/mが4/1、数平均分子量=29,000、分子量210,000の一般式(I)の化合物1、ならびに式(II)においてR、R=C1733、R=NHであるジオレイルホスファチジルエタノールアミン(DOPE)を、水不溶性有機溶媒としてクロロホルムを用いて、ハニカム状多孔質体を調製した。Poly (ε-caprolactone) (Wako Pure Chemical, molecular weight 70,000 to 100,000) as the water-insoluble polymer, n / m 4/1, number average molecular weight = 29,000, molecular weight 210,000 as the surfactant Compound 1 of general formula (I), and dioleylphosphatidylethanolamine (DOPE) in which R 1 , R 2 = C 17 H 33 and R 3 = NH 3 in formula (II) are used as a water-insoluble organic solvent and chloroform A honeycomb-like porous body was prepared by use.

ポリ(ε−カプロラクトン)濃度が5mg/mLならびに上記化合物1が3.0mg/mLのクロロホルム溶液(A)と、ポリ(ε−カプロラクトン)濃度が5mg/mLならびにDOPEが0.5mg/mLのクロロホルム溶液(B)を調製した。両溶液の水に対する界面張力を懸滴法(PD−W、協和界面化学)に測定したところ、溶液(A)は18.6mN/m、溶液(B)は13.3mN/mであった。  Chloroform solution (A) having a poly (ε-caprolactone) concentration of 5 mg / mL and the above compound 1 of 3.0 mg / mL, and chloroform having a poly (ε-caprolactone) concentration of 5 mg / mL and DOPE of 0.5 mg / mL Solution (B) was prepared. When the interfacial tension of both solutions with respect to water was measured by the hanging drop method (PD-W, Kyowa Interface Chemistry), the solution (A) was 18.6 mN / m and the solution (B) was 13.3 mN / m.

5mlの溶液(A)(B)をそれぞれガラスシャーレに滴下し、加湿した空気(相対湿度80%、流量2L/分)を吹き付けて溶媒を蒸発させ、製膜した(図2)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト(Image SXM、NIH、USA.)を用いて計算し、孔径の標準偏差を計算した。  5 ml of the solutions (A) and (B) were respectively dropped on a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was blown to evaporate the solvent to form a film (FIG. 2). The surface structure of the produced film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA), and the standard deviation of the pore diameter was calculated.

その結果、溶液(A)(B)いずれからも、孔径の標準偏差が10%以下の高品質なハニカム膜が得られた(図3)。  As a result, a high-quality honeycomb film having a standard deviation of the pore diameter of 10% or less was obtained from both solutions (A) and (B) (FIG. 3).

一方、DOPEの濃度を0.05mg/mLとした他は溶液(B)と同じ組成の溶液(C)を調製してその界面張力を測定したところ、25.8mN/mであった。この溶液(C)から上記と同様の操作でハニカム状多孔質体を形成させたが、得られたハニカム状多孔質体の孔径は明らかに不均一であった(図4)。  On the other hand, a solution (C) having the same composition as the solution (B) was prepared except that the concentration of DOPE was 0.05 mg / mL, and the interfacial tension was measured. As a result, it was 25.8 mN / m. A honeycomb-like porous body was formed from this solution (C) by the same operation as described above, but the pore diameter of the obtained honeycomb-like porous body was clearly uneven (FIG. 4).

ポリ乳酸(SIGMA社製、分子量7.5万〜12万)濃度が5mg/mlならびに式(II)においてR、R=C1733、R=NHであるジオレイルホスファチジルエタノールアミン(DOPE)濃度が0.1mg/mlであるクロロホルム溶液5.0mlをガラスシャーレに滴下し、加湿した空気(相対湿度80%、流量2L/分)を吹き付けて溶媒を蒸発させ、製膜した(図5)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト(Image SXM、NIH、USA.)を用いて計算し、孔径の標準偏差を計算したところ、孔径の標準偏差は10%以下であった。Polylactic acid (manufactured by SIGMA, molecular weight: 75,000 to 120,000) concentration of 5 mg / ml and dioleylphosphatidylethanolamine in formula (II) where R 1 , R 2 = C 17 H 33 , R 3 = NH 3 (DOPE) A chloroform solution (5.0 ml) having a concentration of 0.1 mg / ml was dropped on a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was sprayed to evaporate the solvent to form a film ( FIG. 5). The surface structure of the prepared film was observed with an optical microscope, and the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was 10% or less.

ポリスチレン(アルドリッチ社製、分子量約28万)濃度が5mg/mlならびに式(II)においてR、R=C1733、R=NHであるジオレイルホスファチジルエタノールアミン(DOPE)濃度が0.1mg/mlであるクロロホルム溶液5.0mlをガラスシャーレに滴下し、加湿した空気(相対湿度80%、流量2L/分)を吹き付けて溶媒を蒸発させ、製膜した(図6)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト(Image SXM、NIH、USA.)を用いて計算し、孔径の標準偏差を計算したところ、孔径の標準偏差は10%以下であった。The concentration of polystyrene (manufactured by Aldrich, molecular weight of about 280,000) is 5 mg / ml, and the dioleylphosphatidylethanolamine (DOPE) concentration in which R 1 , R 2 = C 17 H 33 and R 3 = NH 3 in formula (II) is A 0.1 ml / ml chloroform solution (5.0 ml) was dropped onto a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was blown to evaporate the solvent to form a film (FIG. 6). The surface structure of the prepared film was observed with an optical microscope, and the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was 10% or less.

界面活性剤としてポリイオンコンプレックスを用い、ハニカム状多孔質体を作製した。dimethyl−dioctadecyl−ammonium bromide(相互薬工社製、以下DDABとする、)319mgを200mLの純水に超音波をかけて分散した。ポリスチレンスルホン酸カリウム塩(昭和電工製)917mgを300mLの純水に溶かし、これにDDAB水溶液を加えた。生成した沈殿をトルエンで抽出し、硫酸ナトリウムを加えて乾燥させた後、ロータリーエバポレータにより溶媒を除去した。減圧乾燥により余剰の溶媒を除去し、下記式(VI)のポリイオンコンプレックス858mg(収率約82%)を得た。  A honeycomb-like porous body was prepared using a polyion complex as a surfactant. 319 mg of dimethyl-dioctadecyl-ammonium bromide (manufactured by Mutual Pharmaceutical Co., Ltd., hereinafter referred to as DDAB) was dispersed in 200 mL of pure water by applying ultrasonic waves. 917 mg of polystyrene sulfonate potassium salt (made by Showa Denko) was dissolved in 300 mL of pure water, and DDAB aqueous solution was added thereto. The produced precipitate was extracted with toluene, sodium sulfate was added for drying, and then the solvent was removed by a rotary evaporator. Excess solvent was removed by drying under reduced pressure to obtain 858 mg of polyion complex of the following formula (VI) (yield: about 82%).

式(VI)

Figure 0005041534
ポリイオンコンプレックスをクロロホルムに溶解させ、1.0mg/mLの溶液を調製した。本溶液を用いて、懸滴法を用いて水に対する界面張力を測定したところ、約17mN/mであった。Formula (VI)
Figure 0005041534
The polyion complex was dissolved in chloroform to prepare a 1.0 mg / mL solution. When this solution was used and the interfacial tension with respect to water was measured using the hanging drop method, it was about 17 mN / m.

ポリイオンコンプレックス濃度が1.0mg/mLおよびポリスチレン濃度が10mg/mLとなるようにポリイオンコンプレックス及びポリスチレンをクロロホルムに溶解した溶液4mlを9cmのシャーレにキャストし、加湿した空気(湿度40〜50%)を4L/分の流速で吹き付けた。得られたフィルムの光学顕微鏡像を図7に示す。約3ミクロン程度の空孔がヘキサゴナルに配列したハニカム状の多孔質膜が得られた。  4 ml of a solution of polyion complex and polystyrene dissolved in chloroform so that the polyion complex concentration is 1.0 mg / mL and the polystyrene concentration is 10 mg / mL, cast into a 9 cm petri dish, and humidified air (humidity 40-50%). Sprayed at a flow rate of 4 L / min. The optical microscope image of the obtained film is shown in FIG. A honeycomb-like porous film having pores of about 3 microns arranged in hexagonal was obtained.

ポリ乳酸(アルドリッチ製、分子量7万〜10万)10mg/mlならびに式(II)においてR、R=C1733、R=NHであるジオレイルホスファチジルエタノールアミン(DOPE)0.05mg/mlを同時に含むクロロホルム溶液20mlをガラスシャーレに滴下し、加湿した空気(相対湿度80%、流量2L/分)を吹き付けて溶媒を蒸発させ、製膜した(図8)。Polylactic acid (manufactured by Aldrich, molecular weight 70,000 to 100,000) 10 mg / ml and dioleyl phosphatidylethanolamine (DOPE) in which R 1 , R 2 = C 17 H 33 and R 3 = NH 3 in formula (II) 0. 20 ml of a chloroform solution containing 05 mg / ml was dropped onto a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was blown to evaporate the solvent to form a film (FIG. 8).

ポリ(ε−カプロラクトン)濃度が5mg/mLならびに式(III)の化合物として前記式(W−1)の化合物0.5mg/mLを含むクロロホルム溶液を調製した。この溶液の水に対する界面張力を懸滴法(PD−W、協和界面化学)に測定したところ、19.0mN/mであった。  A chloroform solution containing a poly (ε-caprolactone) concentration of 5 mg / mL and 0.5 mg / mL of the compound of formula (W-1) as a compound of formula (III) was prepared. When the interfacial tension of this solution with respect to water was measured by a hanging drop method (PD-W, Kyowa Interface Chemistry), it was 19.0 mN / m.

前記溶液5mlをガラスシャーレに滴下し、加湿した空気(相対湿度80%、流量2L/分)を吹き付けて溶媒を蒸発させ、製膜した(図9)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト(Image SXM、NIH、USA.)を用いて計算し、孔径の標準偏差を計算したところ、孔径の標準偏差は10%以下であった。  5 ml of the solution was dropped on a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was sprayed to evaporate the solvent to form a film (FIG. 9). The surface structure of the prepared film was observed with an optical microscope, and the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was 10% or less.

Claims (5)

水不溶性有機溶媒に非水溶性ポリマーと下記式(II)、式(III)、式(IV)又は式(V)で示される一種以上の界面活性剤とを溶解した、水に対する界面張力が10〜20mN/mである水不溶性有機溶媒溶液を、ガラス製もしくは金属製の基板に塗布して該溶液の薄膜を調製する工程、および該基板上の薄膜から有機溶媒を蒸発させる工程を含む、非水溶性ポリマー物質からなるハニカム状多孔質体の製造方法。
式(II)
Figure 0005041534
(式中、RならびにRはそれぞれ独立にC11〜C17の脂肪族炭化水素基から選ばれ、RはN(CH又はNHから選ばれる)
式(III)
Figure 0005041534
式(IV)
Figure 0005041534
(前記式(III)並びに式(IV)中、RはR’又はR’Oを表し、R’は水素原子又は4〜22個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又はハロアルコキシ基を表し、Aは1〜50個の炭素原子を有する脂肪族の二価基を表し、nは0〜6の整数を表し、Xは−COOM、−SOM、−PO(OM)又はその塩もしくは水酸基を表し、Mは水素原子または塩を形成しうるカチオン若しくはカチオン分子を表し、Rは水素原子または炭素数4〜22個の脂肪族炭化水素基を表わし、式(III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異なる上記R、A、n及びXを有するコポリマーでもよく、式(IV)の化合物は各モノマー単位でそれぞれ同一の又は異なる上記R、A、n及びXを有するランダムコポリマーでもよい)
式(V)
Figure 0005041534
(前記式(V)中、Rは炭素数が1〜50の脂肪族炭化水素又は芳香族炭化水素を表し、Xは−SOM、−COOM又は−PO(OM)で表される酸性基またはそれらの塩を示し、Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す)
The water-insoluble organic solvent dissolves the water-insoluble polymer and one or more surfactants represented by the following formula (II), formula (III), formula (IV) or formula (V), and has an interfacial tension of 10 Applying a water-insoluble organic solvent solution of ˜20 mN / m to a glass or metal substrate to prepare a thin film of the solution, and evaporating the organic solvent from the thin film on the substrate, A method for producing a honeycomb-shaped porous body made of a water-soluble polymer substance.
Formula (II)
Figure 0005041534
(Wherein R 1 and R 2 are each independently selected from C 11 to C 17 aliphatic hydrocarbon groups, and R 3 is selected from N + (CH 3 ) 3 or NH 3 ).
Formula (III)
Figure 0005041534
Formula (IV)
Figure 0005041534
(In the formula (III) and the formula (IV), R represents R ′ or R′O, and R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, a halogen, a hydroxy group, Represents an alkoxy group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, X represents —COOM, —SO 3 M, — PO (OM) 2 or an salt or hydroxyl groups, M represents a cation or cationic molecules capable of forming a hydrogen atom or a salt thereof, R o represents a hydrogen atom or an aliphatic hydrocarbon group having a carbon number 4 to 22 amino The compound of the formula (III) may be a homopolymer consisting of a single monomer or a copolymer having the above R, A, n and X different in monomer units, and the compound of the formula (IV) may be the same or different in each monomer unit Different Or a random copolymer having the above R, A, n and X)
Formula (V)
Figure 0005041534
(In the formula (V), R 4 represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms, and X is represented by —SO 3 M, —COOM, or —PO (OM) 2. An acidic group or a salt thereof, and M represents a hydrogen atom or a cation or a cation molecule capable of forming a salt)
式(II)で表される界面活性剤が、ジオレイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン又はジミリストイルホスファチジルコリンである、請求の範囲第1項に記載の製造方法。  The production method according to claim 1, wherein the surfactant represented by the formula (II) is dioleyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine or dimyristoyl phosphatidylcholine. 相対湿度30%以上の湿度を有する流速0.1〜100L/分の気流下に薄膜を置いて溶媒の蒸発を行う、請求の範囲第1項又は第4項に記載の製造方法。  The production method according to claim 1 or 4, wherein the solvent is evaporated by placing a thin film under an air flow having a relative humidity of 30% or more and a flow rate of 0.1 to 100 L / min. 基板を一軸方向に移動させながら水不溶性有機溶媒溶液を基板に塗布して薄膜の調製を行う、請求の範囲第1項、第4項および第7項の何れかに記載の製造方法。  The manufacturing method according to any one of claims 1, 4, and 7, wherein a thin film is prepared by applying a water-insoluble organic solvent solution to a substrate while moving the substrate in a uniaxial direction. アルキル化シランカップリング剤で表面を修飾した基板を用いる、請求の範囲第1項、第4項、第7項および第8項の何れかに記載の方法。  The method according to any one of claims 1, 4, 7, and 8, wherein a substrate whose surface is modified with an alkylated silane coupling agent is used.
JP2007526838A 2005-04-13 2006-04-13 A method for manufacturing a honeycomb-shaped porous body. Active JP5041534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526838A JP5041534B2 (en) 2005-04-13 2006-04-13 A method for manufacturing a honeycomb-shaped porous body.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005115623 2005-04-13
JP2005115623 2005-04-13
JP2007526838A JP5041534B2 (en) 2005-04-13 2006-04-13 A method for manufacturing a honeycomb-shaped porous body.
PCT/JP2006/307840 WO2006112358A1 (en) 2005-04-13 2006-04-13 Process for production of honeycomb-like porous material

Publications (2)

Publication Number Publication Date
JPWO2006112358A1 JPWO2006112358A1 (en) 2008-12-11
JP5041534B2 true JP5041534B2 (en) 2012-10-03

Family

ID=37115081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526838A Active JP5041534B2 (en) 2005-04-13 2006-04-13 A method for manufacturing a honeycomb-shaped porous body.

Country Status (2)

Country Link
JP (1) JP5041534B2 (en)
WO (1) WO2006112358A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084429A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Film and method for producing the same
JP5083535B2 (en) * 2007-10-29 2012-11-28 日本ゼオン株式会社 Film manufacturing method and manufacturing apparatus
WO2011045777A1 (en) 2009-10-14 2011-04-21 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A method for producing a polymer film with an array of cavities therein
JP5648782B2 (en) * 2010-01-18 2015-01-07 日本ゼオン株式会社 Film manufacturing apparatus and manufacturing method
KR102604023B1 (en) 2016-03-10 2023-11-20 삼성디스플레이 주식회사 Light scattering film and display device comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726060B2 (en) * 1989-05-26 1995-03-22 新技術事業団 Method for producing organic silicon thin film
JP2002127627A (en) * 2000-10-27 2002-05-08 Tohoku Ricoh Co Ltd Master for thermal stencil printing and manufacturing method thereof
JP2002201303A (en) * 2000-12-27 2002-07-19 Toray Coatex Co Ltd Porous sheet material
JP2002335949A (en) * 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
JP2003294905A (en) * 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd Optical functional film using honeycomb structure and method for manufacturing the same

Also Published As

Publication number Publication date
WO2006112358A1 (en) 2006-10-26
JPWO2006112358A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
Chen et al. Adjustable supramolecular polymer microstructures fabricated by the breath figure method
KR101763008B1 (en) Monomer and block copolymer
CN103562245B (en) New Synthetic rubber, isoprene-styrene, hydrogenated, block, diblock, its preparation method and use it to form the method for nano-pattern
KR101756539B1 (en) Preparation method of patterened substrate
JP5082101B2 (en) Method for producing nanoporous substrate
JP6505212B2 (en) Block copolymer
JP6521975B2 (en) Block copolymer
Sun et al. Self-organized microporous structures based on surfactant-encapsulated polyoxometalate complexes
US8288001B1 (en) Method of making monodisperse nanoparticles
JP4682332B2 (en) Manufacturing method of submicron honeycomb structure
JP5041534B2 (en) A method for manufacturing a honeycomb-shaped porous body.
US9957363B2 (en) Method for forming metal nanowire or metal nanomesh
Yu et al. Breath figure fabrication of honeycomb films with small molecules through hydrogen bond mediated self-assembly
Li et al. Static and dynamic hydrophobic properties of honeycomb structured films via breath figure method
Chae et al. Molecular design of an interfacially active POSS-bottlebrush block copolymer for the fabrication of three-dimensional porous films with unimodal pore size distributions through the breath-figure self-assembly
Zhang et al. Macroporous, protein-containing films cast from water-in-oil emulsions featuring a block-copolymer
Xiong et al. Honeycomb structured porous films prepared by the method of breath figure: history and development
Kang et al. Fabrication of ordered honeycomb structures and microspheres using polystyrene-block-poly (tert-butyl acrylate) star polymers
JP2007291185A (en) Honeycomb porous form and method for producing the same
KR101804007B1 (en) Block copolymer
US20240002780A1 (en) All-scale self-assembly and precise positioning of supraparticles
Rodríguez-Hernández et al. Polymers Employed and Role of the Molecular Characteristics on the BFs Formation
Sharma et al. 5 Morphology of
Shimomura et al. HIERARCHICAL STRUCTURING OF POLYMER NANOPARTICLES BY SELF-ORGANIZATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5041534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250