WO2006112358A1 - Process for production of honeycomb-like porous material - Google Patents

Process for production of honeycomb-like porous material Download PDF

Info

Publication number
WO2006112358A1
WO2006112358A1 PCT/JP2006/307840 JP2006307840W WO2006112358A1 WO 2006112358 A1 WO2006112358 A1 WO 2006112358A1 JP 2006307840 W JP2006307840 W JP 2006307840W WO 2006112358 A1 WO2006112358 A1 WO 2006112358A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
water
organic solvent
substrate
surfactant
Prior art date
Application number
PCT/JP2006/307840
Other languages
French (fr)
Japanese (ja)
Inventor
Masatsugu Shimomura
Masaru Tanaka
Hiroshi Yabu
Hidekazu Yamazaki
Hirohisa Hokazono
Yukako Fukuhira
Hiroaki Kaneko
Original Assignee
National University Corporation Hokkaido University
Fujifilm Corporation
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Fujifilm Corporation, Teijin Limited filed Critical National University Corporation Hokkaido University
Priority to JP2007526838A priority Critical patent/JP5041534B2/en
Publication of WO2006112358A1 publication Critical patent/WO2006112358A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/1213Constructional arrangements comprising photonic band-gap structures or photonic lattices

Definitions

  • a method for manufacturing a honeycomb-shaped porous body is a method for manufacturing a honeycomb-shaped porous body.
  • the present invention relates to a method for manufacturing a honeycomb-shaped porous body having a fine periodic structure.
  • a structure having a fine periodic structure is a useful material in various fields such as electronics, optics, and biotechnology.
  • a process for producing electronic materials having a fine periodic structure of lOOnm or less has been put into practical use along with the channel miniaturization technology of electric field transistors (Non-patent Document 1).
  • structures having a fine periodic structure such as diffraction gratings and photonic crystals are attracting attention as next-generation optical functional elements (Non-patent Document 2).
  • a thin film having a fine periodic structure having a periodic structure equal to or shorter than the wavelength of light is transparent in the visible light region, and is expected to have an effect of preventing light scattering and the like.
  • the fine structure of the surface of a structure having a fine periodic structure affects the proliferation of cultured cells (Non-patent Document 3).
  • Non-patent Document 4 Photolithography, soft lithography (Non-patent Document 4) and the like are known as conventional techniques for producing a structure having a fine periodic structure.
  • Such a method is to produce a structure having a fine periodic structure by slicing the material used as a raw material, and is called a top-down production process.
  • top-down fabrication processes are based on breaking intermolecular bonds, and thus essentially require high energy. Therefore, this process is a high-cost process that requires multi-step processes, and there are many problems to be solved as a method of manufacturing a structure having a simple periodic structure such as a diffraction limit.
  • phase separation of a block copolymer is known as a process for producing a structure having an lOnm scale microstructure (Non-patent Document 5).
  • Block copo that covalently connects the ends of two or more polymers with different compatibility
  • the remer can change the period of the phase separation structure according to the compatibility and the length of each segment.
  • this method also requires a complicated organic synthesis process, and the types of block copolymers that can be synthesized are limited.
  • Non-patent Document 6 a method of producing a structure having a two-dimensional or three-dimensional periodic structure by accumulating submicron colloidal fine particles (Non-patent Document 6), and by making this a saddle type, it is inverted.
  • Non-Patent Document 7 methods for producing a structure having an opal structure (Non-Patent Document 7) have been reported, fine particles having a single particle size must be prepared, and a mold is taken. After that, there are various process problems, such as cocoons that must be disassembled.
  • Patent Document 1 Gelsinge et al., IEEE Spectrum, 1989, p. 89, p. 43.
  • Non-Patent Document 2 Noda et al., Nature, 2000, 407, 608.
  • Non-Patent Document 3 Chen et al., Science, 1997, 276, 1425
  • Non-Patent Document 4 White Size et al., Angew. Chem. Int. Ed., 1998, 37th, 550— 575 pages
  • Non-Patent Document 5 Albrecht et al., Macromolecules, 2002, 35th, 8106-8110
  • Non-Patent Document 6 Gu et al., Langmuir, 17th pp. 6751-6753.
  • Non-Patent Document 7 Carso et al., Langmuir, 1999, 15th, 8276-8
  • Patent Document 1 Japanese Patent Laid-Open No. 8-311231
  • An object of the present invention is to make a pore size of a porous body substantially uniform in a method for producing a Hercam-like porous body, which is a structure having a fine periodic structure with water droplets in a bowl shape. Is to provide the technology.
  • the inventors of the present invention provide a method for producing a Hercam-like porous body having water droplets in a bowl shape!
  • the present inventors have found that the presence of the agent can suppress the variation in the pore diameter of the porous body and produce a high-quality Hercam-like porous body, thereby completing the present invention.
  • the present invention provides the following manufacturing method.
  • a water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and having an interface tension with respect to water of 10 to 20 mNZm is applied to a glass or metal substrate.
  • a method for producing a Hermacous porous material comprising a water-insoluble polymer substance comprising: preparing a thin film of the solution; and evaporating an organic solvent from the thin film on the substrate.
  • R and R are each independently selected from C to C aliphatic hydrocarbon groups.
  • R is selected as N + (CH 3) or NH force).
  • R represents R ′ or R ′ O
  • R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, a halogen, a hydroxy group, Represents an alkoxy group or a haloalkoxy group
  • A represents an aliphatic divalent group having 1 to 50 carbon atoms
  • n represents an integer of 0 to 6
  • X represents —COOM, —SOM, — PO (OM) or its salt
  • M represents a hydrogen atom or a cation or cation molecule capable of forming a salt
  • R represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, and has the formula (o
  • the compound of formula (IV) may be a homopolymer consisting of a single monomer or a copolymer having the above-mentioned R, A, n and X which are different for each monomer unit.
  • the compound of formula (IV) is the same or different for each monomer unit. (Random copolymer having R, A, n and X may be used)
  • R represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms.
  • X is —SO M, —COOM or — PO (OM)
  • M represents a hydrogen atom or a cation or cation molecule capable of forming a salt
  • FIG. 1 shows an apparatus for continuously producing a honeycomb porous body of the present invention.
  • FIG. 2 shows an overall view of operations and apparatuses in Example 1.
  • FIG. 3 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 1.
  • the left is a honeycomb-like porous body obtained from the solution (A), and the right is a non-nicamic porous body obtained from the solution (B).
  • FIG. 5 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 2.
  • FIG. 6 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 3.
  • FIG. 7 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 4.
  • FIG. 8 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 5.
  • the bar in the figure is the scale bar (10 ⁇ m)
  • FIG. 9 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 6.
  • the bar at the bottom is the scale bar (10 ⁇ m).
  • a water-insoluble organic solvent solution having a water-insoluble organic solvent and a surfactant dissolved in a water-insoluble organic solvent and having an interfacial tension with respect to water of 10 to 20 mNZm is made of glass or metal.
  • water droplets are condensed on the surface of a polymer non-aqueous organic solvent solution, and a honeycomb porous body is prepared using the water droplets as a bowl shape.
  • the Hercam's porous body in the present invention is a porous thin film made of a water-insoluble polymer (polymer).
  • Submicron-scale and micron-scale micropores (including dents) oriented in the vertical direction of the membrane are provided in the form of a honeycomb (in a huck shape) in the plane direction of the membrane.
  • the pores may penetrate the membrane in the vertical direction or may communicate with surrounding pores in the planar direction within the membrane. With such a hard cam-like shape!
  • the porous thin film is understood as a structure that is completely different from a normal porous body having irregular pores with various pore diameters, shapes, or depths.
  • the shape of the Hercam's porous material in the present invention is such that the film thickness is 0.01 ⁇ m to 100 ⁇ m, preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m. m ⁇ 20 ⁇ m, diameter diameter ⁇ ⁇ . 0 Ol ⁇ m ⁇ lOO ⁇ m, preferably ⁇ or 0.1 ⁇ m to 50 ⁇ m, more preferably ⁇ or 1 ⁇ to 20; ⁇ m, especially Preferably, it is 5 m to 10 m.
  • the honeycomb-shaped porous body having such a structural feature condenses water droplets on the surface of a polymer non-aqueous organic solvent solution, and prepares a honeycomb-shaped porous body using the water droplets as a bowl shape. It can be prepared by a method, for example, a method described in Patent Document 1, JP-A-2001-157475, JP-A-2002-347107 or JP-A-2002-335949.
  • One of the steps constituting the production method of the present invention is a water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and the interfacial tension with respect to water is 10 to 20 mNZm. Is applied to a glass or metal substrate to prepare a thin film of the solution.
  • the water-insoluble organic solvent that can be used in the present invention is water-insoluble enough to retain water droplets condensed on the solvent surface, and has a boiling point of 0 to 150 ° C under atmospheric pressure, preferably Any of 10 to 50 ° C. can be used.
  • halogenated hydrocarbons such as carbon tetrachloride, dichloromethane, and chloroform
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • esters such as ethyl acetate and butyl acetate, and methylisobutyl ketone.
  • Non-water-soluble ketones carbon dioxide and so on.
  • the water-insoluble polymer used in the present invention is insoluble in water and soluble in the above water-insoluble organic solvent, or is dissolved in the same organic solvent in the presence of a surfactant used in the present invention described later. Any polymer that can be dissolved can be used, and a polymer that can give the function or characteristics expected of the honeycomb-shaped porous body to be produced can be appropriately selected and used.
  • biodegradable polymers such as polylactic acid and polyhydroxybutyric acid, aliphatic polycarbonate Nate, amphiphilic polymer, photofunctional polymer, and electronic functional polymer.
  • water-insoluble organic solvent and the water-insoluble polymer examples include, for example, polyalkyls such as polystyrene, polycarbonate, polysnolephone, polyetherenolenolephone, polyalkylsiloxane, and polymethylmethacrylate.
  • polyalkyls such as polystyrene, polycarbonate, polysnolephone, polyetherenolenolephone, polyalkylsiloxane, and polymethylmethacrylate.
  • organic solvents such as carbon tetrachloride, dichloromethane, chloroform, benzene, toluene, xylene, and carbon dioxide can
  • the water-insoluble polymer is dissolved in a water-insoluble organic solvent in an amount of 0.01 gZL to 50 g ZL, and preferably 0.1 gZL to 10 gZL.
  • a water-insoluble organic solvent in an amount of 0.01 gZL to 50 g ZL, and preferably 0.1 gZL to 10 gZL.
  • the surfactant that can be used in the present invention is preferably one or more surfactants selected from compounds represented by formula (I) or formula (II).
  • R and R are each independently selected from C to C aliphatic hydrocarbon groups.
  • R is selected as N + (CH 3) or NH force).
  • surfactants are all known substances, and can be purchased from, for example, Aldrich, etc., and the method of Nishida et al. (Polymer Journal, 34, 166, 2002)
  • a surfactant represented by formula (III) or formula (IV) can also be used.
  • R represents R ′ or R ′ O
  • R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, halogen, hydroxy group, alkoxy Represents a group or a haloalkoxy group
  • A represents an aliphatic divalent group having 1 to 50 carbon atoms
  • n represents an integer of 0 to 6
  • X represents —COOM, —SO M, — PO (OM) or its salt
  • M represents a hydrogen atom or a cation or cation molecule capable of forming a salt
  • R represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, and has the formula (o
  • the compound of formula (IV) may be a homopolymer consisting of a single monomer or a copolymer having the above-mentioned R, A, n and X which are different for each monomer unit.
  • the compound of formula (IV) is the same or different for each monomer unit. Random copolymers having the above R, A, n and X may also be used.
  • the aliphatic hydrocarbon group having 4 to 22 carbon atoms represented by R ' may be linear or branched, and may have an unsaturated bond. 2 or more types of aromatic hydrocarbon groups! /, May! /
  • the number of carbon atoms of the aliphatic hydrocarbon group represented by R ' is preferably 6 to 18.
  • alkyl groups such as butyl, amyl, hexyl, octyl, nonyl, dodecyl, or octadecyl, and alkenyl groups such as cis-octadecyl group.
  • Halogen is Cl, Br, I, etc.
  • alkoxy groups are preferably 4-22 carbon atoms in the alkyl moiety, such as octyloxy group, hexyloxy group, dodecoxy group, ⁇ -hydroxyethoxy, etc.
  • alkoxy group 4 to 22 carbon atoms in the alkyl portion are preferred, and examples thereof include j8-chloroethoxy and / 3 bromoethoxy.
  • R may be a hydroxy group.
  • Examples of the aliphatic divalent group having 1 to 50 carbon atoms represented by A include, for example, an anorylene group, an anorylene group, a polyanorylene group, and an anorylene group.
  • -Divalent groups such as an alkylene group are exemplified, and specific examples include ethylene, trimethylene, otamethylene, ethyleneoxy, polyethyleneoxy, polypropyleneoxy, ethyleneoxy-trimethylene groups.
  • the M in the salt thereof includes, for example, alkaline earth metal ions such as sodium ion, potassium ion and lithium ion, transition metal ions such as calcium ion, normium ion, ammonium ion, silver ion and cadmium ion, carbon number Examples thereof include 1 to 4 alkyl ammonium, quaternized ammonium ions or derivatives thereof.
  • Examples of the monomer units in the formulas (III) and (IV) include the following.
  • R represents an aliphatic hydrocarbon group having 4 to 22 carbon atoms.
  • is not particularly limited Repulsion 600-10, 000 force is preferred, 900-5,000 force ⁇ more preferred! / ,.
  • R represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms.
  • X is —SO M, —COOM or — PO (OM)
  • M represents a hydrogen atom or a cation or cation molecule capable of forming a salt.
  • the synthesis method of these compounds is not particularly limited, and a known synthesis method power can be appropriately selected according to the purpose.
  • a formalin polycondensate of alkylphenols examples include the methods described in Industrial Science Journal 66, 391 (1963), Oil Chemistry 12 625 (1963). For example, it is described in Industrial Science Journal 73-563 (1970), 59-221 (1956), J. Am • Chem. Soc. 77, 2496 (1955), etc. The method which is being done is mentioned.
  • the present invention uses a water-insoluble organic solvent solution in which the water-insoluble organic solvent and the surfactant are dissolved in a water-insoluble organic solvent and the interfacial tension with respect to water is 10 to 20 mNZm.
  • the interfacial tension in the present invention means a surface tension measured by a method called a hanging drop method for measuring the interfacial tension of a liquid.
  • a hanging drop method for measuring the interfacial tension of a liquid.
  • PD-W an interfacial tension measuring device manufactured by Kyowa Interface Science Co., Ltd. (http: ⁇ www.face-kyowa.co.jp/j/interface_chemistry/005.html).
  • the water-insoluble polymer itself has little effect on the interfacial tension of the solution, and therefore the combination of the water-insoluble organic solvent and surfactant used, as well as in the solution. It can be set according to the concentration of the surfactant. The combination and concentration may be determined by dissolving a surfactant in a water-insoluble organic solvent to prepare a water-insoluble solution and measuring the interfacial tension by the hanging drop method.
  • Preferable examples include use of DOPE or Cap for halogenated hydrocarbon solvents such as chloroform or dichloromethane or aromatic hydrocarbons such as toluene and benzene.
  • Examples of the substrate material that can be used in the present invention include glass and silicon.
  • the wettability of the substrate itself with respect to the water-insoluble organic solvent used can affect the thickness of the thin film formed on the substrate.
  • a substrate having a high affinity with a water-insoluble organic solvent solution or a substrate having a surface that has been processed to increase the affinity with a water-insoluble organic solvent solution.
  • Such improvement in the wettability of the substrate can be achieved by a method known per se, such as a glass or metal substrate, in accordance with the combination of the substrate material and the water-insoluble organic solvent used.
  • Alkyl silane coupling treatment can be used for monomolecular film formation treatment with thiol compound.
  • a substrate in the case of using a hydrophobic organic solvent such as black mouth form it is preferable to use a sufficiently cleaned Si substrate or a glass substrate whose surface is modified with an alkyl silane coupling agent or the like. .
  • a water-insoluble organic solvent solution containing a water-insoluble polymer and a surfactant as exemplified above is applied to a substrate to form a thin film of the same solution.
  • the coating thickness may be 10 m to 5 mm. If it is too thin, it may be a problem in terms of the strength of the hermetic porous material after production, and if it is too thick, it may be a problem in terms of the efficiency of pore formation.
  • a bar coat, a dip coat, a spin coat method, and the like can be given as a method of applying a water-insoluble organic solvent solution onto a substrate.
  • a bar coat, a dip coat, a spin coat method, and the like can be given as a method of applying a water-insoluble organic solvent solution onto a substrate.
  • Either batch type or continuous type can be used.
  • a method of preparing a thin film by applying a water-insoluble organic solvent solution to a movable substrate is preferable.
  • a powerful method can be implemented by using an apparatus as shown in FIG.
  • the apparatus in FIG. 1 has a substrate 1 that can move from the right to the left in the figure at a predetermined speed, a metal plate 2 provided on the substrate 1, and a nozzle 3 that blows air having a predetermined relative humidity. is doing.
  • the metal plate 2 is placed on the substrate 1 with a gap corresponding to a desired thin film thickness.
  • the thickness of the thin film applied to the substrate 1 is reduced by passing the substrate 1 on which the water-insoluble organic solvent solution has been applied in advance under the metal plate.
  • the thickness can be adjusted to approximately the same as the gap between the two. It is desirable to adjust the moving speed of the substrate 1 to 0.1 l / z m ⁇ : LOmmZ seconds, particularly 1 to 5 mmZ seconds.
  • the Hercam-like porous body formed on the substrate can be continuously recovered from the substrate, so that the Hercam-like porous body of the present invention is industrially produced.
  • the production method is also IJI.
  • a Hercam's porous body made of a water-insoluble polymer By placing the water-insoluble organic solvent on the substrate in this manner and evaporating the water-insoluble organic solvent from the thin film, a Hercam's porous body made of a water-insoluble polymer can be produced. At that time, by adjusting the evaporation rate of the solvent, the pore size of the Hercam's porous material should be less than lOOnm. Can do.
  • a flow rate having a relative humidity of 30% or more is 0.1 to: L00LZ, preferably 1.0 to 50LZ, by placing the thin film on the substrate and evaporating the water-insoluble organic solvent. 1 to: A high-quality Herkam-like porous body having a uniform pore diameter within the range of LOOnm can also be produced.
  • a thin film of a water-insoluble organic solvent solution is placed in an air stream having a relative humidity of 30% or more to quickly evaporate the solvent and to suppress the growth of water droplets condensing on the solvent surface. Holes smaller than lOOnm are provided in the Hercam-like porous body.
  • the flow rate of the air flow in such a method may be appropriately adjusted according to the volatility of the solvent used and the thickness of the thin film on the substrate, but is generally 0.1 to: LOOLZ minutes, preferably 1.0 to 50 LZ minutes. And it is sufficient.
  • the thin film is formed in parallel or upward with a thin film of the organic solvent solution on the substrate with respect to the air flow.
  • the airflow may be generated by any positive pressure from the upstream side or negative pressure by the downstream force.
  • the nozzle force installed toward the substrate may be ejected from a predetermined air, or the air above the substrate may be sucked from one direction.
  • Hercam-shaped porous body having a standard deviation of pore diameters of 10% or less in a 100 ⁇ m square Hercum-shaped porous body. Also, by evaporating the solvent under a constant air flow, Inn! It is possible to produce a high-quality hard-cam porous body having a fine pore diameter of ⁇ 100 m and a standard deviation of the pore diameter of 10% or less.
  • Such Hercam's porous materials include photonic crystals, antireflection films, optical films such as light diffusing plates, electronic materials such as patterned resists and electrode plates, cell culture substrates, uniform It can be used for separation membranes using various pore sizes.
  • a honeycomb-like porous body was prepared using dioleylphosphatidylethanolamine (DOPE) as a water-insoluble organic solvent and chloroform.
  • DOPE dioleylphosphatidylethanolamine
  • a poly ( ⁇ -force prolatatone) concentration of 5 mg / mL and the above compound 1 is 3.
  • Omg / mL of a closed form solution (A) a poly ( ⁇ -force prolatatone) concentration of 5 mg / mL and DOPE
  • a 0.5 mg / mL black mouth form solution (B) was prepared.
  • the solution (A) was 18.6 mNZm and the solution (13.3 mNZm).
  • Figure 5 The surface structure of the fabricated film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was less than 10%.
  • a Hercam's porous material was produced. Dimethyto dioctadecy to ammonium bromide (Mutual drug ENE-SOKU, hereinafter referred to as DDAB) 31 mg was dispersed in 200 mL of pure water by sonication. Polystyrene sulfonate potassium salt (Showa Denko) 917 mg was dissolved in 300 mL of pure water, and DDAB aqueous solution was added thereto. The resulting precipitate was extracted with toluene, sodium sulfate was added and dried, and then the solvent was removed by a rotary evaporator. Excess solvent was removed by drying under reduced pressure to obtain 858 mg of polyion complex represented by the following formula (VI) (yield: about 82%).
  • VI formula
  • the polyion complex was dissolved in black mouth form to prepare a 1.0 mg / mL solution. Using this solution, the interfacial tension with respect to water was measured by the hanging drop method, and it was about 17 m NZm.
  • Polyion complex concentration is 1. OmgZmL and polystyrene concentration is lOmgZm 4 ml of a solution obtained by dissolving polyion complex and polystyrene in black mouth form so as to be L was cast into a 9 cm petri dish, and humidified air (humidity 40-50%) was sprayed at a flow rate of 4 LZ.
  • An optical microscope image of the obtained film is shown in FIG. A nodular-cam-like porous film in which pores of about 3 microns were arranged in hexagonal was obtained.
  • the poly ( ⁇ -strength prolatatone) concentration is 5 mg / mL and the compound of formula (III) (W
  • a black mouth form solution containing 0.5 mg / mL of the compound of 1) was prepared.
  • the interfacial tension of this solution with respect to water was measured by the hanging drop method (PD-W, Kyowa Interface Chemistry) and found to be 19. OmNZm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A process for the production of honeycomb-like porous material made of a water-nonsoluble polymer, which comprises the step of applying a solution obtained by dissolving a water-nonsoluble polymer and a surfactant in a water-insoluble organic solvent and having an interfacial tension of 10 to 20mN/m against water to a substrate made of a metal or glass to form a thin film of the solution and the step of evaporating the organic solvent from the thin film on the substrate. This process can give a high-quality honeycomb-like porous material exhibiting a standard deviation of pore diameter of 10% or below in an area 100μm square. Further, another high-quality honeycomb-like porous material having a pore diameter of as small as 1nm to 100μm and a standard deviation of pore diameter of 10% or below can be obtained by conducting the evaporation of the solvent under a specified air stream. The honeycomb-like porous materials are useful as optical films such as photonic crystal, antireflection coating, and light diffusing plate; electronic materials such as molds of patterned resists or electrodes; cell culture substrata; separation membranes with uniform pore diameters; and so on.

Description

明 細 書  Specification
ハニカム状多孔質体の製造方法。  A method for manufacturing a honeycomb-shaped porous body.
技術分野  Technical field
[0001] 本発明は、微細な周期構造を持つハニカム状多孔質体の製造方法に関する。  [0001] The present invention relates to a method for manufacturing a honeycomb-shaped porous body having a fine periodic structure.
背景技術  Background art
[0002] 微細な周期構造を持つ構造体は、電子工学、光学およびバイオテクノロジーなどの 様々な分野において有用な材料である。電子工学の分野では、電界トランジスタの チャネルの微細化技術に伴って、 lOOnm以下の微細な周期構造を持つ電子材料 の作製プロセスが実用化されている(非特許文献 1)。光学の分野では、回折格子や フォトニック結晶などの微細な周期構造を持つ構造体が、次世代の光機能素子とし て注目されている(非特許文献 2)。また、光の波長以下の周期構造を有する微細な 周期構造を持つ薄膜は、可視光領域で透明であり、光の散乱などを防止する効果が 期待される。さらに、近年、再生医療分野においても、微細な周期構造を持つ構造 体表面の微細構造が培養細胞の増殖に影響を与えるなどの報告がなされて 、る (非 特許文献 3)。  [0002] A structure having a fine periodic structure is a useful material in various fields such as electronics, optics, and biotechnology. In the field of electronic engineering, a process for producing electronic materials having a fine periodic structure of lOOnm or less has been put into practical use along with the channel miniaturization technology of electric field transistors (Non-patent Document 1). In the field of optics, structures having a fine periodic structure such as diffraction gratings and photonic crystals are attracting attention as next-generation optical functional elements (Non-patent Document 2). In addition, a thin film having a fine periodic structure having a periodic structure equal to or shorter than the wavelength of light is transparent in the visible light region, and is expected to have an effect of preventing light scattering and the like. In recent years, in the field of regenerative medicine, it has been reported that the fine structure of the surface of a structure having a fine periodic structure affects the proliferation of cultured cells (Non-patent Document 3).
[0003] 微細な周期構造を持つ構造体を作製する従来技術としては、フォトリソグラフィーゃ ソフトリソグラフィー (非特許文献 4)などが知られている。この様な方法は、原料となる 物質を細力べ切断することによって微細な周期構造を持つ構造体を作製するもので あり、トップダウン型の作製プロセスと呼ばれる。一般的に、トップダウン型の作製プロ セスは分子間結合を切断することを基本としているため、本質的に高エネルギーを必 要とする。そのため、このプロセスは多段階の工程を必要とする高コストなプロセスで あり、また回折限界など、単純な周期構造を有する構造体を作製する方法としては、 解決すべき問題が多い。  [0003] Photolithography, soft lithography (Non-patent Document 4) and the like are known as conventional techniques for producing a structure having a fine periodic structure. Such a method is to produce a structure having a fine periodic structure by slicing the material used as a raw material, and is called a top-down production process. In general, top-down fabrication processes are based on breaking intermolecular bonds, and thus essentially require high energy. Therefore, this process is a high-cost process that requires multi-step processes, and there are many problems to be solved as a method of manufacturing a structure having a simple periodic structure such as a diffraction limit.
[0004] これに対して、材料を分子レベル力 積み上げることで微細な周期構造を有する構 造体を作製する試みがなされている。例えば、 lOnmスケールの微細構造を有する 構造体の作製プロセスとして、ブロックコポリマーの相分離が知られている(非特許文 献 5)。相溶性の異なる 2種以上の高分子の末端を共有結合でつなげたブロックコポ リマーは、相溶性と各セグメントの長さによって、相分離構造の周期を変化させること ができる。しかしながら、この方法も複雑な有機合成プロセスを必要とし、さらに合成 できるブロックコポリマーの種類も限られている。 [0004] On the other hand, an attempt has been made to produce a structure having a fine periodic structure by accumulating materials at molecular level. For example, phase separation of a block copolymer is known as a process for producing a structure having an lOnm scale microstructure (Non-patent Document 5). Block copo that covalently connects the ends of two or more polymers with different compatibility The remer can change the period of the phase separation structure according to the compatibility and the length of each segment. However, this method also requires a complicated organic synthesis process, and the types of block copolymers that can be synthesized are limited.
[0005] 他にも、サブミクロンのコロイド微粒子を集積することで 2次元、 3次元の周期構造を 有する構造体を作製する方法 (非特許文献 6)、これを铸型にすることでインバースド オパール構造を有する構造体を作製する方法 (非特許文献 7)が報告されて ヽるが、 これらの方法には、単一粒径の微粒子を調製しなくてはならず、また、型を取った後 に铸型を分解しなくてはならな ヽなど、様々なプロセス上の問題がある。  [0005] In addition, a method of producing a structure having a two-dimensional or three-dimensional periodic structure by accumulating submicron colloidal fine particles (Non-patent Document 6), and by making this a saddle type, it is inverted. Although methods for producing a structure having an opal structure (Non-Patent Document 7) have been reported, fine particles having a single particle size must be prepared, and a mold is taken. After that, there are various process problems, such as cocoons that must be disassembled.
[0006] これらの方法とは異なる原理に基づく方法として、水滴を铸型として簡便にハニカム 状の微細な周期構造を有する構造体 (ハニカム状多孔質体)を作製する方法が報告 されている (特許文献 1)。具体的には、高分子の非水性有機溶媒溶液の表面上に 水滴を結露させ、該水滴を铸型としてハニカム状多孔質体を調製するものである。 非特許文献 1:ゲルジンゲら、 IEEEスペクトラム (IEEE Spectrum) 1989年、第 89 卷、第 43頁。  [0006] As a method based on a principle different from these methods, there has been reported a method for easily producing a structure having a honeycomb-like fine periodic structure (honeycomb-like porous body) using water droplets as a saddle type ( Patent Document 1). Specifically, water droplets are condensed on the surface of the polymer non-aqueous organic solvent solution, and a honeycomb-shaped porous body is prepared using the water droplets as a bowl shape. Non-Patent Document 1: Gelsinge et al., IEEE Spectrum, 1989, p. 89, p. 43.
非特許文献 2 :ノダら、ネイチヤー(Nature)、 2000年、第 407卷、第 608頁。  Non-Patent Document 2: Noda et al., Nature, 2000, 407, 608.
非特許文献 3 :チェンら、サイエンス(Science)、 1997年、第 276卷、 1425頁 非特許文献 4:ホワイトサイズら、 Angew. Chem. Int. Ed. , 1998年、第 37 卷、 第 550— 575頁  Non-Patent Document 3: Chen et al., Science, 1997, 276, 1425 Non-Patent Document 4: White Size et al., Angew. Chem. Int. Ed., 1998, 37th, 550— 575 pages
非特許文献 5:アルブレヒトら,マクロモレキュール(Macromolecules)、 2002年、 第 35卷、第 8106— 8110頁  Non-Patent Document 5: Albrecht et al., Macromolecules, 2002, 35th, 8106-8110
非特許文献 6 :グら、ラングミュア (Langmuir)、第 17卷、第 6751— 6753頁。  Non-Patent Document 6: Gu et al., Langmuir, 17th pp. 6751-6753.
非特許文献 7 :カルソら、 ラングミュア(Langmuir)、 1999年、第 15卷、第 8276— 8 Non-Patent Document 7: Carso et al., Langmuir, 1999, 15th, 8276-8
281頁 281 pages
特許文献 1:特開平 8— 311231号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-311231
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかし、上記いずれの方法においても、多孔質体の孔径を均一にし、それにより品 質の高い微細な周期構造を持つ構造体を製造することについては、注意が払われ ていない。 [0007] However, in any of the above methods, attention is paid to producing a structure having a fine periodic structure with high quality by making the pore diameter of the porous body uniform. Not.
[0008] 本発明の目的は、水滴を铸型として微細な周期構造を持つ構造体であるハ-カム 状多孔質体を製造する方法において、多孔質体の孔径を実質的に均一にするため の技術を提供することにある。  [0008] An object of the present invention is to make a pore size of a porous body substantially uniform in a method for producing a Hercam-like porous body, which is a structure having a fine periodic structure with water droplets in a bowl shape. Is to provide the technology.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、水滴を铸型とするハ-カム状多孔質体の作製方法にお!、て、非水 溶性ポリマーの水不溶性有機溶媒溶液に一定の界面張力を有する界面活性剤を存 在させることによって、多孔質体の孔径のばらつきを抑制し、高品質なハ-カム状多 孔質体を製造できることを見出し、本発明を完成した。 [0009] The inventors of the present invention provide a method for producing a Hercam-like porous body having water droplets in a bowl shape! The present inventors have found that the presence of the agent can suppress the variation in the pore diameter of the porous body and produce a high-quality Hercam-like porous body, thereby completing the present invention.
[0010] 本発明は、以下の製造方法を提供するものである。 The present invention provides the following manufacturing method.
[0011] 1)水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解した、水に対する界 面張力が 10〜20mNZmである水不溶性有機溶媒溶液をガラス製もしくは金属製 の基板に塗布して該溶液の薄膜を調製する工程、および該基板上の薄膜から有機 溶媒を蒸発させる工程を含む、非水溶性ポリマー物質力 なるハ-カム状多孔質体 の製造方法。  [0011] 1) A water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and having an interface tension with respect to water of 10 to 20 mNZm is applied to a glass or metal substrate. A method for producing a Hermacous porous material comprising a water-insoluble polymer substance, the method comprising: preparing a thin film of the solution; and evaporating an organic solvent from the thin film on the substrate.
[0012] 2)界面活性剤が、式 (I)または式 (II)で表される化合物から選択される 1種以上の界 面活性剤である、 1)に記載の製造方法。  [0012] 2) The production method according to 1), wherein the surfactant is one or more surfactants selected from compounds represented by formula (I) or formula (II).
[0013] 式(I) [0013] Formula (I)
[化 1]  [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 n:mは 1 : 0〜: LO : 1である) (Where n: m is 1: 0 to: LO: 1)
[0014] 式(II) [0014] Formula (II)
[化 2] CH OCORi [Chemical 2] CH OCORi
CH2OCOR2 CH 2 OCOR 2
CH2OPO3CH2CH2R3  CH2OPO3CH2CH2R3
( Π)  (Π)
(式中、 Rならびに Rはそれぞれ独立に C 〜C の脂肪族炭化水素基から選ばれ Wherein R and R are each independently selected from C to C aliphatic hydrocarbon groups.
1 2 11 17  1 2 11 17
、 Rは N+ (CH ) 又は NH力 選ばれる)。  , R is selected as N + (CH 3) or NH force).
3 3 3 3  3 3 3 3
[0015] 3)式 (I)の界面活性剤力 共重合比 = 1 : 10〜: L0 : 1、分子量 = 2万〜 50万のポリ( ドデシルアクリルアミド— co— 6— 、 ,—アミノカプロイツクアクリルアミド)である、 2)に記載 の製造方法。  [0015] 3) Surfactant power of formula (I) Copolymerization ratio = 1: 10 ~: L0: 1, molecular weight = 20,000 ~ 500,000 poly (dodecylacrylamide-co-6-,, -aminocapro 2). The production method according to 2).
[0016] 4)式(II)で表される界面活性剤力 ジォレイルホスファチジルエタノールァミン、ジパ ルミトイルホスファチジルエタノールァミン又はジミリストイルホスファチジルコリンであ る、 2)に記載の製造方法。  [0016] 4) The production method according to 2), which is a surfactant power represented by the formula (II): dioleyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine or dimyristoyl phosphatidylcholine.
[0017] 5)界面活性剤が式 (III)又は式 (IV)で表される化合物力 選択される 1種以上の界 — \ [0017] 5) Compound force in which the surfactant is represented by formula (III) or formula (IV) is selected one or more fields — \
面活性剤である、 1)に記載の製造方法。 、 / 1  The production method according to 1), which is a surfactant. , / 1
[0018] 式(III) [0018] Formula (III)
[化 3] [Chemical 3]
Figure imgf000005_0001
式 UV)
Figure imgf000005_0001
(UV)
[化 4]
Figure imgf000005_0002
(前記式 (III)並びに式 (IV)中、 Rは R'又は R' Oを表し、 R'は水素原子又は 4〜22 個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又 はハロアルコキシ基を表し、 Aは 1〜50個の炭素原子を有する脂肪族の二価基を表 し、 nは 0〜6の整数を表し、 Xは— COOM、—SO M、— PO (OM)又はその塩もし
[Chemical 4]
Figure imgf000005_0002
(In the above formula (III) and formula (IV), R represents R ′ or R ′ O, R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, a halogen, a hydroxy group, Represents an alkoxy group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, X represents —COOM, —SOM, — PO (OM) or its salt
3 2  3 2
くは水酸基を表し、 Mは水素原子または塩を形成しうるカチオン若しくはカチオン分 子を表し、 Rは水素原子または炭素数 4〜22個の脂肪族炭化水素基を表わし、式( o  Or a hydroxyl group, M represents a hydrogen atom or a cation or cation molecule capable of forming a salt, R represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, and has the formula (o
III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異な る上記 R、 A、 n及び Xを有するコポリマーでもよぐ式 (IV)の化合物は各モノマー単 位でそれぞれ同一の又は異なる上記 R、 A、 n及び Xを有するランダムコポリマーでも よい)  The compound of formula (IV) may be a homopolymer consisting of a single monomer or a copolymer having the above-mentioned R, A, n and X which are different for each monomer unit. The compound of formula (IV) is the same or different for each monomer unit. (Random copolymer having R, A, n and X may be used)
6)界面活性剤が式 (V)で表される化合物力 選択される 1種以上の界面活性剤であ る、 1)に記載の製造方法。  6) The production method according to 1), wherein the surfactant is one or more surfactants selected from the compound force represented by formula (V).
[化 5] [Chemical 5]
Figure imgf000006_0001
Figure imgf000006_0001
(前記式 (V)中、 Rは炭素数が 1〜50の脂肪族炭化水素又は芳香族炭化水素を (In the formula (V), R represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms.
4  Four
表し、 Xは— SO M、 -COOM又は— PO (OM) で表される酸性基またはそれら  X is —SO M, —COOM or — PO (OM)
3 2  3 2
の塩を示し、 Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す )  Wherein M represents a hydrogen atom or a cation or cation molecule capable of forming a salt)
7)相対湿度 30%以上の湿度を有する流速 0. 1〜: L00LZ分の気流下に薄膜を置 いて溶媒の蒸発を行う、 1)に記載の製造方法。  7) Flow rate having a relative humidity of 30% or more 0.1 to: The production method according to 1), wherein the solvent is evaporated by placing a thin film in an air stream of L00LZ.
[0019] 8)基板を一軸方向に移動させながら水不溶性有機溶媒溶液を基板に塗布して薄膜 の調製を行う、 1)または 7)に記載の製造方法。 [0019] 8) The method according to 1) or 7), wherein the thin film is prepared by applying a water-insoluble organic solvent solution to the substrate while moving the substrate in a uniaxial direction.
[0020] 9)アルキルィ匕シランカップリング剤で表面を修飾した基板を用いる、 1)、 7)または 8) に記載の方法。 図面の簡単な説明 [0020] 9) The method according to 1), 7) or 8), wherein a substrate whose surface is modified with an alkyl silane coupling agent is used. Brief Description of Drawings
[0021] [図 1]本発明のハニカム多孔質体を連続的に製造する装置を示す。  FIG. 1 shows an apparatus for continuously producing a honeycomb porous body of the present invention.
[図 2]実施例 1における操作ならびに装置の全体図を示す。  FIG. 2 shows an overall view of operations and apparatuses in Example 1.
[図 3]実施例 1で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。左が 溶液 (A)から得られたハニカム状多孔質体、右が溶液 (B)カゝら得られたノヽニカム状 多孔質体である。  FIG. 3 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 1. The left is a honeycomb-like porous body obtained from the solution (A), and the right is a non-nicamic porous body obtained from the solution (B).
圆 4]溶液 (C)から調製したハニカム状多孔質体の光学顕微鏡像を示す。  [4] An optical microscope image of the honeycomb-shaped porous material prepared from the solution (C) is shown.
[図 5]実施例 2で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。  FIG. 5 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 2.
[図 6]実施例 3で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。  FIG. 6 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 3.
[図 7]実施例 4で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。  FIG. 7 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 4.
[図 8]実施例 5で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。図中 のバーはスケールバー(10 μ m)  FIG. 8 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 5. The bar in the figure is the scale bar (10 μm)
[図 9]実施例 6で得られた本発明のハニカム多孔質体の光学顕微鏡像を示す。図下 のバーはスケールバー(10 ^ m)である。  FIG. 9 shows an optical microscope image of the honeycomb porous body of the present invention obtained in Example 6. The bar at the bottom is the scale bar (10 ^ m).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明の方法は、水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解し た、水に対する界面張力が 10〜20mNZmである水不溶性有機溶媒溶液を、ガラ ス製もしくは金属製の基板に塗布して該溶液の薄膜を調製する工程、および該基板 上の薄膜から有機溶媒を蒸発させる工程を含む、非水溶性ポリマー物質カゝらなるハ 二カム状多孔質体の製造方法に関する。この方法は、高分子の非水性有機溶媒溶 液の表面上に水滴を結露させ、該水滴を铸型としてハニカム状多孔質体を調製する ことをその基本とする方法である。  [0022] In the method of the present invention, a water-insoluble organic solvent solution having a water-insoluble organic solvent and a surfactant dissolved in a water-insoluble organic solvent and having an interfacial tension with respect to water of 10 to 20 mNZm is made of glass or metal. Manufacturing a porous porous body made of a water-insoluble polymer substance, comprising a step of preparing a thin film of the solution by applying the thin film on a substrate and a step of evaporating an organic solvent from the thin film on the substrate Regarding the method. In this method, water droplets are condensed on the surface of a polymer non-aqueous organic solvent solution, and a honeycomb porous body is prepared using the water droplets as a bowl shape.
[0023] また本発明におけるハ-カム状多孔質体 (ノヽ二カム構造体ある 、はハ-カムシート とも呼ばれる)とは、非水溶性の高分子 (ポリマー)でできた多孔性の薄膜であって、 膜の垂直方向に向けられたサブミクロンスケールな 、しミクロンスケールの微少な孔( くぼみを含む)が膜の平面方向に蜂の巣状に (ハ-カム状に)設けられて 、るものを いう。孔は膜を垂直方向に貫通していてもよぐまた平面方向に存在する周囲の孔と 膜の内部で連通して 、てもよ 、。この様なハ-カム状と!/、う規則的な配置で孔が設け られている多孔質の薄膜は、孔の口径、形状あるいは深さなどがまちまちである不規 則な孔を有する通常の多孔質体とは全く異なる構造体として理解される。 [0023] In addition, the Hercam's porous body (a two-cam structure or a Hercam's sheet) in the present invention is a porous thin film made of a water-insoluble polymer (polymer). Submicron-scale and micron-scale micropores (including dents) oriented in the vertical direction of the membrane are provided in the form of a honeycomb (in a huck shape) in the plane direction of the membrane. Say. The pores may penetrate the membrane in the vertical direction or may communicate with surrounding pores in the planar direction within the membrane. With such a hard cam-like shape! The porous thin film is understood as a structure that is completely different from a normal porous body having irregular pores with various pore diameters, shapes, or depths.
[0024] 本発明におけるハ-カム状多孔質体の形状としては、膜厚が 0. 01 μ m〜100 μ m、好ましく ίま 0. 1 μ m〜50 μ m、より好ましく ίま 1 μ m〜20 μ mであり、孑し径カ ^Ο. 0 Ol ^ m^lOO ^ m,好ましく ίま 0. 1 ^ m~50 ^ m,より好ましく ίま 1 πι〜20 ;ζ m、 特に好ましくは 5 m〜10 mである。  [0024] The shape of the Hercam's porous material in the present invention is such that the film thickness is 0.01 μm to 100 μm, preferably 0.1 μm to 50 μm, more preferably 1 μm. m ~ 20 μm, diameter diameter ^ Ο. 0 Ol ^ m ^ lOO ^ m, preferably ί or 0.1 ^ m to 50 ^ m, more preferably ί or 1 πι to 20; ζ m, especially Preferably, it is 5 m to 10 m.
[0025] この様な構造的特徴を有するハニカム状多孔質体は、高分子の非水性有機溶媒 溶液表面上に水滴を結露させ、該水滴を铸型としてハニカム状の多孔質体を調製す る方法、例えば特許文献 1、特開 2001— 157475、特開 2002— 347107あるいは 特開 2002— 335949に記載された方法によって調製することができる。  [0025] The honeycomb-shaped porous body having such a structural feature condenses water droplets on the surface of a polymer non-aqueous organic solvent solution, and prepares a honeycomb-shaped porous body using the water droplets as a bowl shape. It can be prepared by a method, for example, a method described in Patent Document 1, JP-A-2001-157475, JP-A-2002-347107 or JP-A-2002-335949.
[0026] 本発明の製造方法を構成する工程のひとつは、水不溶性有機溶媒に非水溶性ポ リマーと界面活性剤とを溶解した、水に対する界面張力が 10〜20mNZmである水 不溶性有機溶媒溶液を、ガラス製もしくは金属製の基板に塗布して該溶液の薄膜を 調製する工程である。  [0026] One of the steps constituting the production method of the present invention is a water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and the interfacial tension with respect to water is 10 to 20 mNZm. Is applied to a glass or metal substrate to prepare a thin film of the solution.
[0027] 本発明で利用することのできる水不溶性有機溶媒としては、溶媒表面に結露した 水滴を保持し得る程度の水不溶性を有し、大気圧下の沸点が 0〜150°C、好ましくは 10〜50°Cであれば、何れも利用可能である。具体的には、四塩化炭素、ジクロロメタ ン、クロ口ホルム等のハロゲン化炭化水素、ベンゼン、トルエン、キシレンなどの芳香 族炭化水素、酢酸ェチル、酢酸ブチル等のエステル類、メチルイソプチルケトン等の 非水溶性のケトン類、二硫ィ匕炭素などを挙げることができる。  [0027] The water-insoluble organic solvent that can be used in the present invention is water-insoluble enough to retain water droplets condensed on the solvent surface, and has a boiling point of 0 to 150 ° C under atmospheric pressure, preferably Any of 10 to 50 ° C. can be used. Specifically, halogenated hydrocarbons such as carbon tetrachloride, dichloromethane, and chloroform, aromatic hydrocarbons such as benzene, toluene, and xylene, esters such as ethyl acetate and butyl acetate, and methylisobutyl ketone. Non-water-soluble ketones, carbon dioxide and so on.
[0028] これらの中から、具体的に使用するポリマー(次項で述べる)に対する溶解性を考 慮して、適宜選択して使用することができる。  [0028] Among these, it can be appropriately selected and used in consideration of solubility in a polymer to be specifically used (described in the next section).
[0029] 本発明で使用する非水溶性ポリマーは、水に不溶性でかつ上記の水不溶性有機 溶媒に可溶な、あるいは後述する本願発明で使用される界面活性剤の存在下で同 有機溶媒に溶解し得るポリマーであればいずれも使用することができ、製造されるハ 二カム状多孔質体に期待される機能あるいは特性を与え得るポリマーを、適宜選択 して使用することができる。  [0029] The water-insoluble polymer used in the present invention is insoluble in water and soluble in the above water-insoluble organic solvent, or is dissolved in the same organic solvent in the presence of a surfactant used in the present invention described later. Any polymer that can be dissolved can be used, and a polymer that can give the function or characteristics expected of the honeycomb-shaped porous body to be produced can be appropriately selected and used.
[0030] 例えば、ポリ乳酸やポリヒドロキシ酪酸のような生分解性ポリマー、脂肪族ポリカーボ ネート、両親媒性ポリマー、光機能性ポリマー、電子機能性ポリマーなどを挙げること ができる。 [0030] For example, biodegradable polymers such as polylactic acid and polyhydroxybutyric acid, aliphatic polycarbonate Nate, amphiphilic polymer, photofunctional polymer, and electronic functional polymer.
[0031] 上記の水不溶性有機溶媒と非水溶性ポリマーとの具体的な組み合わせの例として は、例えばポリスチレン、ポリカーボネート、ポリスノレホン、ポリエーテノレスノレホン、ポリ アルキルシロキサン、ポリメタクリル酸メチルなどのポリアルキルメタタリレートまたはポ リアルキルアタリレート、ポリブタジエン、ポリイソプレン、ポリ(N—ビニルカルバゾール )、ポリ乳酸、ポリ 一力プロラタトン)、ポリアルキルアクリルアミド、およびこれらの共 重合体よりなる群力も選ばれるポリマーに対しては、四塩化炭素、ジクロロメタン、クロ 口ホルム、ベンゼン、トルエン、キシレン、二硫ィ匕炭素などの有機溶媒を組み合わせ て使用することができる。  [0031] Examples of specific combinations of the water-insoluble organic solvent and the water-insoluble polymer include, for example, polyalkyls such as polystyrene, polycarbonate, polysnolephone, polyetherenolenolephone, polyalkylsiloxane, and polymethylmethacrylate. For polymers that also have a group strength consisting of metatalylate or polyalkyl acrylate, polybutadiene, polyisoprene, poly (N-vinylcarbazole), polylactic acid, poly-one strength prolatatone), polyalkylacrylamide, and copolymers of these. On the other hand, organic solvents such as carbon tetrachloride, dichloromethane, chloroform, benzene, toluene, xylene, and carbon dioxide can be used in combination.
[0032] 本発明では、非水溶性ポリマーを、水不溶性有機溶媒に対して 0. 01gZL〜50g ZL、好ましくは 0. lgZL〜10gZLとなる様に溶解して使用すればよぐこのポリマ 一濃度は、製造されるハニカム状多孔質体に求める特性、物性並びに使用する溶媒 に応じて、適宜定めることができる。  [0032] In the present invention, the water-insoluble polymer is dissolved in a water-insoluble organic solvent in an amount of 0.01 gZL to 50 g ZL, and preferably 0.1 gZL to 10 gZL. Can be appropriately determined according to the properties, physical properties, and solvent used for the honeycomb-like porous body to be produced.
[0033] 本発明で使用可能な界面活性剤は、好ましくは式 (I)又は式 (II)で表される化合物 から選択される 1種以上の界面活性剤である。  [0033] The surfactant that can be used in the present invention is preferably one or more surfactants selected from compounds represented by formula (I) or formula (II).
[0034] 式(I)  [0034] Formula (I)
[化 6]  [Chemical 6]
Figure imgf000009_0001
Figure imgf000009_0001
(式中、 n:mは 1 :0〜: LO: 1である) (Where n: m is 1: 0 to: LO: 1)
[0035] 式(Π) [0035] Formula (Π)
[化 7] CH OCORi [Chemical 7] CH OCORi
CH2OCOR2 CH 2 OCOR 2
CH2OPO3CH2CH2R3  CH2OPO3CH2CH2R3
( Π)  (Π)
(式中、 Rならびに Rはそれぞれ独立に C 〜C の脂肪族炭化水素基から選ばれ Wherein R and R are each independently selected from C to C aliphatic hydrocarbon groups.
1 2 11 17  1 2 11 17
、 Rは N+ (CH ) 又は NH力 選ばれる)。  , R is selected as N + (CH 3) or NH force).
3 3 3 3  3 3 3 3
[0036] 式 (I)の化合物にお 、ては、 n: m= 1: 0、 4: 1又は 10: 1の化合物の使用が好まし ぐ特に共重合比 = 1 : 10〜: L0 : 1、分子量 = 2万〜 50万であるポリ(ドデシルアタリ ルアミド一 co— 6—アミノカプロイツクアクリルアミド)(Cap)の使用が好ましい。また、 式(II)の化合物としては、 R、R =C H 、R =N+ (CH )であるジミリストイルホス  [0036] For the compound of formula (I), it is preferable to use a compound of n: m = 1: 0, 4: 1 or 10: 1. Particularly, the copolymerization ratio = 1:10 to: L0: 1. It is preferable to use poly (dodecyl atalylamide-co-6-aminocaproic acrylamide) (Cap) having a molecular weight of 20,000 to 500,000. In addition, the compound of the formula (II) includes dimyristoylphosphine in which R, R = C H, R = N + (CH).
1 2 11 23 3 3 3  1 2 11 23 3 3 3
ファチジルコリン(DMPC)の、 R、R =C H 、R =N+ (CH )であるジパルミトイ  Dipalmitoy in Fatidylcholine (DMPC) where R, R = C H, R = N + (CH)
1 2 15 31 3 3  1 2 15 31 3 3
ルホスファチジルコリン(DPPC)もしくは R、R =C H 、R =NHであるジォレイ  Ruphosphatidylcholine (DPPC) or dioley where R, R = C H and R = NH
1 2 17 33 3 3  1 2 17 33 3 3
ルホスファチジルエタノールァミン(DOPE)の使用が好まし!/、。  Use of Ruphosphatidylethanolamine (DOPE) is preferred!
[0037] これらの界面活性剤は何れも公知の物質であり、例えばアルドリッチなどから購入 することができる他、西田らの方法(Polymer Journal誌、第 34卷、第 166頁、 2002年[0037] These surfactants are all known substances, and can be purchased from, for example, Aldrich, etc., and the method of Nishida et al. (Polymer Journal, 34, 166, 2002)
)に従って製造することもできる。 ).
[0038] また本発明では、式 (III)又は式 (IV)で表される界面活性剤も利用可能である。 In the present invention, a surfactant represented by formula (III) or formula (IV) can also be used.
[0039] 式(III) [0039] Formula (III)
[化 8]  [Chemical 8]
Figure imgf000010_0001
(m) 式(IV)
Figure imgf000010_0001
(m) Formula (IV)
Figure imgf000011_0001
前記式 (III)並びに式 (IV)中、 Rは R'又は R' Oを表し、 R'は水素原子又は 4〜22 個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又 はハロアルコキシ基を表し、 Aは 1〜50個の炭素原子を有する脂肪族の二価基を表 し、 nは 0〜6の整数を表し、 Xは— COOM、—SO M、— PO (OM) 又はその塩もし
Figure imgf000011_0001
In the formula (III) and formula (IV), R represents R ′ or R ′ O, R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, halogen, hydroxy group, alkoxy Represents a group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, X represents —COOM, —SO M, — PO (OM) or its salt
3 2  3 2
くは水酸基を表し、 Mは水素原子または塩を形成しうるカチオン若しくはカチオン分 子を表し、 R は水素原子または炭素数 4〜22個の脂肪族炭化水素基を表わし、式( o  Or a hydroxyl group, M represents a hydrogen atom or a cation or cation molecule capable of forming a salt, R represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, and has the formula (o
III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異な る上記 R、 A、 n及び Xを有するコポリマーでもよぐ式 (IV)の化合物は各モノマー単 位でそれぞれ同一の又は異なる上記 R、 A、 n及び Xを有するランダムコポリマーでも よい。  The compound of formula (IV) may be a homopolymer consisting of a single monomer or a copolymer having the above-mentioned R, A, n and X which are different for each monomer unit. The compound of formula (IV) is the same or different for each monomer unit. Random copolymers having the above R, A, n and X may also be used.
[0040] 前記 R'で表される 4〜22個の炭素原子を有する脂肪族炭化水素基は直鎖でも分 枝鎖でもよぐまた不飽和性結合を有していてもよぐさらに前記脂肪族炭化水素基 の 2種以上の混在して!/、てもよ!/、。  [0040] The aliphatic hydrocarbon group having 4 to 22 carbon atoms represented by R 'may be linear or branched, and may have an unsaturated bond. 2 or more types of aromatic hydrocarbon groups! /, May! /
[0041] 前記 R'で表される脂肪族炭化水素基の炭素原子数としては、 6〜18個が好ましい 。その例としてはブチル、ァミル、へキシル、ォクチル、ノニル、ドデシル、又はォクタ デシル等のアルキル基、シス 9ーォクタデセ -ル基などのァルケ-ル基等が挙げら れる。またハロゲンとしては Cl、 Br、 Iなど、アルコキシ基としてはアルキル部分の炭素 原子は 4〜22個が好ましぐ例えばォクチロキシ基、へキシロキシ基、ドデシ口キシ基 、 βーヒドロキシエトキシなどを、ハロアルコキシ基としてはアルキル部分の炭素原子 は 4〜22個が好ましぐ例えば j8—クロルエトキシ、 /3 ブロモエトキシなどを挙げる ことができる。また R,はヒドロキシ基でもよい。  [0041] The number of carbon atoms of the aliphatic hydrocarbon group represented by R 'is preferably 6 to 18. Examples thereof include alkyl groups such as butyl, amyl, hexyl, octyl, nonyl, dodecyl, or octadecyl, and alkenyl groups such as cis-octadecyl group. Halogen is Cl, Br, I, etc., and alkoxy groups are preferably 4-22 carbon atoms in the alkyl moiety, such as octyloxy group, hexyloxy group, dodecoxy group, β-hydroxyethoxy, etc. As the alkoxy group, 4 to 22 carbon atoms in the alkyl portion are preferred, and examples thereof include j8-chloroethoxy and / 3 bromoethoxy. R may be a hydroxy group.
[0042] 前記 Aで表される 1〜50個の炭素原子を有する脂肪族の二価基としては、例えば ァノレキレン基、ァノレキレン才キシ基、ポリアノレキレン才キシ基、又はァノレキレン才キシ —アルキレン基等の二価基が挙げられ、具体的にはエチレン、トリメチレン、オタタメ チレン、エチレンォキシ、ポリエチレンォキシ、ポリプロピレンォキシ、エチレンォキシ -トリメチレン基等が挙げられる。 [0042] Examples of the aliphatic divalent group having 1 to 50 carbon atoms represented by A include, for example, an anorylene group, an anorylene group, a polyanorylene group, and an anorylene group. -Divalent groups such as an alkylene group are exemplified, and specific examples include ethylene, trimethylene, otamethylene, ethyleneoxy, polyethyleneoxy, polypropyleneoxy, ethyleneoxy-trimethylene groups.
[0043] 前記 Xで表される一 COOM、 一 SO M、及び一 PO (OM) のいずれかの酸性基  [0043] One COOM, one SO M, and one PO (OM) acidic group represented by X
3 2  3 2
並びにその塩における前記 Mとしては、例えばナトリウムイオン、カリウムイオン、リチ ゥムイオン等のアルカリ土類金属イオン、カルシウムイオン、ノ リウムイオン、アンモ- ゥムイオン、銀イオン、カドミウムイオン等の遷移金属イオン、炭素数 1〜4のアルキル アンモ-ゥム、四級化アンモ-ゥムイオン又はその誘導体が挙げられる。  The M in the salt thereof includes, for example, alkaline earth metal ions such as sodium ion, potassium ion and lithium ion, transition metal ions such as calcium ion, normium ion, ammonium ion, silver ion and cadmium ion, carbon number Examples thereof include 1 to 4 alkyl ammonium, quaternized ammonium ions or derivatives thereof.
[0044] 前記式 (IV)で表される化合物としては、前記式 (III)で表されるモノマー単位を 5モ ル%〜95モル0 /0含むことが好ましぐ 10モル%〜90モル0 /0含むことがより好ましい。 [0044] Examples of the compound represented by the formula (IV), the formula (III) 5 to monomeric units represented by molar% to 95 molar 0/0 it is preferable to include equipment 10 mol% to 90 mol more preferably contains 0/0.
[0045] 前記式 (III)ならびに式 (IV)におけるモノマー単位としては、例えば、下記のものが 挙げられる。  [0045] Examples of the monomer units in the formulas (III) and (IV) include the following.
[化 10]  [Chemical 10]
Figure imgf000012_0001
ただし、上記式中、 Rは炭素数 4〜22個の脂肪族炭化水素基を表わす。 分子量
Figure imgf000012_0001
In the above formula, R represents an aliphatic hydrocarbon group having 4 to 22 carbon atoms. Molecular weight
0  0
ίま特に限定されな ヽ力 600-10, 000力好ましく、 900〜5, 000力 ^より好まし!/、。  ί is not particularly limited Repulsion 600-10, 000 force is preferred, 900-5,000 force ^ more preferred! / ,.
[0046] 以下、好ましい重合体の具体例を示す。
Figure imgf000013_0001
[0046] Specific examples of preferred polymers are shown below.
Figure imgf000013_0001
.く十 x $-Οί - Α' :
Figure imgf000013_0002
. く 十 x $ -Οί- Α ' :
Figure imgf000013_0002
L = ^ + ^ L
Figure imgf000013_0003
L = ^ + ^ L
Figure imgf000013_0003
ί = i-'Ol - ·<
Figure imgf000013_0004
ί = i-'Ol-· <
Figure imgf000013_0004
υ≡ " o - i -■< υ≡ "o-i-■ <
Figure imgf000013_0005
Figure imgf000013_0005
8L0£/900Zd£/13d ZY 1/9001 OAV ;0 i - )
Figure imgf000014_0001
8L0 £ / 900Zd £ / 13d ZY 1/9001 OAV ; 0 i-)
Figure imgf000014_0001
Ι:Ν¾^Η:)?Ηつ h cH; ) Ι: Ν¾ ^ Η :) ? Η つ h c H;)
(6— M) (6— M)
+て卜。^ 3  + 卜. ^ 3
blH6D I
Figure imgf000014_0002
b l H 6 DI
Figure imgf000014_0002
"NcOSf(r "N c OS f ( r
: H H、  : H H,
;:8— ΛΛ) fり上 o
Figure imgf000014_0003
i =■·< - V : ^£ Λ : \
;: 8— ΛΛ) f above o
Figure imgf000014_0003
i = ■ · <-V: ^ £ Λ: \
Figure imgf000014_0004
g=.< + ( — =人'
Figure imgf000014_0004
g =. <+ (— = people '
!:9— M)
Figure imgf000014_0005
!: 9— M)
Figure imgf000014_0005
SL0£/900Zdr I13d 8SCZll/900Z OAV m SL0 £ / 900Zdr I13d 8SCZll / 900Z OAV m
; 'SI— Μ)
Figure imgf000015_0001
; 'SI— Μ)
Figure imgf000015_0001
Ot一 ΛΛ)
Figure imgf000015_0002
Ot one ΛΛ)
Figure imgf000015_0002
(ε卜 M)
Figure imgf000015_0003
(ε 卜 M)
Figure imgf000015_0003
Ί -、、 / 十て " ?Aoi-, / Tente "?
Figure imgf000015_0004
Figure imgf000015_0004
01 = Λ + X (i: I Λ: V 01 = Λ + X (i: I Λ: V
I I -ΛΛ)
Figure imgf000015_0005
II -ΛΛ)
Figure imgf000015_0005
0 8L0£/900ZdT/13d 8SCZll/900Z OAV 式(W— 1 6)'
Figure imgf000016_0001
0 8L0 £ / 900ZdT / 13d 8SCZll / 900Z OAV Formula (W— 1 6) '
Figure imgf000016_0001
\: Ί: 4 χ f = b \: Ί: 4 χ f = b
Figure imgf000016_0002
Figure imgf000016_0002
x = 6 さらに本発明では、式 (V)で表される化合物力も選択される 1種以上の界面活性剤 を使用することちできる。  x = 6 Furthermore, in the present invention, it is possible to use one or more kinds of surfactants that can select the compound power represented by the formula (V).
式 (V)  Formula (V)
[化 15] [Chemical 15]
X X
R
Figure imgf000016_0003
R
Figure imgf000016_0003
(前記式 (V)中、 Rは炭素数が 1〜50の脂肪族炭化水素又は芳香族炭化水素を (In the formula (V), R represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms.
4  Four
表し、 Xは— SO M、 -COOM又は— PO (OM) で表される酸性基またはそれら X is —SO M, —COOM or — PO (OM)
3 2  3 2
の塩を示し、 Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す ) o Mは前記の通りである。 Wherein M represents a hydrogen atom or a cation or cation molecule capable of forming a salt.) O M is as described above.
これらの化合物の合成方法としては、特に制限はなぐ 目的に応じて適宜公知の合 成方法力も選択することができ、例えば、アルキルフエノールのホルマリン重縮合体 の合成としては、工業ィ匕学雑誌第 66卷、 391頁(1963年)、油化学第 12卷 625頁( 1963年)に記載されている方法が挙げられ、スルホン酸の導入方法としては、例え ば、工業ィ匕学雑誌第 73卷 563頁(1970年)、同第 59卷 221頁(1956年)及び J.Am •Chem.Soc.第 77卷、 2496頁(1955年)等に記載されている方法が挙げられる。 The synthesis method of these compounds is not particularly limited, and a known synthesis method power can be appropriately selected according to the purpose. For example, a formalin polycondensate of alkylphenols. Examples of the synthesis of these include the methods described in Industrial Science Journal 66, 391 (1963), Oil Chemistry 12 625 (1963). For example, it is described in Industrial Science Journal 73-563 (1970), 59-221 (1956), J. Am • Chem. Soc. 77, 2496 (1955), etc. The method which is being done is mentioned.
[0049] 本発明は、水不溶性有機溶媒に上記の非水溶性ポリマーと界面活性剤とを溶解さ せた、水に対する界面張力が 10〜20mNZmである水不溶性有機溶媒溶液を使用 する。本発明における界面張力は、懸滴法と呼ばれる液体の界面張力を測定する方 法によって測定される表面張力を意味する。この方法において、表面張力に関する 一般的な教科書、例えばドウジェンヌ ·ブロシヤールーヴィアール ·ケレ著「表面張力 の物理学」(吉岡書店)第 57頁に示されるように、その原理と具体的な手法は周知で ある。より簡便には、協和界面科学株式会社(http:〃 www.face- kyowa.co.jp/ j/interfa ce_chemistry/005.html)製の界面張力測定装置 PD— Wを用いて測定することができ る。 [0049] The present invention uses a water-insoluble organic solvent solution in which the water-insoluble organic solvent and the surfactant are dissolved in a water-insoluble organic solvent and the interfacial tension with respect to water is 10 to 20 mNZm. The interfacial tension in the present invention means a surface tension measured by a method called a hanging drop method for measuring the interfacial tension of a liquid. In this method, as shown in general textbooks on surface tension, for example, Physics of Surface Tension (Yoshioka Shoten), page 57, by Dougène Brossier Louviare Kele, its principles and concrete The method is well known. More simply, it can be measured using PD-W, an interfacial tension measuring device manufactured by Kyowa Interface Science Co., Ltd. (http: 〃 www.face-kyowa.co.jp/j/interface_chemistry/005.html). The
[0050] 本発明の溶液の界面張力に関しては、非水溶性ポリマーそれ自体は溶液の界面 張力にほとんど影響を与えず、従って使用される水不溶性有機溶媒と界面活性剤と の組み合わせならびに溶液中の界面活性剤の濃度によって設定することができる。 その組み合わせと濃度は、界面活性剤を水不溶性有機溶媒に溶解して水不溶性溶 液を調製し、その界面張力を懸滴法で測定して決定すればよい。好適な例としては、 クロ口ホルムゃジクロロメタン等のハロゲン化炭化水素溶媒あるいはトルエンやべンゼ ン等の芳香族炭化水素に対しては、 DOPEあるいは Capの使用を挙げることができ る。  [0050] With respect to the interfacial tension of the solution of the present invention, the water-insoluble polymer itself has little effect on the interfacial tension of the solution, and therefore the combination of the water-insoluble organic solvent and surfactant used, as well as in the solution. It can be set according to the concentration of the surfactant. The combination and concentration may be determined by dissolving a surfactant in a water-insoluble organic solvent to prepare a water-insoluble solution and measuring the interfacial tension by the hanging drop method. Preferable examples include use of DOPE or Cap for halogenated hydrocarbon solvents such as chloroform or dichloromethane or aromatic hydrocarbons such as toluene and benzene.
[0051] 本発明で利用可能な基板の材料としては、ガラスやシリコンなどを挙げることができ る。この場合、用いられる水不溶性有機溶媒に対する基板自体の濡れ性が、基板上 に形成される薄膜の厚みに影響を与え得る。  [0051] Examples of the substrate material that can be used in the present invention include glass and silicon. In this case, the wettability of the substrate itself with respect to the water-insoluble organic solvent used can affect the thickness of the thin film formed on the substrate.
[0052] そのため、水不溶性有機溶媒溶液との親和性が高 、基板、あるいは表面に水不溶 性有機溶媒溶液との親和性を高めることのできる加工を施した基板の使用が好まし い。この様な基板の濡れ性の改良は、基板材料と使用する水不溶性有機溶媒との組 み合わせに合わせて、自体公知の方法、例えばガラス製や金属製の基板に対する アルキルィ匕シランカップリング処理ゃチオールィ匕合物による単分子膜形成処理など を利用することができる。 [0052] Therefore, it is preferable to use a substrate having a high affinity with a water-insoluble organic solvent solution, or a substrate having a surface that has been processed to increase the affinity with a water-insoluble organic solvent solution. Such improvement in the wettability of the substrate can be achieved by a method known per se, such as a glass or metal substrate, in accordance with the combination of the substrate material and the water-insoluble organic solvent used. Alkyl silane coupling treatment can be used for monomolecular film formation treatment with thiol compound.
[0053] 例えば、クロ口ホルムなどの疎水性有機溶媒を用いる場合の基板としては、十分に 洗浄された Si基板や、アルキルィ匕シランカツプリング剤などで表面を修飾したガラス 基板などの使用が好ましい。  [0053] For example, as a substrate in the case of using a hydrophobic organic solvent such as black mouth form, it is preferable to use a sufficiently cleaned Si substrate or a glass substrate whose surface is modified with an alkyl silane coupling agent or the like. .
[0054] 本発明では、上記に例示したような非水溶性ポリマーと界面活性剤とを含む水不溶 性有機溶媒溶液を基板に塗付して、同溶液の薄膜を形成させるが、その際の塗付厚 としては、 10 m〜5mmであればよい。薄すぎては製造後のハ-カム状多孔質体 の強度の点で、厚すぎては孔の形成効率の点で、それぞれ支障となり得る。  In the present invention, a water-insoluble organic solvent solution containing a water-insoluble polymer and a surfactant as exemplified above is applied to a substrate to form a thin film of the same solution. The coating thickness may be 10 m to 5 mm. If it is too thin, it may be a problem in terms of the strength of the hermetic porous material after production, and if it is too thick, it may be a problem in terms of the efficiency of pore formation.
[0055] 基板に水不溶性有機溶媒溶液を塗付する方法としては、基板に上記の水不溶性 有機溶媒溶液を滴下する方法の他、バーコート、ディップコート、スピンコート法など を挙げることができ、バッチ式、連続式の何れも利用することができる。  [0055] As a method of applying a water-insoluble organic solvent solution to a substrate, in addition to the above-mentioned method of dropping the water-insoluble organic solvent solution onto a substrate, a bar coat, a dip coat, a spin coat method, and the like can be given. Either batch type or continuous type can be used.
[0056] 本発明では、微細孔を有するハニカム状多孔質体を製造するという観点から、移動 可能な基板に水不溶性有機溶媒溶液を塗付して薄膜を調製する方法が好ましい。 例えば、図 1に示すような装置を利用することで、力かる方法を実施し得る。図 1の装 置は、所定の速度で図の右から左方向に移動可能な基板 1と、基板 1上に設けた金 属板 2と、所定の相対湿度を有する空気を吹き付けるノズル 3を有している。ここで、 金属板 2は、所望の薄膜厚に相当する間隙を伴って基板 1の上に設置される。  [0056] In the present invention, from the viewpoint of producing a honeycomb porous body having fine pores, a method of preparing a thin film by applying a water-insoluble organic solvent solution to a movable substrate is preferable. For example, a powerful method can be implemented by using an apparatus as shown in FIG. The apparatus in FIG. 1 has a substrate 1 that can move from the right to the left in the figure at a predetermined speed, a metal plate 2 provided on the substrate 1, and a nozzle 3 that blows air having a predetermined relative humidity. is doing. Here, the metal plate 2 is placed on the substrate 1 with a gap corresponding to a desired thin film thickness.
[0057] この装置では、予め水不溶性有機溶媒溶液を塗付した基板 1を金属板の下側をくぐ らせることで、基板 1に塗付された薄膜の厚さを、基板 1と金属板 2との間隙とほぼ等 しい厚みへと調整することができる。基板 1の移動速度は、 0. l /z m〜: LOmmZ秒、 特に l〜5mmZ秒へと調節することが望ましい。  In this apparatus, the thickness of the thin film applied to the substrate 1 is reduced by passing the substrate 1 on which the water-insoluble organic solvent solution has been applied in advance under the metal plate. The thickness can be adjusted to approximately the same as the gap between the two. It is desirable to adjust the moving speed of the substrate 1 to 0.1 l / z m˜: LOmmZ seconds, particularly 1 to 5 mmZ seconds.
[0058] この装置原理を用いると、基板上に形成されるハ-カム状多孔質体を連続的に基 板から回収することができるので、本発明のハ-カム状多孔質体の工業的生産方法 としても有禾 IJである。  [0058] When this apparatus principle is used, the Hercam-like porous body formed on the substrate can be continuously recovered from the substrate, so that the Hercam-like porous body of the present invention is industrially produced. The production method is also IJI.
[0059] この様にして基板上に置 、た薄膜から水不溶性有機溶媒を蒸発させることで、非 水溶性ポリマーからなるハ-カム状多孔質体を製造することができる。その際、溶媒 の蒸発速度を調節することで、ハ-カム状多孔質体の孔径を lOOnm以下とすること ができる。特に、相対湿度 30%以上の湿度を有する流速 0. 1〜: L00LZ分、好ましく は 1. 0〜50LZ分の気流下に上記の基板上の薄膜を置いて水不溶性有機溶媒を 蒸発させることで、 1〜: LOOnmの範囲内の均一な孔径を有する高品質なハ-カム状 多孔質体を製造することもできる。 [0059] By placing the water-insoluble organic solvent on the substrate in this manner and evaporating the water-insoluble organic solvent from the thin film, a Hercam's porous body made of a water-insoluble polymer can be produced. At that time, by adjusting the evaporation rate of the solvent, the pore size of the Hercam's porous material should be less than lOOnm. Can do. In particular, a flow rate having a relative humidity of 30% or more is 0.1 to: L00LZ, preferably 1.0 to 50LZ, by placing the thin film on the substrate and evaporating the water-insoluble organic solvent. 1 to: A high-quality Herkam-like porous body having a uniform pore diameter within the range of LOOnm can also be produced.
[0060] この方法は、相対湿度が 30%以上である気流下に水不溶性有機溶媒溶液の薄膜 を置くことで溶媒を速やかに蒸発させるとともに、溶媒表面で結露する水滴の成長を 抑制して、ハ-カム状多孔質体に lOOnmより小さい孔を設けるものである。かかる方 法における気流の流速は、用いる溶媒の揮発度や基板上の薄膜の厚さに応じて適 宜調製すればよいが、概ね 0. 1〜: LOOLZ分、好ましくは 1. 0〜50LZ分とすればよ い。また、気流方向に対する薄膜の配置の仕方としては、基板上の薄膜に対して斜 め上方向から、あるいは垂直方向力 気流を当たるような配置では、気流による風圧 によって薄膜に歪みや亀裂が発生することもあり得る。その様な場合には、薄膜は、 気流に対して基板上の有機溶媒溶液の薄膜を平行に、あるいは上方向に生じさせる ことが好ましい。この場合、気流はその上流からの陽圧あるいは下流力もの負圧の何 れによって発生させても構わない。例えば、基板に向けて設置したノズル力 所定の 空気を噴射しても、基板上部の空気を一方向から吸引しても、何れでも良い。 [0060] In this method, a thin film of a water-insoluble organic solvent solution is placed in an air stream having a relative humidity of 30% or more to quickly evaporate the solvent and to suppress the growth of water droplets condensing on the solvent surface. Holes smaller than lOOnm are provided in the Hercam-like porous body. The flow rate of the air flow in such a method may be appropriately adjusted according to the volatility of the solvent used and the thickness of the thin film on the substrate, but is generally 0.1 to: LOOLZ minutes, preferably 1.0 to 50 LZ minutes. And it is sufficient. In addition, as for the arrangement of the thin film relative to the airflow direction, if the thin film on the substrate is tilted upward, or if the vertical force is applied to the airflow, the thin film will be distorted or cracked by the air pressure of the airflow. It can happen. In such a case, it is preferable that the thin film is formed in parallel or upward with a thin film of the organic solvent solution on the substrate with respect to the air flow. In this case, the airflow may be generated by any positive pressure from the upstream side or negative pressure by the downstream force. For example, the nozzle force installed toward the substrate may be ejected from a predetermined air, or the air above the substrate may be sucked from one direction.
産業上の利用可能性  Industrial applicability
[0061] 本発明によれば、 100 μ m四方のハ-カム状多孔質体における孔径の標準偏差が 10%以下の、高品質なハ-カム状多孔質体を製造することができる。また、溶媒の 蒸発を一定の気流下で行うことにより、 Inn!〜 100 mという微細な孔径を有し、か つその孔径の標準偏差が 10%以下の、高品質なハ-カム状多孔質体を製造するこ とができる。この様なハ-カム状多孔質体は、フォトニック結晶、反射防止膜、光拡散 板等の光学フィルム、パターンィ匕されたレジストや電極の铸型等の電子材料、さらに は細胞培養基板、均一な孔径を利用した分離膜などに利用することができる。  [0061] According to the present invention, it is possible to produce a high-quality Hercam-shaped porous body having a standard deviation of pore diameters of 10% or less in a 100 μm square Hercum-shaped porous body. Also, by evaporating the solvent under a constant air flow, Inn! It is possible to produce a high-quality hard-cam porous body having a fine pore diameter of ˜100 m and a standard deviation of the pore diameter of 10% or less. Such Hercam's porous materials include photonic crystals, antireflection films, optical films such as light diffusing plates, electronic materials such as patterned resists and electrode plates, cell culture substrates, uniform It can be used for separation membranes using various pore sizes.
[0062] 以下に実施例を示し、本発明の詳細を説明する。ただし、これらの実施例は何ら本 発明を限定するものではない。  [0062] Details of the present invention will be described below with reference to examples. However, these examples do not limit the present invention.
実施例 1  Example 1
[0063] 非水溶性ポリマーとしてポリ( ε—力プロラタトン)(和光純薬、分子量 7万〜 10万) を、界面活性剤として nZmが 4Zl、数平均分子量 = 29, 000、分子量 210, 000 の一般式(I)の化合物 1、ならびに式(II)において R、 R =C H 、 R =NHである [0063] Poly (ε-force prolatatatone) as a water-insoluble polymer (Wako Pure Chemical, molecular weight 70,000 to 100,000) As a surfactant, nZm is 4Zl, number average molecular weight = 29,000, molecular weight 210,000, compound 1 of general formula (I), and in formula (II), R, R = CH, R = NH
1 2 17 33 3 3 ジォレイルホスファチジルエタノールァミン(DOPE)を、水不溶性有機溶媒としてクロ 口ホルムを用いて、ハニカム状多孔質体を調製した。  1 2 17 33 3 3 A honeycomb-like porous body was prepared using dioleylphosphatidylethanolamine (DOPE) as a water-insoluble organic solvent and chloroform.
[0064] ポリ( ε—力プロラタトン)濃度が 5mg/mLならびに上記化合物 1が 3. Omg/mLのクロ 口ホルム溶液 (A)と、ポリ( ε—力プロラタトン)濃度が 5mg/mLならびに DOPEが 0. 5 mg/mLのクロ口ホルム溶液 (B)を調製した。両溶液の水に対する界面張力を懸滴法( PD-W、協和界面化学)に測定したところ、溶液 (A)は 18. 6mNZm、溶液 )は 13 . 3mNZmであった。 [0064] A poly (ε-force prolatatone) concentration of 5 mg / mL and the above compound 1 is 3. Omg / mL of a closed form solution (A), a poly (ε-force prolatatone) concentration of 5 mg / mL and DOPE A 0.5 mg / mL black mouth form solution (B) was prepared. When the interfacial tension of both solutions to water was measured by the hanging drop method (PD-W, Kyowa Interface Chemistry), the solution (A) was 18.6 mNZm and the solution (13.3 mNZm).
[0065] 5mlの溶液 (A) (B)をそれぞれガラスシャーレに滴下し、加湿した空気 (相対湿度 8 0%、流量 2L/分)を吹き付けて溶媒を蒸発させ、製膜した (図 2)。作製した膜の表面 構造を光学顕微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト (Image SX M、 NIH、 USA.)を用いて計算し、孔径の標準偏差を計算した。  [0065] 5 ml of the solution (A) and (B) were dropped onto each glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was sprayed to evaporate the solvent to form a film (Fig. 2). . The surface structure of the prepared film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SX M, NIH, USA.), And the standard deviation of the pore diameter was calculated.
[0066] その結果、溶液 (A) (B)いずれからも、孔径の標準偏差が 10%以下の高品質なハ 二カム膜が得られた (図 3)。  [0066] As a result, a high-quality honeycomb film having a standard deviation of the pore diameter of 10% or less was obtained from both solutions (A) and (B) (Fig. 3).
[0067] 一方、 DOPEの濃度を 0. 05mg/mLとした他は溶液 (B)と同じ組成の溶液 (C)を調 製してその界面張力を測定したところ、 25. 8mNZmであった。この溶液 (C)から上 記と同様の操作でハ-カム状多孔質体を形成させたが、得られたハ-カム状多孔質 体の孔径は明らかに不均一であった(図 4)。  [0067] On the other hand, a solution (C) having the same composition as solution (B) except that the concentration of DOPE was 0.05 mg / mL was prepared, and the interfacial tension was measured. As a result, it was 25.8 mNZm. From this solution (C), a Hercam's porous material was formed by the same operation as described above, but the pore size of the resulting Hercam's porous material was clearly uneven (Fig. 4). .
実施例 2  Example 2
[0068] ポリ乳酸 (SIGMA社製、分子量 7. 5万〜 12万)濃度が 5mgZmlならびに式 (II) において R、R =C H 、R =NHであるジォレイルホスファチジルエタノールアミ  [0068] Polylactic acid (manufactured by SIGMA, molecular weight: 750,000 to 120,000) in a concentration of 5 mgZml and in formula (II) R, R = C H and R = NH
1 2 17 33 3 3  1 2 17 33 3 3
ン(DOPE)濃度が 0. lmgZmlであるクロ口ホルム溶液 5. Omlをガラスシャーレに滴 下し、加湿した空気 (相対湿度 80%、流量 2L/分)を吹き付けて溶媒を蒸発させ、製 膜した (図 5)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空 孔率を画像処理ソフト(Image SXM、 NIH、 USA.)を用いて計算し、孔径の標準偏差を 計算したところ、孔径の標準偏差は 10%以下であった。  Cloform form solution with a DOPE concentration of 0.1 mgZml 5. Drop Oml onto a glass petri dish, spray humidified air (relative humidity 80%, flow rate 2 L / min) to evaporate the solvent, and form a film. (Figure 5). The surface structure of the fabricated film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was less than 10%.
実施例 3 [0069] ポリスチレン (アルドリッチ社製、分子量約 28万)濃度が 5mgZmlならびに式 (II)に おいて R、R =C H 、R =NHであるジォレイルホスファチジルエタノールァミンExample 3 [0069] Polystyrene (manufactured by Aldrich, molecular weight of about 280,000) concentration of 5 mgZml and dioleylphosphatidylethanolamine in which R, R = CH and R = NH in formula (II)
1 2 17 33 3 3 1 2 17 33 3 3
(DOPE)濃度が 0. lmgZmlであるクロ口ホルム溶液 5. Omlをガラスシャーレに滴 下し、加湿した空気 (相対湿度 80%、流量 2L/分)を吹き付けて溶媒を蒸発させ、製 膜した (図 6)。作製した膜の表面構造を光学顕微鏡で観察し、光学顕微鏡像から空 孔率を画像処理ソフト(Image SXM、 NIH、 USA.)を用いて計算し、孔径の標準偏差を 計算したところ、孔径の標準偏差は 10%以下であった。  (DOPE) concentration of 0.1 mgZml of Kuroguchi form solution 5. Oml was dropped on a glass petri dish, and humidified air (relative humidity 80%, flow rate 2L / min) was sprayed to evaporate the solvent to form a film. (Figure 6). The surface structure of the fabricated film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA.), And the standard deviation of the pore diameter was calculated. The standard deviation was less than 10%.
実施例 4  Example 4
[0070] 界面活性剤としてポリイオンコンプレックスを用い、ハ-カム状多孔質体を作製した 。 dimethyト dioctadecyト ammonium bromide (相互薬エネ土製、以下 DDABとする、)31 9mgを 200mLの純水に超音波をかけて分散した。ポリスチレンスルホン酸カリウム塩 (昭和電工製) 917mgを 300mLの純水に溶かし、これに DDAB水溶液をカ卩えた。生 成した沈殿をトルエンで抽出し、硫酸ナトリウムを加えて乾燥させた後、ロータリーェ バポレータにより溶媒を除去した。減圧乾燥により余剰の溶媒を除去し、下記式 (VI) のポリイオンコンプレックス 858mg (収率約 82%)を得た。  [0070] Using a polyion complex as a surfactant, a Hercam's porous material was produced. Dimethyto dioctadecy to ammonium bromide (Mutual drug ENE-SOKU, hereinafter referred to as DDAB) 31 mg was dispersed in 200 mL of pure water by sonication. Polystyrene sulfonate potassium salt (Showa Denko) 917 mg was dissolved in 300 mL of pure water, and DDAB aqueous solution was added thereto. The resulting precipitate was extracted with toluene, sodium sulfate was added and dried, and then the solvent was removed by a rotary evaporator. Excess solvent was removed by drying under reduced pressure to obtain 858 mg of polyion complex represented by the following formula (VI) (yield: about 82%).
[0071] 式 (VI)  [0071] Formula (VI)
[化 16]  [Chemical 16]
Figure imgf000021_0001
ポリイオンコンプレックスをクロ口ホルムに溶解させ、 1. 0mg/mLの溶液を調製した 。本溶液を用いて、懸滴法を用いて水に対する界面張力を測定したところ、約 17m NZmであった。
Figure imgf000021_0001
The polyion complex was dissolved in black mouth form to prepare a 1.0 mg / mL solution. Using this solution, the interfacial tension with respect to water was measured by the hanging drop method, and it was about 17 m NZm.
[0072] ポリイオンコンプレックス濃度が 1. OmgZmLおよびポリスチレン濃度が lOmgZm Lとなるようにポリイオンコンプレックス及びポリスチレンをクロ口ホルムに溶解した溶液 4mlを 9cmのシャーレにキャストし、加湿した空気(湿度 40〜50%)を 4LZ分の流速 で吹き付けた。得られたフィルムの光学顕微鏡像を図 7に示す。約 3ミクロン程度の空 孔がへキサゴナルに配列したノヽ-カム状の多孔質膜が得られた。 [0072] Polyion complex concentration is 1. OmgZmL and polystyrene concentration is lOmgZm 4 ml of a solution obtained by dissolving polyion complex and polystyrene in black mouth form so as to be L was cast into a 9 cm petri dish, and humidified air (humidity 40-50%) was sprayed at a flow rate of 4 LZ. An optical microscope image of the obtained film is shown in FIG. A nodular-cam-like porous film in which pores of about 3 microns were arranged in hexagonal was obtained.
実施例 5  Example 5
[0073] ポリ乳酸(アルドリッチ製、分子量 7万〜 10万) lOmgZmlならびに式(II)において R、R =C H 、R =NHであるジォレイルホスファチジルエタノールァミン(DOP [0073] Polylactic acid (manufactured by Aldrich, molecular weight 70,000 to 100,000) lOmgZml and dioleyl phosphatidylethanolamine (DOP) in which R, R = C H and R = NH in formula (II)
1 2 17 33 3 3 1 2 17 33 3 3
E) 0. 05mg/mlを同時に含むクロ口ホルム溶液 20mlをガラスシャーレに滴下し、加 湿した空気 (相対湿度 80%、流量 2L/分)を吹き付けて溶媒を蒸発させ、製膜した( 図 8)。  E) 20 ml of black mouth form solution containing 0.05 mg / ml at the same time was dropped into a glass petri dish and sprayed with humidified air (relative humidity 80%, flow rate 2 L / min) to evaporate the solvent and form a film (Fig. 8).
実施例 6  Example 6
[0074] ポリ( ε一力プロラタトン)濃度が 5mg/mLならびに式 (III)の化合物として前記式 (W  [0074] The poly (ε-strength prolatatone) concentration is 5 mg / mL and the compound of formula (III) (W
1)の化合物 0. 5mg/mLを含むクロ口ホルム溶液を調製した。この溶液の水に対す る界面張力を懸滴法 (PD-W、協和界面化学)に測定したところ、 19. OmNZmであ つた o  A black mouth form solution containing 0.5 mg / mL of the compound of 1) was prepared. The interfacial tension of this solution with respect to water was measured by the hanging drop method (PD-W, Kyowa Interface Chemistry) and found to be 19. OmNZm.
[0075] 前記溶液 5mlをガラスシャーレに滴下し、加湿した空気 (相対湿度 80%、流量 2L/ 分)を吹き付けて溶媒を蒸発させ、製膜した (図 9)。作製した膜の表面構造を光学顕 微鏡で観察し、光学顕微鏡像から空孔率を画像処理ソフト (Image SXM、 NIH、 USA.) を用いて計算し、孔径の標準偏差を計算したところ、孔径の標準偏差は 10%以下で めつに。  [0075] 5 ml of the solution was dropped onto a glass petri dish, and humidified air (relative humidity 80%, flow rate 2 L / min) was sprayed to evaporate the solvent to form a film (FIG. 9). The surface structure of the fabricated film was observed with an optical microscope, the porosity was calculated from the optical microscope image using image processing software (Image SXM, NIH, USA), and the standard deviation of the pore diameter was calculated. The standard deviation of the hole diameter is less than 10%.

Claims

請求の範囲 The scope of the claims
[1] 水不溶性有機溶媒に非水溶性ポリマーと界面活性剤とを溶解した、水に対する界面 張力が 10〜20mNZmである水不溶性有機溶媒溶液を、ガラス製もしくは金属製の 基板に塗布して該溶液の薄膜を調製する工程、および該基板上の薄膜から有機溶 媒を蒸発させる工程を含む、非水溶性ポリマー物質力 なるハ-カム状多孔質体の 製造方法。  [1] A water-insoluble organic solvent solution in which a water-insoluble polymer and a surfactant are dissolved in a water-insoluble organic solvent and an interfacial tension with respect to water is 10 to 20 mNZm is applied to a glass or metal substrate and the solution is applied. A method for producing a Hermac porous material comprising a water-insoluble polymer substance, comprising a step of preparing a thin film of a solution and a step of evaporating an organic solvent from the thin film on the substrate.
[2] 界面活性剤が、式 (I)または式 (II)で表される化合物から選択される 1種以上の界面 活性剤である、特許請求の範囲第 1項に記載の製造方法。  [2] The production method according to claim 1, wherein the surfactant is one or more surfactants selected from compounds represented by formula (I) or formula (II).
式 (I)  Formula (I)
[化 17]  [Chemical 17]
Figure imgf000023_0001
Figure imgf000023_0001
(式中、 n:mは 1 : 0〜: LO : 1である) (Where n: m is 1: 0 to: LO: 1)
式 (Π)  Formula (Π)
[化 18]  [Chemical 18]
Figure imgf000023_0002
Figure imgf000023_0002
(式中、 Rならびに Rはそれぞれ独立に C 〜C の脂肪族炭化水素基から選ばれ Wherein R and R are each independently selected from C to C aliphatic hydrocarbon groups.
1 2 11 17  1 2 11 17
、 Rは N+ (CH ) 又は NH力 選ばれる)。  , R is selected as N + (CH 3) or NH force).
3 3 3 3  3 3 3 3
[3] 式 (I)の界面活性剤力 共重合比 = 1 : 0〜: LO : l、分子量 = 2万〜 50万のポリ(ドデ シルアクリルアミド— co— 6—アミノカプロイツクアクリルアミド)である、特許請求の範 囲第 2項に記載の製造方法。  [3] Surfactant power of formula (I) Copolymerization ratio = 1: 0 to: LO: l, molecular weight = 20,000 to 500,000 poly (dodecylacrylamide—co-6-aminocaproic acrylamide) The manufacturing method according to claim 2, wherein:
[4] 式(II)で表される界面活性剤力 ジォレイルホスファチジルエタノールァミン、ジパル ミトイルホスファチジルエタノールアミン又はジミリストイルホスファチジルコリンである、 特許請求の範囲第 2項に記載の製造方法。 [4] Surfactant power represented by formula (II) dioleyl phosphatidylethanolamine, dipal The production method according to claim 2, which is mitoyl phosphatidylethanolamine or dimyristoyl phosphatidylcholine.
界面活性剤が式 (III)又は式 (IV)で表される化合物から選択される 1種以上の界面 活性剤である、特許請求の範囲第 1項に記載の製造方法。 2. The production method according to claim 1, wherein the surfactant is one or more surfactants selected from compounds represented by formula (III) or formula (IV).
式(ΠΙ) Formula (ΠΙ)
[化 19] [Chemical 19]
Figure imgf000024_0001
Figure imgf000024_0001
(前記式 (III)並びに式 (IV)中、 Rは R'又は R' Oを表し、 R'は水素原子又は 4〜22 個の炭素原子を有する脂肪族炭化水素基、ハロゲン、ヒドロキシ基、アルコキシ基又 はハロアルコキシ基を表し、 Aは 1〜50個の炭素原子を有する脂肪族の二価基を表 し、 nは 0〜6の整数を表し、 Xは— COOM、—SO M、— PO (OM)又はその塩もし (In the above formula (III) and formula (IV), R represents R ′ or R ′ O, R ′ represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, a halogen, a hydroxy group, Represents an alkoxy group or a haloalkoxy group, A represents an aliphatic divalent group having 1 to 50 carbon atoms, n represents an integer of 0 to 6, X represents —COOM, —SOM, — PO (OM) or its salt
3 2  3 2
くは水酸基を表し、 Mは水素原子または塩を形成しうるカチオン若しくはカチオン分 子を表し、 Rは水素原子または炭素数 4〜22個の脂肪族炭化水素基を表わし、式( o Or a hydroxyl group, M represents a hydrogen atom or a cation or cation molecule capable of forming a salt, R represents a hydrogen atom or an aliphatic hydrocarbon group having 4 to 22 carbon atoms, and has the formula (o
III)の化合物は単一モノマーからなるホモポリマー又はモノマー単位でそれぞれ異な る上記 R、 A、 n及び Xを有するコポリマーでもよぐ式 (IV)の化合物は各モノマー単 位でそれぞれ同一の又は異なる上記 R、 A、 n及び Xを有するランダムコポリマーでも よい) [6] 界面活性剤が式 (V)で表される化合物力 選択される 1種以上の界面活性剤である 、特許請求の範囲第 1項に記載の製造方法。 The compound of formula (IV) may be a homopolymer consisting of a single monomer or a copolymer having the above-mentioned R, A, n and X which are different for each monomer unit. The compound of formula (IV) is the same or different for each monomer unit. (Random copolymer having R, A, n and X may be used) [6] The production method according to claim 1, wherein the surfactant is one or more surfactants selected from the compound force represented by the formula (V).
[化 21]  [Chemical 21]
X
Figure imgf000025_0001
X
Figure imgf000025_0001
(前記式 (V)中、 Rは炭素数が 1〜50の脂肪族炭化水素又は芳香族炭化水素を (In the formula (V), R represents an aliphatic hydrocarbon or aromatic hydrocarbon having 1 to 50 carbon atoms.
4  Four
表し、 Xは— SO M、 -COOM又は— PO (OM)で表される酸性基またはそれら  X represents an acidic group represented by —SO M, —COOM or —PO (OM) or those
3 2  3 2
の塩を示し、 Mは水素原子又は塩を形成しうるカチオン若しくはカチオン分子を表す )  Wherein M represents a hydrogen atom or a cation or cation molecule capable of forming a salt)
[7] 相対湿度 30%以上の湿度を有する流速 0. 1〜: L00LZ分の気流下に薄膜を置いて 溶媒の蒸発を行う、特許請求の範囲第 1項に記載の製造方法。  [7] The production method according to claim 1, wherein the solvent is evaporated by placing a thin film under an air flow of L00LZ for a flow rate having a relative humidity of 30% or more.
[8] 基板を一軸方向に移動させながら水不溶性有機溶媒溶液を基板に塗布して薄膜の 調製を行う、特許請求の範囲第 1項または第 7項に記載の製造方法。  [8] The production method according to claim 1 or 7, wherein the thin film is prepared by applying a water-insoluble organic solvent solution to the substrate while moving the substrate in a uniaxial direction.
[9] アルキルィ匕シランカップリング剤で表面を修飾した基板を用いる、特許請求の範囲第 1項、第 7項または第 8項に記載の方法。  [9] The method according to claim 1, 7, or 8, wherein a substrate whose surface is modified with an alkyl silane coupling agent is used.
PCT/JP2006/307840 2005-04-13 2006-04-13 Process for production of honeycomb-like porous material WO2006112358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526838A JP5041534B2 (en) 2005-04-13 2006-04-13 A method for manufacturing a honeycomb-shaped porous body.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005115623 2005-04-13
JP2005-115623 2005-04-13

Publications (1)

Publication Number Publication Date
WO2006112358A1 true WO2006112358A1 (en) 2006-10-26

Family

ID=37115081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307840 WO2006112358A1 (en) 2005-04-13 2006-04-13 Process for production of honeycomb-like porous material

Country Status (2)

Country Link
JP (1) JP5041534B2 (en)
WO (1) WO2006112358A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084429A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Film and method for producing the same
JP2009108163A (en) * 2007-10-29 2009-05-21 Nippon Zeon Co Ltd Preparation and apparatus for manufacturing of film
WO2011045777A1 (en) 2009-10-14 2011-04-21 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A method for producing a polymer film with an array of cavities therein
JP2011143677A (en) * 2010-01-18 2011-07-28 Nippon Zeon Co Ltd Apparatus and method for manufacturing film
US10267959B2 (en) 2016-03-10 2019-04-23 Samsung Display Co., Ltd. Light scattering film and display device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311579A (en) * 1989-05-26 1990-12-27 Res Dev Corp Of Japan Preparation of organosilicon thin film
JP2002127627A (en) * 2000-10-27 2002-05-08 Tohoku Ricoh Co Ltd Master for thermal stencil printing and manufacturing method thereof
JP2002201303A (en) * 2000-12-27 2002-07-19 Toray Coatex Co Ltd Porous sheet material
JP2002335949A (en) * 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
JP2003294905A (en) * 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd Optical functional film using honeycomb structure and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311579A (en) * 1989-05-26 1990-12-27 Res Dev Corp Of Japan Preparation of organosilicon thin film
JP2002127627A (en) * 2000-10-27 2002-05-08 Tohoku Ricoh Co Ltd Master for thermal stencil printing and manufacturing method thereof
JP2002201303A (en) * 2000-12-27 2002-07-19 Toray Coatex Co Ltd Porous sheet material
JP2002335949A (en) * 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
JP2003294905A (en) * 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd Optical functional film using honeycomb structure and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084429A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Film and method for producing the same
JP2009108163A (en) * 2007-10-29 2009-05-21 Nippon Zeon Co Ltd Preparation and apparatus for manufacturing of film
WO2011045777A1 (en) 2009-10-14 2011-04-21 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A method for producing a polymer film with an array of cavities therein
JP2011143677A (en) * 2010-01-18 2011-07-28 Nippon Zeon Co Ltd Apparatus and method for manufacturing film
US10267959B2 (en) 2016-03-10 2019-04-23 Samsung Display Co., Ltd. Light scattering film and display device including the same

Also Published As

Publication number Publication date
JP5041534B2 (en) 2012-10-03
JPWO2006112358A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
Chen et al. Adjustable supramolecular polymer microstructures fabricated by the breath figure method
Olson et al. Templating nanoporous polymers with ordered block copolymers
KR101756539B1 (en) Preparation method of patterened substrate
Jeong et al. Asymmetric block copolymers with homopolymers: routes to multiple length scale nanostructures
JP6637495B2 (en) Manufacturing method of patterned substrate
JP6633062B2 (en) Manufacturing method of patterned substrate
US9493588B2 (en) Diblock copolymer, preparation method thereof, and method of forming nano pattern using the same
JP4682332B2 (en) Manufacturing method of submicron honeycomb structure
US8288001B1 (en) Method of making monodisperse nanoparticles
Cui et al. Ordered porous polymer films via phase separation in humidity environment
US9957363B2 (en) Method for forming metal nanowire or metal nanomesh
US20090117335A1 (en) Method for Producing a Nanoporous Substrate
Wu et al. Systematic investigation on the formation of honeycomb-patterned porous films from amphiphilic block copolymers
TW201536824A (en) Monomer and block copolymer
JP2017501267A (en) Block copolymer
Wang et al. Deterministic reshaping of breath figure arrays by directional photomanipulation
JP5041534B2 (en) A method for manufacturing a honeycomb-shaped porous body.
Li et al. Morphology and wettability control of honeycomb porous films of amphiphilic fluorinated pentablock copolymers via breath figure method
Li et al. Phase separation of silicon-containing polymer/polystyrene blends in spin-coated films
Chae et al. Molecular design of an interfacially active POSS-bottlebrush block copolymer for the fabrication of three-dimensional porous films with unimodal pore size distributions through the breath-figure self-assembly
Yuan et al. Ordered Honeycomb‐Pattern Membrane
Honglawan et al. Evaporative assembly of ordered microporous films and their hierarchical structures from amphiphilic random copolymers
Zhang et al. Macroporous, protein-containing films cast from water-in-oil emulsions featuring a block-copolymer
Xiong et al. Honeycomb structured porous films prepared by the method of breath figure: history and development
KR20090081532A (en) Fabrication method of nano-cyclindrical template and nanoparticle array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007526838

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731776

Country of ref document: EP

Kind code of ref document: A1