JP5040775B2 - ショックアブソーバ - Google Patents

ショックアブソーバ Download PDF

Info

Publication number
JP5040775B2
JP5040775B2 JP2008093616A JP2008093616A JP5040775B2 JP 5040775 B2 JP5040775 B2 JP 5040775B2 JP 2008093616 A JP2008093616 A JP 2008093616A JP 2008093616 A JP2008093616 A JP 2008093616A JP 5040775 B2 JP5040775 B2 JP 5040775B2
Authority
JP
Japan
Prior art keywords
damping force
sliding speed
orifice
piston sliding
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008093616A
Other languages
English (en)
Other versions
JP2009243651A (ja
Inventor
敏男 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008093616A priority Critical patent/JP5040775B2/ja
Publication of JP2009243651A publication Critical patent/JP2009243651A/ja
Application granted granted Critical
Publication of JP5040775B2 publication Critical patent/JP5040775B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、粘性流体を封入するシリンダとそのシリンダ内を摺動するピストンとを備え、絞りを用いてピストン摺動速度に応じた減衰力を発生させる絞り制御領域と、バルブを用いてピストン摺動速度に応じた減衰力を発生させるバルブ制御領域とを有するショックアブソーバに関し、特に、その粘性流体の動粘度の増大に応じて悪化する乗り心地を改善するショックアブソーバに関する。
従来、衝突物による衝撃を受け、ピストンがシリンダ内を摺動することによって、そのシリンダ内に充填された粘性流体が通るオリフィスの開口面積を調整する調整部材と、ピストンが衝撃を受けた後、複数の変位点で抗力を測定し、各測定値をもとにそのピストンが受けた衝撃力に適した緩衝特性を発揮し得るようにその調整部材を動作させてオリフィスの開口面積を制御する制御手段とを備えるショックアブソーバが知られている(例えば、特許文献1参照。)。
このショックアブソーバは、実際に受けた衝撃力に応じてオリフィスの開口面積を瞬時に制御し、減衰力が低いことに起因するボトミング現象の発生や減衰力が高いことに起因する固い乗り心地を抑えるようにする。
特開2001−32873号公報
しかしながら、特許文献1に記載のショックアブソーバは、衝撃を受けてからオリフィスの開口面積を瞬時に変化させるだけであり、衝撃を受ける前に開口面積を変化させるわけではないので、乗り心地を能動的に改善することはできない。
上述の点に鑑み、本発明は、乗り心地を能動的に改善するショックアブソーバを提供することを目的とする。
上述の目的を達成するために、第一の発明に係るショックアブソーバは、開口面積が可変である絞りを用いてピストン摺動速度に応じた減衰力を発生させる絞り制御領域と、バルブを用いてピストン摺動速度に応じた減衰力を発生させるバルブ制御領域とを有するショックアブソーバであって、減衰力を検出する減衰力検出手段と、ピストン摺動速度を検出するピストン摺動速度検出手段と、前記絞り制御領域における前記ピストン摺動速度に応じた減衰力の増加率に基づいて前記絞りの開口面積を調整する絞り開度調整手段と、を備えることを特徴とする。
また、第二の発明は、第一の発明に係るショックアブソーバであって、前記絞り制御領域における前記ピストン摺動速度に応じた減衰力の増加率と前記バルブ制御領域における前記ピストン摺動速度に応じた減衰力の増加率との間の差を検出する減衰力増加率変化検出手段を備え、前記絞り開度調整手段は、前記減衰力増加率変化検出手段が検出した減衰力増加率の差に基づいて前記絞りの開口面積を調整することを特徴とする。
また、第三の発明は、第一又は第二の発明に係るショックアブソーバであって、前記減衰力増加率変化検出手段は、減衰力をピストン摺動速度で二階微分した値に基づいて減衰力増加率の差を検出することを特徴とする。
上述の手段により、本発明は、乗り心地を能動的に改善するショックアブソーバを提供することができる。
以下、図面を参照しつつ、本発明を実施するための最良の形態の説明を行う。
図1は、本発明に係るショックアブソーバの構成例を示すブロック図であり、ショックアブソーバ100は、制御部1、荷重センサ2、シリンダ側加速度センサ3、ピストン側加速度センサ4及びアクチュエータ5を含む。なお、ショックアブソーバ100は、複筒式であってもよく、単筒式であってもよい。
制御部1は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えたコンピュータであって、例えば、減衰力検出手段10、ピストン摺動速度検出手段11、減衰力増加率変化検出手段12及び絞り開度調整手段13のそれぞれに対応するプログラムをROMに記憶しながら、各手段に対応する処理をCPUに実行させる。
荷重センサ2は、ショックアブソーバ100の減衰力を検出するためのセンサであり、例えば、ショックアブソーバ100を構成するピストンロッドに取り付けられる歪みゲージやロードセルであって、ショックアブソーバ100に対する衝撃が入力された際のピストンロッドの伸縮(ストローク)方向の歪みの大きさを測定し、測定した値を制御部1に出力する。制御部1が、ショックアブソーバ100の伸縮(ストローク)に対する抵抗の大きさを表す減衰力を検出できるようにするためである。
なお、ショックアブソーバ100は、荷重センサ2の代わりに、ショックアブソーバ100を構成するシリンダに取り付けられる圧力センサを用い、ショックアブソーバ100に対する衝撃が入力された際にピストンヘッドによって圧縮される、そのシリンダ内のチャンバーの圧力を測定し、測定した値を制御部1に出力するようにしてもよい。
シリンダ側加速度センサ3及びピストン側加速度センサ4は、ショックアブソーバ100を構成するピストンのシリンダに対する相対的な摺動速度を検出するためのセンサ群である。
シリンダ側加速度センサ3は、例えば、シリンダ外壁に取り付けられるMEMS(Micro Electro Mechanical Systems)センサであり、シリンダの3軸方向の加速度を測定し、測定した値を制御部1に出力する。
ピストン側加速度センサ4は、例えば、ピストンロッドに取り付けられるMEMSセンサであり、ピストンヘッドに結合されるピストンロッドの3軸方向の加速度を測定し、測定した値を制御部1に出力する。
このようにして、ショックアブソーバ100は、シリンダの絶対加速度とピストンロッドの絶対加速度とに基づいて、制御部1がピストンのシリンダに対する相対加速度を導き出し、ひいては、ピストンのシリンダに対する相対的な摺動速度を導き出すことができるようにする。
アクチュエータ5は、オリフィスやチョーク等の絞りの開口面積を制御する遮蔽物を動かすための装置であり、例えば、リニアモータやステッピングモータであって、制御部1が出力する制御信号に応じてその遮蔽物を動かすようにする。
次に、制御部1が有する各種手段について説明する。
減衰力検出手段10は、ショックアブソーバ100が発生させる減衰力の大きさを検出するための手段であり、例えば、荷重センサ2が出力するピストンロッドの歪みの大きさに基づいて減衰力の大きさを検出する。
また、減衰力検出手段10は、ピストンロッドの歪み方向に基づいて、ショックアブソーバ100が伸張されたか圧縮されたかを判定する。
ピストン摺動速度検出手段11は、ショックアブソーバ100のシリンダ内を摺動するピストンのシリンダに対する相対速度を検出するための手段であり、例えば、シリンダ側加速度センサ3が出力するシリンダの3軸方向の加速度から、ピストン側加速度センサ4が出力するピストンロッドの3軸方向の加速度を差し引いてピストンのシリンダに対する相対加速度を導き出す。
その後、ピストン摺動速度検出手段11は、導き出した相対加速度を積分してピストンのシリンダに対する相対速度を導き出す。
また、ピストン摺動速度検出手段11は、それぞれの加速度の方向に基づいて、シリンダに対するピストンの摺動方向を判定する。
減衰力増加率変化検出手段12は、ピストン摺動速度の増大に応じて増大する減衰力の増加率の変化を検出するための手段であり、例えば、所定時間(例えば、30秒間)に亘って所定間隔(例えば、10ミリ秒である。)で、減衰力検出手段10が検出する減衰力とピストン摺動速度検出手段11が検出するピストン摺動速度とを対応付けながらRAMに記録し、ピストン摺動速度(X)−減衰力(Y)プロット図(以下、「XYプロット図」とし、詳細を後述する。)を生成する。
その後、減衰力増加率変化検出手段12は、そのXYプロット図に基づいて、例えば、最小二乗法によりオリフィス特性(後述)を示す近似線とバルブ特性(後述)を示す近似線とを生成する。なお、近似線は、ピストン摺動速度Vの関数として、減衰力Fの推移を示す一次直線又は二次曲線で表される。
図2は、ショックアブソーバ100におけるシリンダ22内の作動油(オイル)の流れを説明するための模式図であり、図2(A)は、ピストン摺動速度がオリフィス特性(後述)にあるときを示し、図2(B)は、ピストン摺動速度がオリフィス+バルブ特性(後述)にあるときを示し、図2(C)は、ピストン摺動速度がオリフィス+ポート特性(後述)にあるときを示す。
ショックアブソーバ100は、ピストンロッド20、ピストンヘッド21及びシリンダ22から構成され、ピストンヘッド21とシリンダ22との間に形成されるオリフィス23と、ピストンヘッド21に取り付けられ、ピストンヘッド21が図中下方に所定速度以上で摺動するときに開くバルブ24と、バルブ24と協働しながらピストンヘッド21を貫通するポート25とを有する。
図2(A)に示すように、ピストンヘッド21が図中下方に低速で摺動する場合、オイルは、ピストンヘッド21とシリンダ22との間にあるわずかな隙間(オリフィス23)のみをオイル経路として図中上方に移動する。
なお、オイル経路の開口面積が一定であっても、減衰力は、ピストンヘッド21の摺動速度によって変化し、オリフィス23のみがオイル経路である場合の減衰力の変化をオリフィス特性と呼ぶ。
また、図2(B)に示すように、図2(A)の場合より高い速度でピストンヘッド21が図中下方に摺動する場合、バルブ24が部分的に開かれ、オイルは、バルブ24の部分的開放によって連通されるポート25をオイル経路として図中上方に移動する。
なお、バルブ開度が一定であっても、減衰力は、ピストンヘッド21の摺動速度によって変化し、バルブ24の部分的開放によって連通されるポート25のみがオイル経路である場合の減衰力の変化をバルブ特性と呼び、バルブ24の部分的開放によって連通されるポート25とオリフィス23とがオイル経路である場合の減衰力の変化をオリフィス+バルブ特性と呼ぶ。
また、図2(C)に示すように、図2(B)より高い速度でピストンヘッド21が図中下方に移動する場合、バルブ24が完全に開かれ、オイルは、バルブ24の完全開放によって連通されるポート25をオイル経路として図中上方に移動する。
なお、ポート25の開口面積が一定であっても、減衰力は、ピストンヘッド21の摺動速度によって変化し、バルブ24の完全開放によって連通されるポート25のみがオイル経路である場合の減衰力の変化をポート特性と呼び、バルブ24の完全開放によって連通されるポート25とオリフィス23とがオイル経路である場合の減衰力の変化をオリフィス+ポート特性と呼ぶ。
なお、図2は、ピストンヘッド21が図中下方に所定速度以上で摺動するときに開くバルブ24について説明するが、この説明は、ピストンヘッド21が図中上方に所定速度以上で摺動する場合に開くバルブについても同様に適用される。
図3は、減衰力特性を説明するためのグラフであり、縦軸に減衰力を配し、横軸にピストン摺動速度を配する。なお、図3において、破線L1は、オリフィス特性を示し、破線L2は、ポート特性を示し、一点鎖線L3は、バルブ特性を示す。
また、二点鎖線L4は、オリフィス+ポート特性を示し、細い実線L5は、オリフィス+バルブ特性を示す。
更に、太い実線LAは、ショックアブソーバ100で実際に用いられる減衰力特性を示し、オリフィス特性、バルブ特性及びポート特性を組み合わせて構成され、シリンダ22内の圧力が所定レベルに達してバルブ24が開放されるまでのピストン摺動速度ではオリフィス特性に従い(オリフィス特性に従う領域を「オリフィス制御領域R1」とする。)、バルブ24が完全に開放されるまでのピストン摺動速度ではオリフィス+バルブ特性に従い(オリフィス特性及びバルブ特性に従う領域を「バルブ制御領域R2」とする。)、バルブ24が完全に開放された後のピストン摺動速度ではオリフィス+ポート特性に従うことを示す(オリフィス特性及びポート特性に従う領域を「ポート制御領域R3」とする。)。
なお、図3は、便宜上、減衰力がプラス(例えば、ショックアブソーバ100の伸張に対する抵抗)の場合で、かつ、ピストン摺動速度がプラス(ショックアブソーバ100を伸張させる方向の速度)の場合を説明するが、この説明は、減衰力がマイナス(例えば、ショックアブソーバ100の圧縮に対する抵抗)の場合にも、ピストン摺動速度がマイナス(ショックアブソーバ100を圧縮させる方向の速度)の場合にも同様に適用されるものとする。
ここで再び、制御部1が有する各種手段の説明を継続する。
絞り開度調整手段13は、絞り開度を調整するための手段であり、例えば、減衰力増加率変化検出手段12が検出した減衰力増加率変化の大きさに応じてアクチュエータ5に制御信号を出力し、オリフィスやチョーク等の絞りの開口面積を変化させる。
図4は、オリフィス23の開口面積を変化させた場合における減衰力特性LAの変化を示すグラフであり、図3と同様、縦軸に減衰力、横軸にピストン摺動速度を配し、バルブ24は、シリンダ22内の圧力が所定レベルに達した場合に開き始めるものとする。
また、破線LA1は、オリフィス23の開口面積を低減させた場合の減衰力特性を示し、一点鎖線LA2は、オリフィス23の開口面積を増大させた場合の減衰力特性を示す。
このように、図4は、オリフィス23の開口面積が小さい程、より低いピストン摺動速度でバルブ24が開き始め、より低いピストン摺動速度において減衰力特性がオリフィス制御領域R1を出てバルブ制御領域R2に入り、その制御領域の切り替わり点における減衰力の増大率の変化が大きくなることを示す。
図5は、周囲温度の変化により作動油の動粘度が変化した場合における減衰力特性LAの変化を示すグラフであり、図3及び図4と同様、縦軸に減衰力、横軸にピストン摺動速度を配し、バルブ24は、シリンダ22内の圧力が所定レベルに達した場合に開き始めるものとする。
また、破線LA3は、周囲温度が低く作動油の動粘度が増大した場合の減衰力特性を示し、一点鎖線LA4は、周囲温度が高く作動油の動粘度が減少した場合の減衰力特性を示す。
このように、図5は、作動油の動粘度が高い程、より低いピストン摺動速度でバルブ24が開き始め、より低いピストン摺動速度において、減衰力特性がオリフィス制御領域R1を出てバルブ制御領域R2に入り、その制御領域の切り替わり点における減衰力の増大率の変化が大きくなることを示す。
図4及び図5に示す関係に基づいて、絞り開度調整手段13は、例えば、周囲温度が低くなり作動油の動粘度が増大してその制御領域の切り替わり点における減衰力の増加率の変化の大きさが所定レベルを超えた場合、オリフィス23の開口面積を増大させるようにする。
絞り開度調整手段13によるこの調整は、より高いピストン摺動速度でバルブ24が開き始めるようにし、また、より高いピストン摺動速度で減衰力特性がオリフィス制御領域R1を出てバルブ制御領域R2に入り、その制御領域の切り替わり点における減衰力の増大率の変化がより小さくなるようにして、作動油の動粘度の増大による影響を相殺するようにする。
なお、絞り開度調整手段13は、オリフィス制御領域R1における減衰力の増大率のみに応じてアクチュエータ5に制御信号を出力し、オリフィスやチョーク等の絞りの開口面積を変化させるようにしてもよい。バルブ制御領域R2におけるデータ(減衰力の値とピストン摺動速度の値との組み合わせ)を十分に収集できない場合があるためである。
この場合、絞り開度調整手段13は、例えば、オリフィス制御領域R1における減衰力の増大率が所定レベルを超えた場合に、オリフィス23の開口面積を増大させるようにする。
これにより、絞り開度調整手段13は、バルブ制御領域R2におけるデータが不足する場合にもオリフィス制御領域R1における減衰力の増大率に基づいて作動油の動粘度の増大による影響を相殺すべくオリフィス23の開口面積を適切に調整することができ、一方、バルブ制御領域R2におけるデータが必要十分である場合にはオリフィス制御領域R1における減衰力の増大率とバルブ制御領域R2における減衰力の増大率との間の差に基づいてオリフィス23の開口面積をより適切に調整することができる。
次に、図6〜図8を参照しながら、ショックアブソーバ100がオリフィス23の開口面積を調整する処理(以下、「絞り開度調整処理」とする。)について説明する。なお、図6は、絞り開度調整処理の流れを示すフローチャートであり、ショックアブソーバ100は、所定間隔(例えば、10ミリ秒毎である。)でこの処理を繰り返し実行するものとする。
図7は、制御部1が減衰力増加率変化の大きさを検出する処理の流れを説明するための線図群であり、図7(A)は、縦軸に減衰力F、横軸にピストン摺動速度Vを配し、図7(B)は、縦軸に減衰力のピストン摺動速度Vによる一階微分dF/dV、横軸にピストン摺動速度Vを配し、また、図7(C)は、縦軸に減衰力のピストン摺動速度Vによる二階微分dF/dV、横軸にピストン摺動速度Vを配する。
図8は、オリフィス23の開口面積を制御するために使用する制御マップの一例であり、制御マップCM1は、例えば、制御部1のROMに記憶され、縦軸に制御値U(オリフィス23の開口面積を制御するためにアクチュエータ5に出力する値である。)を配し、横軸に最大絶対値P(減衰力Fをピストン摺動速度Vで二階微分した値(絶対値)の最大値である。)を配する。
図8に示すように、制御マップCM1は、三段階の制御値U1、U2及びU3を有し、減衰力増加率変化検出手段12が検出した最大絶対値Pが閾値P1以下の場合、制御値UをU1とし、最大絶対値Pが閾値P1より大きく閾値P2以下の場合、制御値UをU2とし、最大絶対値Pが閾値P2より大きい場合、制御値UをU3とする。
最初に、制御部1は、減衰力検出手段10により荷重センサ2の出力に基づいて減衰力Fを検出する(ステップS1)。
次に、制御部1は、ピストン摺動速度検出手段11によりシリンダ側加速度センサ3及びピストン側加速度センサ4の出力に基づいてシリンダ22に対するピストンヘッド21の相対的な摺動速度Vを導き出す(ステップS2)。
その後、制御部1は、カウンタT(0から始まる整数値)を1だけインクリメントし(ステップS3)、カウンタTが閾値T1(整数値)以上となったか否かを判定する(ステップS4)。所定時間に亘って減衰力Fとピストン摺動速度Vとを継続的にRAMに記録するためである。
カウンタTが閾値T1未満の場合(ステップS4のNO)、制御部1は、以上のステップを繰り返し実行しながら、カウンタTが閾値T1となるまで減衰力F及びピストン摺動速度Vの値の取得を継続させる。
このようにして、制御部1は、図7(A)に示すように、ピストン摺動速度V(Xの値)と減衰力F(Yの値)との組み合わせからなる座標点をXYプロット図にプロットし、最小二乗法を用いてオリフィス制御領域R1における近似線とバルブ制御領域R2における近似線とを生成する。
ここで、実線LAは、ショックアブソーバ100が有する標準的な減衰力特性線を示し、破線LTは、プロットされた点に基づいて生成される近似線を示す。なお、近似線は、直線であっても曲線であってもよい。
また、制御部1は、ローパスフィルター等を用いて減衰力F又はピストン摺動速度Vにおけるノイズ(異常値)を除去するようにしてもよく、ピストン摺動速度Vが所定範囲内(例えば、0.02(m/s)以上0.3(m/s)以下の範囲内であり、バルブ24が開く点を含む範囲である。)にあるときの減衰力FのみをRAMに記録するようにしてもよい。必要かつ十分なデータのみを限られた容量のRAMに記録するためである。
カウンタTが閾値T1以上となった場合(ステップS4のYES)、制御部1は、減衰力増加率変化検出手段12により減衰力Fをピストン摺動速度Vで二階微分する(ステップS5)。
具体的には、減衰力増加率変化検出手段12は、ピストン摺動速度Vの関数として表される、減衰力Fの推移を示す近似線であって、バルブ24が開く座標点を境として生成される二つの近似線を、ピストン摺動速度Vで二階微分する。
図7(C)に示すように、オリフィス制御領域R1からバルブ制御領域R2への切り替わり点における減衰力増加率の変化は、減衰力Fをピストン摺動速度Vで二階微分した値の中の最大絶対値Pで表され、最大絶対値Pの値が大きい程、減衰力増加率の変化は大きいものとされる。なお、図7(C)において、減衰力増加率変化検出手段12が検出した最大絶対値Pの値は、PTで表される。
その後、制御部1は、絞り開度調整手段13により、減衰力増加率変化検出手段12が検出した最大絶対値P(=PT)とROMに記憶された制御マップCM1(図8参照。)とに基づいて、最大絶対値P(=PT)に対応する制御値Uを決定し(ステップS6)、アクチュエータ5に対してその決定した制御値Uを出力する(ステップS7)。なお、図8において、最大絶対値P(=PT)に対応する制御値Uの値はU2となる。
制御部1からの出力を受けたアクチュエータ5は、その制御値U(=U2)の値に応じてオリフィス23の開口面積を変化させる。
その後、制御部1は、カウンタTをゼロにリセットし(ステップS8)、次回の処理に備えるようにする。
なお、制御部1は、路面からの衝撃が小さく、オリフィス制御領域R1におけるデータのみを収集し、バルブ制御領域R2におけるデータを収集できなかった場合にはオリフィス制御領域R1における近似線のみを導き出すこととなるが、このような場合であっても、絞り開度調整手段13により、そのオリフィス制御領域R1における近似線の傾きと別の制御マップ(オリフィス制御領域R1における近似線の傾きと制御値Uとの関係を示す制御マップである。)とに基づいて制御値Uを出力するようにしてもよい。
以上の構成により、ショックアブソーバ100は、周囲温度が変化し作動油の動粘度が変化した場合に、その変化に応じてオリフィス23(絞り)の開口面積を増減させるので、作動油の動粘度の変化により減衰力が増減して乗り心地が悪化してしまうのを抑制することができる。
また、ショックアブソーバ100は、周囲温度が低く作動油の動粘度が増大した場合に、その増大を検知してオリフィス23の開口面積を増大させるので、作動油の動粘度の増大により減衰力が増大して乗り心地が悪化してしまうのを抑制することができる。
また、ショックアブソーバ100は、周囲温度が高く作動油の動粘度が低下した場合に、その減少を検知してオリフィス23の開口面積を低減させるので、作動油の動粘度の低下により減衰力が低下して乗り心地が悪化してしまうのを抑制することができる。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述の実施例において、制御マップCM1は、減衰力Fをピストン摺動速度Vで二階微分した値の最大絶対値Pに応じてオリフィス23の開口面積を3段階で変化させるように制御値U(オリフィス23の開口面積を制御するためにアクチュエータ5に出力する値である。)を設定するが、より多くの段階でオリフィス23の開口面積を変化させられるよう制御値Uを設定するようにしてもよい。
例えば、図9は、オリフィス23の開口面積を制御するために使用する制御マップの別の実施例であり、制御マップCM2は、制御部1のROMに記憶され、縦軸に制御値U、横軸に最大絶対値Pを配する。
図9に示すように、制御マップCM2は、最大絶対値Pが閾値P1以下の場合、制御値Uの値をU1とし、最大絶対値Pが閾値P1より大きい場合、最大絶対値Pの増大に応じて制御値Uの値を無段階に増大させるようにする。
本発明に係るショックアブソーバの構成例を示すブロック図である。 シリンダ内の作動油の流れを説明するための模式図である。 減衰力特性を説明するためのグラフである。 オリフィスの開口面積を変化させたときの減衰力特性の変化を示すグラフである。 周囲温度の変化により作動油の動粘度が変化したときの減衰力特性の変化を示すグラフである。 絞り開度調整処理の流れを示すフローチャートである。 減衰力増加率変化の大きさを検出する処理の流れを説明する線図である。 制御マップの構成例を示す図(その1)である。 制御マップの構成例を示す図(その2)である。
符号の説明
1 制御部
2 荷重センサ
3 シリンダ側加速度センサ
4 ピストン側加速度センサ
5 アクチュエータ
10 減衰力検出手段
11 ピストン摺動速度検出手段
12 減衰力増加率変化検出手段
13 絞り開度調整手段
20 ピストンロッド
21 ピストンヘッド
22 シリンダ
23 オリフィス
24 バルブ
25 ポート
100 ショックアブソーバ
L1 オリフィス特性線
L2 ポート特性線
L3 バルブ特性線
L4 オリフィス+ポート特性線
L5 オリフィス+バルブ特性線
LA、LA1〜LA4 減衰力特性線
R1 オリフィス制御領域
R2 バルブ制御領域
R3 ポート制御領域

Claims (3)

  1. 開口面積が可変である絞りを用いてピストン摺動速度に応じた減衰力を発生させる絞り制御領域と、バルブを用いてピストン摺動速度に応じた減衰力を発生させるバルブ制御領域とを有するショックアブソーバであって、
    減衰力を検出する減衰力検出手段と、
    ピストン摺動速度を検出するピストン摺動速度検出手段と、
    前記絞り制御領域における前記ピストン摺動速度に応じた減衰力の増加率に基づいて前記絞りの開口面積を調整する絞り開度調整手段と、
    を備えることを特徴とするショックアブソーバ。
  2. 前記絞り制御領域における前記ピストン摺動速度に応じた減衰力の増加率と前記バルブ制御領域における前記ピストン摺動速度に応じた減衰力の増加率との間の差を検出する減衰力増加率変化検出手段を備え、
    前記絞り開度調整手段は、前記減衰力増加率変化検出手段が検出した減衰力増加率の差に基づいて前記絞りの開口面積を調整する、
    ことを特徴とする請求項1に記載のショックアブソーバ。
  3. 前記減衰力増加率変化検出手段は、減衰力をピストン摺動速度で二階微分した値に基づいて減衰力増加率の差を検出する、
    ことを特徴とする請求項1又は2に記載のショックアブソーバ。
JP2008093616A 2008-03-31 2008-03-31 ショックアブソーバ Expired - Fee Related JP5040775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093616A JP5040775B2 (ja) 2008-03-31 2008-03-31 ショックアブソーバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093616A JP5040775B2 (ja) 2008-03-31 2008-03-31 ショックアブソーバ

Publications (2)

Publication Number Publication Date
JP2009243651A JP2009243651A (ja) 2009-10-22
JP5040775B2 true JP5040775B2 (ja) 2012-10-03

Family

ID=41305779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093616A Expired - Fee Related JP5040775B2 (ja) 2008-03-31 2008-03-31 ショックアブソーバ

Country Status (1)

Country Link
JP (1) JP5040775B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201703177D0 (en) * 2017-02-28 2017-04-12 Jolley Paul Hydraulic Damper
IT201800010258A1 (it) * 2018-11-12 2020-05-12 Seares S R L Dispositivo di ancoraggio

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173368A (ja) * 1997-10-07 1999-06-29 Kayaba Ind Co Ltd 減衰力可変ダンパ
JP2001032873A (ja) * 1999-07-16 2001-02-06 Fuji Seiki Co Ltd ショックアブソーバ
EP1677026A1 (en) * 2003-10-20 2006-07-05 Yamaha Hatsudoki Kabushiki Kaisha Hydraulic shock-absorbing device for vehicle

Also Published As

Publication number Publication date
JP2009243651A (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
JP7108357B2 (ja) サスペンション制御装置
JP5934470B2 (ja) サスペンション装置
JP4828325B2 (ja) 緩衝器の制御装置
EP1659007B1 (en) Air suspension and electronically controlled suspension system
US20070029711A1 (en) Suspension apparatus for vehicle
JP5585632B2 (ja) サスペンション制御装置
WO2014142268A1 (ja) ダンパ制御装置
KR102090848B1 (ko) 완충기 장착 차량
US9452656B2 (en) Damper control apparatus
US10625558B2 (en) Damping force control apparatus for suspension
US20190126950A1 (en) Semiactive damper
JP5834368B2 (ja) ダンパ制御装置
JP5040775B2 (ja) ショックアブソーバ
JP4648055B2 (ja) 車両における可変減衰力ダンパーの制御装置
JP2015120421A (ja) ダンパ制御装置
WO2022024758A1 (ja) 制御装置
JP5702200B2 (ja) 緩衝器の制御装置
JP2017165298A (ja) 緩衝器の制御装置およびサスペンション装置
EP1628039B1 (en) Hydraulic shock absorber
JP5608057B2 (ja) サスペンション装置
JP6132859B2 (ja) サスペンション装置
JPH03217313A (ja) サスペンション装置
US9718324B2 (en) Damper control device
CN116583685B (zh) 使用天钩和终点止挡件控制的半主动悬架控制方法
JP7402982B2 (ja) 車両制御装置およびサスペンションシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees