JP5038610B2 - Suture and manufacturing method thereof - Google Patents

Suture and manufacturing method thereof Download PDF

Info

Publication number
JP5038610B2
JP5038610B2 JP2005279884A JP2005279884A JP5038610B2 JP 5038610 B2 JP5038610 B2 JP 5038610B2 JP 2005279884 A JP2005279884 A JP 2005279884A JP 2005279884 A JP2005279884 A JP 2005279884A JP 5038610 B2 JP5038610 B2 JP 5038610B2
Authority
JP
Japan
Prior art keywords
sea
component
island
fiber
suture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005279884A
Other languages
Japanese (ja)
Other versions
JP2007089653A (en
Inventor
みゆき 沼田
三枝 神山
千秋 福富
博章 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, Teijin Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005279884A priority Critical patent/JP5038610B2/en
Publication of JP2007089653A publication Critical patent/JP2007089653A/en
Application granted granted Critical
Publication of JP5038610B2 publication Critical patent/JP5038610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Description

本発明は、生体適合性の熱可塑性樹脂からなる微細繊維である引張り強度、柔軟性が改善された取扱い性が良好な縫合糸およびその製造方法に関するものである。   The present invention relates to a suture having improved handling and tensile strength and flexibility, which are fine fibers made of a biocompatible thermoplastic resin, and a method for producing the suture.

縫合糸としては、手術時の操作性がよく、縫合や結紮がしやすい、また、結び目がほどけにくいものが求められており、例えば特許文献1などの例があった。従来から用いられている外科用縫合糸は、絹からなる糸、生体吸収性ポリマーからなる糸、合成繊維からなる糸が知られている。   As the suture thread, a suture thread that has good operability at the time of operation, is easy to be sutured and ligated, and is difficult to unknot a knot is known. Conventionally used surgical sutures include a thread made of silk, a thread made of a bioabsorbable polymer, and a thread made of a synthetic fiber.

絹からなる糸は、柔軟で結節保持力が優れているため、しばりやすく、取扱い性が良好であるという長所がある。しかしながら絹からなる糸は、絹のコストが高く、引張り強度が低い等の問題点がある。特に手術での使用状態である湿潤時において、外科結びされたときの強度が低いのが本質的な問題点となっている。   Silk yarn is advantageous because it is flexible and has excellent knot-holding power, so it is easy to bind and has good handleability. However, silk yarn has problems such as high silk cost and low tensile strength. In particular, when wet, which is a state of use in surgery, an essential problem is that the strength when surgically tied is low.

ポリエステル縫合糸としては靱性が約7ないし約8.5グラム/デニールであり、破断に至る伸長率が30パーセント以下であり、沸騰水収縮率が約0.5ないし約3.0パーセントである糸フィラメントから形成した組みポリエステル縫合糸の記載がある(特許文献2)が、さらに柔軟性に優れ、適度な引張り強度、結節強度を併せ持った縫合糸が求められている。   A polyester suture having a toughness of about 7 to about 8.5 grams / denier, an elongation to break of 30 percent or less, and a boiling water shrinkage of about 0.5 to about 3.0 percent Although there is a description of a assembled polyester suture formed from a filament (Patent Document 2), there is a demand for a suture that is further excellent in flexibility and has appropriate tensile strength and knot strength.

特開2000−135282号公報JP 2000-135282 A 特開平9−164190号公報JP-A-9-164190

本発明は、引張り強度、柔軟性が改善され、取扱い性が良好な縫合糸、およびその製造方法を提供することにある。   An object of the present invention is to provide a suture thread with improved tensile strength and flexibility and good handleability, and a method for producing the suture thread.

すなわち、本発明は生体適合性の熱可塑性樹脂からなり、海島型複合繊維から海成分を除去した、平均繊維径が10〜1000nmの微細繊維束からなる、引張り強度が1.5cN/dtex以上、結節強度が1.5〜6.0cN/dtex、かつ撚数が50〜1000T/Mである縫合糸である。 That is, the present invention is composed of a biocompatible thermoplastic resin, a sea component is removed from a sea-island type composite fiber, and is composed of a fine fiber bundle having an average fiber diameter of 10 to 1000 nm, a tensile strength of 1.5 cN / dtex or more, A suture having a knot strength of 1.5 to 6.0 cN / dtex and a twist number of 50 to 1000 T / M.

本発明により、柔軟性に優れ、適度な引張り強度、結節強度を併せ持ち、取扱い性や生体への適用が良好な縫合糸が提供できる。   According to the present invention, it is possible to provide a suture thread that is excellent in flexibility, has appropriate tensile strength and knot strength, and is easy to handle and applicable to a living body.

以下本発明の実施形態について詳細に説明する。
本発明における縫合糸とは、短繊維、マルチフィラメント、紡績糸のいずれも含有するが、取扱い性の観点からマルチフィラメントが好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The suture in the present invention includes any of short fibers, multifilaments, and spun yarns, but multifilaments are preferred from the viewpoint of handleability.

本発明の縫合糸は10〜1000nmの平均繊維径をもつ繊維からなることを特徴とする。平均繊維径が10nm未満であると、分子間力の影響が強くなるためか繊維構造自身が不安定で個々の微細繊維の分繊性が悪く、現在のところ、微細繊維が均一に分散された繊維構造体を得ることが困難である。また平均繊維径が1000nmを超えると、本発明が目指すような柔軟性のある、取扱い性に優れた縫合糸が得られない。特に好ましい範囲は50〜900nmである。   The suture of the present invention is characterized by comprising fibers having an average fiber diameter of 10 to 1000 nm. If the average fiber diameter is less than 10 nm, the influence of intermolecular force becomes strong, or the fiber structure itself is unstable and the fineness of individual fine fibers is poor. At present, the fine fibers are uniformly dispersed. It is difficult to obtain a fiber structure. On the other hand, if the average fiber diameter exceeds 1000 nm, it is not possible to obtain a suture that is flexible and excellent in handleability as intended by the present invention. A particularly preferable range is 50 to 900 nm.

本発明の縫合糸は引張り強度が1.5cN/dtex以上である。引張り強度が1.5cN/dtex未満の場合には、縫合糸としての強さが不十分であり、好ましくない。引張り強度は好ましくは2.0〜7.0cN/dtexであり、より好ましくは2.0〜6.0cN/dtexである。   The suture of the present invention has a tensile strength of 1.5 cN / dtex or more. When the tensile strength is less than 1.5 cN / dtex, the strength as a suture is insufficient, which is not preferable. The tensile strength is preferably 2.0 to 7.0 cN / dtex, more preferably 2.0 to 6.0 cN / dtex.

本発明の縫合糸は、結節強度が1.5〜6.0cN/dtexである。結節強度が1.5〜6.0cN/dtexの範囲外であると、本発明が目指すような柔軟性のある、取扱い性に優れた縫合糸は得られない。結節強度は好ましくは2.0〜5.0cN/dtexである。   The suture of the present invention has a knot strength of 1.5 to 6.0 cN / dtex. When the knot strength is outside the range of 1.5 to 6.0 cN / dtex, a flexible suture excellent in handleability as aimed by the present invention cannot be obtained. The knot strength is preferably 2.0 to 5.0 cN / dtex.

さらに、本発明の縫合糸は以下の式で定義される繊維径変動係数(CV)が0〜0.3を満たすことが好ましい。
繊維径変動係数(CV)=σ/X
但し、ここでいう繊維径は、繊維断面の最大径と最小径の平均値をいい、σは繊維径分布の標準偏差、Xは平均繊維径を示す。
Further, the suture of the present invention preferably has a fiber diameter variation coefficient (CV) defined by the following formula satisfying 0 to 0.3.
Fiber diameter variation coefficient (CV) = σ / X
However, the fiber diameter here means an average value of the maximum diameter and the minimum diameter of the fiber cross section, σ indicates a standard deviation of the fiber diameter distribution, and X indicates an average fiber diameter.

CVが0.3を超えると、縫合糸の品質のばらつきが大きくなることがある。また、繊維径変動係数(CV)は好ましくは0〜0.20の範囲にあることがナノレベルの構造制御が可能な繊維の変動係数として好ましい。   When CV exceeds 0.3, the quality of the suture may vary greatly. The fiber diameter variation coefficient (CV) is preferably in the range of 0 to 0.20 as the fiber variation coefficient capable of nano-level structure control.

また微細繊維の撚数が50〜1000T/Mである。さらに好ましくは100〜800T/Mである。撚数50T/M未満では微細繊維がばらけてしまい、取扱い性が悪いことがある。一方撚数1000T/Mを超えると微細繊維特有の柔軟性が乏しくなるために取扱い性が悪いことがある。 The number of twists of fine fibers is Ru 50~1000T / M der. More preferably, it is 100-800 T / M. If the number of twists is less than 50 T / M, the fine fibers are scattered and the handleability may be poor. On the other hand, when the twist number exceeds 1000 T / M, the handleability may be poor because the softness peculiar to fine fibers becomes poor.

また、本発明の縫合糸は、複数のマルチフィラメントを合わせて求められる引張り強度や結節強度を満たすような糸の束としても好ましい。また、糸の束を組みひも状に編込むのも好ましい。   The suture of the present invention is also preferable as a bundle of threads that satisfy the tensile strength and knot strength required by combining a plurality of multifilaments. It is also preferable to knit a bundle of yarns into a braid.

本発明の縫合糸を構成する生体適合性の熱可塑性樹脂としては、芳香族ポリエステルなどのポリエステル類、ナイロンなどのポリアミド類、ポリスチレンやポリビニルアルコール、ポリ(エチレン−コ−ビニルアセテート)、ポリ(ヒドロキシエチルメタクリレート)などのポリオレフィン類やこれらのコポリマー類、ポリ(カーボネート)、ポリ(ウレタン)などの縮合系高分子類やこれらのコポリマー類、ポリ乳酸、ポリ乳酸−ポリグリコール酸共重合体、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリエチレンアジペート、ポリブチレンアジペートなどの生分解性脂肪族ポリエステル、ポリブチレンカーボネート、ポリエチレンカーボネート等の脂肪族ポリカーボネート等が挙げられる。   Examples of the biocompatible thermoplastic resin constituting the suture of the present invention include polyesters such as aromatic polyester, polyamides such as nylon, polystyrene, polyvinyl alcohol, poly (ethylene-co-vinyl acetate), poly (hydroxy Polyolefins such as ethyl methacrylate) and copolymers thereof, condensation polymers such as poly (carbonate) and poly (urethane) and copolymers thereof, polylactic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxy Examples include biodegradable aliphatic polyesters such as butyric acid, polycaprolactone, polyethylene adipate, and polybutylene adipate, and aliphatic polycarbonates such as polybutylene carbonate and polyethylene carbonate.

なかでもポリエステル類、ポリアミド類、ポリオレフィン類が好ましく、とりわけ芳香族ポリエステルが好ましい。芳香族ポリエステルとしてはポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、およびこれらを主たる繰返し単位とする、イソフタル酸や5−スルホイソフタル酸金属塩等の芳香族ジカルボン酸やアジピン酸、セバシン酸等の脂肪族ジカルボン酸やε−カプロラクトン等のヒドロキシカルボン酸縮合物、ジエチレングリコールやトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール等のグリコール成分等との共重合体が挙げられる。特にポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸共重合率が20モル%以下のポリエチレンテレフタレートイソフタレート、ポリエチレンナフタレート、等の芳香族ポリエステル類が好ましい。
微細繊維を構成するポリマーにおいて、生体適合性ポリマー以外の成分の含有は抑えることが好ましい。
Of these, polyesters, polyamides, and polyolefins are preferable, and aromatic polyesters are particularly preferable. Aromatic polyesters include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid metal salt, and adipic acid, which have these main repeating units, Examples thereof include copolymers with aliphatic dicarboxylic acids such as sebacic acid and hydroxycarboxylic acid condensates such as ε-caprolactone, glycol components such as diethylene glycol, trimethylene glycol, tetramethylene glycol, and hexamethylene glycol. In particular, aromatic polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate isophthalate and polyethylene naphthalate having an isophthalic acid copolymerization ratio of 20 mol% or less are preferable.
In the polymer constituting the fine fiber, it is preferable to suppress the inclusion of components other than the biocompatible polymer.

縫合糸の製造方法としては、平均島繊維径が10〜1000nmであり、かつ島数が100以上の精密な海島型複合繊維を製造する工程、合糸工程、加撚・撚止め工程、海成分を溶出または分解する工程といった、大きく分けて4つの工程からなるプロセスが挙げられる。ここで、4つの工程の順番については、海島型複合繊維を製造する工程の後に海成分を溶出または分解する工程がくること以外は特に限定されない。加撚・撚止め工程は1)海成分を溶出または分解する工程の前に入れるもしくは、2)海成分を溶出または分解する工程の後に入れてもどちらでもよい。適宜使い分ければよい。合糸工程の順番は海島型複合繊維を製造後であれば、特に限定されない。合糸本数はJISの縫合糸の規格に合わせて適宜調整すればよい。   As a method for producing a suture, a process of producing a precise sea-island type composite fiber having an average island fiber diameter of 10 to 1000 nm and having an island number of 100 or more, a yarn-spinning process, a twisting / twisting process, a sea component In general, there are four processes, such as a process of eluting or decomposing sucrose. Here, the order of the four steps is not particularly limited, except that a step of eluting or decomposing sea components is provided after the step of manufacturing the sea-island composite fiber. The twisting / twisting step may be performed either 1) before the step of eluting or decomposing the sea component, or 2) after the step of eluting or decomposing the sea component. What is necessary is just to use properly. The order of the combined yarn process is not particularly limited as long as the sea-island type composite fiber is manufactured. The number of combined yarns may be appropriately adjusted according to the JIS suture standard.

加撚工程では、50〜1000T/Mで加撚することが好ましい。さらに好ましくは100〜800T/Mである。撚数50T/M未満では微細繊維がばらけてしまい、取扱い性が悪いことがある。一方1000T/Mを超えると微細繊維特有の柔軟性が乏しくなるために取扱い性が悪いことがある。さらに加撚・撚止め工程を海成分の溶解・分解除去工程の前に行う場合には、海成分の溶解・分解除去にむらが生じるために、縫合糸としての品質のばらつきも大きくなることがある。   In the twisting step, it is preferable to twist at 50 to 1000 T / M. More preferably, it is 100-800 T / M. If the number of twists is less than 50 T / M, the fine fibers are scattered and the handleability may be poor. On the other hand, if it exceeds 1000 T / M, the handleability may be poor due to the lack of flexibility inherent to fine fibers. Furthermore, when the twisting / twisting process is performed before the sea component dissolution / decomposition and removal process, unevenness in sea component dissolution / decomposition / removal may cause unevenness in quality as sutures. is there.

すなわち本発明の縫合糸の好ましい製造方法は、1)特定溶剤への易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維を合糸した後、海島型複合繊維から海成分を抽出除去し、50〜1000T/Mで加撚する工程を含む製造方法、あるいは2)特定溶剤への易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維を50〜1000T/Mで加撚した後、海島型複合繊維から海成分を抽出除去する工程を含む製造方法である。ここで島成分は上述の生体適合性の熱可塑性樹脂である。   That is, a preferred method for producing the suture of the present invention is as follows: 1) After sea-island type composite fibers having an easily soluble component in a specific solvent as a sea component and a hardly soluble component as an island component are combined, the sea-island type composite fiber is converted into a sea component. Or a process comprising a step of twisting at 50 to 1000 T / M, or 2) 50 to 1000 T of a sea-island type composite fiber having an easily soluble component in a specific solvent as a sea component and a hardly soluble component as an island component. This is a production method including a step of extracting and removing sea components from sea-island type composite fibers after twisting at / M. Here, the island component is the above-described biocompatible thermoplastic resin.

該海島型複合繊維の製造方法について述べる。その海島比率は特に限定されないが、海島比率を10:90〜80:20の範囲にすることが好ましく、特に海:島=10:90〜70:30の範囲が好ましい。海成分の割合が70%以上であると、海成分溶解に必要な溶剤の量が多くなり、安全性や環境負荷、そしてコストの面で問題がある。また、10%未満の場合には島同士が膠着する可能性がある。   A method for producing the sea-island type composite fiber will be described. The sea-island ratio is not particularly limited, but the sea-island ratio is preferably in the range of 10:90 to 80:20, and particularly preferably in the range of sea: island = 10: 90 to 70:30. If the proportion of the sea component is 70% or more, the amount of the solvent necessary for dissolving the sea component increases, which causes problems in terms of safety, environmental load, and cost. Moreover, when it is less than 10%, islands may be stuck.

島数は100以上であることが好ましい。島数が多いほど海成分を溶解除去して微細繊維を製造する場合の生産性が高くなる。ここで、島数100未満の場合には、海成分を溶解除去しても繊維径の小さい微細繊維が得られないため、本発明の目的とする柔軟性に優れた縫合糸とならないことがある。特に、島数は500以上にすることが好ましい。島数の上限は特に限定されることはないが、紡糸口金の製造コストが高くなるだけではなく、加工精度自体も低下しやすくなるので1000以下とするのが好ましい。   The number of islands is preferably 100 or more. The greater the number of islands, the higher the productivity in producing fine fibers by dissolving and removing sea components. Here, when the number of islands is less than 100, a fine fiber having a small fiber diameter cannot be obtained even if the sea component is dissolved and removed, so that it may not be a suture with excellent flexibility as the object of the present invention. . In particular, the number of islands is preferably 500 or more. The upper limit of the number of islands is not particularly limited, but it is preferably set to 1000 or less because not only the manufacturing cost of the spinneret increases, but also the processing accuracy itself tends to decrease.

海成分を溶出または分解する工程で、海成分はほぼ完璧に除くことが好ましい。
海ポリマーと島ポリマーの必要条件は、以下の2点を満たしていればいずれでもよい。2点とは、1)溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも高い、2)特定溶剤への溶解速度において、島成分の溶解速度に対し海成分の溶解速度が200倍以上である。
In the step of eluting or decomposing the sea component, it is preferable to remove the sea component almost completely.
The necessary conditions for the sea polymer and the island polymer may be any as long as the following two points are satisfied. The two points are as follows: 1) The melt viscosity of the sea component during melt spinning is higher than the melt viscosity of the island component. 2) In the dissolution rate in the specific solvent, the dissolution rate of the sea component is 200 with respect to the dissolution rate of the island component. It is more than double.

溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも高いことにより、海島断面形成性が良好となる。この条件を満たしていれば、海成分の複合重量比率が50%以下になっても、島同士が大部分膠着して海島繊維と異なる繊維となることはない。島同士が膠着すると、海成分を溶解除去した際に微細繊維だけではなく異形繊維まで作成されることとなり、染め斑やピリングなど品位に問題が生じやすくなる。特に好ましい溶融粘度比(海/島)は1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1未満の場合には溶融紡糸時に島成分が膠着しやすくなり、一方2.0を超える場合には粘度差が大きすぎるために紡糸調子が低下しやすい。   When the melt viscosity of the sea component at the time of melt spinning is higher than the melt viscosity of the island component, the sea-island cross-section formability is improved. If this condition is satisfied, even if the composite weight ratio of the sea components is 50% or less, the islands will not adhere to each other and become different from the sea-island fibers. When islands are stuck together, when sea components are dissolved and removed, not only fine fibers but also deformed fibers are created, and problems such as dyed spots and pilling are likely to occur. A particularly preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 2.0, particularly 1.3 to 1.5. If this ratio is less than 1.1, the island components are likely to stick together during melt spinning, whereas if it exceeds 2.0, the difference in viscosity is too large and the spinning tone tends to decrease.

また、ここで、易溶解成分と難溶解成分としているのは、海島複合繊維を形成する2種のポリマーに対して、同じ溶解条件下で、一方のポリマーは溶出または分解し、他方のポリマーは溶出または分解されにくいような溶剤を選ぶ、あるいはそのようなポリマーの組合せを選択し、その易溶解成分を海成分として選択することを意味する。島成分の溶解速度に対し、海成分の溶解速度が200倍以上であることにより、島分離性が良好となる。溶解速度比が200倍未満の場合には、繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維径が小さいために溶解されるため、海相当分が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や溶剤侵食による引張り強度劣化が発生して、縫合糸の品質のばらつきが大きくなるため、取扱い性が悪くなる。   In addition, here, the easily soluble component and the hardly soluble component are one polymer that elutes or decomposes under the same dissolution condition with respect to the two polymers forming the sea-island composite fiber, and the other polymer It means selecting a solvent that is not easily eluted or decomposed, or selecting a combination of such polymers and selecting its readily soluble component as a sea component. When the dissolution rate of the sea component is 200 times or more with respect to the dissolution rate of the island component, the island separation property is improved. When the dissolution rate ratio is less than 200 times, the island component of the separated fiber cross-section surface layer is dissolved because the fiber diameter is small while the sea component at the center of the fiber cross-section is dissolved. Despite being reduced, the sea component at the center of the fiber cross-section cannot be completely dissolved and removed, resulting in variations in the quality of the sutures due to unevenness in the thickness of the island components and deterioration in tensile strength due to solvent erosion. Since it becomes large, the handleability deteriorates.

海ポリマーは上記の2点を満たしていればいかなるポリマーであってもよいが、特に繊維形成性の良いポリエステル、ポリアミド、ポリスチレン、ポリエチレンなどが好ましい。例えば、アルカリ水溶液易溶解性ポリマーとしては、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。また、ナイロン6はギ酸に溶解し、ポリスチレンはトルエンなど有機溶剤に溶解するので、これらでもよい。   The sea polymer may be any polymer as long as it satisfies the above-mentioned two points, but polyester, polyamide, polystyrene, polyethylene, and the like having good fiber formation are particularly preferable. For example, polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, and copolymerized polyester of 5-sodium sulfoisophthalic acid are optimal as the alkaline water soluble polymer. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. Nylon 6 is dissolved in formic acid, and polystyrene is dissolved in an organic solvent such as toluene.

海ポリマーは、溶融紡糸時における溶融粘度が島成分よりも高いことが必須であり、かつ溶剤あるいは分解性薬剤に対する溶解速度において、島成分と海成分との溶解速度比が200以上であればいかなるポリマーであってもよいが、特に繊維形成性の良いポリエステル類、脂肪族ポリアミド類、ポリエチレンやポリスチレン等のポリオレフィン類を好ましい例としてあげることができる。更に具体例を挙げれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングリコール系化合物共重合ポリエステル、ポリエチレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエチレンテレフタレートが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。これ以外にも、ナイロン6やナイロン66等の脂肪族ポリアミドに対するギ酸、ポリスチレンに対するトリクロロエチレン等やポリエチレン(特に高圧法低密度ポリエチレンや直鎖状低密度ポリエチレン)に対する熱トルエンやキシレン等の炭化水素系溶剤、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例として挙げることができる。   The sea polymer must have a melt viscosity higher than that of the island component at the time of melt spinning, and any dissolution rate ratio between the island component and the sea component in the solvent or the degradable drug can be 200 or more. Polymers may be used, but particularly preferable examples include polyesters, aliphatic polyamides, and polyolefins such as polyethylene and polystyrene, which have good fiber-forming properties. Specific examples include polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymer polyester, polyethylene glycol compound and 5-sodium sulfoisophthalic acid copolymer as an easily soluble polymer in aqueous alkali solution. Polyethylene terephthalate is optimal. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. Besides these, hydrocarbon solvents such as hot toluene and xylene for formic acid for aliphatic polyamides such as nylon 6 and nylon 66, trichloroethylene for polystyrene, and polyethylene (especially high-pressure low-density polyethylene and linear low-density polyethylene). Examples thereof include hot water for polyvinyl alcohol and ethylene-modified vinyl alcohol polymers.

ポリエステル系ポリマーの中でも、5−ナトリウムスルホイソフタル酸を全ジカルボン酸成分中6〜12モル%含み、分子量4000〜12000のポリエチレングリコールを全ポリマー中3〜10重量%含む共重合ポリエチレンテレフタレートが好ましい。該共重合ポリエチレンテレフタレートの固有粘度は0.4〜0.6であることが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じる可能性がある。またポリエチレングリコールの共重合量が12重量%を超えると、溶融粘度低下作用があるので、好ましくない。以上のことから上記の範囲が適切であると考えられる。海成分として該共重合ポリエチレンテレフタレートを用いたときはほぼ完璧に除くことが好ましく、残存量は3重量%以下となることが好ましい。   Among the polyester polymers, copolymer polyethylene terephthalate containing 5 to 12 mol% of 5-sodium sulfoisophthalic acid in the total dicarboxylic acid component and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000 in the total polymer is preferable. The intrinsic viscosity of the copolymerized polyethylene terephthalate is preferably 0.4 to 0.6. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases. However, since the reactivity becomes poor and a blend system is produced, problems arise in terms of heat resistance and spinning stability. there is a possibility. On the other hand, when the copolymerization amount of polyethylene glycol exceeds 12% by weight, there is an effect of decreasing the melt viscosity, which is not preferable. From the above, it is considered that the above range is appropriate. When the copolymerized polyethylene terephthalate is used as a sea component, it is preferably removed almost completely, and the residual amount is preferably 3% by weight or less.

島ポリマーは溶融紡糸時の海成分粘度より低くなり、かつ前述のような海成分との溶解速度差がある生体適合性の熱可塑性樹脂から選択される。好ましい生体適合性の熱可塑性樹脂は上述のとおりである。好ましくは芳香族ポリエステル類として、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、およびこれらを主たる繰返し単位とする、イソフタル酸や5−スルホイソフタル酸金属塩等の芳香族ジカルボン酸やアジピン酸、セバシン酸等の脂肪族ジカルボン酸やε−カプロラクトン等のヒドロキシカルボン酸縮合物、ジエチレングリコールやトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール等のグリコール成分等との共重合体が好ましい。特にポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸共重合率が20モル%以下のポリエチレンテレフタレートイソフタレート、ポリエチレンナフタレート、等の芳香族ポリエステル類が好ましい。   The island polymer is selected from biocompatible thermoplastic resins that have a lower viscosity than the sea component viscosity during melt spinning and have a difference in dissolution rate from the sea component as described above. Preferred biocompatible thermoplastic resins are as described above. Preferably, aromatic polyesters, such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid metal salt having these as the main repeating units, A copolymer with an aliphatic dicarboxylic acid such as adipic acid or sebacic acid, or a hydroxycarboxylic acid condensate such as ε-caprolactone, or a glycol component such as diethylene glycol, trimethylene glycol, tetramethylene glycol or hexamethylene glycol is preferred. In particular, aromatic polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate isophthalate and polyethylene naphthalate having an isophthalic acid copolymerization ratio of 20 mol% or less are preferable.

さらに島成分は丸断面に限らず、異形断面であってもよい。溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図1および2に示すが、必ずしもこれらに限定されるものではない。   Furthermore, the island component is not limited to a round cross section, and may be an irregular cross section. As the die used for melt spinning, an arbitrary one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret may be used in which an island component extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between the island component are joined and compressed to form a cross section of the sea island. . Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto.

図1は中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は微細孔方式で島を形成する方法である。
吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ、未延伸糸を得る。この引き取り速度は特に限定されないが、800m/分〜5000m/分であることが望ましい。800m/分以下では生産性が悪い。また、5000m/分以上では紡糸安定性が悪い。
FIG. 1 shows a method of discharging a hollow pin into a sea component resin reservoir and compressing it by joining, and FIG. 2 shows a method of forming an island by a fine hole method.
The discharged sea-island type composite fiber is solidified by cooling air and taken up by a rotating roller or an ejector set at a predetermined take-up speed to obtain an undrawn yarn. The take-up speed is not particularly limited, but is desirably 800 m / min to 5000 m / min. Productivity is poor at 800 m / min or less. Also, spinning stability is poor at 5000 m / min or more.

得られた未延伸糸は、海成分を抽出後に得られる微細繊維の用途・目的に応じて、目的とする引張り強度・伸度・熱収縮特性に合わせて、延伸を行うが、延伸工程は紡糸と延伸を別ステップで行う別延方式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもかまわない。   The obtained unstretched yarn is stretched according to the intended tensile strength, elongation, and heat shrinkage properties according to the purpose and purpose of the fine fiber obtained after extracting the sea component. Alternatively, a separate stretching method in which stretching is performed in separate steps may be used, or a straight stretching method in which stretching is performed immediately after spinning in one process may be used.

従来にない特徴のひとつに、本発明のファイバーは比表面積が大きくなるという特徴がある。このため、優れた吸着・吸収特性を持つ。この効果を生かして、例えば、機能性薬剤を吸収させて新たな用途展開が可能となる。機能性薬剤とは例えばたんぱく質、ビタミン類など健康・美容促進のための薬剤、そのほか抗炎症剤や消毒剤などの医薬品なども用いることができる。   One of the unprecedented features is that the fiber of the present invention has a large specific surface area. For this reason, it has excellent adsorption and absorption characteristics. Taking advantage of this effect, for example, a functional drug can be absorbed to develop a new application. Examples of functional drugs include drugs for promoting health and beauty such as proteins and vitamins, and other drugs such as anti-inflammatory agents and disinfectants.

以下、実施例をあげて本発明をさらに具体的に説明する。各評価項目は下記の方法で測定した。
1)溶融粘度測定
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見る。
Hereinafter, the present invention will be described more specifically with reference to examples. Each evaluation item was measured by the following method.
1) Melt viscosity measurement The polymer after drying is set in an orifice set at the melter melting temperature at the time of spinning, melted and held for 5 minutes, then extruded under several levels of load, and the shear rate and melt viscosity at that time are determined. Plot. By gently connecting the plots, a shear rate-melt viscosity curve is created, and the melt viscosity when the shear rate is 1000 sec- 1 is observed.

2)海島断面形成性
光学顕微鏡を用いて海島状態を観察し、2段階評価した。
○:島膠着部分なし
×:島膠着部分あり
2) Sea-island cross-section formation The sea-island state was observed using an optical microscope and evaluated in two stages.
○: No island sticking part ×: Island sticking part

3)溶解速度測定
海・島成分の各々0.3φ−0.6L×24Hの口金にて1000〜2000m/分
の紡糸速度で糸を巻き取り、さらに残留伸度が30〜60%の範囲になるように延伸して、83dtex/24filのマルチフィラメントを作成する。これを各溶剤にて溶解しようとする温度で浴比100にて溶解時間と溶解量から、減量速度を算出した。
表中では海島溶解速度差が200倍以上の場合を○、200倍以下の場合を×とした。
3) Measurement of dissolution rate The yarn is wound at a spinning speed of 1000 to 2000 m / min with a 0.3φ-0.6L × 24H base of each of the sea and island components, and the residual elongation is in the range of 30 to 60%. Then, a multifilament of 83 dtex / 24 fil is produced. The weight loss rate was calculated from the dissolution time and the dissolution amount at a bath ratio of 100 at a temperature at which the solvent was dissolved in each solvent.
In the table, the case where the sea-island dissolution rate difference was 200 times or more was marked with ◯, and the case where it was 200 times or less was marked with ×.

4)微細繊維の繊維径、および径の均一性
海成分溶解除去後の微細繊維の30000倍TEM観察により、繊維径を求めた。ここで繊維径は膠着していない単糸の繊維径を測定した。ランダムに選択した50本の微細繊維の繊維繊維径データにおいて、平均繊維径(X)と標準偏差(σ)を算出し、以下で定義する繊維径変動係数(CV)を算出した。
繊維径変動係数(CV)=σ/X
4) Fiber diameter of fine fiber and uniformity of diameter The fiber diameter was determined by 30,000 times TEM observation of the fine fiber after dissolution and removal of the sea component. Here, the fiber diameter of the single yarn that was not glued was measured. In the fiber diameter data of 50 randomly selected fine fibers, the average fiber diameter (X) and the standard deviation (σ) were calculated, and the fiber diameter variation coefficient (CV) defined below was calculated.
Fiber diameter variation coefficient (CV) = σ / X

5)微細繊維の引張り強度、伸度
海成分溶解除去後の微細繊維の10000mの重量をn=3回測定して平均値から繊度を求めた。
室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割った値を引張り強度とし、破断時の伸長値を伸度として強伸度曲線を求めた。
5) Tensile strength and elongation of fine fiber The fine fiber after dissolution and removal of the sea component was measured n = 3 times to obtain the fineness from the average value.
At room temperature (25 ° C.), an initial sample length = 200 mm, a pulling speed = 200 mm / min, and a load-elongation curve was obtained under the conditions shown in JIS L1013. Next, a value obtained by dividing the load value at break by the initial fineness was taken as the tensile strength, and the elongation value at break was taken as the elongation to obtain a strong elongation curve.

6)結節強度
海成分溶解除去後の微細繊維ののつかみ間隔の中央にZ撚りの本結びを1個作った状態で、上述の引張り強度試験法に準拠して結節強度を測定した。
6) Nodule strength Nodule strength was measured in accordance with the above-described tensile strength test method in the state where one Z-twisted main knot was formed at the center of the gripping interval of the fine fibers after dissolution removal of the sea component.

7)撚数
試長10cmの微細繊維についてn=5回捲撚機にて測定し、これの平均値から撚り数を求めた。
7) Number of twists Fine fibers with a test length of 10 cm were measured with an n = 5 times twisting twister, and the number of twists was determined from the average value.

8)柔軟性・取扱い性
モニター7人に実際に糸を用いて評価してもらった。
○:柔軟性があり、かつ取扱い性良好と感じたモニターが過半数以上
×:柔軟性がない、もしくは取扱い性不良と感じたモニターが過半数以上
8) Flexibility / Handability Seven monitors were evaluated using actual thread.
○: More than half of monitors felt flexible and easy to handle ×: More than half of monitors felt inflexible or poorly handled

[実施例1]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1400poiseである平均分子量4000のポリエチレングリコールを3wt%、5−ナトリウムスルホイソフタル酸を9mol%共重合した改質ポリエチレンテレフタレートを海:島=30:70の比率で、島数900の口金を用いて285℃で溶融紡糸し、1000m/minで巻き取った。ここで、島成分に対する海成分のアルカリ減量速度差は1500倍であった。得られた未延伸糸を延伸温度60〜90℃、表2記載の倍率でローラー延伸し、次いで150℃で熱セットして巻き取った。この際に延伸糸が22dtex/10fになるように紡糸吐出量を調整した。この延伸糸を筒編みし、溶媒で海成分比率相当分を溶解処理した。原糸断面をTEM観察したところ、海島断面形成性は良好であった。延伸倍率5.1倍で延伸した延伸糸を4本合糸した後、4%NaOH水溶液で95℃にて海成分を30%減量した。繊維断面を観察したところ、繊維径が450nmでCV値=0.15の超極細島群を形成していた。微細繊維を300T/Mで加撚し、その後75℃×30分間スチームでセットした。糸の引張り強度は5.2cN/dtex、伸度は20%、結節強度は3.4cN/dtex、撚数290T/Mであり、微細繊維特有の柔軟性があり、取扱い性良好な糸が得られた。実施例1で得られた微細繊維の走査型電子顕微鏡写真を図3に示す。結果を表1、および表2に示した。
[Example 1]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 3 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1400 poise at 285 ° C. and 9 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was melt-spun at 285 ° C. using a base having 900 islands at a ratio of sea: island = 30: 70, and wound up at 1000 m / min. Here, the alkali weight loss rate difference of the sea component with respect to the island component was 1500 times. The obtained undrawn yarn was subjected to roller drawing at a drawing temperature of 60 to 90 ° C. and the magnification described in Table 2, and then heat-set at 150 ° C. and wound up. At this time, the spinning discharge amount was adjusted so that the drawn yarn was 22 dtex / 10f. This drawn yarn was knitted in a cylinder, and the sea component ratio equivalent was dissolved with a solvent. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. After four drawn yarns drawn at a draw ratio of 5.1 times were combined, the sea component was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. Observation of the fiber cross section revealed that ultrafine islands with a fiber diameter of 450 nm and a CV value of 0.15 were formed. The fine fiber was twisted at 300 T / M, and then set with steam at 75 ° C. for 30 minutes. The tensile strength of the yarn is 5.2 cN / dtex, the elongation is 20%, the knot strength is 3.4 cN / dtex, and the twist number is 290 T / M. It was. A scanning electron micrograph of the fine fibers obtained in Example 1 is shown in FIG. The results are shown in Tables 1 and 2.

[比較例1]
島数1100の口金を用いて海島型複合繊維を20T/Mで加撚したこと以外はすべて実施例1と同様に海島型複合繊維を製造する工程、合糸工程、海成分を溶出する工程、加撚・撚止め工程を経て糸を得た。繊維断面を観察したところ、分離した島の繊維径が390nmであったが、海成分の溶解・分解除去にむらが生じるために、CV値=0.4と不均一な微細繊維群を形成していた。得た微細繊維群の引張り強度は2.0cN/dtex、伸度は15%、結節強度は1.2cN/dtexであり、柔軟性としては良好であったが、縫合糸として取り扱い性が悪く、品質のばらつきが大きかった。結果を表1、および表2に示した。
[Comparative Example 1]
A process for producing a sea-island type composite fiber in the same manner as in Example 1 except that the sea-island type composite fiber was twisted at 20 T / M using a base having 1100 islands, a step of eluting sea components, A yarn was obtained through a twisting and twisting process. When the cross section of the fiber was observed, the fiber diameter of the isolated island was 390 nm, but unevenness in the dissolution / decomposition and removal of the sea component occurred, so that a CV value = 0.4 and a non-uniform fine fiber group was formed. It was. The obtained fine fiber group had a tensile strength of 2.0 cN / dtex, an elongation of 15%, and a knot strength of 1.2 cN / dtex, which was good as flexibility, but poor in handling properties as a suture, The quality variation was large. The results are shown in Tables 1 and 2.

[実施例2]
実施例1と加撚・撚止め工程の順序を変えて、実施例1と同様に海島型複合繊維を製造して得た延伸糸を4本合糸した後、300T/Mで加撚し、その後75℃×30分間スチームでセットした。得た糸を4%NaOH水溶液で95℃にて海成分を30%減量した。繊維断面を観察したところ、繊維径が440nmでCV値=0.14の均一な超極細島群を形成していた。微細繊維を糸の引張り強度は5.2cN/dtex、伸度は35%、結節強度は3.3cN/dtex、撚数は320T/Mであり、微細繊維特有の柔軟性があり、取扱い性良好な糸が得られた。結果を表1、および表2に示した。
[Example 2]
After changing the order of Example 1 and the twisting / twisting step and combining four drawn yarns obtained by producing sea-island type composite fibers in the same manner as Example 1, twisting at 300 T / M, Thereafter, it was set with steam at 75 ° C. for 30 minutes. The obtained yarn was reduced by 30% with a 4% NaOH aqueous solution at 95 ° C. When the cross section of the fiber was observed, a uniform ultrafine island group having a fiber diameter of 440 nm and a CV value = 0.14 was formed. The fine fiber has a tensile strength of 5.2 cN / dtex, an elongation of 35%, a knot strength of 3.3 cN / dtex, and a twist number of 320 T / M. Thread was obtained. The results are shown in Tables 1 and 2.

[比較例2]
海島型複合繊維を1500T/Mで加撚したこと以外はすべて実施例2と同様に海島型複合繊維を製造する工程、合糸工程、加撚・撚止め工程、海成分を溶出する工程を経て糸を得た。繊維断面を観察したところ、繊維径が460nmでCV値=0.35の不均一な超極細島群を形成していた。得た糸の引張り強度は4.6cN/dtex、伸度は40%と良好であったが、結節強度は1.0cN/dtexと弱いために、縫合糸として取り扱い性が悪かった。さらに、海成分の溶解・分解除去にむらが生じるために、縫合糸としての品質のばらつきが大きかった。結果を表1、および表2に示した。
[Comparative Example 2]
Except that the sea-island type composite fiber was twisted at 1500 T / M, the process of producing the sea-island type composite fiber was performed in the same manner as in Example 2, the process of combining, the process of twisting and twisting, and the process of eluting sea components. I got a thread. When the cross section of the fiber was observed, a non-uniform ultrafine island group having a fiber diameter of 460 nm and a CV value = 0.35 was formed. The obtained yarn had good tensile strength of 4.6 cN / dtex and elongation of 40%, but the knot strength was as weak as 1.0 cN / dtex, so that the handleability was poor as a suture. Furthermore, since the sea components are unevenly dissolved and decomposed, the quality of the sutures varies greatly. The results are shown in Tables 1 and 2.

[実施例3]
海島型複合繊維を700T/Mで加撚したこと以外はすべて実施例2と同様にして糸を得た。海成分30%減量後の均一な均一な繊維断面を観察したところ、繊維径が455nmでCV値=0.12の均一な超極細島群を形成していた。糸の引張り強度は4.6cN/dtex、伸度は60%、結節強度は2.8cN/dtex、撚数は730T/Mであり、微細繊維特有の柔軟性のある取扱い性良好な糸が得られた。結果を表1、および表2に示した。
[Example 3]
A yarn was obtained in the same manner as in Example 2 except that the sea-island type composite fiber was twisted at 700 T / M. Observation of a uniform and uniform fiber cross section after reducing the sea component by 30% revealed that a uniform ultrafine island group having a fiber diameter of 455 nm and a CV value = 0.12 was formed. The tensile strength of the yarn is 4.6 cN / dtex, the elongation is 60%, the knot strength is 2.8 cN / dtex, and the twist number is 730 T / M. It was. The results are shown in Tables 1 and 2.

[比較例3]
海:島=90:10、島数500の口金を用いて紡糸したこと以外はすべて実施例2と同様にして糸を得た。海成分90%減量後の繊維断面を観察したところ、海部を減量するのに時間がかかるため、表面付近にある島が余分に減量され、繊維径が210nmでCV値=1.0の不均一な超極細島群を形成していた。微細繊維を100T/Mで加撚し、その後75℃×30分間スチームでセットした。糸の引張り強度は1.2cN/dtex、伸度は85%、結節強度は0.8cN/dtex、撚数80T/Mであり、物性としては良好であったが、微細繊維特有の柔軟性が乏しく、取扱い性が悪かった。さらに、海成分の溶解・分解除去にむらが生じるために、縫合糸としての品質のばらつきが大きかった。結果を表1、および表2に示した。
[Comparative Example 3]
A yarn was obtained in the same manner as in Example 2 except that spinning was performed using a base having sea: island = 90: 10 and 500 islands. Observing the fiber cross-section after 90% reduction of the sea component, it takes time to reduce the sea part, so the island near the surface is excessively reduced, the fiber diameter is 210nm, and the CV value = 1.0 is uneven. A super-thin island group was formed. The fine fiber was twisted at 100 T / M, and then set with steam at 75 ° C. for 30 minutes. The tensile strength of the yarn is 1.2 cN / dtex, the elongation is 85%, the knot strength is 0.8 cN / dtex, and the twist number is 80 T / M. The handling was poor and poor. Furthermore, since the sea components are unevenly dissolved and decomposed, the quality of the sutures varies greatly. The results are shown in Tables 1 and 2.

[比較例4]
比較例4は島数が25であり、単糸径は2500nmであった。比較例3よりもさらに島成分の不均一性が顕著であり、かつ島径が大きいために柔軟性に乏しい糸であった。結果を表1、および表2に示した。
[Comparative Example 4]
In Comparative Example 4, the number of islands was 25 and the single yarn diameter was 2500 nm. Compared with Comparative Example 3, the island component was more non-uniform and the island diameter was large, so the yarn was poor in flexibility. The results are shown in Tables 1 and 2.

[実施例4]
島成分に285℃での溶融粘度が1050poiseのポリエチレンテレフタレートを使用し、海成分に285℃での溶融粘度が1150poiseである平均分子量4000のポリエチレングリコールを3重量%、5−ナトリウムスルホイソフタル酸を10mol%共重合した改質ポリエチレンテレフタレートを海:島=30:70の重量比率で、島数700の口金(図1と同型)を用いて紡糸し、3500m/minで引き取った。アルカリ減量速度差は2000倍であった。延伸倍率3.0倍で延伸した延伸糸を4本合糸した後、4%NaOH水溶液で95℃にて海成分を30%減量した。繊維断面を観察したところ、繊維径が500nmでCV値=0.15の超極細島群を形成していた。微細繊維を400T/Mで加撚し、その後75℃×30分間スチームでセットした。糸の引張り強度は3.2cN/dtex、伸度は30%、結節強度は2.4cN/dtex、撚数380T/Mであり、微細繊維特有の柔軟性があり、取扱い性良好な糸が得られた。結果を表1、および表2に示した。
[Example 4]
Polyethylene terephthalate having a melt viscosity of 1050 poise at 285 ° C. is used as the island component, 3% by weight of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1150 poise at 285 ° C. is used as the sea component, and 10 mol of 5-sodium sulfoisophthalic acid. % -Copolymerized modified polyethylene terephthalate was spun at a weight ratio of sea: islands = 30: 70 using a base having 700 islands (same type as in FIG. 1), and taken up at 3500 m / min. The alkali weight loss rate difference was 2000 times. After four drawn yarns drawn at a draw ratio of 3.0 times were combined, the sea component was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. Observation of the fiber cross section revealed that ultrafine islands having a fiber diameter of 500 nm and a CV value = 0.15 were formed. The fine fiber was twisted at 400 T / M and then set with steam at 75 ° C. for 30 minutes. The tensile strength of the yarn is 3.2 cN / dtex, the elongation is 30%, the knot strength is 2.4 cN / dtex, and the twist number is 380 T / M. It was. The results are shown in Tables 1 and 2.

[比較例5]
島成分に285℃での溶融粘度が1050poiseのポリエチレンテレフタレートを
使用し、海成分に285℃での溶融粘度が950poiseである平均分子量4000のポリエチレングリコールを10重量%、5−ナトリウムスルホイソフタル酸を10mol%共重合した改質ポリエチレンテレフタレートを用いて実施例4と同様に巻取った。原糸断面をTEM観察したところ、海成分ポリマーの溶融粘度が島成分よりも小さいため、島成分の90%以上が互いに接合して個々には存在せず、接合した島の周囲を海成分が取り囲むような断面を形成していた。したがって、海成分をアルカリ減量で除去しても微細繊維群を形成することができず、柔軟性に乏しい糸であった。結果を表1、および表2に示した。
[Comparative Example 5]
Polyethylene terephthalate having a melt viscosity of 1050 poise at 285 ° C. is used for the island component, polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 950 poise at 285 ° C. is used for the sea component, and 10 mol of 5-sodium sulfoisophthalic acid. It was wound up in the same manner as in Example 4 using% -copolymerized modified polyethylene terephthalate. When the cross section of the raw yarn was observed with a TEM, the melt viscosity of the sea component polymer was smaller than that of the island component, so that 90% or more of the island components were joined together and did not exist individually. An enclosing cross section was formed. Therefore, even if the sea component is removed by alkali weight reduction, a fine fiber group cannot be formed, and the yarn has poor flexibility. The results are shown in Tables 1 and 2.

[実施例5]
島成分に270℃での溶融粘度が600poiseのポリエチレンテレフタレートを使
用し、海成分に270℃での溶融粘度が1750poiseであるD体純度が99%のポリ乳酸を用いて、海:島=20:80の重量比率で、島数500の口金(図1と同型)を用いて紡糸し、1000m/minで引き取り、未延伸糸を得た。アルカリ減量速度差は1000倍であった。これを2.2倍に延伸した後、10本合糸した。これを海成分のみを溶解除去するため、4%NaOH水溶液で95℃にて20%減量した。繊維断面を観察したところ、繊維径が600nmでCV値=0.1の均一な超極細島群を形成していた。得た糸を500T/Mで加撚し、その後75℃×30分間スチームでセットした。糸の引張り強度は2.1cN/dtex、伸度は40%、結節強度は1.8cN/dtex、撚数490T/Mであり、微細繊維特有の柔軟性があり、取扱い性良好な糸が得られた。結果を表1、および表2に示した。
[Example 5]
Polyethylene terephthalate having a melt viscosity at 270 ° C. of 600 poise is used as the island component, and polylactic acid having a D-form purity of 99% and melt viscosity at 270 ° C. of 1750 poise is used as the sea component. Spinning was performed using a die having the number of islands of 500 (same type as that in FIG. 1) at a weight ratio of 80, and taken up at 1000 m / min to obtain an undrawn yarn. The alkali weight loss rate difference was 1000 times. After stretching this 2.2 times, 10 yarns were combined. In order to dissolve and remove only the sea component, this was reduced by 20% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the fiber was observed, a uniform ultrafine island group having a fiber diameter of 600 nm and a CV value of 0.1 was formed. The obtained yarn was twisted at 500 T / M and then set with steam at 75 ° C. for 30 minutes. The tensile strength of the yarn is 2.1 cN / dtex, the elongation is 40%, the knot strength is 1.8 cN / dtex, and the twist number is 490 T / M. It was. The results are shown in Tables 1 and 2.

[実施例6]
島成分に285℃での溶融粘度が1150poiseのナイロン6を使用し、海成分に285℃での溶融粘度が1300poiseである平均分子量4000のポリエチレングリコールを3重量%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを用いて、海:島=30:70の重量比率で、島数1000の口金(図1と同型)を用いて紡糸し、1000m/minで引き取り、未延伸糸を得た。ここで、島成分であるナイロン6はアルカリ溶液には実質的に溶解しないので、十分海島溶解速度差がある。延伸倍率2.9倍で得られた延伸糸を海の改質ポリエチレンテレフタレートのみを溶解するギ酸中での溶解処理を室温で行ったところ、島成分であるナイロン6はギ酸には実質的に溶解しないので、十分海島溶解速度差があるために、島成分の均一性は良好であり、繊維径が400nmでCV値=0.09であった。得た糸を600T/Mで加撚し、その後75℃×30分間スチームでセットした。糸の引張り強度は2.9cN/dtex、伸度は45%、結節強度は2.0cN/dtex、撚数580T/Mであった。得た微細繊維からなるマルチフィラメントを20本合糸して糸を作成した。微細繊維特有の柔軟性があり、取扱い性良好な糸が得られた。結果を表1、および表2に示した。
[Example 6]
Nylon 6 having a melt viscosity of 1150 poise at 285 ° C. is used for the island component, 3% by weight of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1300 poise at 285 ° C. and 8 mol of 5-sodium sulfoisophthalic acid are used for the sea component % Copolymerized modified polyethylene terephthalate, spun at a weight ratio of sea: island = 30: 70 using a base with the number of islands of 1000 (same type as in FIG. 1), taken up at 1000 m / min, and undrawn yarn Got. Here, since nylon 6 which is an island component does not substantially dissolve in an alkaline solution, there is a sufficient sea-island dissolution rate difference. When the drawn yarn obtained at a draw ratio of 2.9 times was subjected to a dissolution treatment in formic acid in which only the modified polyethylene terephthalate of the sea was dissolved at room temperature, nylon 6 as an island component was substantially dissolved in formic acid. Therefore, since there was a sufficient difference in sea island dissolution rate, the uniformity of the island components was good, the fiber diameter was 400 nm, and the CV value = 0.09. The obtained yarn was twisted at 600 T / M and then set with steam at 75 ° C. for 30 minutes. The tensile strength of the yarn was 2.9 cN / dtex, the elongation was 45%, the knot strength was 2.0 cN / dtex, and the twist number was 580 T / M. Twenty multifilaments made of the fine fibers obtained were combined to prepare a yarn. Yarns having flexibility unique to fine fibers and good handleability were obtained. The results are shown in Tables 1 and 2.

Figure 0005038610
Figure 0005038610

Figure 0005038610
Figure 0005038610

[実施例7]
実施例1で得られた糸を3本束ねた状態(引張り強度3.7cN/dtex、伸度27.2%、結節強度2.7cN/dtex)を1本の縫合糸として用い、以下のとおり動物評価を行った。
動物; モルモット(ハートレー種、雄性)27wk、体重1100g
麻酔; ケタミン+キシラジン(筋肉内投与)
縫合糸については、70%EtOHに25分浸漬させたのち超純水で流水洗浄し、高圧蒸気滅菌(121℃、20分)したものを使用した。
[Example 7]
The bundle of three yarns obtained in Example 1 (tensile strength 3.7 cN / dtex, elongation 27.2%, knot strength 2.7 cN / dtex) was used as one suture, as follows: Animal evaluation was performed.
Animal; Guinea pig (Hartley, male) 27wk, weight 1100g
Anesthesia; Ketamine + xylazine (intramuscular administration)
The suture was immersed in 70% EtOH for 25 minutes, washed with running ultrapure water, and autoclaved (121 ° C, 20 minutes).

モルモットに全身麻酔をしたのち、背部を剃毛して皮膚を1〜2cmに切開し、試験糸で2ヶ所縫いつけた。糸の柔軟性や結節力は申し分なく、縫合糸として取り扱うのには良好であった。縫合終了後、ゲージに戻して通常飼育した。術後7日目に縫合部を肉眼で観察したところ、引きつれなどは見られず、特に目立った炎症は認められなかった。以下図4に術後7日目の皮膚縫合部位における肉眼所見の写真を示す。   After general anesthesia of the guinea pig, the back was shaved and the skin was incised to 1 to 2 cm, and two places were sewn with test threads. The flexibility and knot strength of the thread were satisfactory and it was good to handle as a suture. After completion of the stitching, it was returned to the gauge and reared normally. On the 7th day after the operation, the sutured part was observed with the naked eye. As a result, no pulling was observed, and no noticeable inflammation was observed. FIG. 4 shows photographs of macroscopic findings at the skin suture site on the seventh day after the operation.

紡糸口金例。Example of spinneret. 紡糸口金例。Example of spinneret. 実施例1で得られた微細繊維束の走査型電子顕微鏡写真。2 is a scanning electron micrograph of the fine fiber bundle obtained in Example 1. FIG. 実施例7の縫合後7日目における外観写真。An appearance photograph on the seventh day after the suturing of Example 7. 実施例7の皮膚縫合部位での組織染色像の顕微鏡写真。6 is a micrograph of a tissue stained image at a skin suture site in Example 7. FIG.

Claims (10)

生体適合性の熱可塑性樹脂からなり、海島型複合繊維から海成分を除去した、平均繊維径が10〜1000nmの微細繊維束からなる、引張り強度が1.5cN/dtex以上、結節強度が1.5〜6.0cN/dtex、かつ撚数が50〜1000T/Mである縫合糸。 It is made of a biocompatible thermoplastic resin, is made of a fine fiber bundle having an average fiber diameter of 10 to 1000 nm obtained by removing sea components from sea-island type composite fibers , has a tensile strength of 1.5 cN / dtex or more, and a knot strength of 1. A suture having 5 to 6.0 cN / dtex and a twist number of 50 to 1000 T / M. 生体適合性の熱可塑性樹脂がポリエステル類、ポリアミド類、ポリオレフィン類から選ばれる請求項1記載の縫合糸。   The suture according to claim 1, wherein the biocompatible thermoplastic resin is selected from polyesters, polyamides, and polyolefins. 生体適合性の熱可塑性樹脂が芳香族ポリエステルである請求項2記載の縫合糸。   The suture according to claim 2, wherein the biocompatible thermoplastic resin is an aromatic polyester. 以下に定義する繊維径変動係数(CV)が0〜0.3であることを特徴とする、請求項1〜3のいずれかに記載の縫合糸。
繊維径変動係数(CV)=σ/X
(繊維径は繊維断面における長径と短径の平均値とし、σは繊維径分布の標準偏差、Xは平均繊維径を示す。)
The suture according to any one of claims 1 to 3, wherein a fiber diameter variation coefficient (CV) defined below is 0 to 0.3.
Fiber diameter variation coefficient (CV) = σ / X
(The fiber diameter is the average value of the major axis and minor axis in the fiber cross section, σ is the standard deviation of the fiber diameter distribution, and X is the average fiber diameter.)
引張り強度が7.0cN/dtex以下である、請求項1〜4のいずれかに記載の縫合糸。The suture according to any one of claims 1 to 4, wherein the tensile strength is 7.0 cN / dtex or less. 特定溶剤への易溶解成分を海成分、難溶解成分を島成分とし、島成分が生体適合性の熱可塑性樹脂であって、該複合繊維の横断面における該島成分の平均径(r)が10〜1000nm、島数が100以上の海島型複合繊維から、海成分を抽出除去して島成分を得ることによる請求項1〜5のいずれかに記載の縫合糸の製造方法。   An easily soluble component in a specific solvent is a sea component, a hardly soluble component is an island component, the island component is a biocompatible thermoplastic resin, and the average diameter (r) of the island component in the cross section of the composite fiber is The method for producing a suture according to any one of claims 1 to 5, wherein an island component is obtained by extracting and removing a sea component from a sea-island type composite fiber having 10 to 1000 nm and having 100 or more islands. 海成分がポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングリコール系化合物共重合ポリエステル、およびポリエチレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエチレンテレフタレートから選択される少なくとも1種のアルカリ水溶液易溶解性ポリマーである請求項6記載の縫合糸の製造方法。   At least one alkali selected from the group consisting of polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymer polyester, and polyethylene glycol compound and 5-sodium sulfoisophthalic acid copolymer polyethylene terephthalate The method for producing a suture according to claim 6, which is an aqueous solution easily soluble polymer. 海成分が、5−ナトリウムスルホイソフタル酸を全ジカルボン酸成分中6〜12モル%含み、分子量4000〜12000のポリエチレングリコールを全ポリマー中3〜10重量%含む共重合ポリエチレンテレフタレートである請求項7に記載の縫合糸の製造方法。   The sea component is a copolymerized polyethylene terephthalate containing 5 to 12 mol% of 5-sodium sulfoisophthalic acid in the total dicarboxylic acid component and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000 in the total polymer. A method for producing the suture as described. 特定溶剤への易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維を合糸した後、海島型複合繊維から海成分を抽出除去し、50〜1000T/Mで加撚する工程を含む請求項6〜8のいずれかに記載の縫合糸の製造方法。   After combining the sea-island type composite fiber with the sea component as the easily soluble component in the specific solvent and the island component as the hardly soluble component, the sea component is extracted and removed from the sea-island type composite fiber and twisted at 50 to 1000 T / M. The manufacturing method of the suture in any one of Claims 6-8 including a process. 特定溶剤への易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維を50〜1000T/Mで加撚した後、海島型複合繊維から海成分を抽出除去する工程を含む請求項6〜8のいずれかに記載の縫合糸の製造方法。   A process comprising extracting a sea component from a sea-island type composite fiber after twisting a sea-island type composite fiber having an easily soluble component in a specific solvent as a sea component and a hardly soluble component as an island component at 50 to 1000 T / M. Item 9. A method for producing a suture according to any one of Items 6 to 8.
JP2005279884A 2005-09-27 2005-09-27 Suture and manufacturing method thereof Active JP5038610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279884A JP5038610B2 (en) 2005-09-27 2005-09-27 Suture and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279884A JP5038610B2 (en) 2005-09-27 2005-09-27 Suture and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007089653A JP2007089653A (en) 2007-04-12
JP5038610B2 true JP5038610B2 (en) 2012-10-03

Family

ID=37976011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279884A Active JP5038610B2 (en) 2005-09-27 2005-09-27 Suture and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5038610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264925A1 (en) * 2008-04-17 2009-10-22 Joseph Hotter Poly(Trimethylene)Terephthalate Filaments And Articles Made Therefrom
CN114470323B (en) * 2022-01-10 2023-02-24 浙江脉通智造科技(集团)有限公司 Blood vessel suture, artificial branch blood vessel and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470941A (en) * 1982-06-02 1984-09-11 Bioresearch Inc. Preparation of composite surgical sutures
JP4056361B2 (en) * 2002-11-14 2008-03-05 帝人株式会社 Polyglycolic acid fiber structure and method for producing the same
US7357810B2 (en) * 2003-12-18 2008-04-15 Ethicon, Inc. High strength suture with absorbable core and suture anchor combination
US7329271B2 (en) * 2003-12-18 2008-02-12 Ethicon, Inc. High strength suture with absorbable core

Also Published As

Publication number Publication date
JP2007089653A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4581725B2 (en) Leather-like sheet and manufacturing method thereof
JP2007262610A (en) Combined filament yarn
JP2010275649A (en) Fiber structure and textile product
JP2008007870A (en) Polyester fine fiber and its fiber product
JP2014101613A (en) Ultra fine fiber
JP3925176B2 (en) Polyester resin composition
JP5819620B2 (en) Polyester microfiber
JP5009591B2 (en) Surgical suture
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
JP5038610B2 (en) Suture and manufacturing method thereof
JP2011157646A (en) Polyester microfiber
JP6484948B2 (en) Sea-island composite fiber
JP2011058123A (en) Method for producing polylactic acid microfiber
JP2010063480A (en) Suture thread
JP4487973B2 (en) Polyester resin composition
JP4995523B2 (en) False twisted yarn and method for producing the same
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP2011157647A (en) Wiping cloth
JP2002227036A (en) Aliphatic polyester yarn for carpet and carpet
JP2011058124A (en) Polylactic acid microfiber
JP2010065325A (en) Polylactic acid nanofiber
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP4485824B2 (en) Split type composite fiber and fiber structure
JP2003055848A (en) Composite yarn composed of filament and staple fiber and having excellent antipilling property and stretchability
JP2000226734A (en) Conjugate fiber, combined filament yarn and woven or knitted fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250