以下、この発明の実施例について説明する。以下の説明において、本発明の実施例として、外部電源電圧を降圧して内電源電圧を生成する内部降圧回路について説明するが、本発明は所定の電圧レベルに保持すべき内部ノードの電圧レベルを調整する回路にも適用することができる。まず、本発明の内部降圧回路の特徴的構成をブロックのレベルで模式的に説明し、最後に本発明を具体化した半導体記憶装置における内部降圧回路の構成について説明する。
[実施例1]
図1は、この発明に従う内部電源電圧発生回路の第1の実施例の構成を概略的に示す図である。図1において、内部電源電圧発生回路は、内部電源線5上の内部電源電圧VCIと基準電圧発生回路4からの基準電圧Vrefを比較する比較回路3と、外部電源ノード1と比較回路3の出力部(ノード6)との間に接続される抵抗素子Z1と、ノード6と接地電圧供給ノード(以下、単に接地ノードと称す)VSSの間に接続される抵抗素子Z2と、ノード6上の電圧に従って外部電源ノード1から内部電源線5上へ電流を供給するドライブトランジスタ2を含む。外部電源ノード1は、外部電源電圧VCEを伝達する外部電源線であってもよく、また外部からの電源電圧が印加されるパッドであってもよい。この外部電源ノード1と接地ノードVSSの間に直列に接続される抵抗素子Z1およびZ2により、比較回路3の出力信号の振幅を制限する。簡単に図1に示す構成の動作について説明する。
比較回路3の出力信号がローレベル側に変化した場合、外部電源ノード1から電流が抵抗素子Z1を介してノード6に供給され、このノード6の電圧の低下を抑制する。逆に、比較回路3の出力信号はHレベルに向かって変化した場合には、抵抗素子Z2がこのノード6から接地ノードVSSに電流を流すため、ノード6の電圧上昇が抑制される。抵抗素子Z1および2による比較回路3の出力信号の振幅制限効果は、比較回路3の出力信号の電圧レベルが抵抗素子Z1およびZ2が抵抗分割によりノード6に与えるバイアス電圧より大きくずれるほど大きくなる。すなわち、比較回路3の出力信号の振幅が大きくなるほどこの比較回路3の利得(基準電圧Vrefと内部電源電圧VCIとの差に対する出力信号の振幅の比)が小さくされる。これにより、内部電源電圧VCIが急激に変化したときの比較回路3の出力信号の発振現象を抑制することができる。次に、この抵抗素子Z1およびZ2による振幅制限の作用について具体的に説明する。
今、図2に示すように、比較回路3の出力段においては、外部電源ノード1とノード6の間にスイッチング素子SW1と抵抗素子Zuが接続され、またノード6と接地ノードVSSの間に抵抗Zdとスイッチング素子SW2が接続されている構成を想定する。スイッチング素子SW1およびSW2は相補的にオン・オフ状態となる。この比較回路3の出力段の構成については後に詳細に説明する。今、ノード6の電位は、初期状態において抵抗素子Z1およびZ2により所定電圧にバイアスされているとする。抵抗素子Z1およびZ2の抵抗値をそれぞれR1およびR2とすると、ノード6の電圧が、初期状態において、
V(初期)=R2・VCE/(R1+R2)
で与えられる。内部電源電圧VCIが所定の電圧レベル(基準電圧Vref)よりも低下したとき、比較回路3の出力信号の電圧レベルは低下し、ドライブトランジスタ2のコンダクタンスが初期状態のそれよりも大きくされ、このドライブトランジスタ2を流れる電流Iが大きくされる。この状態において、比較回路3においては、スイッチング素子SW2がオン状態となり、ノード6を接地ノードVSSへ放電する。このとき、ノード6の最終到達電位は、
V=(R2//Rd)・VCE/(R1+(R2//Rd))
で与えられる。ただし、R2//Rdは並列に接続された抵抗素子Z2およびZdの合成抵抗値を示す。ただし、抵抗素子Zdの抵抗値はRdとしている。すなわち、
(R2//Rd)=R2・Rd/(R2+Rd)
で与えられる。したがって、抵抗素子Z1およびZ2が設けられていない場合には、このノード6の最低到達電位は接地電圧VSSである。
また、ノード6の電圧レベルが上昇する場合、比較回路3においては、スイッチング素子SW1がオン状態とされ、ノード6は、抵抗素子Zuを介して電流を供給されてその電位が上昇する。このとき、ノード6の最高到達電位は、
V=R2・VCE/((R1//Ru)+R2)
で与えられる。ただし、R1//Ruは抵抗素子Z1およびZuの合成抵抗を示す。抵抗素子Z1およびZ2が設けられていないとき、ノード6の最終到達電位は外部電源電圧VCEとなる。したがって、ノード6の電圧レベルは上限が抵抗素子Z1、Z2およびZuにより決定され、その下限が抵抗素子Z1、Z2およびZdにより決定される範囲内で変動する。ノード6の電圧のリンギングは、L・di/dtに比例する。ただし、Lは、ノード6に付随する寄生インダクタンスを示し、di/dtは、ノード6における電流の変化率(時間についての)を示す。したがってノード6の電圧振幅を小さくすることによりdi/dtを小さくすることができ、比較回路3の出力信号のリンギングすなわち発振現象を抑制することができる。この抵抗素子による振幅制限はまた以下の効果をもたらす。
今、図3に示すように抵抗素子Z1およびZ2が設けられていない場合には、比較回路3は、スタンバイ時には外部電源電圧VCEレベルの出力信号を出力すると想定する(後に説明するように比較回路3をカレントミラー型増幅回路で構成し、定電流源をスタンバイ時には遮断状態とすることによりこの条件が実現される)。一方、抵抗素子Z1およびZ2によりノード6の電圧をVCE−Vtpの電圧レベルに設定する。ただしVtpはドライブトランジスタ2のしきい値電圧の絶対値を示す。この状態においては、ドライブトランジスタ2はオフ状態であり、外部電源ノード1から内部電源線5へは電流は供給しない。
スタンバイサイクルが完了し、アクティブサイクルに入り、負荷回路7が動作し、内部電源電圧VCIを使用した状態を考える。この負荷回路7の動作により、内部電源線から負荷回路7へ電流が流入し、内部電源電圧VCIの電圧レベルが低下する。この内部電源電圧VCIの電圧レベルの低下に従って比較回路3の出力信号の電圧レベルが低下する。ノード6の電圧レベルがVCI−Vtp以下の電圧レベルに到達するとドライブトランジスタ2がオン状態となり、外部電源ノード1から内部電源線5へ電流を供給する。このとき、従来の構成においては、比較回路3の出力信号がVCE−Vtp以下となったときにドライブトランジスタ2が電流を供給する。しかしながら、本発明の場合、抵抗素子Z1およびZ2によりこのノード6の電圧レベルはVCE−Vtpの電圧レベルに設定されており、したがって、比較回路3の出力信号の電圧レベルが低下すれば即座にドライブトランジスタ2がオン状態となり、外部電源ノード1から内部電源線5へ電流を供給する。したがって、内部電源電圧VCIの変化量が少ないときにドライブトランジスタ2を介して電流を内部電源線5上へ供給することができ、高速で内部電源電圧VCIを所定の電圧レベル(基準電圧Vrefレベル)に復帰させることができる。
一方、従来の構成の場合、ドライブトランジスタ2が電流を供給する時点において、既に内部電源電圧VCIは大きく変化しており、したがってこの大きく変化した内部電源電圧VCIをもとの電圧レベルに復帰させるために、大きな電流をドライブトランジスタ2を介して外部電源ノード1から内部電源線5へ供給する必要がある。またこの期間も長くなる。このとき、大きな電流をドライブトランジスタ2を介して内部電源線5へ供給するため、内部電源線5における電流変化率が大きくなり、内部電源線5上でのリンギングが生じる。応じて、比較回路3の出力信号においても大きなリンギングが生じ、比較回路3の出力信号の発振現象が発生する。一方、本発明においては、内部電源電圧VCIの変化が小さいときにドライブトランジスタ2を介して内部電源線5上へ電流を供給しており、この内部電源電圧VCIの変化速度は小さくすなわち内部電源線上の電流変化率は小さく、したがって小さなリンギングしか生じない。これにより、ドライブトランジスタ2がオン状態となる期間における外部電源ノード1から内部電源線5への供給電流量は本発明の場合、従来の構成に比べて大幅に小さくされるとともに、内部電源電圧のリンギングが小さいため、ドライブトランジスタ2を介して内部電源線5へ電流を供給する期間および回数を少なくすることができ、従来の構成に比べて大幅に、内部電源電圧VCIを安定化するために外部電源ノード1から内部電源線5へ供給する電流量を小さくすることができる。すなわち、半導体装置の消費電流を大幅に低減することができることになり、低消費電流で安定に内部電源VCIを生成することができる。
また、図3に示す信号波形図においては、内部電源電圧VCIが変化してからノード6の電位が変化するまでの応答に遅れが生じているが、図4に示すように、本発明の場合、この応答の遅れを大幅に低減することができる。
すなわち、図4に示すように、従来の場合、ノード6の電位が所定の電圧レベル(VCE−Vtp)以下に低下してからドライブトランジスタ2がオン状態となり、外部電源ノード1から内部電源線へ電流が供給される。一方、本発明の場合、比較回路3の出力信号の電圧レベルが低下すれば、即座にノード6の電圧レベルが低下し、このノード6の電圧の低下に伴って即座にドライブトランジスタ2を介して外部電源ノード1から内部電源線5へ電流を供給することができる。これにより、内部電源電圧VCIの変化に応答して高速でドライブトランジスタ2をオン状態として外部電源ノード1から内部電源線5へ電流を供給することができ、応答特性が大幅に改善される。
[抵抗素子Z1、Z2、Zu、およびZdの抵抗値の関係]
図5は、抵抗素子Z1、Z2、Zu、およびZdの抵抗値の関係を模式的に示す図である。図5において、2つの負荷回路7Aおよび7Bが設けられる。負荷回路7Aに対しては、外部電源ノード1からドライブトランジスタ2Aを介して電流が供給される。負荷回路7Bは、外部電源ノード1からドライブトランジスタ2Bを介して電流が供給される。ドライブトランジスタ2Aのゲート(制御電極)には、抵抗素子Z1A、Z2A、ZuA、およびZdAが設けられる。ドライブトランジスタ2Bのゲートには、抵抗素子Z1B、Z2B、ZuB、およびZdBが設けられる。
負荷回路7Aおよび7Bがその動作内容が異なり、応じてその動作特性も異なる。今、一例として、負荷回路7Aとしてダイナミック型半導体装置における周辺回路などの論理動作を行なう回路を考え、負荷回路7Bとして、メモリセルアレイ駆動回路(ビット線の充放電を行なう回路(センスアンプ))を考える。このような負荷回路7Aおよび7Bに対して供給されるべき内部電源電圧VCIは、図6に示すような条件が要求される。
図6は、ダイナミック型半導体記憶装置の内部電源電圧に対して要求される条件を例示的に示す図である。図6において、ダイナミック型半導体記憶装置(DRAM)においてよく知られているロウアドレスストローブ信号/RASが活性状態のLレベルとされると、このDRAMのアクティブ動作が開始される。まず最初に信号/RASが活性化されると、周辺回路(デコーダ、バッファ回路、および内部制御信号発生回路)が動作する(ただし行選択動作に関係する回路部分)。これらの回路すなわち負荷回路7Aは、高速に動作し、その出力信号を高速で安定状態に設定する必要がある。この場合、負荷回路7Aに対する電源電圧VCIとしては、負荷回路7Aが動作時に消費する電流量は小さいものの、その内部電源電圧VCIの電圧レベルは高速でもとの電圧レベルに回復することが要求される(負荷回路7Aの出力信号の電圧レベルが内部電源電圧VCIの電圧レベルにより決定されるため)。この場合、内部電源電圧VCIが低下した場合高速で所定の電圧レベルに復帰させる必要があり、抵抗素子ZuAおよびZdAの影響を抵抗素子Z1AおよびZ2Aの振幅制限機能よりも大きくする必要がある。高速で比較回路3の出力信号の電圧レベルに従ってドライブトランジスタ2Aをオン・オフ状態とする必要があるためである。
一方、センスアンプなどのビット線を充放電する負荷回路7Bの場合、充電すべきビット線の数は多く、そのため消費電流が多くなる。しかしながら、センスアンプの動作時において、ビット線の充電電位は、所定の時間内に一定電圧レベルに到達すればよい(列選択動作が開始する前)。したがって、大きな消費電流を補償する必要があるものの、その内部電源電圧VCIは高速で所定電圧レベルに回復する必要はない。したがってこの場合、負荷回路7Bに対しては、抵抗素子Z1BおよびZ2Bの影響が抵抗素子ZuBおよびZdBの影響よりも大きくされる。比較回路3の出力信号の電圧レベルの振幅が大きくなるのを抑制する。しかしながら、負荷回路7Aおよび7Bいずれに対しても、抵抗素子Z1AおよびZ2Aならびに抵抗素子Z1BおよびZ2Bの振幅制限機能は作用しており、高速応答性および消費電流低減および比較回路3の出力信号の発振現象の抑制は確実に実現することができる。負荷回路7aおよび7bの消費電流の大小に応じてドライブトランジスタ2Aおよび2Bの電流駆動力が併せて調整される。また、抵抗素子Z1、Z2、ZuおよびZdの抵抗値は、対応のドライブトランジスタ2が生成する内部電源電圧VCIを使用する負荷回路の動作特性に応じて決定される。
以上のように、ドライブトランジスタ2の供給電流量を制御する比較回路3の出力信号の振幅を制限する抵抗素子を設けることにより、比較回路3の出力信号の発振現象を抑制し、安定に所望の電圧レベルの内部電源電圧VCIを生成することができる。
[抵抗素子の具体的構成1]
図7は、図1に示す抵抗素子の具体的構成を示す図である。図7においては、抵抗素子Z1として、ポリシリコンまたは活性層(半導体基板表面に形成される不純物領域)で形成される抵抗Raが用いられ、抵抗素子Z2として、同様にポリシリコンまたは活性層で形成される抵抗Rbが用いられる。抵抗素子Z1およびZ2を実現する構成としては最も単純であるが、ノード6の電圧レベルの上昇時に抵抗Rbを介して電流が接地ノードVSSへ流れ、ノード6の電圧上昇は抑制される。一方、ノード6の電圧レベルの低下時には、抵抗Raによりノード6の電圧下降が抑制される。単純な形態であるが、十分にこの比較回路3の出力信号の振幅を抑制することができる。
[抵抗素子Z1およびZ2の具体的構成2]
図8は、図1に示す抵抗素子Z1およびZ2の第2の具体的構成を示す図である。図8において、抵抗素子Z1は、そのソースが外部電源ノード1に接続され、ゲートおよびドレインがノード6に接続されるpチャネルMOSトランジスタPTにより構成され、抵抗素子Z2は、そのゲートおよびドレインがノード6に接続され、そのソースが接地ノードVSSに接続されるnチャネルMOSトランジスタNTで構成される。MOSトランジスタPTおよびNTはほぼ同じサイズを備えており、抵抗素子として機能する。MOSトランジスタは、一般に、そのゲート−ソース間電圧をVgsとし、しきい値電圧の絶対値をVthとするとβ(Vgs−Vth)2 のドレイン電流を供給する。ただし、βは、MOSトランジスタのゲート幅(チャネル幅)Wとゲート長(チャネル長)Lの比W/Lに比例する定数である。したがってノード6の電圧レベルの変化が大きくなると、MOSトランジスタPTおよびNTを介して流れる電流が前述の自乗特性に従って変化し、より高速で、比較回路3の出力信号の振幅制限を行なうことができる。すなわち、ノード6の電圧レベルが比較回路3の出力信号に従って上昇すると、pチャネルMOSトランジスタPTのゲート−ソース間電圧が低下し、このpチャネルMOSトランジスタPTを介して外部電源ノード1からノード6へ流れる電流量が上述の自乗特性を示す式に従って低下し、一方、nチャネルMOSトランジスタNTのゲート−ソース間電圧が上昇し、このnチャネルMOSトランジスタNTを介してノード6から接地ノードVSSへ流れる電流が自乗特性に従って増加する。これにより、ノード6の電圧上昇をより高速で抑制することができる。ノード6の電圧降下時には逆の動作が行なわれ電圧降下が制限される。
[抵抗素子Z1およびZ2の構成3]
図9は、図1に示す抵抗素子Z1およびZ2の第3の具体的構成を示す図である。図9において、抵抗素子Z1は、ゲートおよびドレインが外部電源ノード1に接続され、そのソースがノード6に接続されるnチャネルMOSトランジスタN1で構成され、抵抗素子Z2は、そのソースがノード6に接続され、ゲートおよびドレインが接地ノードVSSに接続されるpチャネルMOSトランジスタP1で構成される。ノード6の電圧上昇時には、MOSトランジスタP1のゲート−ソース間電圧がより負となり、MOSトランジスタP1がより強くオン状態となって多くの電流を流す。ノード6の電圧降下時にはMOSトランジスタN1がより強くオン状態となって電流をノード6へ供給する。図9に示す構成においても、図8に示す構成と同様、ノード6の電圧レベルの変化に応じてMOSトランジスタN1およびP1を流れる電流が自乗特性に従って変化し、いわゆる「可変抵抗素子」として作用し、高速で比較回路3の出力信号の振幅を抑制することができる。
[抵抗素子Z1およびZ2の具体的構成4]
図10は、図1に示す抵抗素子Z1およびZ2の第4の具体的構成を示す図である。図10に示す構成においては、抵抗素子Z1は、ソースが外部電源ノード1に接続され、ドレインがノード6に接続され、そのゲートが一定の電圧Vcpを受けるように接続されるpチャネルMOSトランジスタP2で構成され、抵抗素子Z2は、ドレインがノード6に接続され、ソースが接地ノードVSSに接続され、そのゲートが一定の電圧Vcnを受けるように接続されるnチャネルMOSトランジスタM2により構成される。pチャネルMOSトランジスタT2のゲート−ソース間電圧はVcp−VCEで一定であり、したがってpチャネルMOSトランジスタT2はそのゲート電圧Vcpにより決定されるオン抵抗(チャネルコンダクタンス)を有する抵抗素子として機能する。同様に、nチャネルMOSトランジスタN2のゲート−ソース間電圧はVcn−VSSで一定であり、nチャネルMOSトランジスタはそのゲート電圧Vcnで決定されるオン抵抗(チャネルコンダクタンス)を有する抵抗素子として機能する。このMOSトランジスタP2およびN2を用いる構成の場合、ポリシリコンまたは活性層を利用する抵抗に比べて占有面積を小さくすることができるとともに、ゲート電圧VcpおよびVcnによりMOSトランジスタP2およびN2の抵抗値を最適値に設定することができる。
[抵抗素子Z1およびZ2の具体例5]
図11は、図1に示す抵抗素子Z1およびZ2の第5の具体的構成を示す図である。図11において、抵抗素子Z1は、そのドレインが外部電源ノード1に接続され、そのゲートが一定の電圧Vcnnを受けるように接続されかつそのソースがノード6に接続されるnチャネルMOSトランジスタN3で構成され、抵抗素子Z2は、そのソースがノード6に接続され、そのドレインが接地ノードVSSに接続され、そのゲートが一定の電圧Vcppを受けるように接続されるpチャネルMOSトランジスタP3で構成される。MOSトランジスタのドレイン電流Idsが、飽和領域においては、Ids=β(Vgs−Vth)2 で与えられる。すなわち、ドレイン電流Igsは、ゲート−ソース間電圧Vgsがしきい値電圧Vthより高くなると流れる。したがって、図11に示す構成の場合、MOSトランジスタN3は、ノード6の電圧がVcnn−Vthよりも低くなると電流を供給する。同様に、pチャネルMOSトランジスタP3は、ノード6の電圧レベルがVctp+Vtpよりも高くなったときにノード6から接地ノードVSSへ電流を流す。
したがって、図12に示すように、VCE>Vcpp+Vtp>Vcnn−Vtn>VSSという関係を満たすように電圧VcnnおよびVcppを設定すれば、振幅制限が行なわれない領域と振幅制限が行なわれる領域を設けることができる。すなわち、ノード6の電圧がVcpp+VtpとVcnn−Vtnの間のときには、MOSトランジスタN3およびP3がともにオフ状態となるため、ノード6の電位は比較回路3の出力信号に従って変化する。したがって、この領域においては、比較回路3の出力信号に対する振幅制限は行なわれない。一方、ノード6の電圧がVctp+Vtp以上に上昇した場合には、pチャネルMOSトランジスタP3がオン状態となり、ノード6から接地ノードVSSへ電流を引抜く。したがって、そのときには、比較回路3の出力信号の電圧レベルの上昇が抑制され、振幅制限が行なわれる。また、ノード6の電圧レベルがVcnn−Vtnよりも小さくなったときには、MOSトランジスタN3がオン状態となり、ノード6へ外部電源ノード1から電流を供給し、ノード6の電圧レベルを上昇させることにより、比較回路3の出力信号に対する振幅制限が行なわれる。
すなわち、図11に示す構成により、比較回路3の出力信号が小振幅信号の場合には振幅制限は何ら行なわれず、大振幅信号の場合にのみ振幅制限が行なわれる。比較回路3の出力信号が発振するのは、内部電源線5上の内部電源電圧VCIが急激に変化し、比較回路3からの出力信号が大きく変化したときである。したがって、このような比較回路3の出力信号に発振現象が発生する可能性のあるときにのみ振幅制限を行なうことにより、急激に内部電源電圧VCIが変化しても高速でこの内部電源電圧を安定状態に復帰させることができる。内部電源電圧VCIの変化が小さいかまたはその変化速度が緩やかな場合には、ノード6の電圧レベルの変化は小さいかまたは緩やかであり、この場合には、比較回路3の出力信号の振幅制限を行なわないことにより、この内部電源電圧VCIの変化に追随してドライブトランジスタ2のコンダクタンスを調整することができ、この変化した内部電源電圧VCIを安定状態へ高速で復帰させることができる。この構成により、高周波応答特性(内部電源電圧VCIが急激に変化したときの応答特性)および直流特性(内部電源電圧VCIが緩やかに変化するときの応答特性)いずれにも優れた内部降圧回路(内部電源電圧発生回路)を実現することができる。
なお、抵抗素子Z1およびZ2としてMOSトランジスタを用いる場合、これらのMOSトランジスタの電流駆動力と比較回路3のノード6の充放電を行なう出力段の構成要素であるMOSトランジスタの電流駆動力との関係は、比較回路7の動作速度(または動作特性)に応じて決定される。これは先に図5を参照して説明した抵抗値R1,R2,RuおよびRdの関係と同様である。
[変更例1]
図13は、この発明の第1の実施例の第1の変更例の内部降圧回路の構成を示す図である。図13に示す構成においては、抵抗素子Z1とノード6との間に期間制御信号/ENに応答してオン状態となるpチャネルMOSトランジスタP4が設けられ、またノード6と抵抗素子Z2との間に期間前制御号ENに応答してオン状態となるnチャネルMOSトランジスタN4が設けられる。期間制御信号/ENおよびENは互いに相補な信号である。この期間制御信号/ENおよびENは、負荷回路7が動作する期間を定める信号であればよい。たとえば、この内部降圧回路が半導体記憶装置に適用される場合には、この期間制御信号/ENとして、ロウアドレスストローブ信号/RASまたはチップセレクト信号/CSを利用することができる。
また、図13においては、比較回路3は、期間制御信号ENに応答して活性化される電流源としてのnチャネルMOSトランジスタN5を含むように示される。比較回路3は、外部電源ノード1に与えられる外部電源電圧VCEを一方動作電源電圧として動作し、基準電圧Vrefと内部電源電圧VCIを比較するが、この比較回路3は、後にその構成は詳細に説明するが、カレントミラー型差動増幅回路の構成を備えており、このカレントミラー型差動増幅回路の電流源としてMOSトランジスタN5が動作する。したがって期間制御信号ENが非活性状態のLレベルのときには、比較回路3の出力信号は外部電源電圧VCEレベルとなる。次に図13に示す構成の動作についてその動作波形図である図14を参照して説明する。
期間制御信号ENおよび/ENが非活性状態のLレベルおよびHレベルにそれぞれあるときには、MOSトランジスタP4およびN4はともにオフ状態であり、ノード6は、抵抗素子Z1およびZ2から分離される。したがって、この状態においては、外部電源ノード1から接地ノードVSSへ流れる電流の経路は遮断され、電流消費が防止される。また、比較回路3においては、MOSトランジスタN5がオフ状態にされ、比較回路3は非活性状態にあり、その出力信号は外部電源電圧VCEレベルである。したがって、ノード6の電圧レベルは外部電源電圧VCEレベルになり、ドライブトランジスタ2もオフ状態になる。この期間は、スタンバイ期間であり、負荷回路7は動作せず、したがって内部電源電圧VCIはほとんど使用されず(負荷回路7におけるスタンバイ電流による電流消費が存在するだけである)、内部電源電圧VCIはほぼ一定値を維持する。
アクティブサイクルが始まると、期間前記信号ENおよび/ENが活性状態のHレベルおよびLレベルにそれぞれ設定される。これによりMOSトランジスタP4、N4、およびN5がオン状態となり、ノード6の電圧レベルが抵抗素子Z1およびZ2の抵抗分割により低下する。この状態においても、ドライブトランジスタ2はほぼオフ状態を維持する。アクティブサイクルにおいて負荷回路7が動作すると、内部電源電圧VCIの電圧レベルが低下し、応じてノード6の電圧レベルが低下し、ドライブトランジスタ2を介して外部電源ノード1から内部電源線5へ電流が供給される。この内部電源電圧VCIの電圧レベルの調整時における抵抗素子Z1およびZ2の機能は、先に説明したものと同様である。期間制御信号ENおよび/ENにより、内部電源電圧VCIが変化する期間のみ抵抗素子Z1およびZ2をノード6に接続するこにとより、この経路における消費電流を低減することができる。この期間制御信号EN、/ENは、負荷回路7が動作する期間を決定する信号であればよく、負荷回路7はこの期間制御信号ENおよび/ENに直接応答して動作しなくてもよい。また抵抗素子Z1およびZ2としてはし、先に図7ないし図11に示した具体的構成のいずれをも利用することができる。
[変更例2]
図15は、この発明の第1の実施例の第2の変更例を示す図である。図15に示す構成においては、期間制御信号/ENに応答してオン状態となるpチャネルMOSトランジスタP6が抵抗素子Z1の一方端と外部電源ノード1との間に設けられ、また期間制御信号ENに応答してオン状態となるnチャネルMOSトランジスタN6が抵抗素子Z2の一方端と接地ノードVSSの間に設けられる。抵抗素子Z1およびZ2のそれぞれの他方端はノード6に接続される。他の構成は、図13に示す構成と同じである。この図15に示す構成のように、抵抗素子Z1およびZ2をそれぞれ期間制御信号/ENおよびENに従って外部電源ノード1および接地ノードVSSから分離する構成としても図13に示す構成と同様に、スタンバイ時(期間制御信号ENおよび/ENの非活性時)における抵抗素子Z1およびZ2の電流消費を防止することができ、低消費電流の内部降圧回路を実現することができる。
以上のように、この発明の第1の実施例に従えば、ドライブトランジスタの電流供給量を調整する比較回路の出力信号の振幅を抑制するように構成したため、ドライブトランジスタ2のゲート電位が大きく変動し、ドライブトランジスタ2を介して大きな電流が内部電源線5上へ伝達されて内部電源電圧が大きく変動することにより発生する内部電源電圧VCIのオーバーシュートおよびアンダーシュートが防止され、また内部電源電圧VCIの変化に高速で応答してこの内部電源電圧VCIを所定の電圧レベルに復帰させることができる。
また期間制御信号ENおよび/ENに従って、必要な期間のみ出力制限用の抵抗素子に電流を流す構成とすることにより、振幅制限のための消費電流を低減することができる。
[実施例2]
図16は、この発明に従う内部降圧回路の第2の実施例の構成を示す図である。図16に示す構成においては、活性制御信号ENAに応答してノード6の電圧レベルを降下させる電圧降下手段10が設けられる。活性制御信号ENAは負荷回路7の活性タイミングを決定する。次のこの図16に示す内部降圧回路の動作をその動作波形図である図17を参照して説明する。期間制御信号(アクティブ信号)ENが活性状態のHレベルとなると比較回路3が活性化される。この状態においてはまだ活性制御信号ENAは非活性状態のLレベルであり、電圧降下手段10は非活性状態にあり、また負荷回路7も動作せず、スタンバイ状態を維持している。ドライブトランジスタ2は、比較回路3の出力信号に従って電流Isを内部電源線5へ供給する。このとき、負荷回路7においては、スタンバイ電流が流れる。
活性制御信号ENAが活性状態のHレベルとなると、電圧降下手段10が活性化され、ノード6の電圧レベルを低下させる。これにより、ドライブトランジスタ2のコンダクタンスが大きくなり、電流Isが増加する。負荷回路7がまたこの活性制御信号ENAに応答して活性化され、内部電源線5から電流ILを消費する。この負荷回路7が消費する電流ILは、ドライブトランジスタ2から供給される。ドライブトランジスタ2が供給する電流Isが負荷回路7が消費する動作電流ILと等しい場合には、内部電源線5上の内部電源電圧VCIは変化せず一定値を保持する。ドライブトランジスタ2が供給する電流Isが負荷回路7が消費する電流ILよりも小さくなった場合には、内部電源線5上の内部電源電圧VCIが低下する。この場合には、比較回路3の出力信号がLレベルへ変化し、ドライブトランジスタ2のコンダクタンスをより大きくし、電流Isを増加させる。したがって、負荷回路7の動作開始時にこれと同期して電圧降下手段10を活性化させてノード6の電圧レベルを低下させることにより、内部電源電圧VCIが急激に低下するのを防止することができ、内部電源電圧VCIを一定の電圧レベルに保持することができる。
[第2の実施例の具体的構成1]
図18は、この発明の第2の実施例の第1の具体的構成を示す図である。図18に示す構成においては、電圧降下手段10は、ノード6と接地ノードVSSの間に直列に接続されるnチャネルMOSトランジスタN6とpチャネルMOSトランジスタP8を含む。nチャネルMOSトランジスタN7は、その一方導通端子がノード6に接続され、そのゲートに活性制御信号ENAを受ける。pチャネルMOSトランジスタP8は、そのソースがnチャネルMOSトランジスタN7の他方導通端子に接続され、そのゲートおよびドレインが接地ノードVSSに接続される。次に動作について説明する。
活性制御信号ENAが非活性のLレベルのとき、MOSトランジスタN7はオフ状態にあり、ノード6は比較回路3の出力信号の電圧レベルにある。すなわち信号ENAがLレベルにあれば、ノード6の電圧レベルは外部電源電圧VCEレベルであり、信号ENAがHレベルのときには、ノード6の電圧レベルは内部電源電圧VCIと基準電圧REFとの関係に従って決定される電圧レベルに設定される。
活性制御信号ENAが活性状態のHレベルとなると、MOSトランジスタN7はオン状態となり、ノード6は、MOSトランジスタN7およびP8を介して放電され、電圧レベルが低下する。これにより、ドライブトランジスタ2のコンダクタンスが増大し、外部電源ノード1から内部電源線5へ供給される電流が増加する。負荷回路7は、また活性制御信号ENAに応答して活性化され、内部電源線5から電流を消費する。この負荷回路7の消費電流の急激な増大は、ドライブトランジスタ2を介して供給される電流により補償されるため、内部電源線5上の内部電源電圧VCIの急激な変化は抑制される。このとき、ドライブトランジスタ2を介して供給される電流は、負荷回路7の消費電流の最大値よりも小さくされる。ドライブトランジスタ2が供給する電流が負荷回路7が消費する電流よりも大きく、内部電源線5上の内部電源電圧VCIの電圧レベルが不必要に上昇するのを防止するためである。負荷回路7の動作に従って、内部電源電圧VCIの電圧レベルが低下すると比較回路3の出力信号の電圧レベルが低下する。これに応じてドライブトランジスタ2の供給電流量も大きくされる。負荷回路7の動作の初期時にドライブトランジスタ2を介して比較的大きな電流を供給しているため、内部電源電圧VCIの急激な変化が抑制され、比較回路3の出力信号はこの内部電源電圧VCIの変化に追随してドライブトランジスタ2のコンダクタンスを調整する。ノード6の電圧レベルが低下すると、MOSトランジスタP8のゲート−ソース間電圧が小さくなり、MOSトランジスタP8を介して流れる電流量が低下する。これにより、電圧降下手段10の影響の度合が小さくされ、比較回路3の出力信号に従ってドライブトランジスタ2のコンダクタンスが調整される。この構成により、負荷回路7の動作開始時における内部電源電圧VCIの急激な低下を防止することができるのみならず、必要以上の大きな電流が供給され、内部電源電圧VCIがオーバーシュートするのを防止することができる。
なお図18に示す構成においては、pチャネルMOSトランジスタP8が用いられているが、nチャネルMOSトランジスタが用いられてもよい。
[電圧降下手段の具体的構成2]
図19は、図16に示す電圧降下手段の第2の具体的構成を示す図である。図19において、電圧降下手段10は、並列に接続されるキャパシタC1および抵抗R5と、活性制御信号ENAに応答してキャパシタC1および抵抗R5をノード6に接続するnチャネルMOSトランジスタN8を含む。抵抗R5は比較的大きな抵抗値を有しており、プルダウン抵抗として機能する。すなわち、抵抗R5は、MOSトランジスタN8のオフ状態時において、キャパシタC1の充電電位を接地電位VSSレベルに放電する機能を主として備える。次に動作について説明する。
活性制御信号ENAが非活性状態のLレベルのとき、MOSトランジスタN8はオフ状態にある。この状態において、キャパシタC1の一方電極は抵抗R5を介して接地電位VSSレベルに放電される。活性制御信号ENAが活性状態のHレベルとなるとMOSトランジスタN8がオン状態となり、ノード6は接地電位レベルに放電されていたキャパシタC1の一方電極に接続される。これにより、ノード6からキャパシタC1へ電流が流れ込み、ノード6の電位が低下する。このノード6の電位低下に従ってドライブトランジスタ2のコンダクタンスが大きくされ、外部電源ノード1から内部電源線5への供給電流が増加する。ノード6の低下した電位は、比較回路3の出力信号により充電され、この比較回路3の出力信号とほぼ同じ電圧レベルにまでキャパシタC1の一方電極が充電される。ここで抵抗R5の電圧降下機能はすべて無視している。これにより、ドライブトランジスタ2は、負荷回路7の動作開始時において急激に増加する電流に対応して大きな電流を内部電源線5へ供給することができる。これにより、内部電源電圧VCIの急激な低下を防止することができ、負荷回路7の動作時において、内部電源電圧VCIの変化に追随して比較回路3の出力信号に従って内部電源電圧VCIを一定の電圧レベルに高速で回復させることができる。
活性制御信号ENAが非活性状態となるとMOSトランジスタN8がオフ状態とされ、このキャパシタC1の一方電極に充電された電圧は再び抵抗R5を介して接地電圧VSSレベルに放電される。
この図19に示す構成によれば、負荷回路7の動作開始時において瞬間的にノード6の電位を低下させることができ、急激に増大する負荷回路7の消費電流を補償するようにドライブトランジスタ2のコンダクタンスを調整することができ、内部電源電圧VCIの急激な変化を抑制することができ、安定に内部電源電圧VCIを生成することができる。
[第2の実施例の具体的構成3]
図20は、図16に示す電圧降下手段の第3の具体的構成を示す図である。図20においては、電圧降下手段10は、活性制御信号/ENAを受ける一方電極と、ノード6に接続される他方電極とを有するキャパシタC2を備える。活性制御信号/ENAは信号ENAと相補な信号であり、活性時にLレベルとされる。キャパシタC2は、容量結合により、活性制御信号/ENAをノード6に伝達する。次に図20に示す構成の動作についてその動作波形図である図21を参照して説明する。
活性制御信号/ENAがHレベルのときには、ノード6は、比較回路3の出力信号のレベルに応じた電圧レベルになる。負荷回路7が活性制御信号ENAに応答して動作するとき、活性制御信号/ENAが活性状態のLレベルとなり、ノード6の電圧レベルを低下させる。このノード6の電圧の低下量は、ノード6に付随する寄生容量とキャパシタC2の容量値により決定される。このノード6の電圧降下に従ってドライブトランジスタ2のコンダクタンスが大きくなりこのドライブトランジスタ2を介して流れる電流Isが急激に増加する。これにより、負荷回路7が動作し、この電流ILも増加し内部電源電圧VCIの急激な低下が抑制されて(図21において内部電源電圧VCIの変化を破線で示す)内部電源電圧VCIは緩やかに変化する。ノード6の電圧レベルはキャパシタC2の容量結合により低下した後、比較回路3の出力信号の電圧レベルに対応する電圧レベルにノード6が復帰し、ドライブトランジスタ2は、比較回路3の出力信号に従ってそのコンダクタンスが調整される。これにより、負荷回路7の動作開始時における消費電流ILによる内部電源電圧VCIの急激な変化を抑制することができ、安定に内部電源電圧VCIを所定の電圧レベルに維持することができる。
図20に示す構成は、さらに以下の利点を備える。すなわち、負荷回路7の動作が完了して活性制御信号/ENAが非活性状態のHレベルに立上がるとき、キャパシタC2の容量結合によりノード6の電圧レベルが上昇する。これにより、ドライブトランジスタ2のコンダクタンスが急激に低下し、供給電流Isが低下する。負荷回路7の動作が停止し、その消費電流ILが急激に減少した場合において、応じてドライブトランジスタ2が供給する電流Isを低減することができ、過剰な電流が外部電源ノード1から内部電源線5へ供給されるのを抑制することができ、内部電源線5上の内部電源電圧VCIのオーバーシュートを抑制することができる。これにより、負荷回路7の動作完了時における内部電源電圧VCIの電圧レベルの変動を防止することができる。
なお、図18ないし図20に示す構成において、信号ENとENAは同じ信号であってもよい。たとえばDRAMにおいて、信号ENおよびENAとしてロウアドレスストローブ信号RASまたはコラムアドレスストローブ信号CASが利用されてもよい。高周波動作する列選択回路または行選択回路に対する内部電源電圧VCIを安定に一定電圧レベルに保持することができる。
[電圧降下手段の具体的構成4]
図22は、図16に示す電圧降下手段の第4の具体的構成を示す図である。図22においては比較回路3の具体的構成も併せて示す。比較回路3は、その一方導通端子が外部電源ノード1に接続され、その他方導通端子がノード11に接続されるpチャネルMOSトランジスタP10と、その一方導通端子が外部電源ノード1に接続され、その他方導通端子がノード12に接続されるpチャネルMOSトランジスタP11と、その一方導通端子がノード11に接続され、その他方導通端子がノード13に接続され、そのゲートが内部電源線5に接続されるnチャネルMOSトランジスタN10と、その一方導通端子がノード12に接続され、その他方導通端子がノード13に接続され、そのゲートに基準電圧Vrefを受けるnチャネルMOSトランジスタN11と、ノード13と接地ノードVSSの間に接続され、そのゲートに期間制御信号ENを受けるnチャネルMOとトランジスタN5を含む。MOSトランジスタP10はそのゲートにpチャネルMOSトランジスタP11のゲートに接続されかつノード11に接続される。MOSトランジスタP10およびP11はカレントミラー回路を構成する。
電圧降下手段10は、ノード6とノード13の間に直列に接続されるnチャネルMOSトランジスタN20およびN21を含む。nチャネルMOトランジスタN20のゲートへは基準電圧Vrefが与えられ、MOSトランジスタN21のゲートへは活性制御信号ENAが与えられる。負荷回路7は、この活性制御信号ENAの相補な信号/ENAに応答して活性化されて所定の動作を実行する。次に動作についてその動作波形図である図23を参照して説明する。ただし、図23においては、制御信号ENは示していない。
制御信号ENが非活性状態のLレベルの場合、MOSトランジスタN5はオフ状態であり、ノード6から接地ノードVSSへの電流経路および外部電源ノード1から接地ノードVSSへの電流経路は遮断される。したがって、ノード6は、MOSトランジスタP11を介して外部電源電圧VCEレベルに充電される(外部電源ノード1とノード12の間で電流が流れないため、ノード12の電圧レベルは外部電源ノード1の電圧レベルに等しくなる)。
信号ENが活性状態のHレベルとなると、MOSトランジスタN5がオン状態とされて比較回路3が活性化され、ノード6上の電圧レベルが基準電圧Vrefと内部電源電圧VCIの関係に対応した電圧レベルに設定される。今、活性制御信号ENAがLレベルの状態を考える。このとき、内部電源電圧VCIが基準電圧Vrefよりも高い場合には、MOSトランジスタN10のコンダクタンスがMOSトランジスタN11のコンダクタンスよりも高くなり、MOSトランジスタN10を介して流れる電流がMOSトランジスタN11を介して流れる電流よりも多くなる。このMOSトランジスタN10へは、MOSトランジスタP10から電流が供給される。ノード11の電圧レベルはこのMOSトランジスタP10が供給する電流の増加に従って低下する(MOSトランジスタのドレイン電流の自乗特性に従って)。応じて、MOSトランジスタP11のゲート電位が低下し、MOSトランジスタP11には、MOSトランジスタP10を介して流れる電流のミラー電流が流れる。MOSトランジスタP10およびP11のサイズが等しい場合には、MOSトランジスタP10およびP11に同じ大きさの電流が流れる。これにより、ノード12の電位が上昇し、ドライブトランジスタ2のコンダクタンスが小さくされる。
逆に、内部電源電圧VCIが基準電圧Vrefよりも低い場合には、MOSトランジスタN10のコンダクタンスがMOSトランジスタN11のコンダクタンスよりも小さくなる。これにより、MOSトランジスタP10が供給する電流が低減され、応じてMOSトランジスタP11が供給する電流が低減され、ノード12が、MOSトランジスタN11およびN5を介して放電され、その電圧レベルが低下する。これによりドライブトランジスタ2のコンダクタンスが上昇する。すなわちこの比較回路3は、基準電圧Vrefと内部電源電圧VCIを差動的に増幅するカレントミラー型差動増幅回路の構成を備える。
次に、活性制御信号ENAが活性状態のHレベルとなった状態を考える。このときには、MOSトランジスタN21がオン状態とされ、MOSトランジスタN11およびN20が並列に接続される。MOSトランジスタN11およびN20が同じサイズを有する場合、等価的に、MOSトランジスタN11の電流供給量が2倍にされた状態に等しくなり、比較回路3においては基準電圧Vrefに対してオフセットがかけられた状態に等しくなる。すなわち、MOSトランジスタN10を介して流れる電流Iは、MOSトランジスタP10を介して供給される。同じ大きさの電流IがMOSトランジスタP11を介してMOSトランジスタN11およびN20に供給される。したがって、MOSトランジスタN11およびN20は電流I/2をそれぞれ流すだけである。MOSトランジスタN10のコンダクタンスがMOSトランジスタN11およびN20のコンダクタンスよりも大きくなったとき、ドライブトランジスタ2がオフ状態となるのは、このMOSトランジスタN10を介して流れる電流が、信号ENAが非活性状態のときに流れる電流の2倍の値に設定されたときである。したがって、ドライブトランジスタ2がオフ状態となる内部電源電圧VCIの電圧レベルは上昇する。これは、基準電圧Vrefを上昇させたことと等価である。同様に、MOSトランジスタN10のコンダクタンスがMOSトランジスタN11およびN20のコンダクタンスよりも小さくされたときでも、ノード12(ノード6)はMOSトランジスタN11およびN20を介して放電されるため、信号ENAが非活性状態のときに比べて2倍の速度でノード6の電位が低下し、内部電源5へ電流が供給される。したがって、内部電源電圧VCIは基準電圧Vrefよりも高い電圧レベルに維持されることになる。これはたとえば内部電源電圧VCIと基準電圧Vrefとが等しいときでも、MOSトランジスタN10を介して流れる電流の大きさの1/2の電流がMOSトランジスタN11およびN20それぞれを介して流れ、MOSトランジスタN11,N20の電流駆動力よりも小さな電流がこれらに供給されるだけであり、ノード12の電圧レベルが低下するため、ドライブトランジスタ2のコンダクタンスは小さくされ、内部電源線5へ電流が供給されて内部電源電圧VCIの電圧レベルが上昇することからも内部電源電圧VCIが基準電圧Vrefよりも高い電圧レベルに維持されることが理解できる。すなわち、内部電源電圧VCIは、MOSトランジスタN11およびN20がそれぞれ流すことのできる電流の2倍の電流をMOSトランジスタN10を介して流す電圧レベルに維持される。
次いで、活性制御信号ENAが非活性状態となり、一方、活性制御信号/ENAが活性状態となると、負荷回路7が動作し、所定の信号線の電圧レベルを内部電源電圧VCIの電圧レベルにまで上昇させる。このとき、負荷回路7は、通常よりも高い電圧レベルにプリチャージされ内部電源線5から電流を使用して内部信号線を所定の電圧レベルに充電している。したがって、内部電源電圧VCIが所定の電圧レベルよりも低下するのが防止される。これにより、内部電源電圧VCIの電圧レベルが急激に低下するのが防止され、内部電源電圧VCIを安定に所定の電圧レベルに維持することができる。次に、この図22に示す負荷回路の具体的構成について説明する。
図24(A)は、DRAMのセンスアンプ部の構成を概略的に示す図である。DRAMにおいては、1列のメモリセルが接続されるビット線対BLおよび/BLに対しnチャネルMOSトランジスタで構成されるNセンスアンプNSAと、pチャネルMOSトランジスタで構成されるPセンスアンプPSAが設けられる。NセンスアンプNSAはセンスアンプ活性信号SNに応答して活性化され、ビット線対BLおよび/BLの低電位のビット線の電位を接地電圧VSSレベルに放電する。PセンスアンプPSAはセンスアンプ活性化信号SPに応答して活性化され、ビット線対BLおよび/BLの高電位のビット線を内部電源電圧VCIレベルに充電する。
図24(A)においては、さらに、ワード線WLとビット線BLの交差部に対応してメモリセルMCが配置される状態が一例として示される。DRAMのメモリセルMCは、周知のごとく、電荷を格納するメモリキャパシタと、ワード線WL上の信号電位に応答してこのメモリキャパシタを対応のビット線BLに接続するアクセストランジスタとを備える。このPセンスアンプPSAが図22に示す負荷回路7に対応する。センスアンプ活性化信号SPが活性制御信号ENAに対応する。次にこの図24(A)に示す回路の動作をその動作波形図である。図24(B)を参照して説明する。
DRAMにおいては、ロウアドレスストローブ信号/RAS(図20に示す信号ENに対応)がLレベルに低下すると、メモリサイクルが始まる。信号/RASの立下がりに応答してDRAM内部において行選択動作が行なわれ、選択されたワード線WLの電位が上昇する。このとき、センスアンプ活性化信号SNおよびSPはそれぞれ非活性状態のLレベルおよびHレベルである。選択されたワード線WLの電位が上昇すると、この選択されたワード線WLに接続されるメモリセルMCの記憶するデータが対応のビット線BL(または/BL)に伝達される。
次いで、センスアンプ活性化信号SNが活性状態のHレベルとされ、NセンスアンプNSAが活性化され、ビット線BLおよび/BLの低電位のビット線の電位を接地電圧VSSレベルに放電する。次いで、センスアンプ活性化信号SPが活性化され、高電位のビット線の電位を内部電源電圧VCIレベルに上昇させる。この信号/RASの立下がりからセンスアンプ活性化信号SPの活性状態までの期間において、内部電源線5上の電源電圧VCIが所定の電圧レベルよりも高くされる。これにより、ビット線BLまたは/BLの充電を高速に行なうことができるとともに(内部電源電圧VCIの電圧レベルが昇圧されている)、このPセンスアンプPSAの動作時における内部電源電圧VCIの急激な低下を防止することができる。これにより、安定なセンス動作を保証することができる。
なお上述の説明において、内部電源電圧VCIが所定の電圧レベルよりも上昇されるプリブースト期間は、信号/RASの活性状態からセンスアンプ活性化信号SPの活性状態までの期間としている。しかしながらこれは、適用される半導体記憶装置の構成において適当に設定されればよく、ビット線BLおよび/BLのイコライズ動作完了後(信号/RASの立下がりに応答してビット線BLおよび/BLのイコライズが行なわれる場合またはメモリサイクル完了後信号/RASの立上がりにより発生されるイコライズ信号によるビット線BLおよび/BLの電位のイコライズ)からセンスアンプPSAの活性化(リストア動作)までの期間がプリブースト期間とされてもよい。センスアンプPSAが非活性状態の期間であればよい。
以上のように、この発明の第2の実施例に従えば、負荷回路が動作し、内部電源電圧VCIの電圧レベルが低下すると予測される期間においてのみドライブトランジスタのゲート電位を強制的に低下させてドライブトランジスタのコンダクタンスを大きくしているため、負荷回路が動作し、その消費電流が急激に増大しても、安定に内部電源電圧を所定の電圧レベルに保持することができる。
[実施例3]
図25は、この発明に従う内部電源電圧発生回路の第3の実施例の構成を示す図である。図25に示す構成においては、内部電源線5には、ドライブトランジスタ2とは別に、活性制御信号/ENに応答して内部電源線5を所定の電圧レベルに充電する充電回路20が設けられる。この活性制御信号/ENは、負荷回路7へ与えられる活性制御信号ENと相補な信号である。すなわち充電回路20は、負荷回路7が非活性状態のときに内部電源線5の電圧レベルを所定電圧レベル(内部電源電圧VCIよりも高い電圧レベル)に充電する。
この内部電源線5は、実施例1および2の場合と同様、ドライブトランジスタ2および比較回路3により一定の電圧レベルに保持される。次にこの図25に示す構成の動作について、図26に示す信号波形図を参照して説明する。
活性前記信号ENは非活性レベルのLレベルのとき、活性制御信号/ENが活性状態のHレベルにあり、充電回路20は、内部電源線5を所定の電圧レベル(内部電源電圧VCIよりも高い電圧レベル)に充電する。このとき、比較回路3は、また活性制御信号ENにより非活性状態に維持されてもよく、また活性状態とされていても、内部電源線5上の電源電圧VCIが基準電圧Vrefよりも高い電圧レベルであり、比較回路3は、ドライブトランジスタ2をオフ状態に維持する。
活性制御信号ENが活性状態のHレベルとなると、負荷回路7が所定のタイミングで動作する。このときまた充電回路20は、信号/ENが非活性状態となり、内部電源線5の充電動作を停止する。負荷回路7がこの活性制御信号ENに応答して所定のタイミングで動作し、駆動すべき信号線SGを内部電源電圧VCIの電圧レベルにまで上昇させる。この信号線SGの電圧上昇は、内部電源線5から電流を信号線SGへ供給することにより実現される。このとき、充電回路20により、内部電源線5上の電圧レベルは所定の電圧レベル(Vref)よりも高く設定されており、負荷回路7の動作時(信号線SGの充電動作時)において内部電源線5から急激に電流が信号線SGに流出しても、内部電源線5上の電源電圧VCIはこの充電回路20により充電された昇圧レベルからその電圧レベルが低下するため、負荷回路7の動作時における電源電圧VCIの電圧レベルの急激な低下を防止することができる。特に、図26において斜線で示す領域において使用される電流量が同じであれば、内部電源電圧VCIは、負荷回路7の動作時において所定の基準電圧Vrefの電圧レベルにまで低下するだけであり、内部電源電圧VCIの基準電圧Vref以下の低下を防止することができる。負荷回路7の活性期間中、比較回路3およびドライブトランジスタ2により内部電源線5上の電源電圧VCIは一定の電圧レベル(Vref)に維持される。
活性制御信号ENが再び非活性状態となり、負荷回路7の動作が完了すると、再び充電回路20が制御信号/ENに応答して活性化され、内部電源線5を一定の電圧レベル(Vref)よりも高い電圧レベルに内部電源線5を充電する。
上述の一連の動作により、充電回路20により、内部電源線5を基準電圧Vref以上の所定の電圧レベルに充電しておけば、負荷回路7の動作開始直後に消費される動作電流に起因する内部電源電圧VCIの電圧レベルの急激な低下を防止することができる。
図27は、図25に示す負荷回路の具体的構成を示す図である。図27において、負荷回路として、DRAMにおけるセンスアンプおよびセンスアンプ活性化回路を示す。DRAMにおいては、図24に示す構成と同様、ビット線BLおよび/BLに対しpチャネルMOSトランジスタP31およびP32で構成されるPセンスアンプPSAならびにnチャネルMOSトランジスタN31およびN32で構成されるNセンスアンプNSAが設けられる。MOSトランジスタP31およびP32はそのゲートおよびドレインが交差結合され、MOSトランジスタN31およびN32はゲートおよびドレインが交差結合される。
PセンスアンプPSAを活性化するために、信号/RASに応答して所定のタイミングでセンスアンプ活性化信号/SOを活性状態とする(Lレベルとする)Pセンスアンプ活性化回路30と、このセンスアンプ活性化信号/SOに応答してPセンスアンプPSAへ内部電源線5c上の内部電源電圧VCIを伝達するpチャネルMOSトランジスタP33が設けられる。NセンスアンプNSAに対しても、信号/RASに応答して所定のタイミングでセンスアンプ活性化信号SOを活性状態(Hレベル)とするNセンスアンプ活性化回路31と、センスアンプ活性化信号SOに応答して接地電圧VSSをNセンスアンプNSAへ伝達するnチャネルMOSトランジスタN33が設けられる。Pセンスアンプ活性化回路30に対しては、内部電源線5aを介して内部電源電圧VCIが伝達され、Nセンスアンプ活性化回路31に対しては、内部電源線5bを介して内部電源電圧VCIが伝達される。この内部電源線5aおよび5bは同じ配線であってもよく、また異なる配線であってもよい。次にこの図27に示す構成の動作についてその動作波形図である図28を参照して説明する。
信号/RASがHレベルのとき、内部電源線5a、5bおよび5cは図示しない充電回路により基準電圧Vrefよりも高い電圧レベルに充電される。ビット線BLおよび/BLは所定の中間電圧(VCI/2)の電圧レベルにプリチャージされている。
信号/RASがLレベルとなると、行選択動作が始まる。すなわち、図示しないワード線が選択され、このワード線に接続されるメモリセルのデータがビット線BLまたは/BL上に伝達される。一方のビット線の電圧がその選択されたメモリセルの記憶データに従って変化し、他方のビット線はプリチャージ電圧VCI/2を維持する。
所定のタイミングで、Nセンスアンプ活性化回路31がセンスアンプ活性化信号SOを活性状態のHレベルとする。これによりMOSトランジスタN33がオン状態となり、ビット線BLおよび/BLのうち低電位のビット線が接地電圧VSSレベルに放電される。このNセンスアンプ活性化回路31がセンスアンプ活性化信号SOを活性状態とするとき、内部電源線5b上の内部電源電圧VCIを使用する(すなわち、内部電源線5bから電流を使用してセンスアンプ活性化信号SOを伝達する信号線上へ電流を供給する)。このとき、内部電源線5b上の電源電圧VCIは所定の電圧レベル(Vrefレベル)よりも高い電圧レベルに充電されているため、高速でセンスアンプ活性化信号SOを立上げることができるとともに、この内部電源線5b上の電源電圧VCIの電圧レベルが急激に低下するのを防止することができる。
次いで、Pセンスアンプ活性化回路30がセンスアンプ活性化信号/SOを活性状態のLレベルとする。それにより、MOSトランジスタP33がオン状態となり、内部電源線5c上の内部電源電圧VCIがビット線BLおよび/BLのうちの高電位のビット線へ伝達される(すなわち内部電源線5cから高電位のビット線へ電流が供給される)。この場合においても、内部電源線5c上の電源電圧VCIは一定の電圧レベル(Vrefレベル)よりも高い電圧レベルに昇圧されているため、このビット線充電に伴う内部電源電圧VCIの電圧レベルの基準電圧Vref以下への低下を防止することができ、急激な内部電源電圧VCIの低下を防止するのみならず、高電位のビット線をその高電圧により高速で内部電源電圧VCIレベルにまで充電する。
以後、図示しない列選択回路が信号/CAS(コラムアドレスストローブ信号)に従って動作し、選択された列上のメモリセルに対するデータの書込/読出が行なわれる。
メモリサイクルが完了すると、信号/RASが非活性状態のHレベルとなり、センスアンプ活性化信号/SOおよびSOがそれぞれLレベルおよびHレベルの非活性状態とされる。このとき、また再び内部電源線5a,5bおよび5cの充電動作が開始される。内部電源線5a〜5cの充電動作の開始および完了は、信号/RASにより決定されてもよく、またセンスアンプ活性化信号/SO、およびSOに従って決定されてもよい。
なお、図28に示す動作波形図においては、センスアンプ活性化信号SNおよびSPがそれぞれ接地電圧VSSと内部電源電圧VCIの電圧レベルを維持している。センスアンプ活性化信号SPおよびSNは、これに代えて、非活性時に中間電圧VCI/2の電圧レベルに保持されてもよい。Pセンスアンプ活性化回路30に対する内部電源電圧VCIを昇圧するのは、センスアンプ活性化信号SPを内部電源線5C上の内部電源電圧VCIと同一の電圧レベルとし、MOSトランジスタP33を確実にオフ状態とするためである。次に充電回路の具体的構成について説明する。
[充電回路の具体的構成1]
図29は、図25に示す充電回路20の第1の具体的構成を示す図である。図29において、充電回路20は、活性制御信号/ENAに応答して導通し、外部電源ノード1から外部電源電圧VCEを内部電源線5へ伝達するnチャネルMOSトランジスタN35と、内部電源線5と接地ノードVSSの間に接続されるタンク容量C10を含む。内部電源線5上の内部電源電圧VCIを使用する負荷回路7は、活性前記信号ENAに応答して活性化される。負荷回路7の非活性時には、MOSトランジスタN35がオン状態となり、その固有のオン抵抗により内部電源線5へ電流を供給し、タンク容量C10を外部電源電圧VCEレベルに充電する。負荷回路7が活性制御信号ENAに応答して活性化されるときには、MOSトランジスタN35はオフ状態であり、タンク容量C10の充電は停止される。負荷回路7は、このタンク容量C10に充電された電荷をその動作開始時に使用して内部回路(信号線)を所定の電圧レベルへ駆動する。タンク容量C10の容量値として、負荷回路7が駆動する信号線の寄生容量と同じ大きさであれば、内部電源電圧VCIは比較回路3およびドライブトランジスタ2により設定される基準電圧Vrefの電圧レベルを維持する。なお、活性制御信号/ENAはHレベルは外部電源電圧VCEレベルである。タンク容量C10の容量は、以下のようにして求めることができる。今、一例として、負荷回路7の接地電圧VSSレベルの容量Caを基準電圧Vrefに充電させる動作を考える。この場合には、負荷回路7において使用される電荷量は、Ca・Vrefで与えられる。一方、タンク容量C10において消費される電荷はC10・(VCE−Vref)で与えられる。これらが等しいことから、
C10=Ca・Vref/(VCE−Vref)
が得られる。この式を満足するようにタンク容量C10の容量値を設定することにより、内部電源電圧VCIが基準電圧Vref以下に低下するのを防止することができる。
[充電回路の具体的構成2]
図30は、図25に示す充電回路20の第2の具体的構成を示す図である。図30において、充電回路20は、活性制御信号ENAに応答して外部電源ノード1から内部電源線5へ外部電源電圧VCEを伝達するpチャネルMOSトランジスタP35と、内部電源線5と接地ノードVSSの間に接続されるタンク容量C10を含む。タンク容量C10は、内部電源線5上の電圧レベルまで充電される。この図30に示す構成は、図29に示す構成とnチャネルMOSトランジスタN35に代えて、pチャネルMOSトランジスタP35が用いられている点においてのみ異なっている。他の構成は同じである。この図30に示す構成においては、MOSトランジスタのしきい値電圧の損失を伴うことなく、同様に内部電源線5を所定の期間のみ基準電圧Vrefよりも高い電圧レベルに(外部電源電圧VCE)レベルにまで充電することができる。
[充電回路の具体的構成3]
図31は、図25に示す充電回路20の第3の具体的構成を示す図である。図31において、充電回路20は、外部電源ノード1から電源電圧VCEを受け、タンク容量C10を基準電圧Vrefよりも高い所定の電圧レベルに充電する充電部25と、活性制御信号/ENAに応答して、タンク容量C10の一方電極(ノード5d)を内部電源線5に接続するスイッチング素子27を含む。負荷回路7は、活性制御信号ENAに応答して活性化され、所定の動作を実行する。充電部25の構成は後に説明するが、タンク容量C10の一方電極ノード5dを常時一定の電圧レベルに充電する。スイッチング素子27は、負荷回路7の非活性時に導通状態となり、タンク容量C10の一方電極ノード5dを内部電源線5に接続する。負荷回路7の動作時においては、スイッチング素子27はオフ状態とされ、内部電源線5はタンク容量C10の一方電極ノード5dから分離される。この図31に示す構成においても、内部電源線5が基準電圧Vrefよりも高い電圧レベルに充電されるため、負荷回路7の動作開始時において消費される電流をこの昇圧された電圧レベルで補償することができ、内部電源電圧VCIが基準電圧Vrefの電圧レベルよりも低下するのを防止することができる。
このスイッチング素子27は、負荷回路7の動作時にオフ状態とされるのではなく、負荷回路7の動作開始期間を含む所定の期間のみオン状態となり、タンク容量C10から負荷回路7が動作開始時に消費する電流を供給するように構成されてもよい。
図32は、図31に示す充電部25の具体的構成を示す図である。図32(a)において、充電部25は、外部電源ノード1とタンク容量の一方電極ノード5dの間に接続される抵抗R10を含む。この構成の場合、タンク容量C10の一方電極ノード5dは、外部電源電圧VCEの電圧レベルに充電される。抵抗素子R10としては、ポリシリコン、活性層またはMOSトランジスタのいずれが利用されてもよい。
図32(b)に示す充電部25は、外部電源ノード1とタンク容量C10の一方電極ノード5dの間に直列に接続されるダイオード接続されたpチャネルMOSトランジスタP37およびP38と、タンク容量の一方電極ノード5dと接地ノードVSSの間に接続される抵抗R11を含む。抵抗R11はMOSトランジスタP37およびP38に微小電流を生じさせる比較的大きな抵抗値を有しており、MOSトランジスタP37およびP38は、そのしきい値電圧の絶対値Vtpの電圧降下をそれぞれ生じさせる。したがって図32(b)に示す構成の場合、ノード5dには、VCE−2・Vtpの電圧が伝達され、タンク容量C10の一方電極ノード5dはこの電圧レベルに充電される。なお、図32(b)において、抵抗R11はMOSトランジスタで構成されてもよく、またMOSトランジスタP37およびP38は、nチャネルMOSトランジスタにより置換えられてもよい。さらにこの外部電源ノード1とノード5dの間に接続されるMOSトランジスタの数はタンク容量C10の一方電極ノード5dの充電電位に応じて適当な数に設定される。
[充電回路の具体的構成4]
図33は、図25に示す充電回路の第4の具体的構成を示す図である。図33において、充電回路20は、その一方導通端子が外部電源ノード1に接続され、活性制御信号ENAに応答してオン状態となるpチャネルMOSトランジスタP39と、MOSトランジスタP39と内部電源線5の間に直列に接続されるダイオード接続されたpチャネルMOSトランジスタP37およびP38と、内部電源線5と接地ノードVSSの間に接続されるタンク容量C10と、内部電源線5と接地ノードVSSの間にタンク容量C10と並列に接続される抵抗R11を含む。抵抗R11は大きな抵抗値を有しており、MOSトランジスタP37およびP38はダイオードとして機能し、MOSトランジスタP39の導通時に電圧Vtpの電圧降下をそれぞれ生じさせる。負荷回路7は、活性制御信号ENAに応答して動作する。すなわち、負荷回路7の非活性時にMOSトランジスタP39が導通し、タンク容量C10を所定の電圧レベル(図示の例においてVCE−2・Vtp)の電圧レベルにタンク容量C10を充電する。負荷回路7が、活性制御信号ENAに応答して活性化されるときには、MOSトランジスタP39がオフ状態とされ、負荷回路7は、動作時にはこのタンク容量C10に充電された電荷を使用してこの内部の信号線を所定の電圧レベルへ充電する。トランジスタP39とタンク容量C10の間に抵抗素子が接続される構成が利用されてもよい。
[充電回路の具体的構成5]
図34は、図25に示す充電回路の第5の具体的構成を示す図である。図34において、充電回路20は、信号線5e上の電圧と基準電圧Vref1よりも高い基準電圧Vref2とを比較する比較回路41と、比較回路40の出力信号に応答して外部電源ノード1から信号線5eへ電流を供給するpチャネルMOSトランジスタ40と、信号線5eと接地ノードVSSの間に接続されるタンク容量C10と、活性制御信号ENAに応答して信号線5eを内部電源線5に接続するnチャネルMOSトランジスタ42を含む。比較回路41は、活性制御信号/ENAに応答して活性化され、活性化時に信号線5eと基準電圧Vref2の比較動作を行なう。活性制御信号/ENAの非活性時には、比較回路41は非活性状態とされ、MOSトランジスタ40をオフ状態とする。すなわち比較回路41の非活性時には、信号線5eの電圧調整動作は行なわれず、また外部電源ノード1から信号線5eへの電流供給動作も行なわれない。MOSトランジスタ42は、負荷回路7の動作時に信号線5eを内部電源線5に接続する。次に動作について説明する。
活性制御信号ENAの非活性時には、MOSトランジスタ42がオフ状態にあり、内部電源線5と信号線5eは分離される。この状態において、信号/ENAが活性状態にあり、比較回路41が信号線5e上の電圧と基準電圧Vref2とを比較する。信号線5e上の電圧が基準電圧Vref2よりも低い場合には、比較回路41の出力信号に応答してMOSトランジスタ40がオン状態となり、外部電源ノード1から信号線5eへ電流を供給し、タンク容量C10を充電する。信号線5e上の電圧が基準電圧Vrefよりも高い場合には、比較回路41の出力信号はHレベルとなり、MOSトランジスタ40もオフ状態とされる。これにより、タンク容量C10の一方電極すなわち信号線5eは基準電圧Vref2の電圧レベル充電される。
負荷回路7が、活性制御信号ENAに応答して活性化されるとき、同様にMOSトランジスタ42がオン状態となり、内部電源線5が信号線5eに接続される。これにより、負荷回路7の動作開始時においては、タンク容量C10に充電された電荷が使用され、この内部電源線5上の内部電源電圧VCIの急激な電圧降下が防止される。このとき比較回路41は比較動作を行なっていないためまたMOSトランジスタ40もオフ状態のため、タンク容量C10の一方電極の電圧の内部電源線5上の電圧VCIと等しくなる。負荷回路7の動作が完了すると、MOSトランジスタ42はオフ状態とされ、再び比較回路41が活性状態とされ、信号線5eの電圧レベルを基準電圧Vref2にまで上昇させる。
負荷回路7の動作時においては、比較回路3が内部電源線5上の電源電圧VCIを基準電圧Vref1と比較し、その比較結果に従ってドライブトランジスタ2を介して外部電源ノード1から内部電源線5へ電流を供給する。これにより電源電圧VCIは一定の基準電圧Vref1の電圧レベルに保持されている。
図34に示す構成に従えば、基準電圧Vref2を所定の電圧レベルに設定することにより正確にタンク容量C10の充電電圧を設定することができる。
なお、図34に示す構成において、タンク容量C10は内部電源線5に接続され、MOSトランジスタ42が活性制御信号/ENAに応答して導通するように構成されてもよい。負荷回路7の非活性時にタンク容量C10をオン状態のMOSトランジスタ42を介して充電し、負荷回路7の活性化時には、このタンク容量C10を信号線5eから切離すようにする。この構成でも同様の効果を得ることができる。
以上のように、この発明の第3の実施例に従えば、タンク容量を用いて、別の経路から内部電源線5を所定の電圧レベルよりも高い電圧レベルに昇圧するように構成したため、この昇圧電圧により蓄積された余分の電荷(内部電源線に付随する寄生容量またはタンク容量の蓄積電荷)を用いて負荷回路7の動作開始時に消費される電流を供給することができ、内部電源電圧VCIの急激な電圧降下を防止することができ、安定に内部電源電圧VCIを供給することができる。
[実施例4]
図35は、この発明の第4の実施例である半導体装置の要部の構成を示す図である。この図35に示す構成においては、負荷回路は特に活性化信号を受けず、単に内部ノード上の電圧が与えられると活性状態とされる。図35において、従来と同様にして、内部電源線5上の電圧と所定の基準電圧Vref(基準電圧発生回路は示さず)とを比較する比較回路3と、この比較回路3の出力信号に応答して外部電源ノード1から内部電源線5へ電流を供給するpチャネルMOSトランジスタで構成されるドライブ素子2が設けられる。内部電源線5に対しては、さらにキャパシタ410と、キャパシタ410の一方電極を所定期間所定電圧レベルに充電する充電回路400が設けられる。キャパシタ410の一方電極はまた内部電源線5に接続される。充電回路400は、図32ないし図34に示す構成と同様の構成を備え、プリチャージ信号/PRに応答して所定期間キャパシタ410の一方電極を所定電圧レベルに充電する。
負荷回路としてのアクティブリストア回路(Pセンスアンプ)420は、一列のメモリセルMCが接続されるビット線BLおよび/BLの電位を差動的に増幅する。図35においては、ビット線対BLおよび/BLにおいて、1つのメモリセルMCを代表的に示す。このメモリセルMCは、情報を記憶するメモリキャパシタMQと、ワード線WL上の電位に応答してメモリキャパシタMQをビット線BLに接続するアクセストランジスタMTを含む。アクティブリストア回路420は、1対の交差結合されたpチャネルMOSトランジスタPQ1およびPQ2を含む。MOSトランジスタPQ1は、そのソースが信号線441に接続され、そのドレインがビット線BLに接続され、そのゲートがビット線/BLに接続される。MOSトランジスタPQ2は、そのソースが信号線441に接続され、そのドレインがビット線/BLに接続され、そのゲートがビット線BLに接続される。MOSトランジスタPQ1およびPQ2の基板領域(ウェルまたは半導体層)は外部電源ノード1から外部電源電圧VCEを受けるように接続される。
ビット線BLおよび/BLに対しては、さらに、ビット線BLおよび/BLの電位を差動的に増幅するセンスアンプ430と、スタンバイ時にビット線BLおよび/BLを所定の電位VBLにプリチャージしかつイコライズするビット線イコライズ回路440が設けられる。センスアンプ430は、交差結合されたnチャネルMOSトランジスタNQ1およびNQ2を含む。MOSトランジスタNQ1は、そのソースがノードSNに接続され、そのドレインがビット線BLに接続され、そのゲートがビット線/BLに接続される。MOSトランジスタNQ2は、そのソースがノードSNに接続され、そのドレインがビット線/BLに接続され、そのゲートがビット線BLに接続される。
ビット線イコライズ回路440は、イコライズ信号EQに応答して導通し、ビット線BLおよび/BLを電気的に短絡するnチャネルMOSトランジスタNQ3と、イコライズ信号EQに応答して所定のプリチャージ電位VBL(内部電源電圧の1/2)をビット線BLに供給するnチャネルMOSトランジスタNQ4と、イコライズ信号EQに応答して導通し、プリチャージ電圧VBLをビット線/BLへ伝達するnチャネルMOSトランジスタNQ5を含む。MOSトランジスタNQ1〜NQ5は、その基板領域が接地電圧を受けるように接続される。
センスアンプ430を活性化するために、センス活性化トランジスタNQ6が設けられる。このセンス活性化トランジスタNQ6は、センス活性化信号SOに応答して導通し、接地電圧GNDをノードSNへ伝達する。
スタンバイ時にノードSNおよびSPを中間電圧VBLにイコライズしかつ、プリチャージするためにセンスイコライズ/プリチャージ回路450が設けられる。このセンスイコライズ/プリチャージ回路450は、イコライズ信号SEQに応答してノードSNおよびSPをプリチャージ電圧VBLの電圧レベルにプリチャージしかつイコライズする。このセンスイコライズ/プリチャージ回路450は、イコライズ回路440と同じ構成を備える。
図35においては、さらに、列選択ゲート445の転送ゲートTGaおよびTGbは、コラム選択信号Yに応答してビット線BLおよび/BLを内部データ線IOおよび/IOへ接続する。このコラム選択信号Yは図35においては、1対のビット線BLおよび/BLのみを選択するように示されるが、このコラム選択信号Yは同時に複数の列を選択するようにされてもよい。またセンスアンプ430およびアクティブリストア回路420は、2つのメモリブロックのビット線対により共有されるいわゆる「シアードセンスアンプ配置」に構成されてもよい。次にこの図35に示す半導体装置の動作をその動作波形図である図36を参照して説明する。
半導体記憶装置においては、ロウアドレスストローブ信号/RASがハイレベルのときには装置内部はスタンバイ状態に維持される。この状態においては、イコライズ信号EQがハイレベルにあり、ビット線イコライズ回路440はビット線BLおよび/BLをプリチャージ電圧VBLにプリチャージしかつイコライズしている。同様に、センスイコライズ/プリチャージ回路450は、ノードSNおよびSPを中間電圧VBLにプリチャージしかつイコライズしている。充電回路400は、非活性状態にあり、キャパシタ410の一方電極は内部電源線5上の電圧レベルに充電されている。図36においては、このキャパシタ410のスタンバイ時の充電電圧VCCSが内部動作電源電圧VCCに等しい電圧レベルであるように示される(VCI=VCC)。スイッチング素子SWaおよびセンス活性化トランジスタNQ6はともにオフ状態にある。
ロウアドレスストローブ信号/RASが活性状態のローレベルに立下がると、メモリサイクルが始まる。この信号/RASの活性化に応答して所定期間の間プリチャージ信号/PRが活性状態のローレベルとされ、充電回路400が外部電源ノード1から電流をキャパシタ410へ供給し、これによりキャパシタ410の一方電極の電圧VCCSが内部電源電圧VCCよりも高くなる。またイコライズ信号EQおよびSEQがともに非活性状態とされ、ビット線イコライズ回路440およびセンスイコライズ/プリチャージ回路450は非活性状態とされる。これによりビット線BLおよび/BLはプリチャージ電圧VBLでフローティング状態とされ、またノードSNおよびSPもプリチャージ電圧VBLでフローティング状態とされる。
次いで信号/RASの活性化に応答して、図示しない回路により、アドレス信号のデコードが行なわれ、ワード線選択動作が行なわれる。選択されたワード線WLの電位が図示しないワード線ドライブ回路によりハイレベルに上昇する。図36においては、選択ワード線WLの電圧レベルが内部電源電圧VCCよりも高い高電圧Vppにまで昇圧される場合が一例として示される。
ワード線WLが選択状態とされ、その電位がハイレベルとなると、メモリセルMCのアクセストランジスタMTがオン状態とされ、メモリキャパシタMQに格納された電荷がビット線BL(または/BL)に伝達され、ビット線BLおよび/BLに電位差が生じる。図36においては、メモリキャパシタMQにローレベルの情報が格納されており、ビット線BLの電位がプリチャージ電圧VBLから低下する状態が一例として示される。
充電回路400によるキャパシタ410の充電動作が完了すると、内部電源線5の放電により、このキャパシタ410の充電電圧VCCSは徐々に低下する。ビット線BLおよび/BLの電位差が十分に拡大されると(信号/RASが活性状態となってから所定時間経過後に)、センス活性化信号/SOおよびSOが活性状態とされる。これらのセンス活性化信号/SOおよびSOは信号/RASに応答して活性状態とされる。これによりスイッチング素子SWaおよびセンス活性化トランジスタNQ6がともにオン状態となり、ノードSPの充電およびノードSNの放電が行なわれる。キャパシタ410の一方電極の電圧VCCSは内部動作電源電圧VCCよりも高い電圧レベルにあり、スイッチングトランジスタSWaがオン状態となったときに内部電源線5上の電圧VCI(VCC)の変動を抑制し、高速でノードSPの電位を上昇させる。すなわち、内部電源線5上の電位低下はこのキャパシタ410からの充電電荷により補償され、内部電源線5上の電圧VCIの低下が抑制される。ノードSPの電圧レベルが上昇すると、アクティブリストア回路420においては、低電位のビット線BLの電位をゲートに受けるMOSトランジスタPQ2のコンダクタンスがMOSトランジスタPQ1のそれよりも大きくなり、ビット線/BLがこのトランジスタPQ2を介してノードSPから電流を供給されその電位が電源電圧レベルにまで上昇する。このとき、キャパシタ410の電位が内部電源電圧VCCレベルにまで低下しても、このときにはドライブ素子2を介して電流が内部電源線へ供給され、ノードSPの電圧レベルが内部電源電圧VCCレベルに維持される。
一方、センスアンプ430においては、ノードSNが接地電圧GNDレベルにまで放電されると、高電位のビット線/BLの電位をゲートに受けるMOSトランジスタをNQ1のコンダクタンスがMOSトランジスタNQ2のそれよりも大きくなるため、ビット線BLはトランジスタNQ1を介して接地電圧レベルにまで放電される。
ビット線BLおよび/BLが内部電源電圧VCCおよび接地電圧GNDレベルに駆動されると、列選択信号Yがハイレベルの活性状態とされ、このビット線BLおよび/BLが内部データ線IOおよび/IOにそれぞれ列選択ゲート445を介して接続される。その後、図示しない回路によりメモリセルのデータの書込/読出が行なわれる。
メモリサイクルが完了すると、信号/RASがハイレベルとなり、ワード線WLが非選択状態とされ、センス活性化信号SOおよび/SOが非活性状態とされる。この後、ビット線イコライズ信号EQが活性状態のハイレベルとされ、またセンスイコライズ/プリチャージ回路450もイコライズ信号SEQにより活性状態とされ、ノードSPおよびSNならびにビット線BLおよび/BLがプリチャージ電圧VBLにプリチャージされかつイコライズされる。これにより1つのメモリサイクルが完了する。
上述のように、アクティブリストア回路420の動作開始時において、ノードSPの電圧レベルを内部電源電圧VCC以上に昇圧した場合、内部電源電圧VCCを用いる場合に比べて、そのノードSPの電圧レベルの立上がり速度を速くすることができる。この場合、内部電源電圧VCCを用いる場合に比べてアクティブリストア回路420において、低電位のビット線の電位(図36に示す場合には、ビット線BL)をゲートに受けるMOSトランジスタ(PQ2)のゲート−ソース間電圧が大きくなり、そのコンダクタンスが大きくされ、一方、MOSトランジスタPQ1は、そのゲートとソースの電圧差が小さくされ、そのコンダクタンスが小さくなる。トランジスタPQ1およびPQ2のコンダクタンスの差が大きくされ、応じてアクティブリストア回路動作時における充電すべきビット線へ供給する電流を内部電源電圧VCCを用いる場合に比べて大きくすることができ、高速でリストア動作を行なうことができる。
キャパシタ410の静電容量は、このキャパシタ410が駆動すべき信号線(センスアンプ駆動信号線)に付随する負荷容量(ビット線容量)とキャパシタ410の充電電位とから決定することができる。
[変更例1]
図37は、この発明の第4の実施例の第1の変更例の構成を示す図である。図37においては、内部電源線5とノードSPとの間にスイッチング素子SWbがさらに設けられる。ノードSPは、また図35に示す構成と同様、スイッチング素子SWaを介してキャパシタ410の一方電極ノードに接続される。充電回路411は、キャパシタ410の一方電極を常時充電していてもよく、また図35に示すように、所定の期間のみ充電を行なうように構成されてもよい。この充電回路411の充電電位は、外部電源電圧VCEレベルであってもよく、また内部電源電圧VCCレベルよりも低い電圧レベルであってもよい。ノードSPの充電を補助する電圧レベルに充電されていればよい。次に動作について簡単にその動作波形図である図38を参照して説明する。ここで、図38においては、単にセンス動作時における波形図のみを示す。
キャパシタ410の一方電極は充電回路411により所定の電圧レベル(正の電圧レベル)に充電されている。
センス活性化信号/SOaが所定期間活性状態のローレベルとなると、スイッチ素子SWaがオン状態とされ、キャパシタ410の一方電極がノードSPに接続される。これにより、ノードSPは、そのプリチャージ電位VBLからキャパシタ410の充電電位によりその電位が少し上昇し、このノードSPの電位上昇に伴って、ビット線対BLおよび/BLのうち高電位のビット線電位が少し上昇する。この後、センス活性化信号/SObが活性状態のローレベルとされ、スイッチ素子SWbがオン状態とされ、内部電源線5がノードSPに接続される。これにより、ノードSPはドライブ素子2および比較回路3による電流制御経路により電源電圧VCCレベルにまで充電される。このドライブ素子2からの充電動作により、ノードSPは最終的に内部電源電圧VCCレベルにまで上昇する。
図38に示すように、リストア回路の動作時において、まずキャパシタ410の充電電位によりノードSPを充電し、次いで内部電源線5をノードSPに接続することにより、このスイッチング素子SWbのオン状態移行時における内部電源線5の電圧変動を十分に小さくすることができ、安定にリストア動作を行なうことができる。このセンス活性化信号/SOaおよび/SObは同じタイミングで活性状態とされてもよい。リストア動作時におけるノードSPの電位上昇時に内部電源線5からの電流供給のみならずキャパシタ410からの充電電荷を合わせて供給することにより、内部電源線5上の電圧レベルの低下を抑制することができ、高速でノードSPを所定の電圧レベルへ駆動することができ、高速でリストア動作を行なうことができる。
なお、図36に破線の波形図で示すように、充電回路400の充電動作期間はリストア回路の動作期間と重なり合うようにしてもよい。すなわちリストア動作時においても充電回路400からノードSPが充電されるため、より高速でノードSPの電位を所定の電圧レベルにまで上昇させることができ、応じて充電されるべきビット線に対して設けられたMOSトランジスタのゲート−ソース間電位差を十分大きくすることができ、高速で充電すべきビット線を充電することができる。
以上のように、この発明の第4の実施例に従えば、リストア回路の動作時、そのノードをキャパシタの充電電荷により電位を上昇させるように構成したため、ドライブ素子2および比較回路3の応答に遅れが生じる場合においても、内部電源線5上の電圧低下を十分に抑制することができ、安定かつ高速にリストア回路の制御ノードを所定電圧レベルへ上昇させることができ、高速かつ安定に動作するリストア回路を実現することができる。
[実施例5]
図39は、この発明の第5の実施例である半導体装置の要部の構成を示す図である。この図39に示す構成においては、リストア回路420に含まれるpチャネルMOSトランジスタPQ1およびPQ2の基板領域(ウェルまたは半導体層)は充電回路400の出力電圧を受けるように接続される。ノードSPは、スイッチング素子SWcを介して内部電源線5に接続される。他の構成は、図35に示すもの同じであり、対応する部分には同一の参照番号を付す。次にこの図39に示す装置の動作をその動作波形図である図40を参照して説明する。
信号/RASが活性状態のローレベルとなり、アクティブサイクルが始まると、まず充電回路400が、プリチャージ信号/PRに応答して活性化され、所定期間内部電源電圧VCCよりも高い電圧を出力する。これによりアクティブリストア回路420のMOSトランジスタPQ1およびPQ2の基板領域が電源電圧VCCよりも高い電圧レベルに充電され、これらMOSトランジスタPQ1およびPQ2の基板バイアスがより深い状態に設定される。
次いでメモリセル選択動作が行なわれ、選択ワード線WL上の電位が高電圧Vppレベルに立上がると、ビット線BLおよび/BLにこのメモリセルMCが記憶するデータに応じた電位差が生じる。図40においては、ビット線BLにローレベルの電圧が伝達される状態が一例として示される。次いでセンス活性化信号/SOが活性状態のローレベルとされ、スイッチング素子SWcがオン状態とされる。これにより、ノードSUBとSPが相互接続される。MOSトランジスタPQ1およびPQ2の基板領域に格納された電荷がノードSUBおよびスイッチング素子SWcを介してノードSPへ伝達される。これにより、基板領域に格納されていた充電電荷がノードSPへ伝達され、このノードSPは、内部電源線5からの電流供給と基板領域からの充電電荷の供給とに従ってその電圧レベルが上昇する。これにより、内部電源線5上の電圧レベルの低下を抑制することができ、ドライブ素子2および比較回路3の応答の遅れを補償することができる。このリストア回路420の動作開始時においては、ノードSUBから高電圧がノードSPへ伝達されるため、ノードSPの電圧上昇速度は早くなり、MOSトランジスタPQ1,PQ2のソース電位が高くされたことと等価となる。したがって、実施例4の場合と同様、ビット線を充電すべきMOSトランジスタのコンダクタンスは他方のMOSトランジスタのそれよりも相対的に十分大きくされ、高速で充電すべきビット線を充電することができる。
図40においては、この基板ノードSUBが、充電回路400の充電完了後、ノードSPに接続され、その電位が低下する状態が示される。このように、アクティブリストア回路のMOSトランジスタPQ1およびPQ2の基板領域を容量として利用し、この容量の充電電荷を用いてアクティブリストア回路のノードSPの電位上昇時に利用することにより、内部電源線5上の電位低下を抑制して高速でノードSPを所定の電圧レベルへ駆動することができる。
また、この充電回路400による充電期間はプリチャージ信号/PRの活性期間のみであり、したがって充電回路400が外部電源ノード1から電流を供給されて充電動作を行なったとしても、その充電動作は所定期間のみ行なわれるため、ノードSPが内部電源電圧VCCレベル以上に昇圧されることはない。
また、スイッチング素子SWcのオン状態のときには、アクティブリストア回路においてMOSトランジスタPQ1およびPQ2のソースおよび基板領域が同じ電位とされるため、MOSトランジスタPQ1およびPQ2は最も低いしきい値電圧の絶対値の状態で増幅動作を行なうことができ、高速に充電動作を行なわせることができる。また、基板バイアスを深くすることにより、そのしきい値電圧の絶対値が大きくなるため、アクティブリストア回路420のMOSトランジスタPQ1およびPQ2のコンダクタンスは内部電源電圧VCCが基板領域へ印加される場合に比べて大きくなり、その動作開始時における増幅動作速度を遅くすることができ、応じてセンスアンプの感度を高くすることができ(微小電位が緩やかに増幅される)、正確に動作するアクティブリストア回路を実現することができる。
なお図40において破線で示すように、充電回路400に対するプリチャージ信号/PRはセンス活性化信号SOおよび/SOが活性状態となった後も充電(プリチャージ動作)が行なわれるように構成されてもよい。この場合、より高速でノードSPを所定の電圧レベルへ駆動することができる。
[変更例1]
図41は、この発明の第5の実施例の第1の変更例の構成および動作を示す図である。図41(a)において、充電回路400は、プリチャージ信号/PRに応答して所定期間のみプリチャージ動作を行なう。アクティブリストア回路に含まれるMOSトランジスタPQ1およびPQ2(図41(a)には示さず)の基板領域SUBは内部電源ノード5に接続される。すなわち基板領域SUBは、充電回路400の充電動作時、内部電源線5上の電圧VCIよりも高い電圧レベルにプリチャージされる。内部電源線5とアクティブリストア回路のノードSPの間にスイッチング素子SWeが配置され、ノードSPと基板領域SUBの間にスイッチング素子SWfが配置される。スイッチング素子SWeはセンス活性化信号/SOに応答して導通し、スイッチング素子SWfはこのセンス活性化信号/SOより速いタイミングで活性状態とされる信号/SOaにより導通状態とされる。次に、図41(b)に示す動作波形図を参照して動作について簡単に説明する。
スタンバイ時においては、スイッチング素子SWeおよびSWfはともにオフ状態にあり、基板領域SUBは内部電源線5上の電源電圧レベルに充電されている。アクティブサイクルが始まると、まずプリチャージ信号/PRが活性状態とされ、充電回路400が動作し、基板領域SUBを所定電圧レベルに充電する。次いで、信号/SOaが活性状態となり、スイッチング素子SWfがオン状態となり、基板領域SUBがノードSPに接続される。これにより基板領域SUBに充電された電荷がノードSPへ伝達され、ノードSPの電位が上昇する。このとき基板領域SUBとノードSPは相互接続されるため、アクティブリストア回路に含まれるMOSトランジスタのソースおよび基板領域は同一電位とされ、基板効果がなくなり、最も小さなしきい値電圧の絶対値でアクティブリストア回路のMOSトランジスタが動作する。次いでセンス活性化信号/SOが活性状態とされ、内部電源線5がノードSPに接続され、ノードSPは内部電源線5上の電圧レベルにまでその電位が上昇する。
基板領域の静電容量がノードSPに付随する容量(ビット線容量)よりも小さく、ノードSPの電位がこの基板領域SUBからの充電電荷により十分上昇しない場合においても、内部電源線5上へドライブ素子2を介して与えられる電流により、ノードSPの電圧は所定の電圧レベルにまで上昇する。
基板領域にはこのアクティブリストア回路がすべて形成されるため(複数のビット線対それぞれに対応してアクティブリストア回路が設けられている)この基板領域は比較的大きな面積となり、基板領域の容量は十分大きな値を持つことができる。ノードSPをこのアクティブリストア回路の動作時に十分にその充電電荷を供給して電圧レベルを上昇させることができる。ノードSPの基板領域SUBからの充電電荷により上昇する電圧レベルはノードSPに付随する容量と基板領域SUBの容量とにより決定される。
この図41に示す構成においても、内部電源線5上の電圧低下を抑制して確実に内部ノードSPを所定電圧レベルにまで駆動することができる。
[変更例2]
図42は、この第5の実施例の第2の変更例の構成および動作を示す図である。図42(a)において、この発明の第5の実施例の第2の変更例の構成においては、充電回路400の出力ノード(基板領域SUB)と内部電源線5の間にロウアドレスストローブ信号RASへ非活性化時に導通状態となるスイッチング素子SWgがさらに設けられる。他の構成は図41(a)に示す構成と同じである。スイッチング素子SWgはスタンバイサイクル時においてのみオン状態とされる。充電回路400はプリチャージ信号/PRに応答して所定期間のみプリチャージ動作を行なう。次に動作についてその動作波形図である図42(b)を参照して説明する。
スタンバイサイクルにおいては、信号RASはローレベルにあり、スイッチング素子SWgがオン状態、一方、センス活性化信号/SOおよび信号/SOaは非活性状態のハイレベルにあり、スイッチング素子SWeおよびSWfはオフ状態にある。この状態においては、基板領域SUBは内部電源線5上の電源電圧VCCレベルに充電される。
アクティブサイクルが始まると、信号RASが活性状態のハイレベルとなり、スイッチング素子SWgがオフ状態とされる。この信号RASの活性化に応答してプリチャージ信号/PRが活性状態のローレベルとされ、充電回路400が動作し、基板領域SUBを所定の電圧レベルにまで充電する。次いで信号/SOaが活性状態のローレベルとされ、基板領域SUBとノードSPとが相互接続される。これにより、基板領域SUBからノードSPへ充電電荷が流れ、ノードSPの電位が上昇する。次いで信号/SOが活性状態のローレベルとされスイッチング素子SWeがオン状態とされる。これにより、ノードSPがドライブ素子2から電流を供給され、その電位が高速でハイレベルへと立上がる。この場合においても、同様の効果を得ることができる。このときまた基板領域SUBの充電時においては、内部電源線5の充電は行なわれないため、効率的に基板領域SUBを所定電圧レベルに充電することができる。
なお充電回路400としては、先に図28ないし32に示す充電回路を利用することができ、充電回路400は、基板領域SUBを外部電源ノード1へ与えられる電源電圧レベルにまで充電するように構成されてもよい。また単に充電回路400は外部電源ノードに接続される抵抗素子であってもよい。
以上の様に、この実施例5においてはアクティブリストア回路に含まれるMOSトランジスタの基板領域を容量として利用し、この容量の充電電荷を用いてアクティブリストア回路の動作時におけるノード電位を上昇させるように構成したため内部電源線5の電圧変動を抑制することができ、高速かつ安定にアクティブリストア回路のノードを所定電圧レベルへ駆動することができ、応じて高速かつ安定に動作するアクティブリストア回路を実現することができる。
[実施例6]
図43は、この発明の第6の実施例である半導体装置の要部の構成およびその動作を示す図である。図43(a)において、外部電源ノード1と基板領域(アクティブリストア回路に含まれるMOSトランジスタの基板領域)SUBの間に、ロウアドレスストローブ信号RASに応答して導通するスイッチングトランジスタSWhが設けられる。内部電源線5は基板領域SUBには接続されない。基板領域SUBとアクティブリストア回路のノードSPとの間には、信号/SOaに応答して導通するスイッチング素子SWfが配置され、内部電源線5とノードSPの間にセンス活性化信号/SOに応答して導通するスイッチング素子SWeが配置される。スイッチング素子SWhは、信号RASがハイレベルのときにオン状態とされ、信号RASがローレベルのときにオン状態とされる。すなわち、スイッチング素子SWhはスタンバイサイクルにおいてオン状態とされる。次に動作についてその動作波形図である図43(b)を参照して説明する。
スタンバイサイクル時においては信号RASがローレベルであり、スイッチング素子SWhがオン状態となり、基板領域SUBは外部電源ノード1へ与えられる外部電源電圧VCEレベルに充電される。スイッチング素子SWeおよびSWfはともにオフ状態にある。
アクティブサイクルが始まると、信号RASがハイレベルとなり、スイッチング素子SWhがオフ状態とされる。この信号RASがハイレベルになり、アクティブサイクルが始まると、所定期間経過後信号/SOaがローレベルの活性状態となり、スイッチング素子SWfがオン状態となり、基板領域SUBがノードSPに接続され、ノードSPの電位がそのプリチャージ電位(中間電位)から上昇する。これによりアクティブリストア動作が緩やかに開始される。ノードSPの電位上昇に従って基板領域SUBの電位が低下する。このノードSPと基板領域SUBは相互接続されており、ほぼ同じ速度で基板領域SUBの電位低下とノードSPの電位上昇とが生じる。リストア動作開始時、アクティブリストア回路のMOSトランジスタの基板バイアスは深くされており、そのチャネル抵抗が基板効果により大きくなり緩やかな増幅動作が行なわれる。
次いで、センス活性化信号/SOがローレベルの活性状態とされ、スイッチング素子/SOがオン状態となり、ノードSPへは内部電源線5から電流が供給され、その電位が内部電源線5上の電源電圧VCI(内部動作電源電圧VCC)レベルに復帰する。このスイッチング素子SWeを介しての電流供給は、またスイッチング素子SWfを介して基板領域SUBに対して行なわれているため、基板領域SUBの電位は同様内部電源VCCレベルとなる。この状態においてアクティブリストア動作が行なわれる。この場合においても、先の第2の実施例の場合と同様、高電位のビット線を充電すべきMOSトランジスタのコンダクタンスとそうでないMOSトランジスタのコンダクタンスとの差が十分大きくされ、比較的高速で充電すべきビット線の電位が上昇する。またこのとき、アクティブリストア回路において、MOSトランジスタPQ1およびPQ2(図39参照)のソースおよび基板領域は同一電位とされており、基板効果の影響を受けることなく、小さな絶対値のしきい値電圧によりこれらのMOSトランジスタが動作しており、高速でリストア動作を行なうことができる。
1つの動作サイクルが完了すると、信号RASがローレベルへ立下がり、次いで信号/SOaおよび/SOがハイレベルの活性状態とされる。スイッチング素子SWhがオン状態となり、再び基板領域SUBが外部電源電圧VCEレベルに充電される。
この第6の実施例のように、アクティブリストア回路のMOSトランジスタの基板領域を外部電源電圧レベルとすることにより、何ら余分の充電回路を設けることなく容易に基板領域を充電することができ、高速かつ安定に動作するアクティブリストア回路を実現することができる。
以上のように、この第6の実施例の構成に従えば、スタンバイサイクル時にアクティブリストア回路の構成要素であるMOSトランジスタの基板領域を外部電源電圧レベルにプリチャージしておき、アクティブリストア回路の動作時にはその基板領域に充電された電荷をアクティブリストア回路の活性化ノードへ伝達するように構成しているため、このノード電位を高速でかつ正確に上昇させることができ、高速かつ安定に動作するアクティブリストア回路を得ることができる。
[実施例7]
図44は、この発明の第7の実施例である半導体装置の要部の構成を示す図である。図44においては、一列のメモリセルに関連する部分すなわち1つのセンスアンプに関連する部分の構成のみを示す。図44においてアクティブリストア回路420は、交差結合されたpチャネルMOSトランジスタPQ3およびPQ4を含む。これらのMOSトランジスタPQ3およびPQ4の基板領域へは外部電源ノード1から外部電源電圧VCEが供給される。
ビット線イコライズ回路440は、図39に示す構成と同様、nチャネルMOSトランジスタNQ3、NQ4およびNQ5を含む。これらのMOSトランジスタNQ3〜NQ5の基板領域は接地電圧GNDを受けるように接続される。
センスアンプ430は、ビット線BLおよび/BLの間に交差結合されたnチャネルMOSトランジスタNQ7およびNQ8を含む。これらMOSトランジスタNQ7およびNQ8の基板領域はノードVSWに接続される。ノードVSWと接地電圧供給ノードとの間にプリチャージ信号φPの活性化時導通状態となるスイッチング素子SWiが配置される。ノードVSWとノードSNの間には、信号SObの活性化時に導通状態とされるスイッチング素子SWjが配置される。ノードSNと接続電圧供給ノードとの間には、信号SOaの活性化時に導通状態となるスイッチング素子SWkが配置される。
またビット線対BLおよび/BLには、列選択信号Yに応答してビット線BLおよび/BLを内部データ線IOおよび/IOへ接続する列選択ゲート445が配置される。この列選択ゲート445は、列選択信号Yに応答して導通する転送ゲートTGaおよびTGbを含む。ビット線イコライズ回路440および列選択ゲート445の構成は、先に図39に示したものと同じである。次に、この図44に示す構成の動作について、その動作波形図である図45を参照して説明する。
スタンバイサイクル時においては、ロウアドレスストローブ信号/RASはハイレベルの非活性状態にあり、応じてビット線イコライズ信号EQはHレベル(高電圧Vppレベル)にあり、ビット線イコライズ回路440のMOSトランジスタNQ3〜NQ5がすべてオン状態にあり、ビット線BLおよび/BLは中間電圧VBLにプリチャージされかつイコライズされている。アクティブリストア回路420のノードSPおよびセンスアンプ430のノードSNは同様、図示しないイコライズ/プリチャージ回路により中間電圧VBLにプリチャージされかつイコライズされている。センスアンプ430のMOSトランジスタNQ7およびNQ8の基板領域VSWは、先のサイクルにおいて接地電圧GNDレベルにプリチャージされている。
アクティブサイクルが始まるとき、信号/RASがローレベルの活性状態とされる。これに応答して、信号φPがハイレベルの活性状態となり、スイッチング素子SWiがオン状態とされる。これにより基板領域VSWは接地電圧GNDレベルに確実にプリチャージされる。このときまたビット線イコライズ信号EQがローレベルの非活性状態となり、ビット線イコライズ回路440のMOSトランジスタNQ3〜NQ5がすべてオフ状態とされる。
図示しない経路により、ワード線選択動作が行なわれ、選択ワード線WLが高電圧Vppレベルにまで昇圧される。これにより、ワード線WLに接続されるメモリセルMCの記憶する情報に従ってビット線BLおよび/BLに電位差が生じる。図45においては、ビット線BLへは、ローレベルの情報が読出された状態が一例として示される。
次いで、センス活性化信号SObがまずハイレベルの活性状態とされ、スイッチング素子SWjがオン状態とされる。これにより基板領域VSWがセンスアンプ430のノードSNに接続されノードSNの電圧レベルがプリチャージレベルのVBLから徐々に低下する。このノードSNの電位低下は、基板領域VSWからの電荷(電子)の供給により行なわれており、応じて基板領域VSWの電位が上昇する。
次いで、第2のセンス活性化信号SOaがハイレベルの活性状態となり、スイッチング素子SWkがオン状態とされ、接地電圧GNDがノードSNへ与えられる。これにより、センスアンプ430のノードSNの電圧レベルが急速に低下する。スイッチング素子SWkのみを介して接地電圧GNDを供給する構成と比べて、キャパシタとして、MOSトランジスタNQ7およびNQ8の基板領域を用い、そこに格納された電荷を利用してノードSNを接地電圧レベルへ駆動しているため、高速でセンスアンプ430のノードSNを所定の接地電圧レベルへ駆動することができる。このとき、センスアンプ430において、スイッチング素子SWjを介して基板領域VSWとソース(ノードSN)とが相互接続され、同一電位となるため、これらMOSトランジスタNQ7およびNQ8のしきい値電圧は、基板効果の影響がなくなり、最小値となり、高速で放電すべきビット線を接地電圧レベルへ放電することができる。ノードSNは、基板領域VSWの容量がこのノードSNに付随する容量(ビット線容量)よりも小さい場合においても、スイッチング素子SWkを介して接地電圧GNDレベルへ確実に放電される。これにより、接地電圧のセンス動作開始時における浮き上がりを防止し、確実にセンス動作を行なうことができる。
メモリサイクルが完了すると、信号/RASがハイレベルへ立上がり、ワード線WLの電位が非選択状態の接地電圧レベルへ低下する。次いで、まず信号SObがローレベルとされ、スイッチング素子SWjがオフ状態とされる。基板領域VSWは、既に接地電圧GNDレベルに充電されている。次いで活性化信号SOaがローレベルの非活性状態となり、スイッチング素子SWkがオフ状態とされる。
なお図45に示す波形図においては、プリチャージ信号φPは、センス動作時においてもハイレベルの活性状態とされている。このとき、充電信号φPがローレベルの活性状態となった後にセンス活性化信号SObおよびSOaが活性状態とされる構成が利用されてもよい。
なお、アクティブリストア回路のノードSPの電位は、先の実施例2において説明したものと同様であり、図示しない経路によりセンス活性化信号が発生され、このノードSPは内部電源電圧VCCレベルにまで上昇する。
[変更例1]
図46は、この発明の第7の実施例の第1の変更例の構成を示す図である。図46に示す構成においては、センスアンプ430のMOSトランジスタNQ7およびNQ8の基板領域VSWへは、スイッチング素子SWmを介してVbb発生回路460からの負電圧Vbbが供給される。スイッチング素子SWmは、そのゲートにプリチャージ信号φPRを受ける。このプリチャージ信号φPRは、そのハイレベルが内部電源電圧VCCレベル、そのローレベルが負電圧Vbbレベルである。他の構成は図44に示す構成と同じであり、対応する部分には同じ参照番号を付す。次に、図46に示す構成の動作を、その動作波形図である図47を参照して説明する。
スタンバイサイクルにおいては、信号SOa、SObおよびφPRはすべてローレベルの非活性状態にあり、スイッチング素子SWk、SWjおよびSWmはオフ状態にある。基板領域VSWは、先のサイクルにおいて接地電圧GNDレベルにプリチャージされている。ビット線イコライズ回路440は、ハイレベルのイコライズ信号EQに応答して活性化されてビット線BLおよび/BLを中間電圧VBLにプリチャージしかつイコライズしている。またアクティブリストア回路420においては、ノードSPは中間電圧VBLにプリチャージされ、またセンスアンプ430のノードSNも中間電圧VBLにプリチャージされている。
信号/RASがローレベルの活性状態となると、アクティブサイクルが始まる。この信号/RASの立下がりに応答して、プリチャージ信号φPRがローレベルからハイレベルへ立上がり、Vbb発生回路460の発生する負電圧Vbbがセンスアンプ430の基板領域VSWへ供給される。これにより、基板領域VSWは接地電圧GNDレベルから負電圧Vbbレベルに充電される。またこのときイコライズ信号EQが非活性状態のローレベルとされ、ビット線イコライズ回路440が非活性状態とされ、ビット線BLおよび/BLはプリチャージ電圧VBLでフローティング状態とされる。
選択ワード線WLの電位が高電圧Vppレベルにまで上昇し、ビット線BLおよび/BLの電位差が拡大されると、センス活性化信号SObおよびSOaが順次活性状態のハイレベルとされる(信号/RASに応答して所定期間経過後に活性状態とされる)。これによりまずスイッチング素子SWjがオン状態とされ、基板領域VSWの負電圧VbbがノードSNへ伝達され、ノードSNの電圧レベルはその中間電圧VBLから接地電位レベル方向へ低下する。センスノードSNへは基板領域VSWから負電圧が供給されるため、通常の接地電圧GNDが供給される場合に比べて高速でセンスアンプ430のMOSトランジスタNQ7およびNQ8のソース電圧が低下し、高電位のビット線の電位とそのノードSNの電位との差が大きくされ、低電位のビット線を放電すべきMOSトランジスタのゲート−ソース間電圧が拡大され、高速で放電すべきビット線の放電が行なわれる。このとき、MOSトランジスタNQ7およびNQ8の基板領域VSWへは負電圧Vbbが印加されており、接地電圧を印加する場合よりもそのバイアスが深くされる。したがってこの場合には、基板バイアス効果により、MOSトランジスタNQ7およびNQ8のしきい値電圧が高くなり、ソース電位が等価的に低下する。この状態においては、比較的緩やかに放電動作が行なわれる。したがってセンス動作開始時においてスイッチング素子SWjがオフ状態のときにおいては、緩やかにセンス動作が行なわれ、次いでスイッチング素子SWjがオン状態となり、基板領域VSWとノードSNとが相互接続されて基板効果が排除された後に高速で放電が行なわれることになり、センス動作開始時における緩やかな増幅およびその後の高速の増幅動作という2段階のセンス動作が実現され、正確にビット線BLおよび/BLの微小電位差を増幅することができる。
1つのメモリサイクルが完了すると、信号/RASがハイレベルへ立上がり、応じてワード線WLがローレベル、センス活性化信号SObおよびSOaがローレベルとなり、イコライズ信号EQが高電圧Vppレベルのハイレベルとされる。これにより、各回路がスタンバイ状態に復帰する。
なお、図45および47に示す動作波形図においては、スイッチング素子SWjがオフ状態とされた後にスイッチング素子SWkがオフ状態とされている。これは同じタイミングでスイッチング素子SWkおよびSWjがオフ状態とされてもよい。またスイッチング素子SWkが先にオフ状態とされ、次いでスイッチング素子SWjがオフ状態とされてもよい。
[変更例2]
図48は、この発明の第7の実施例の第2の変更例の構成を示す図である。図48に示す構成においては、基板領域VSWに対し、さらに、信号/RASの非活性化時導通して接地電圧GNDを伝達するスイッチング素子SWnが配置される。すなわち図48に示す構成においては、信号/RASがハイレベルのスタンバイサイクルにおいては、スイッチング素子SWnがオン状態とされ、センスアンプ430のMOSトランジスタNQ7およびNQ8の基板領域VSWへは接地電圧GNDが与えられる。これによりスタンバイサイクル時において、基板領域VSWがフローティング状態となるのが防止され、確実に基板領域VSWを接地電圧GNDレベルに維持することができる。
この図46および図48に示す構成において、スイッチング素子SWmは所定期間のみオン状態とされているため、Vbb発生回路460から負電圧Vbbが与えられても、その負電圧Vbbが基板領域VSWへ印加される期間は限定されており、したがって基板領域VSWは、ノードSNの充電の後、スイッチング素子SWkおよびSWjにより接地電圧GNDレベルにまで駆動され、ノードSNが負電圧Vbbレベルにまで変化するのは防止される。
以上のように、この第7の実施例の構成に従えば、センスアンプのMOSトランジスタNQ7およびNQ8の基板領域を所定電圧に充電し、センス動作開始時にはこの基板領域に充電された電荷を用いてセンスアンプの活性化用のノードを充電しているため、高速かつ安定にセンス動作を行なうことができる。
[実施例8]
図49は、この発明の第8の実施例である内部電源電圧発生回路の構成を示す図である。図49において、内部電源電圧発生回路(内部降圧回路)は、外部電源ノード1に与えられた外部電源電圧VCEが所定の電圧レベルに上昇したとき、外部電源電圧VCEが投入されたと判断し、電源投入検出信号POR(図49には示さず)およびその反転信号/PORを出力する電源投入検出回路45と、外部電源ノード1上の外部電源電圧VCEから所定の電圧レベルの基準電圧Vrefを生成し、信号線9上に出力する基準電圧発生回路4と、電源投入検出回路45からの電源投入検出信号/PORに応答して導通し、外部電源ノード1と信号線9を電気的に接続するpチャネルMOSトランジスタ46を含む。ドライブトランジスタ2および比較回路3は、従来の内部構成回路と同様であり、比較回路3は、内部電源線5上の内部電源電圧VCIと信号線9上の電圧とを比較し、その比較結果に従ってドライブトランジスタ2の電流供給量すなわちコンダクタンスを調整する。負荷回路7は、この内部電源線5上の内部電源電圧VCIを使用する。次にこの図49に示す内部電源電圧発生回路の動作をその動作波形図である図50を参照して説明する。
外部電源ノード1に外部電源電圧VCEが与えられ、この外部電源ノード1上の電圧レベルが所定の電圧レベル以上となると、電源投入検出回路45は外部電源電圧VCEが投入されたと判断し、電源投入検出信号PORをHレベルに立上げる。この電源投入検出信号PORのHレベルのパルス幅は適当な大きさに設定される。図50において、外部電源電圧VCEが所定の電圧レベルで一定となった時刻の後にこの電源投入検出信号PORはLレベルに立下がるように示される。この電源投入検出信号PORの期間がもう少し長くされてもよい。
一方、電源投入検出信号/PORはLレベルを維持する(外部電源電圧VCEの投入時この外部電源電圧VCEに従って少し電圧レベルは上昇するが、信号PORにより即座にLレベルに設定される。このLレベルの信号/PORに応答してMOSトランジスタ46がオン状態となり、信号線9上に外部電源電圧VCEを伝達する。基準電圧発生回路4は、この構成は後に一例を示すが、外部電源電圧VCEが一定の電圧レベル以上となったときに動作し、この基準電圧Vrefの電圧レベルを徐々に上昇させて最終的に所定の一定電圧レベルに設定する。比較回路3は、この信号線9上の電圧と内部電源線5上の内部電源電圧VCIとを比較し、その比較結果に従ってドライブトランジスタ2を駆動している。内部電源線5には比較的大きな寄生容量が付随し、この内部電源電圧VCIの上昇は基準電圧Vrefの電圧レベルの上昇よりも緩やかである。このとき、MOSトランジスタ46がオン状態であり、信号線9上の電圧は外部電源電圧VCEレベルに設定されているため、比較回路3は、この内部電源電圧VCIと外部電源電圧VCEの差に従ってドライブトランジスタ2のコンダクタンスを調整する。したがって、ドライブトランジスタ2は基準電圧発生回路4からの基準電圧Vrefと内部電源電圧VCIとを比較する場合に比べてより大きな電流を内部電源線5へ供給する。これにより、内部電源線5上の内部電源電圧VCIの立上が早くされ、内部電源電圧VCIが高速で安定状態とされる。
なお電源投入検出回路45の出力する信号/PORのHレベルへの立上がり期間は、この内部電源線5上の電源電圧VCIが一定の基準電圧のレベルに到達するまでの期間に設定されればよい。この信号/PORの立上がり期間および信号PORのHレベルの持続期間は、したがって、内部電源電圧VCIが目標となる一定の電圧レベル(基準電圧Vrefの最終到達レベル)以上となるときまでに、比較回路3が基準電圧発生回路4からの基準電圧Vrefと内部電源電圧VCIとを比較する動作を行なうように設定される。
上述のように、内部電源電圧VCIが安定化される期間を早くすることにより、たとえばDRAMにおいて、電源投入後内部回路をリセットするために実行されるダミーサイクル(信号/RASを所定回数トグルさせて信号線および内部ノードを所定電圧レベルに設定する)を行なう際に確実に、内部電源電圧VCIを所定の電圧レベルに設定することができ、確実に内部回路および内部ノードを所定の電圧レベルに初期設定することができる。
[変更例1]
図51は、この発明の第8の実施例の内部電源電圧発生回路の第1の変更例を示す図である。図37に示す構成においては、比較回路3の出力ノード6すなわちドライブトランジスタ2のゲートに、電源投入検出信号PORに応答してオン状態となり、ノード6を接地ノードVSSに電気的に接続するnチャネルMOSトランジスタ47が設けられる。他の構成は、従来の内部降圧回路と同じである。次に図37に示す構成の動作についてその動作波形図である図52を参照して説明する。
外部電源電圧VCEが外部電源ノード1へ与えられ、所定のレベルに達すると、電源投入検出信号PORが所定期間Hレベルとされる。これによりMOSトランジスタ47がオン状態となり、ノード6は接地電圧VSSレベルに設定される。ドライブトランジスタ2は、このノード6上の接地電圧VSSに従って大きなコンダクタンスを有し、外部電源ノード1から内部電源線5へ大きな電流を供給し、内部電源電圧VCEの電圧レベルを上昇させる。電源投入検出信号PORがHレベルのとき、基準電圧Vrefは所定の電圧レベルに到達していないため、より高速で内部電源電圧VCIを上昇させることができる。電源投入検出信号PORがLレベルとなると、MOSトランジスタ47がオフ状態となり、ノード6の電圧レベルは、比較回路3の出力信号に応じて変化し、そのときの基準電圧Vrefの電圧レベルと内部電源電圧VCIの電圧レベルに従ってドライブトランジスタ2のコンダクタンス(電流駆動力)が調整され、内部電源電圧VCIが最終の電圧レベルにまで上昇する。
この図51に示す構成においても、外部電源電圧VCEの印加時に、ドライブトランジスタ2は、大きな電流駆動力をもって外部電源ノード1から内部電源線5へ電流を供給するため、高速で内部電源電圧VCIを上昇させることができ、応じて高速で内部電源電圧VCIを所定の電圧レベルに安定化させることができる。
[変更例2]
図53は、この発明の第8の実施例である内部電源電圧発生回路の第2の変更例の構成を示す図である。図53に示す構成においては、ドライブトランジスタ2とは別に、内部電源線5と外部電源ノード1の間に、電源投入検出信号/PORに応答して導通するpチャネルMOSトランジスタ48が設けられる。図53に示す構成の動作をその動作波形図である図54を参照して説明する。
この図53に示す構成においては、図51に示す構成と同様、外部電源電圧VCEが外部電源ノード1印加されると、所定期間pチャネルMOSトランジスタ48がオン状態となり、外部電源ノード1から内部電源線5へ電流が供給される。比較回路3の出力信号の電圧レベルが過渡状態にあり、ドライブトランジスタ2のコンダクタンスが不安定な場合においても、内部電源線5はMOSトランジスタ48を介して外部電源ノード1から電流を供給され、内部電源電圧VCIの電圧レベルが上昇する。信号/PORがHレベルに立上がると、MOSトランジスタ48がオフ状態とされる(信号/PORのHレベルは外部電源電圧VCEレベル)。内部電源線5は、比較回路3の出力信号に従ってドライブトランジスタ2を介して外部電源ノード1から電流を供給され、その内部電源電圧VCIの電圧レベルは所定の電圧レベルに上昇する。
この図53に示す構成においても、内部電源電圧VCEが内部電源ノード1へ印加されたとき、内部電源線5が外部電源ノード1に電気的に接続されるため、内部電源電圧VCIの電圧レベルの上昇を早くすることができ、内部電源電圧VCIを高速で安定状態に設定することができる。
[実施例9]
図55は、この発明の第9の実施例である内部電源電圧発生回路の構成を示す図である。図55において、内部電源電圧発生回路は、基準電圧Vrefと内部電源線5上の内部電源電圧VCIを比較する比較回路3と、比較回路3の出力信号に応答して外部電源ノード1から内部電源線5へ電流を供給するドライブトランジスタ2と、比較回路3の出力信号を増幅する増幅回路50と、この増幅回路50の出力信号に応答してオン・オフし、外部電源ノード1から内部電源線5へ電流を供給するpチャネルMOSトランジスタ60を含む。増幅回路50は、比較回路3の出力信号を増幅する2段の縦続接続されたCMOSインバータ52および53と、CMOSインバータ52および53の出力信号のLレベルの振幅を制限する振幅制限回路51を含む。CMOSインバータ52および53は、外部電源ノード1に与えられる外部電源電圧VCEを一方導通電源電圧として動作する。次にこの図55に示す内部電源電圧発生回路の動作をその動作波形図である図56を参照して説明する。
内部電源線5上の内部電源電圧VCIが緩やかに低下した場合、比較回路3の出力信号も同様にこの内部電源電圧VCIの変化に追随して低下する。比較回路3の出力信号すなわちノード6の電圧レベルが低下すると、ドライブトランジスタ2は、そのコンダクタンスが大きくなり、外部電源ノード1から内部電源線5へ電流を供給し、この低下した内部電源電圧VCIの電圧レベルをもとのレベルへ復帰させる。このとき、また、増幅回路50においては、CMOSインバータ52がこのノード6上の信号を反転増幅し、次いでCMOSインバータ53がこのCMOSインバータ52の出力信号を反転して増幅する。これにより増幅回路50の出力信号が高速でLレベルとなり、MOSトランジスタ60がオン状態とされ、外部電源ノード1から電流を内部電源線5上へ供給する。このとき、負荷電流が大きい場合には、MOSトランジスタ60の電流駆動力がドライブトランジスタ2の電流駆動能力を助け、また、負荷電流が小さい場合には、ドライブトランジスタ2の電流駆動力のみで十分に負荷電流を供給することができるので、この内部電源線5上の内部電源電圧VCIのオーバーシュートは防止される。
また、ノード6の信号電圧が低下したとき、CMOSインバータ52において、pチャネルMOSトランジスタがオン状態となり、その出力信号をHレベルに上昇させるが、振幅制限回路51により、その内部のnチャネルMOSトランジスタのソース電位は接地電圧VSSよりも高くされており、nチャネルMOSトランジスタのゲート−ソース間電圧は十分小さくされ、これによりCMOSインバータ52における貫通電流が抑制される。この振幅制限回路51の構成については後に詳細に説明する。このとき、CMOSインバータ53の出力信号がLレベルに低下するが、そのLレベルの電圧レベルは、振幅制限回路51が実現する電圧レベルに設定されており、MOSトランジスタ60のゲート電位が接地電圧VSSレベルに低下するのが防止され、これにより内部電源線5へこのMOSトランジスタ60から大きな電流が供給されて内部電源線5がオーバードライブされるのが防止される。
内部電源線5上の電源電圧VCIが負荷回路7の動作により急激に低下した場合、比較回路3の出力信号はこの急激な内部電源電圧VCIの変化に追随できず、緩やかに変化する。しかしながら、この場合においても、増幅回路50が比較回路3の出力信号すなわちノード6の電圧を増幅するため、MOSトランジスタ60が高速でオン状態となり、外部電源ノード1から内部電源線5へ電流を供給し、この内部電源電圧VCIの急激な変化を抑制する。したがって、MOSトランジスタ60をオン状態とすることにより、急激な内部電源電圧VCIの変化を緩和または補償することができ、内部電源電圧VCIを安定に所定の電圧レベルに保持することができる。
[具体的構成1]
図57は、この発明の第9の実施例の内部電源電圧発生回路の具体的構成を示す図である。図57において、比較回路3は、ノードJ2と接地ノードVSSの間に接続され、そのゲートに内部電源電圧VCIを受けるnチャネルMOSトランジスタN41と、ノード6bと接地ノードVSSの間に接続され、そのゲートに基準電圧Vrefを受けるnチャネルMOSトランジスタN42と、外部電源ノード1とノードJ2の間に接続され、そのゲートがノードJ1を介してノードJ2に接続されるpチャネルMOSトランジスタP41と、外部電源ノード1とノード6bの間に接続され、そのゲートがノードJ1に接続されるpチャネルMOSトランジスタP42と、外部電源ノード1とノード6aの間に接続され、そのゲートがノードJ1に接続されるpチャネルMOSトランジスタP43と、ノード6aと接地ノードVSSの間に接続され、そのゲートに基準電圧Vrefを受けるnチャネルMOSトランジスタN43を含む。
pチャネルMOSトランジスタP41とpチャネルMOSトランジスタP42およびP43とはカレントミラー回路を構成する。すなわちpチャネルMOSトランジスタP41を流れる電流のミラー電流がpチャネルMOSトランジスタP42およびP43を流れる。電流の比がこれらのMOSトランジスタP41とMOSトランジスタP42およびP43とのサイズの比(ゲート幅とゲート長との比W/L)により決定される。ノード6aはドライブトランジスタ2のゲートに接続される。ノード6bは、増幅回路50の入力部に接続される。
増幅回路50は、CMOSインバータ52および53を含む。CMOSインバータ52は、外部電源ノード1とノードG3の間に接続されるpチャネルMOSトランジスタP44およびnチャネルMOSトランジスタN44を含む。CMOSインバータ53は、外部電源ノード1とノードJ3の間に接続されるpチャネルMOSトランジスタP45およびnチャネルMOSトランジスタN45を含む。ノード6bがMOSトランジスタP44およびN44のゲートに接続される。CMOSインバータ52の出力ノードはMOSトランジスタP45およびN45のゲートに接続される。
振幅制限回路51は、ノード53と接地ノードとの間に接続され、かつ振幅制限信号LMをそのゲートに受けるpチャネルMOSトランジスタP46を含む。MOSトランジスタP46は、ノードJ3の電位を、LM+Vtpの電圧レベルに設定する。次に動作について説明する。
比較回路3は、図22に示す比較回路と同様、カレントミラー型増幅回路の構成を備える。すなわち、内部電源電圧VCIが基準電圧Vrefよりも高いときには、MOSトランジスタN41のコンダクタンスがMOSトランジスタN42およびN43のコンダクタンスよりも高くなり、MOSトランジスタP41を介して流れる電流が増加する。このMOSトランジスタP41を流れる電流のミラー電流がMOSトランジスタP42およびP43にそれぞれ流れる。MOSトランジスタN42およびN43のコンダクタンスはMOSトランジスタN41のそれよりも小さいため、ノード6aおよび6bの電圧レベルが上昇する。これにより、ドライブトランジスタ2のコンダクタンスは小さくされ、外部電源ノード1からドライブトランジスタ2を介して内部電源線5へ流れる電流量が抑制される(遮断される)。
一方、ノード6b上の電圧はCMOSインバータ52により反転増幅される。このとき、CMOSインバータ52において、MOSトランジスタP44がオフ状態に移行し、MOSトランジスタN44がオン状態へ移行する。これにより、CMOSインバータ52の出力信号がLレベルへ移行し、CMOSインバータ53においてMOSトランジスタP45がオン状態、MOSトランジスタN45がオフ状態へ移行する。これによりノード55の電圧レベルが上昇し、ドライブ用MOSトランジスタ60がオフ状態とされる。CMOSインバータ52の出力信号がLレベルに低下したとき、ノードJ3の電圧レベルはLM+Vtpであり、MOSトランジスタN45がオフ状態とされ、CMOSインバータ53における貫通電流が防止される。また、CMOSインバータ52においても、ドライブトランジスタ2がほぼオフ状態にされる場合には、同様にMOSトランジスタP44もほぼオフ状態とされ、CMOSインバータ52における貫通電流も同様に防止される。
内部電源電圧VCIが基準電圧Vrefよりも低い場合にはMOSトランジスタN41のコンダクタンスがMOSトランジスタN42およびN43のそれよりも小さくされ、MOSトランジスタP41を介して流れる電流が小さくなり、応じてMOSトランジスタP42およびP43を介して流れる電流が減少する。これによりノード6aおよび6bはMOSトランジスタN42およびN43により放電され、その電圧レベルが低下する。まずドライブトランジスタ2がオン状態とされ、外部電源ノード1から内部電源線5へ電流を供給する。増幅回路50においては、MOSトランジスタP44がオン状態となり、MOSトランジスタN44はそのゲート−ソース間電圧(ノード6bとノードJ3の間の電圧)が小さいため、MOSトランジスタN44を介して流れる電流は小さくされる。これにより、CMOSインバータ52の出力信号がHレベルに上昇し、CMOSインバータ53においてMOSトランジスタP45がオフ状態、MOSトランジスタN45がオン状態とされる。
ノード55の電圧レベルはほぼノードJ3上の電圧レベルにまで低下し、MOSトランジスタ60がオン状態とされる。このときノード55の電圧レベルがノードJ3上の電圧LN+Vtpレベルであり、MOSトランジスタ60は比較的制限された電流量を外部電源ノード1から内部電源線5へ供給する。この構成においては、ドライブトランジスタ2が内部電源線5の急激な電圧低下に追随しない場合においても、増幅回路50によりドライブトランジスタ60が高速でオン状態とされ、この急激な内部電源電圧VCIの変化に追随して内部電源線5へ内部電源ノード1から電流を供給し、この急激な内部電源電圧VCIの電圧低下を補償する。
ドライブトランジスタ2が内部電源電圧VCIの緩やかな電圧変化に応答して電流を外部電源ノード1から内部電源線5へ供給し、MOSトランジスタ60が内部電源線5上の電源電圧VCIの急激な変化を緩和するように内部電源ノード1から内部電源線5へ電流を供給する。すなわち、ドライブトランジスタ2をアナログ的に動作させ、MOSトランジスタ60をディジタル的に動作させることにより、安定に内部電源電圧VCIをほぼ一定の電圧レベルに保持することができる。
また比較回路3は、そのカレントミラー回路のマスター段(MOSトランジスタP41)を共通としてノード6aおよび6bから信号電圧を取出している。その場合、増幅回路50およびドライブトランジスタそれぞれに対して比較回路を設ける構成に比べ、比較回路の占有面積を低減することができる。またMOSトランジスタP42およびP43のサイズを適当に調整することによりノード6aおよび6bの電圧変化の速度を適当な値に設定することができ、すなわち増幅回路50およびドライブトランジスタ2それぞれに対し比較回路3の増幅率を適当な値に設定することができ、ドライブトランジスタ2およびMOSトランジスタ60の応答特性を適当な値に設定することができる。
さらに、比較回路3においては、MOSトランジスタP41を介して流れる電流のミラー電流がMOSトランジスタP42およびP43を介して流れる。2つの比較回路を設けた場合、このMOSトランジスタP41が2つ必要とされることにより各トランジスタで電流が消費されるが、このカレントミラー回路のマスター段を共有する構成とすることにより電流を流れる経路の数を低減し、応じて比較回路の消費電流を低減することができる。
MOSトランジスタP42およびP43の電流駆動力は、ドライブトランジスタ2のゲート容量およびCMOSインバータ52の入力ゲート容量の値それぞれに応じて適当な値に設定される。それにより内部電源線5上の電源電圧VCIの急激な変化(高周波的な変化)および緩やかな変化(直流的な変化)いずれに対しても内部電源電圧VCIの低下を抑制することができ、内部電源電圧VCIの変化に追随することができる。
[具体的構成2]
図58は、この発明の第9の実施例の内部電源電圧発生回路の第2の具体的構成を示す図である。図58に示す構成においては、振幅制限回路51すなわちMOSトランジスタP46のゲートへ与えられる信号LMを発生するために、比較回路3の差動出力信号をさらに差動的に増幅する差動増幅回路70が設けられる。比較回路3および増幅回路50の構成は図57に示すものと同じであり、対応する部分には同一の参照番号を付す。差動増幅回路70は、ノードJ6と接地ノードVSSの間に接続され、そのゲートに比較回路3のノードJ2の出力信号を受けるnチャネルMOSトランジスタN46と、ノードJ5と接地ノードVSSの間に接続され、そのゲートに比較回路3の出力ノード6b上の信号を受けるnチャネルMOSトランジスタN47と、外部電源ノード1とノードJ6の間に接続され、そのゲートがノードJ4およびJ5に接続されるpチャネルMOSトランジスタP46と、外部電源ノード1とノードJ5の間に接続され、そのゲートがノードJ4およびJ5に接続されるpチャネルMOSトランジスタP47を含む。pチャネルMOSトランジスタP46およびP47はカレントミラー回路を構成する。MOSトランジスタP47がマスターとして動作し、MOSトランジスタP47を介して流れる電流のミラー電流がMOSトランジスタP46を介して流れる。次に動作について簡単に説明する。
(i) VCI>Vrefのとき:
ノードJ2の電圧レベルは、MOSトランジスタP41を介して流れる電流が増加するため(Vgs−Vtp)2 の関係から、低下する。MOSトランジスタP41のゲートとドレインがノードJ2の電圧レベルに等しく、ソース電圧は外部電源電圧VCEレベルである。したがって、このMOSトランジスタP41における電圧降下が高くなるためである。一方、ノード6bの電圧レベルは、MOSトランジスタP42を介して流れる電流が増加するが、MOSトランジスタN42は、この電流を全て通過させることができないため、上昇する。これにより、差動増幅回路70においては、MOSトランジスタN46のコンダクタンスよりもMOSトランジスタN47のコンダクタンスが高くなり、MOSトランジスタP47を介して流れる電流が増加する。これによりMOSトランジスタP46を介して流れる電流が増加しノードJ6からの出力信号すなわち振幅制限信号LMの電圧レベルが上昇する(最大VCEレベル)。これに応答して、増幅回路50における振幅制限回路51のMOSトランジスタP46のゲート電位が上昇し、ノードJ3の電圧レベルが上昇する。ここで、MOSトランジスタP46は、その電流供給力は十分大きくされており、常にこのゲート−ソース間(ノード6bとノードJ3の間)の電圧はしきい値電圧Vtpの電圧レベルに維持する。これにより、MOSトランジスタN44のコンダクタンスが低下しCMOSインバータ57の貫通電流が低減される。ノード55の電圧レベルがMOSトランジスタP45により充電され外部電源電圧VCEに近くなり、MOSトランジスタ60はオフ状態とされる。一方、ドライブトランジスタ2はノード6aの電圧レベルに従ってコンダクタンスが低下する。
(ii) VCI<Vrefのとき:
この場合には、ノードJ2の電圧レベルが少し上昇し、ノード6bの電圧レベルがMOSトランジスタN42により放電され低下する。これにより、MOSトランジスタN46のコンダクタンスがMOSトランジスタN47のコンダクタンスよりも大きくされ、ノードJ6の出力信号すなわち振幅制限信号LMの電圧レベルが低下する。ノード6bの電圧レベルの低下は電圧回路50により増幅され、MOSトランジスタ60はオン状態となる。このとき、増幅回路50においてノードJ3のクランプレベル(MOSトランジスタP46によるクランプ)が低下し、ノード55の電圧レベルはこのノードJ3の電圧レベルに等しくされる。これによりMOSトランジスタ60のコンダクタンスが大きくされ、比較的大きな電流を外部電源ノード1から内部電源線5へ伝達する。この内部電源電圧VCIと基準電圧Vrefの差が小さい場合には、振幅制限信号LMの電圧レベルは比較的高く、この内部電源電圧VCIは基準電圧Vrefよりも十分小さい場合、この振幅制限信号LMの電圧レベルが接地電圧VSSレベルに近くなる。
すなわちノード55(増幅回路50の出力ノード)の電圧レベルは、MOSトランジスタ60がより多くの電流を供給すべきときにはその電圧レベルが低くされ、それほど多くの電流を供給する必要のない場合には振幅制限信号LMの電圧レベルが少し高くされる。これによりMOSトランジスタ60のオーバードライブを抑制し、内部電源線5へ過剰な電流が供給されるのを防止することができ、安定にオーバーシュートを生じさせることなく内部電源電圧VCIの電圧レベルをもとのレベルへ回復させることができる。もちろん、このとき高速応答特性が劣るもののドライブトランジスタ2もオン状態となり外部電源ノード1から内部電源線5へ電流を供給する。
すなわちこの図58に示す構成においては、比較回路3において、基準電圧Vrefと内部電源電圧VCIの差を反転増幅し、この比較回路3の出力を更に増幅して振幅制限信号LMを生成することにより、この内部電源電圧VCIと基準電圧Vrefの差に応じた振幅制限信号LMの電圧レベルを設定することができる。
[具体例3]
図59は、この発明の第9の実施例の内部電源電圧発生回路の第3の具体的構成を示す図である。図59において、内部電源電圧発生回路は、内部電源電圧VCIと基準電圧Vrefの差を増幅して出力する差動増幅回路72と、基準電圧Vrefと内部電源電圧VCIの差を増幅して出力する差動増幅回路74と、差動増幅回路72の出力信号と差動増幅回路74の出力信号の差を増幅して出力する差動増幅回路76と、この差動増幅回路76の出力信号をさらに増幅してドライブトランジスタ2のコンダクタンスを調整する増幅回路50と、この差動増幅回路76の出力信号を振幅制限信号LMとして受けて、増幅回路50の出力する信号のLレベルの振幅を制限する振幅制限回路51を含む。
差動増幅回路72は、ノードJ8と接地ノードVSSとの間に接続され、そのゲートに基準電圧Vrefを受けるnチャネルMOSトランジスタN50と、ノードJ7と接地ノードVSSの間に接続され、そのゲートに内部電源電圧VCIを受けるnチャネルMOSトランジスタN51と、内部電源ノード1とノードJ8の間に接続され、そのゲートがノードJ7に接続されるpチャネルMOSトランジスタP50と、外部電源ノード1とノードJ7の間に接続されかつそのゲートがノードJ7に接続されるpチャネルMOSトランジスタP51を含む。MOSトランジスタP50およびP51はカレントミラー回路を構成し、MOSトランジスタP51を介して流れる電流のミラー電流がMOSトランジスタP50を介して流れる。この差動増幅回路72においては、内部電源電圧VCIが基準電圧Vrefよりも高いときには、ノードJ8からHレベルの信号が出力される。差動増幅回路74は、ノードJ10と接地ノードVSSの間に接続され、そのゲートに内部電源電圧VCIを受けるnチャネルMOSトランジスタN52と、ノードJ9と接地ノードVSSの間に接続され、そのゲートに基準電圧Vrefを受けるnチャネルMOSトランジスタN53と、内部電源ノード1とノードJ10の間に接続され、そのゲートがノードJ9に接続されるpチャネルMOSトランジスタP52と、外部電源ノード1とノードJ9の間に接続され、かつそのゲートがノードJ9に接続されるpチャネルMOSトランジスタP53を含む。pチャネルMOSトランジスタP52およびP53はカレントミラー回路を構成し、MOSトランジスタP53を介して流れる電流のミラー電流がMOSトランジスタP52を介して流れる。この差動増幅回路74においては、内部電源電圧VCIが基準電圧Vrefよりも低いときにHレベルの信号がノードJ10から出力される。
差動増幅回路76は、ノードJ11と接地ノードVSSの間に接続され、そのゲートが差動増幅回路72の出力ノードJ8に接続されるnチャネルMOSトランジスタN54と、ノードJ12と接地ノードVSSの間に接続され、そのゲートが差動増幅回路74の出力ノードJ10に接続されるnチャネルMOSトランジスタN55と、外部電源ノード1とノードJ11の間に接続されかつそのゲートがノードJ11に接続されるpチャネルMOSトランジスタP54と、外部電源ノード1とノードJ12の間に接続され、そのゲートがノードJ11に接続されるpチャネルMOSトランジスタP55を含む。pチャネルMOSトランジスタP54およびP55はカレントミラー回路を構成しMOSトランジスタP54を介して流れる電流のミラー電流がMOSトランジスタP55を介して流れる。この差動増幅回路76においては、差動増幅回路72の出力ノードJ8における信号電圧が差動増幅回路74の出力ノードJ10の信号電圧よりも高いときには、その出力ノードJ12からHレベルの信号が出力される。
増幅回路50は、差動増幅回路76の出力ノードJ12の信号電圧を受けるように接続される2段のCMOSインバータ52および53を含む。CMOSインバータ52は、pチャネルMOSトランジスタP44とnチャネルMOSトランジスタN44を含む。CMOSインバータ53はpチャネルMOSトランジスタP45とnチャネルMOSトランジスタN45を含む。CMOSインバータ53からドライブトランジスタ2のコンダクタンスを調整する信号が出力される。
増幅回路50の出力信号のLレベルの振幅を制限する振幅制限回路51は、差動増幅回路76の出力信号を振幅制限信号LMとしてそのゲートに受けるpチャネルMOSトランジスタP46を含む。このMOSトランジスタP46は、クランプ機能はなく、そのゲートに与えられる増幅制限信号LMに従った抵抗値が決定される抵抗素子として機能する。この図59に示す内部電源電圧発生回路においては、外部電源ノード1から内部電源線5へ電流を供給するドライブトランジスタが1つ設けられているだけである。次に動作について簡単に説明する。
差動増幅回路72は、k・(VCI−Vref)の電圧レベルの信号をその出力ノードJ8から出力する。ここでkは差動増幅回路72の増幅率を示す。同様に差動増幅回路74は、j・(Vref−VCI)の電圧レベルの信号をその出力ノードJ10から出力する。ここでjは差動増幅回路74の増幅率を示す。差動増幅回路76は、それらの差動増幅回路72および74の出力信号を差動的に増幅して出力する。したがって、この差動増幅回路76からは、iをその増幅率として
i{k・(VCI−Vref)−j・(Vref−VCI)}
=i・(k+j)(VCI−Vref)
の電圧レベルの信号が出力される。内部電源電圧VCIが基準電圧Vrefよりも高い場合には、増幅回路50からは内部電源電圧VCIに近い電圧レベルの信号がドライブトランジスタ2のゲートへ与えられる。したがって、この場合には、内部電源ノード1から内部電源線5へはほぼ電流は供給されない。
一方、内部電源電圧VCIが基準電圧Vrefよりも小さい場合には、初段のCMOSインバータ52の増幅率をmとすると、そこから
−m・i・(k+j)(VCI−Vref)
の電圧信号が出力される。このCMOSインバータ52の出力信号はさらにCMOSインバータ53により反転増幅されてドライブトランジスタ2のゲートへ与えられる。内部電源電圧VCIと基準電圧Vrefの差の小さい場合においても比較的大きな電圧振幅を有する信号がドライブトランジスタ2のゲートへ与えられる。ドライブトランジスタ2は1つしか設けられておらず、比較的大きな電流駆動力を有している。このとき、振幅制限信号LMもCMOSインバータ52の入力信号と同じ電圧レベルであり、MOSトランジスタP46の抵抗値を大きくして、そのソース電位を上昇させ比較的高い電圧レベルにこのCMOSインバータ53の出力信号のLレベルを設定する。したがってドライブトランジスタ2からは+m2 ・i・(k+j)(VCI−Vref)で規定される電圧レベルの信号がゲートへ与えられ、比較的小さな電源駆動力で外部電源ノード1から内部電源線5へドライブトランジスタ2が電流を供給する。
内部電源電圧VCIが基準電圧Vrefよりも大きく低下した場合には、この増幅回路50からドライブトランジスタ2のゲートへ与えられる電圧レベルも大きく低下する。このときには、また振幅制限信号LMの電圧レベルも低下しており、MOSトランジスタP64の抵抗値は十分小さくされ、そのソース電位は十分低くなり、応じてドライブトランジスタ2のゲート電位は大きく低下しており、大きな電流駆動力で外部電源ノード1から内部電源線5へ電流を供給する。MOSトランジスタP46のソース電位はCMOSインバータ52の貫通電流により与えられ、CMOSインバータ53は貫通電流をほとんど生じさせない。
図59に示す構成においては、基準電圧Vrefと内部電源電圧VCIの差が3つの差動増幅回路72、74、および76により増幅され、さらにこの差動増幅回路76の出力信号を増幅回路50により増幅されている。したがってドライブトランジスタ2が内部電源電圧VCIの電圧レベルに応じて高速でオン・オフ状態とされ、内部電源線5上の内部電源電圧VCIが急速に低下した場合においても高速でドライブトランジスタ2は外部電源ノード1から電流を内部電源線5へ供給し、この急激な内部電源電圧VCIの低下を補償することができる。
なお図59に示す構成において、振幅制限用のpチャネルMOSトランジスタP46は、MOSトランジスタN45に対してのみ設けられ、CMOSインバータ52のnチャネルMOSトランジスタN44のソースは接地ノードVSSに接続されるように構成されてもよい。また、振幅制限信号LMの電圧レベルは、CMOSインバータ52を構成するMOSトランジスタP44およびN44のサイズがCMOSインバータ53を構成するMOSトランジスタP45およびN45のそれよりも小さくされておれば、CMOSインバータ52における貫通電流は十分小さな値に設定することができる。出力段のCMOSインバータ53においてのみこの出力信号の振幅制限が行なわれることにより、CMOSインバータ53における貫通電流の防止およびドライブトランジスタのオーバードライブを確実に抑制し、必要な量の電流をドライブトランジスタ2を介して外部電源ノード1から内部電源線5へ供給することができる。この構成の場合、MOSトランジスタP46は、ソース電位クランプ機能(LM+Vtpにクランプ)を持つように構成されてもよい。
以上のようにこの発明の第9の実施例に従えば、ドライブトランジスタのゲート電位を、内部電源電圧と基準電圧を比較する比較回路の出力信号をさらに増幅して設定しているため、急激な内部電源電圧VCIの低下にもまた緩やかな内部電源電圧VCIの低下のいずれにも対応して必要な電流を外部電源ノード1からドライブトランジスタを介して内部電源線へ供給することができ、安定に内部電源電圧VCIを所定の電圧レベルに保持することができる。このとき、増幅回路の出力信号の振幅を制限することにより、ドライブトランジスタのオーバードライブが抑制され、必要な電流量のみを外部電源ノード1から内部電源線5へ供給することができる。特にこの振幅制限の電圧レベルを比較回路の出力信号を用いて生成することにより、ドライブトランジスタを介して内部電源線5へ供給すべき電流量に応じ振幅制限される電圧レベルを調整することができ、内部電源電圧VCIの変化に対応して必要な電流を外部電源ノード1から内部電源線5へ供給することができ、急激な内部電源電圧の低下および緩やかな内部電源電圧VCIのいずれにも柔軟に対してこの内部電源電圧VCIを所定の電圧レベルに回復させることができる。
[実施例10]
図60は、この発明の第10の実施例である内部電源電圧発生回路の構成を概略的に示す図である。図60において、内部電源電圧発生回路は、基準電圧Vrefと内部電源線5上の電圧VCIとを比較する比較回路3と、比較回路3の出力に応答して、外部電源ノード1から内部電源線5へ電流を供給するpチャネルMOSトランジスタ2と、比較回路3の出力を増幅(バッファ処理)する増幅回路50と、増幅回路50の出力に応答して内部電源線5へ外部電源ノード1から電流を供給するpチャネルMOSトランジスタ60を含む。この比較回路3は、図57に示す比較回路と同じ構成を備え、また増幅回路50も、図57に示すそれと同じ構成を備える。
内部電源電圧発生回路は、さらに、内部電源電圧VCIと基準電圧Vrefとを受け、この内部電源電圧のオーバシュート量とアンダシュート量との差を検出する積分部300と、積分部300の出力に応答してpチャネルMOSトランジスタ(第2のドライバ素子)の供給電流量を調整する調節部310を含む。この調節部310は、ドライブ素子60と外部電源ノード1との間に設けられる。積分部300は、内部電源電圧VCIが基準電圧Vref以上のとき、この基準電圧Vrefを基準とする内部電源電圧VCIの積分値と、この内部電源電圧VCIが基準電圧Vref以下のとき、この内部基準電圧Vrefを基準とする積分値とを加算する。調節部310は、この積分部300の出力が、アンダシュート量がオーバシュート量よりも大きいことを示すときにはドライブ素子60を流れる電流量を増加し、逆に、内部電源電圧VCIのオーバシュート量がそのアンダシュート量よりも大きい場合には、ドライブ素子60を流れる電流を減少させる。このドライブ素子2および60をそれぞれ比較回路3および増幅回路50で駆動する構成は、素43に示す構成と同様である。この図60に示すように、積分部300および調節部310を用いて、内部電源電圧VCIのアンダシュート量およびオーバシュート量に従ってドライブ素子60の供給電流量を調整する構成は、以下の利点を与える。
システム(外部処理装置および半導体記憶装置を含むシステム)の低消費電力化のために、外部電源電圧VCEを低くした場合、この外部電源電圧VCEを動作電源電圧として動作する比較回路3の応答特性が劣化する。この場合、負荷回路7が動作して電流を消費して内部電源電圧VCIが低下したとき、この内部電源電圧VCIの低下を補償するのに十分な電流を第1のドライブ素子2を介して内部電源線5へ供給することができない。この欠点を克服するために、増幅回路50により、第2のドライブ素子を高速でスイッチング動作させて電流を内部電源線5上へ供給している。この第2のドライブ素子60の供給電流量を固定的に設定すると、以下の問題が生じる場合がある。
近年、同期型半導体記憶装置と呼ばれる、システムクロックなどの外部クロック信号に同期してロウアドレスストローブ信号/RASなどの外部制御信号、アドレス信号、および書込データを取込む半導体記憶装置がデータ処理システムの主メモリとして用いられてきている。このような同期型半導体記憶装置は、複数種類の周波数のシステムクロックに対応可能である。クロック周波数が増加すると、回路(特に入力バッファ回路)の動作速度が高くなり、消費電流が増加する(トランジスタのスイッチング回数が増加するため)。消費電流が最も高くなる最も高いクロック周波数に対応してドライブ素子60の供給電流量を設定すると、逆に低周波数のシステムクロックを用いる低速システムにこの半導体記憶装置が用いられた場合、ドライブ素子60の供給電流量が不必要に大きくなり、内部電源電圧VCIにオーバシュートが生じる。しかしながら、図60に示すように、ドライブ素子2および60を用い、かつドライブ素子60の供給電流量を負荷回路7の消費する電流(負荷電流)に応じて調節することにより、上述の問題が解消され、最適量の電流を内部電源線5へ供給することができ、内部電源電圧VCIのオーバシュートの発生を抑制し、内部電源電圧VCIを安定に所定レベルに維持することができる。次に具体的に構成について説明する。
[具体的構成1]
図61は、この発明の第10の実施例の第1の具体的構成を示す図である。図61において、増幅回路50は、図57に示す構成と同様、2段のインバータ52および53を含む。初段のインバータ52のトランジスタのサイズは小さくされ、比較回路3の出力負荷を低減する。ドライブ素子60は、一例として、4個の互いに並列に接続されるpチャネルMOSトランジスタ60a、60b、60c、および60dに分割される(この理由については後に説明する)。
積分部300は、基準電圧Vrefと内部電源電圧VCIの差を増幅する差動増幅回路302と、内部電源電圧VCIと基準電圧Vrefの差を増幅する第2の差動増幅回路304と、キャパシタで構成されるループフィルタ309と、差動増幅回路302および304の出力に従ってループフィルタ309を充放電するチャージポンプ回路305を含む。
チャージポンプ回路305は、外部電源ノード1とノードDの間に設けられ、差動増幅回路302の出力に応答して導通するpチャネルMOSトランジスタ306と、ノードDと接地ノードとの間に設けられ、差動増幅回路304の出力に応答して導通するnチャネルMOSトランジスタ308を含む。
差動増幅回路302は、内部電源電圧VCIが基準電圧Vrefよりも低いときに“L”の出力を出力し、pチャネルMOSトランジスタ306をオン状態とする。差動増幅回路304は、内部電源電圧VCIが基準電圧Vrefよりも高いときに“H”の信号を出力し、nチャネルMOSトランジスタ308をオン状態とする。すなわち、積分部300においては、内部電源電圧VCIが基準電圧Vrefよりも低い場合には、ループフィルタ309がpチャネルMOSトランジスタ306を介して充電される。内部電源電圧VCIが基準電圧Vrefよりも低い場合には、MOSトランジスタ308がオン状態となり、ループフィルタ309を放電する。差動増幅回路302および304の出力信号はアナログ的に変化し、したがってループフィルタ309の充電電位は内部電源電圧VCIのオーバシュート量とアンダシュート量の差を示す。
調節回路310は、ループフィルタ309の充電電位(ノードDの電位)を多ビットデジタル信号(図47においては4ビットのデジタル信号)に変換するA/Dコンバータ312と、A/Dコンバータ312を多ビットデジタル信号の各ビットに対応して設けられかつドライブトランジスタ60a〜60dの各々と直列に接続されるpチャネルMOSトランジスタPBa、PBb、PBc、およびPBdを含む。A/Dコンバータ312の動作周波数は、任意であるが、同期型半導体記憶装置に適用される場合には最高速度のシステムクロック以上(または同程度)の速度で動作するのが好ましい。後に説明するように、積分部300は、本質的に積分回路であり、低速動作回路である。したがって、積分部300の出力に従ってドライブトランジスタ60(60a〜60d)の供給電流量が変化するのは現サイクル(負荷回路の動作サイクルについて)よりも、主に次のサイクルにおいてである。しかしながら、動作周波数が一定の状態の場合には、一度供給電流量が安定すれば、その後はほとんどそれは変化しないので問題はない。同期型半導体記憶装置においてこの図61に示す構成が適用される場合、したがって、A/Dコンバータ312の動作速度が最高外部クロック周波数以上(または同程度)あればよい。
次に、この図61に示す構成の動作をその動作波形図である図62を参照して説明する。
負荷回路7が動作すると、負荷電流Iloadが流れ、ノードA(内部電源線5)上の内部電源電圧VCIが低下する。内部電源電圧VCIが基準電圧Vrefよりも低くなると、比較回路3の出力が低下し、ドライブ素子2がオン状態となり、外部電源ノード1から内部電源線5へ電流を供給する。ドライブ素子が2が供給する電流量は、比較回路3の出力レベルに従ってアナログ的に変化する。 一方、増幅回路50は、この比較回路3の出力を増幅し、急速にその出力を低下させ、ドライブ素子60a〜60dをオン状態とする。MOSトランジスタPBa〜PBdは、A/Dコンバータ312の出力する多ビットデジタル信号に従って選択的にオン状態とされる。このA/Dコンバータ312の出力する多ビットデジタル信号は、初期電位V0に従って決定される。したがって、このドライブトランジスタ60a〜60dのうち、対応のMOSトランジスタPBa〜PBdがオン状態となっているドライブトランジスタのみが内部電源線5(ノードA)へ電流を供給する。
差動増幅回路302の出力は、内部電源電圧VCIが基準電圧Vrefよりも低いためHレベルであり、MOSトランジスタ306はオフ状態にある。一方、差動増幅回路304の出力は、基準電圧Vrefと内部電源電圧VCIとの差に応じたHレベルとなり、MOSトランジスタ308がオン状態となり、ループフィルタ309を放電する。MOSトランジスタ308の放電電流量は、差動増幅回路304の出力に従ってアナログ的に変化する。このMOSトランジスタ308の放電により、ループフィルタ309の充電電位(ノードDの電位)が初期電位V0から低下する。チャージポンプ回路305の充放電電流は、ループフィルタ305の有する容量に対し比較的小さく、ループフィルタ305の充電電位(ノードDの電位)は緩やかに変化する。ループフィルタ305は、「ローパスフィルタ」であり、高速応答性がない。ループフィルタ305の充電電位(ノードDの電位)が現実に調節回路310の電流調節動作に影響を及ぼすのは次のサイクル(負荷回路7の次の動作サイクル)においてであり、現サイクルにおいては、調節回路310の制御によりドライブトランジスタ60a−60dが内部電源線5(ノードA)に供給する電流はほぼ一定である。このA/Dコンバータ312の動作速度を、負荷回路7とそれとほぼ同様にすれば、この動作は確実に実現することができる。現サイクルにおいて、MOSトランジスタPBa〜PBdのオン/オフ状態を固定的に設定することができるためである。
内部電源電圧VCIがそのアンダシュートにより電圧レベルが低下するにつれ、比較回路3の出力信号がLレベルへ移行し、ドライブ素子2が供給する電流I2が多くなる。一方、ドライブトランジスタ60が供給する電流I1は、前述のごとくほぼ一定である。負荷回路7が消費する電流(負荷電流)Iloadが低下すると、内部電源電圧VCIの電圧レベルが上昇する。このとき、ドライブ素子2を介して流れる電流I2も応じて低減される。しかしながらこの場合、ドライブ素子60がともに電流を内部電源線5(ノードA)へ供給しているため、この供給電流が多くなり、負荷回路7の動作が完了し、負荷電流Iloadが流れなくなった場合において、内部電源線5(ノードA)上の内部電源電圧VCIにオーバシュートが生じる。
オーバシュートが生じた場合、差動増幅回路302の出力がLレベルへ移行し、一方、差動増幅回路304の出力はLレベルへ移行する。これにより、MOSトランジスタ306がオン状態へ移行し、MOSトランジスタ308がオフ状態とされ、ノードDがMOSトランジスタ306を介して充電される。内部電源電圧VCIにオーバシュートが生じた場合、比較回路3の出力はHレベルとなり、ドライブ素子2および60はすべてオフ状態とされる。このオーバシュートは、アンダシュートおよびオーバシュートを繰返し、ほぼ基準電圧レベルへと徐々に復帰する。図62においては、オーバシュートからアンダシュートへの移行時に負荷回路7の次のサイクルが始まる状態が示される。負荷回路7の1つの動作サイクルにおいて、ループフィルタ309が充電される電荷量は、内部電源電圧VCIのアンダシュート量に対応し(図62においてノードCの部分の斜線で示す領域)、また内部電源電圧VCIのオーバシュート量は、このループフィルタ309への充電電流(ノードBの斜線領域)で表される。したがって、1つのサイクル完了時において、ループフィルタ309の充電電位(ノードDの充電電位)は、オーバシュート量とアンダシュート量の差に等しくなる。
次のサイクル(負荷回路7の動作サイクル)においては、ループフィルタ309はこの内部電源電圧VCIのオーバシュートより充電されており、充電電位はV1である。A/Dコンバータ312により、このループフィルタ309の充電電位をデジタル信号に変換し、MOSトランジスタPBa−PBdを選択的にオン状態とする。ノードDの電位が高ければ、A/Dコンバータ312の出力するデジタル信号は“1”を多く含み、ノードDの電位が低い場合にはA/Dコンバータ312の出力するデジタル信号は“0”を多く含む。
内部電源電圧VCIにアンダシュートが生じるのは、比較回路3の応答の遅れとドライブ素子2および60の供給する電流の状態(アンダシュートが大きい場合には供給電流が不十分)による。オーバシュート量よりもアンダシュート量が大きい場合には、このドライブ素子2および60が供給する電流量が不十分な場合である。この場合には、MOSトランジスタPBa−PBdのうち数多くのトランジスタがオン状態とされ、ドライブ素子60を介して内部電源線5へ与えられる供給電流量が多くされ、アンダシュートの発生を抑制する。
一方、オーバシュート量がアンダシュート量よりも大きい場合には、ドライブ素子2および60が供給する電流が負荷電流よりも大きい場合である。この場合には、MOSトランジスタPBa−PBdのうち少ないMOSトランジスタがオン状態とされ、ドライブ素子60を介して供給される電流量が低減され、オーバシュートの発生が抑制される。図62においては、アンダシュート量がオーバシュート量よりも大きく、次のサイクルの開始電圧V1が初期電位V0よりも低く、ドライブ素子60を介して供給される電流が多くされる状態が示される。この場合、内部電源電圧VCIは、比較回路3の応答の遅れによりアンダシュートが生じるものの、先のサイクルに比べてより高速で元の電位に復帰する。このオーバシュート量とアンダシュート量とが等しい場合には、ノードDの電位は変化せず、オーバシュート量とアンダシュート量とのバランスが取られる。内部電源電圧VCIのオーバシュート量とアンダシュート量との平衡状態においては、負荷回路7が消費する負荷電流Iloadとドライブ素子2および60が供給する電流とは最適化されており、比較回路3の応答の遅れに起因する内部電源電圧VCIの小さなオーバシュート/アンダシュートが生じるだけである。途中でたとえば動作周波数が変更され、応じて負荷回路7の消費電流すなわち負荷電流Iloadが変化した場合には、再び加算部300および調節回路312による最適化動作が行なわれ、内部電源電圧VCIのオーバシュート量とアンダシュート量が一致するようにドライブ素子60の供給する電流量が調整される。
スイッチング動作(デジタル動作)を行なうドライブ素子60の供給電流量を調整するのは以下の理由による。このドライブ素子60は高周波動作時における負荷電流Iloadの内部電源電圧VCIの電位低下を補償するために用いられており、したがって、ドライブ素子60の供給電流量を調整することにより、内部電源電圧VCIに対する内部電源電圧発生回路(特に比較回路3)の応答の遅れを補償し、アンダシュート量を小さくすることができ、かつアンダシュート量およびオーバシュート量を等しくすることができる。
図63は、図61に示す積分部の構成を示す図である。図63において、第1の差動増幅回路302は、基準電圧VCSnをゲートに受け、定電流源として機能するnチャネルMOSトランジスタ321と、基準電圧Vrefをゲートに受けるnチャネルMOSトランジスタ322と、内部電源電圧VCIをゲートに受けるnチャネルMOSトランジスタ323と、ノード327と外部電源ノード1の間に接続されるpチャネルMOSトランジスタ324と、ノードDと外部電源ノード1の間に接続されるpチャネルMOSトランジスタ325を含む。MOSトランジスタ322および323のソースはともにMOSトランジスタ321のドレインに接続され、MOSトランジスタ322および323のドレインはそれぞれノード327およびノードBに接続される。MOSトランジスタ324および325のゲートはノード327に接続される。MOSトランジスタ324および325はカレントミラー回路を構成する。
第2の差動増幅回路304は、基準電圧VCSpをゲートに受け、定電流源として機能し、外部電源ノード1から電流を供給するpチャネルMOSトランジスタ336と、MOSトランジスタ336とノード337の間に接続され、そのゲートに基準電圧Vrefを受けるpチャネルMOSトランジスタ334と、MOSトランジスタ336とノードCの間に接続され、そのゲートに内部電源電圧VCIを受けるpチャネルMOSトランジスタ335と、ノードCとノード338の間に接続され、そのゲートがノード337に接続されるnチャネルMOSトランジスタ333と、ノード337とノード338の間に接続され、そのゲートがノード337に接続されるnチャネルMOSトランジスタ332とを含む。この基準電圧VCSnは、スタンバイサイクル時に非活性状態とされる(接地電圧レベルとされる)電圧であってもよく、常時印加される一定の電圧レベルの信号であってもよい。またMOSトランジスタ336のゲートへ与えられる基準電圧VCSpも、この動作サイクル時(負荷回路7の動作サイクル時)において活性状態とされる(一定の基準電圧レベル)信号であってもよく、また常時印加される一定の電圧レベルの信号であってもよい。次に動作について簡単に説明する。
(i) VCI>Vref:
第1の差動増幅回路302においては、MOSトランジスタ322のコンダクタンスがMOSトランジスタ323のそれよりも小さくなり、MOSトランジスタ323を介して流れる電流がMOSトランジスタ322を介して流れる電流よりも多くなる。MOSトランジスタ321は定電流源として機能しており、したがってMOSトランジスタ322を介して流れる電流が減少する。応じてMOSトランジスタ324を介して流れる電流が減少する。MOSトランジスタ324とMOSトランジスタ325とはカレントミラー回路を構成しており、これらのMOSトランジスタ324および325のサイズが同じ場合には、MOSトランジスタ324および325には同じ大きさの電流が流れる。したがって、MOSトランジスタ325を介して供給される電流が低下し、ノードBの電位がMOSトランジスタ323を介して放電され、低下する。これによりチャージポンプ回路305において、MOSトランジスタ306がオン状態となり、ループフィルタ309を充電する。
一方、第2の差動増幅回路304においては、MOSトランジスタ335のコンダクタンスはMOSトランジスタ334のコンダクタンスよりも小さくなり、定電流トランジスタ336からの電流がMOSトランジスタ334を介してより多くながれる。これにより、MOSトランジスタ332を介して流れる電流が増加する。MOSトランジスタ332とMOSトランジスタ333とはカレントミラー回路を構成しており、それらのMOSトランジスタ332および333のサイズが同じ場合には、MOSトランジスタ332および333に同じ大きさの電流が流れる。したがって、ノードCはMOSトランジスタ333を介して放電されその電位レベルが低下する。このとき、ノードCの電位レベルは接地電位レベルにまで放電される。これによりチャージポンプ回路305において、MOSトランジスタ308は確実にオフ状態とされ、このチャージポンプ回路305における貫通電流の発生が防止される。すなわちこの貫通電流の発生を防止することにより、内部電源電圧VCIのオーバシュート量に応じた電荷量をループフィルタ309に蓄積することができる。
(ii) VCI<Vrefのとき:
第1の差動増幅回路302においてはMOSトランジスタ322のコンダクタンスがMOSトランジスタ323のコンダクタンスよりも大きくなり、MOSトランジスタ322を介して流れる電流が増加する。応じてMOSトランジスタ324および325を介して流れる電流が増加する。MOSトランジスタ325が供給する電流は、MOSトランジスタ323が放電する電流よりも大きい。したがってノードBの電位が上昇し、外部電源電圧VCEレベルまで上昇する。これにチャージポンプ回路305において、MOSトランジスタ306が確実にオフ状態とされる。
一方、第2の差動増幅回路304においては、MOSトランジスタ335のコンダクタンスがMOSトランジスタ334のそれよりも大きくなり、定電流源トランジスタ336からの電流がMOSトランジスタ335を介して多く流れる。このときには、MOSトランジスタ334および332を介して流れる電流が減少し、応じてMOSトランジスタ333が放電する電流量が減少する。これにより、MOSトランジスタ335を介してノードCが充電され、その電位レベルが上昇し、MOSトランジスタ308がオン状態となり、ノードCを放電する。チャージポンプ回路305におけるMOSトランジスタ308が放電する電流量は、内部電源電圧VCIのアンダシュート量を表わしている。したがって、ノードDの電位すなわちループフィルタ309の充電電位はオーバシュート量とアンダシュート量の差に等しくなる。言い換えると、基準電位Vrefを基準とする内部電源電圧VCIのアンダシュート値における積分値とオーバシュート時における内部電源電圧VCIの積分値の和に対応する電圧レベルとなる。
なお上記実施例においては、内部電源電圧VCIが直接差動増幅回路302および304へ与えられ、基準電圧Vrefと比較されてその比較結果に従った信号がチャージポンプ回路305へ与えられている。また同様に内部電源電圧VCIと基準電圧Vrefとが比較回路3において比較されている。これは、内部電源電圧VCIがレベルシフトされ、比較回路3および差動増幅回路302および304へ与えられる構成が利用されてもよい。感度の最もよい領域で比較回路3、差動増幅回路302および304を動作させることができる。
A/Dコンバータを用いて、複数のMOSトランジスタを選択的にオン状態とすることにより、比較的簡単に、負荷回路7の動作サイクルごとにドライブトランジスタ60の供給電流量を調整することができる。
[具体的構成2]
図64は、この発明の第10の実施例である内部電源電圧発生回路の第2の具体的構成を示す図である。図64に示す構成においては、調節回路310は、外部電源ノード1とドライブ素子60の間に設けられたpチャネルMOSトランジスタ315を含む。このMOSトランジスタ315のゲートへはノードDの電位が与えられる。他の構成は、図47に示すものと同様であり、対応する部分には同一の参照番号を付す。次に動作について説明する。
ループフィルタ309の充電電位(ノードDの電位)は、図61に示す構成と同様、内部電源電圧VCIの基準電圧Vrefを基準とする前のサイクル(負荷回路7の動作サイクル)の積分値に対応している。内部電源電圧VCIのアンダシュート量がそのオーバシュート量よりも大きい場合には、ノードDの電位が低下する。逆に、内部電源電圧VCIのオーバシュート量がそのアンダシュート量よりも大きい場合には、ループフィルタ309の充電電位(ノードDの電位)が上昇する。このループフィルタ309の充電電位(ノードDの電位)は、調節回路310を構成するpチャネルMOSトランジスタ315のゲートへ与えられる。したがって、内部電源電圧VCIのオーバシュート量がそのアンダシュート量よりも大きい場合には、MOSトランジスタ315の抵抗値が大きくなり、外部電源ノード1からドライブ素子60へ与えられる電流量が低下する。逆に、内部電源電圧VCIのアンダシュート量がそのオーバシュート量よりも大きい場合には、MOSトランジスタ315の抵抗値が小さくなり、外部電源ノード1からドライブ素子60へ供給される電流量が増加する。このときこのドライブ素子60の電流供給力は、MOSトランジスタ315の供給する電流駆動力よりも大きくされている。したがって、このドライブ素子60から内部電源線5へ与えられる電流量を負荷回路7が消費する負荷電流Iloadに応じた値に設定することができる。
ループフィルタ309は、積分動作を行なっており、「ローパスフィルタ」として機能する。したがって、ループフィルタ309の充電電位は、1サイクル内においてチャージポンプ回路305の充放電動作により変化するものの、その変化は緩やかである。高周波応答特性はなく、したがって1サイクル(負荷回路7の動作サイクル)において、ノードDの電位はほぼ一定と見なすことができ、応じて1サイクル期間においてMOSトランジスタ315が供給する電流をほぼ一定とすることができる。すなわち、図54に示す動作波形図と同様の動作をこの図64に示す回路を用いても実現することができる。
図64に示す構成の場合、各サイクル(負荷回路7の動作サイクル)ごとに、ノードDの電位に従ってアナログ的に(連続的に)外部電源ノード1がドライブ素子60へ供給される電流量を調整することができる。したがって調節回路の占有面積を小さくして正確にこのドライブ素子60が供給する電流を調節することができ、応じて負荷回路7の消費する負荷電流Iloadとドライブ素子2および60が供給する電流I1およびI2とをバランスさせることができ、オーバシュートおよびアンダシュートを抑制するとともに、負荷電流Iloadに対する最適な電流を内部電源線5へ供給することができる。
なお、第1および第2の差動増幅回路302および304はデジタル的に動作し、MOSトランジスタ306および308をスイッチング動作(デジタル動作)させるように構成してもよい。
以上のように、この第10の実施例に従えば、内部電源電圧VCIのアンダシュート量とオーバシュート量との差に従ってドライブ素子が内部電源線へ供給する電流量を調節するように構成しているので、この内部電源線に接続する負荷回路が消費する負荷電流に応じた最適な電流量を内部電源線へ供給することができ、内部電源線におけるオーバシュートおよびアンダシュートを抑制することができる。
また、上記各実施例においては、外部電源電圧を降圧して内部電源電圧を生成しているが、本発明は、一般に、第1の電源電位から所定の電圧レベルの第2の電源電位を装置内部で生成する回路に適用することができる。
[実施例11]
図65は、この発明の第11の実施例である内部降圧回路が適用される半導体記憶装置の全体の構成を示す図である。図65において、半導体記憶装置は、半導体チップ100上に配置される4つのメモリセルアレイ102a、102b、102c、および102dを含む。メモリセルアレイ102a〜102dの各々は、行および列のマトリクス状に配列された複数のメモリセルと、各列に対応して配置されるビット線対および各行に対応して配置されるワード線、および各ビット線対に対応して設けられるセンスアンプを含む。メモリセルアレイ102a〜102dからのメモリセルの選択方法は任意である。アクセス時において、メモリセルアレイ102a〜102d各々において所定数(たとえば1ビット)のメモリセルが選択される構成が利用されてもよい。またメモリセルアレイ102a〜102dのうち所定数のアレイ(たとえばメモリセルアレイ102aおよび102c)が選択され、残りのメモリセルアレイはスタンバイ状態を維持する構成が利用されてもよい。
半導体記憶装置はさらに、メモリセルアレイ102aおよび102cとメモリセルアレイ102および102dの間の領域に配置され、外部からの信号に従ってメモリセルアレイ102a〜102dに対する制御信号を生成するマスタ周辺回路104と、メモリセルアレイ102aおよび102cの間に設けられ、マスタ周辺回路104からの制御信号に従って、メモリセルアレイ102aおよび102cに対するアクセス動作を制御するローカル周辺回路106aと、メモリセルアレイ102bおよび102dの間に設けられ、マスタ周辺回路104からの制御信号に従ってメモリセルアレイ102bおよび102dに対するアクセス動作を制御するローカル周辺回路108aを含む。
マスタ周辺回路104は、外部からのロウアドレスストローブ信号/RAS、コラムアドレスストローブ信号/CAS、およびライトイネーブル信号/WEなどの制御信号を受けて内部制御信号を生成するとともに、外部からのアドレス信号を受け、内部アドレス信号を生成するとともにブロックアドレス(ブロック選択方式の場合選択されるメモリセルアレイを指定する)を生成するアドレスバッファおよびブロックデコーダを含む。ローカル周辺回路106aおよび106bは、対応のメモリセルアレイにおける行および列の選択を行なうロウデコーダおよびコラムデコーダを含む。
半導体記憶装置はさらに、マスタ周辺回路104およびローカル周辺回路106aおよび106bへ内部電源電圧を供給する周辺用内部降圧回路112と、メモリセルアレイ102aおよび102bへ内部電源電圧を供給するアレイ用内部降圧回路110aと、メモリセルアレイ102cおよびメモリセルアレイ102dへ内部電源電圧を供給するアレイ用内部降圧回路110bを含む。アレイ用内部降圧回路110aおよび周辺用内部降圧回路112は、チップ100の中央部に設けられた外部電源パッド1aから外部電源電圧VCEを受けて所定の内部電源電圧を生成し、アレイ用内部降圧回路110bは、同様に別の領域に設けられた外部電源パッド1bに与えられた外部電源電圧から内部電源電圧を生成する。ここで、外部電源パッド1aおよび1bがチップ100の中央部に配置されており、いわゆる「リード・オン・チップ(LOC)」のパッドの配置を有するように示されているが、この半導体記憶装置は、チップ100の外周部に沿って外部電源電圧を入力するためのパッドが配置される構成であってもよい。
アレイ用内部降圧回路110aおよび110bは、センスアンプの動作時におけるビット線の充電のために利用される内部電源電圧およびビット線を中間電位に保持するための中間電位を生成するために利用される内部電源電圧を生成する。ビット線の充放電動作時においては、数多くのビット線の充電が行なわれるため(選択されたワード線と交差するビット線対においてすべて充放電が行なわれる)、内部電源線から大量の電流が消費されるものの、その電圧変化は比較的緩やかである。したがってこのセンス動作時におけるビット線の充電に利用される内部電源電圧を発生する内部降圧回路は、高周波応答特性よりもむしろ比較的緩やかな電圧変化に対応する直流応答特性と大きな電流供給力を要求される。一方、内部制御信号などを生成する周辺回路(マスタ周辺回路104およびローカル周辺回路106a,106b)は、早いタイミングで信号を確定状態とする必要があり、高速動作を行なうため、この内部電源電圧は急激に変化する。したがって周辺回路に対する内部電源電圧を供給する周辺用内部降圧回路112は、急激な内部電源電圧の変化に対応する高周波応答特性が要求される。したがってこれら要求される応答特性に従ってアレイ用内部降圧回路110aおよび110bならびに高周波応答特性に優れた周辺用内部降圧回路112をそれぞれ別々に設けることにより、各対応の内部回路の動作に応じて安定に内部電源電圧を生成することができる。
しかしながら、図59〜64に示すように高周波応答特性および直流応答特性いずれをも満足することのできる内部降圧回路が用いられる場合には、アレイ用内部降圧回路と周辺用内部降圧回路が共用される構成が利用されてもよい。次に各内部回路の具体的構成について説明する。
[周辺回路用内部降圧回路]
図66は、図65に示す周辺用内部降圧回路の構成を示すブロック図である。図66において、周辺用内部降圧回路112は、所定の電圧レベルの基準電圧VrefLおよび振幅制限信号LMを生成する基準電圧発生部120と、基準電圧発生部120からの基準電圧VrefLと内部電源線135上の内部電源電圧VCIとに従ってこの内部電源電圧VCIの電圧レベルを所定レベルに保持する内部電源電圧発生部130と、外部電源パッド1aに与えられた外部電源電圧VCEの高周波成分を除去し、基準電圧発生部120および内部電源電圧発生部130の外部電源ノードへ伝達するローパスフィルタ140を含む。ローパスフィルタ140は、この半導体記憶装置の動作時に外部電源電圧VCEか使用されたとき、外部電源パッド1aに与えられた外部電源電圧VCEの電圧レベルにバウンス(オーバーシュートおよびアンダーシュート)が生じたときに、基準電圧発生部120が生成する基準電圧(その内部構成については後に詳細に説明する)に対しこの外部電源電圧VCEのバウンスが悪影響を及ぼすのを防止するために設けられる。
図67はこの図66に示す基準電圧発生部の動作を概略的に示す図である。以下、図66および図67を参照して、この基準電圧発生部の動作について簡単に説明する。
外部電源電圧VCEが上昇すると、ノーマル用基準電圧発生回路122が出力する基準電圧VrefNLも応じて上昇する。外部電源電圧VCEが所定の電圧レベルV0に到達すると、このノーマル用基準電圧発生回路122からの基準電圧VrefNLが一定の電圧レベルを維持する。一方、バーンイン用基準電圧発生回路124は、この外部電源電圧VCEよりも一定値低い基準電圧VrefBLを発生する。したがってこのバーンイン用基準電圧発生回路124から発生される基準電圧VrefBLは外部電源電圧VCEに比例して増加する。
基準電圧発生回路126は、この基準電圧VrefNLおよびVrefBLのうちの高い電圧レベルを選択して出力する。外部電源電圧VCEが電圧V1に到達するまでは、基準電圧VrefNLが高いため、基準電圧発生回路126からの基準電圧VrefLは、ノーマル用基準電圧発生回路122からの基準電圧VrefNLに等しくなる。一方、外部電源電圧VCEが電圧V1を超えると、基準電圧VrefBLが基準電圧VrefNLよりも高くなるため、この基準電圧発生回路126からの基準電圧VrefLは、バーンイン用基準電圧発生回路124からの基準電圧VrefBLに等しくなる。
通常動作モード(メモリセル選択動作、データの書込/読出動作およびリフレッシュ動作等)においては、外部電源電圧VCEは電圧V0−V1の間のレベルに設定される。一方、半導体記憶装置の製品出荷時において、動作特性の安定化および潜在的不良の顕在化による不良品のスクリーニングなどの製品の信頼性を保証するための最終試験が行なわれる。このような試験はバーンイン試験と呼ばれ、内部電源電圧VCIを通常動作時よりも高くし、高いストレス条件下で半導体記憶装置を動作させる。このようなバーンイン試験を行なうバーンインモードおよび、製品の寿命試験を行なう加速試験などの場合、内部電源電圧VCIを通常動作時よりも高くする必要がある。この必要性を満たすために、内部電源電圧VCIの電圧レベルを決定する基準電圧VrefLの電圧レベルを外部電源電圧VCEに従って高くする。これにより動作モードに応じて内部電源電圧を外部電源電圧VCEに従って変化させることができる。
再び図66を参照して、内部電源電圧発生回路130は、ロウアドレスストローブ信号/RAS、チップセレクト信号/CSおよびチップイネーブル信号/CEなどの活性化信号ACTに応答して活性化され、内部電源線4上の内部電源電圧VCIの電圧レベルを低下させる活性分圧回路134と、活性化信号ACTに応答して活性化され、基準電圧発生部120からの基準電圧VrefLと活性分圧回路134の出力電圧とを比較し、その比較結果に従って内部電源線135への電流の供給/遮断を行なう活性内部降圧回路132と、常時活性状態とされ、内部電源線135上の内部電源電圧VCIの電圧レベルを低下させる常時分圧回路138と、この常時分圧回路138の出力電圧と基準電圧発生部120からの基準電圧VrefLを比較し、その比較結果に従って内部電源線135上の内部電源電圧VCIの電圧レベルの調整(電流の供給/停止)を行なう常時内部降圧回路136を含む。常時内部降圧回路136の電流駆動力は、活性内部降圧回路132のそれよりも小さくされる。これによりスタンバイ時(信号ACTの非活性化時)における消費電流を低減する。
活性内部降圧回路132は、また先に実施例8および9において説明したように、バーンインモード指示信号BIまたは電源投入検出信号PORに従ってその内部電源電圧VCIの外部電源電圧VCEに等しくする構成を備える。それにより電源投入時における内部電源電圧VCIの立上がりの高速化および内部電源電圧VCIをバーンインモード時に外部電源電圧VCEに従って上昇させる構成を実現する。
活性化信号ACTの活性化時、周辺回路(図60参照)が動作し、内部電源線135から電流が周辺回路へ流れ込み(内部電源電圧VCIが消費(使用)される)、この内部電源電圧VCIの電圧レベルが低下する。周辺回路は高速動作しており、内部電源線135上の内部電源電圧VCIは急激に低下する。活性分圧回路134によりこの内部電源電圧VCIの電圧レベルを低下させて、後に説明するように、活性内部降圧回路132に含まれるカレントミラー型増幅回路で構成される比較回路を最も感度のよい領域で動作させ、高速応答性を実現する。一般に、カレントミラー型(差動)増幅回路において、一方動作電源電圧(VCE)にその基準電圧Vrefの電圧レベルが近づいた場合、入力信号(VCI)の変化量に対する出力信号の変化量が低下し、感度が低下するため、高速応答性が損なわれる。すなわち、基準電圧Vrefを受けるMOSトランジスタのコンダクタンスが、基準電圧Vrefの電圧レベルが高い場合には大きくなり、入力信号を受けるMOSトランジスタのコンダクタンスが入力信号の電圧レベルの変化に応じて変化しても、この入力信号をゲートに受けるMOSトランジスタのコンダクタンスの変化が基準電圧Vrefをゲートに受けるMOSトランジスタを介して流れる電流に及ぼす影響は小さく、大きな電流変化は生じず、出力ノードの電圧レベルの変化が小さくなるためである。この高速応答性の劣化を改善するために活性分圧回路134により内部電源電圧VCIの電圧レベルを低下させて活性内部降圧回路132の高速応答性を改善する。
図68は、図66に示す基準電圧発生部の詳細構成を示す図である。以下、各回路の構成および動作について順に説明する。
ローパスフィルタ140は、外部電源電圧VCEを受けるパッド1aにその一方端が接続され、その他方端が外部電源線を介して外部電源ノード1に他方端が接続される抵抗素子R30と、抵抗素子R30の他方端と接地ノードVSSの間に接続される容量C30を含む。このローパスフィルタ140は、積分回路としても知られている回路であり、抵抗R30の抵抗値と容量C30の容量値の積により決定される周波数領域の信号を通過させる。
定電流発生回路127は、その一方導通端子(ソース)が外部電源ノード1に接続され、その他方導通端子(ドレイン)およびゲートがノードK3に接続されるpチャネルMOSトランジスタP66と、その一方導通端子がノードK3に接続され、そのゲートが接地ノードVSSに接続されるpチャネルMOSトランジスタ68と、その一方導通端子がMOSトランジスタP68の他方導通端子に接続され、そのゲートがノードK4に接続されるnチャネルMOSトランジスタN61と、MOSトランジスタN61の他方導通端子にその一方端が接続され、その他方端が接地ノードVSSに接続される可変抵抗R31と、その一方導通端子が外部電源ノード1に接続され、そのゲートがノードK3に接続されるMOSトランジスタP67と、その一方端がMOSトランジスタP67の他方導通端子に接続され、その他方端がノードK4に接続される抵抗素子R32と、そのゲートおよび一方導通端子がノードK4に接続され、その他方導通端子が接地ノードVSSに接続されるnチャネルMOSトランジスタN62を含む。
MOSトランジスタP66およびP67はカレントミラー回路を構成し、MOSトランジスタP66を介して流れる電流と同じ大きさの電流がMOSトランジスタP67を介して流れる。MOSトランジスタN60およびN62はまたカレントミラー回路を構成する。MOSトランジスタN61のチャネル幅W(またはβ)はMOSトランジスタN62のそれよりも大きくされる。pチャネルMOSトランジスタP68は、抵抗素子として機能し、MOSトランジスタP66を介して与えられる電流を小さくする機能を備える。抵抗R32も同様、MOSトランジスタP67を介して流れる電流を小さくする機能を備える。
スタートアップ回路123は、その一方導通端子が外部電源ノード1に接続され、そのゲートが接地ノードVSSに接続されるpチャネルMOSトランジスタP69と、その一方導通端子および基板がMOSトランジスタP69の他方導通端子に接続され、そのゲートおよび他方導通端子がノードK4に接続されるpチャネルMOSトランジスタP70と、その一方導通端子がMOSトランジスタP70の一方導通端子に接続され、そのゲートがノードK4に接続され、その他方導通端子が接地ノードVSSに接続されるnチャネルMOSトランジスタN63を含む。まず定電流発生回路127およびスタートアップ回路123の動作について説明する。
外部電源電圧VCEが印加される前、外部電源ノード1は接地電圧VSSレベルである。このとき、定電流発生回路127およびスタートアップ回路123の各内部ノードの電圧レベルも接地電圧VSSレベルである。
外部電源電圧VCEが印加されると、外部電源ノード1の電圧レベルがこの外部電源電圧VCEに従って上昇する。定電流発生回路127において電流が流れない場合、ノードK3の電圧が外部電源電圧VCEに従って上昇し、ノードK4の電圧が接地電圧VSSを維持し、この定電流発生回路127は所望の動作を実現しない。
一方、スタートアップ回路123において、外部電源電圧VCEが上昇すると、抵抗素子として機能するpチャネルMOSトランジスタP69により電流が外部電源電源ノード1からMOSトランジスタP70へ供給される。このMOSトランジスタP70の一方導通端子の電圧レベルがこのノードK4の電圧レベルよりもVtp(VtpはMOSトランジスタP70のしきい値電圧の絶対値)以上高くなると、MOSトランジスタP70を介して電流が流れ、MOSトランジスタN62およびおよびN61のゲート電位が上昇する。ノードK4の電圧レベルがMOSトランジスタN62のしきい値電圧Vtn以上となると、このMOSトランジスタN62がオン状態となり、応じて外部電源ノード1からMOSトランジスタP67、抵抗R32およびMOSトランジスタN62を介して接地ノードVSSへ電流が流れる。MOSトランジスタN62とMOSトランジスタN61はカレントミラー回路を構成しており、したがってこのときMOSトランジスタN61を介して電流が流れ、同様に内部電源ノード1からMOSトランジスタP66、P68およびN61ならびに抵抗R31を介して電流が流れる。これにより定電流発生回路127において外部電源ノード1から接地ノードVSSに電流が流れ、定電流発生回路127が正常に動作し、各内部ノードの電圧が所定の電圧レベルに設定される。
一方、ノードK4の電圧レベルがMOSトランジスタN62のしきい値電圧Vtn以上に上昇すると、応じてスタートアップ回路123においてMOSトランジスタN63がオン状態となり、MOSトランジスタP70の一方導通端子が接地電圧VSSレベルに放電され、MOSトランジスタP70がオフ状態とされ、スタートアップ回路123から定電流発生回路127への電流の注入が禁止される。すなわちこのスタートアップ回路123は外部電源電圧VCEの投入時に定電流発生回路127に電流を供給し、この定電流発生回路127の内部ノードを所定の電圧レベルに設定させる機能を備える。
定電流発生回路127においては、電流が流れたとき、以下の動作が行なわれる。
MOSトランジスタP66とMOSトランジスタP67とは同じサイズを有しかつカレントミラー回路を構成している。したがって、MOSトランジスタP67は、MOSトランジスタP66を介して流れる電流と同じ大きさの電流を供給する。MOSトランジスタN61は、MOSトランジスタN62よりも大きなチャネル幅W(またはβ)を有する。MOSトランジスタN62は、ゲートおよびドレインがノードK4に接続されており、飽和領域で動作し、電流I(N62)として、
I(N62)=β(N62)・(Vgs−Vtn)2
の電流を流す。ここで、VgsはMOSトランジスタN62のゲート−ソース間であり、ノードK4の電圧レベルを示すため、以下V(K4)として示す。β(N62)はMOSトランジスタN62の係数βである。
MOSトランジスタN62とMOSトランジスタN61はまたカレントミラー回路を構成している。MOSトランジスタN61は、MOSトランジスタN62よりも大きなチャネル幅W(またはβ)を有しており、またMOSトランジスタP66よりも大きな電流駆動力を有している。したがって、このMOSトランジスタN61のゲート−ソース間電圧はほぼこのしきい値電圧Vtnの電圧レベルとなる。一般にMOSトランジスタにおいて、その電流駆動力より十分小さな電流しか供給されない場合、ゲート−ソース間電圧は、Igs=β・(Vgs−Vth)2の自乗特性に従い、ほぼしきい値電圧Vtnレベルと
される。
したがって抵抗R31の両端に印加される電圧V(R31)は、
V(R31)=V(K4)−Vtn
となる。したがって、この抵抗R31を介して流れる電流は、抵抗R31の抵抗値をまたR31として示すと、
I=(V(K4)−Vtn)/R31
で与えられる。この電流Iが外部電源ノード1からMOSトランジスタP66、P68およびN61を介して抵抗R31へ供給される。この電流Iと同じ大きさの電流がまたMOSトランジスタP66およびP67のカレントミラー回路により抵抗R32を介してMOSトランジスタN62へ供給される。これにより、ノードK4の電圧レベルがMOSトランジスタN62の自乗特性により決定される一定値となる。MOSトランジスタP68はMOSトランジスタN61のゲート−ソース間電圧をしきい値電圧レベルに保持するための電流制限機能を備え、抵抗R32は、MOSトランジスタN62を抵抗モードで動作させる機能を備える。ノードK4の電圧レベルが上昇すると、抵抗R31両端の電圧が上昇し、応じてMOSトランジスタN61を介して流れる電流がMOSトランジスタP66を介して流れる電流が増加し、応じてMOSトランジスタP67を介して流れる電流が増加し、抵抗R32による電圧降下が大きくなり、ノードK4の電圧レベルも低下させる。逆にノードK4の電圧レベルが低下したとき、抵抗R31両端の電圧が小さくなり、MOSトランジスタP66を介して流れる電流が小さくなり、応じてMOSトランジスタP67を介して流れる電流が小さくなり、抵抗R32における電圧降下が小さくされ、ノードK4の電圧レベルが上昇する。これにより、ノードK4の電圧レベルが一定とされ、MOSトランジスタN62を介して流れる電流は一定、すなわちMOSトランジスタP66およびP67がそれぞれ供給する電流と同じ大きさに設定される。
この定電流発生回路127を利用することにより、外部電源電圧VCEが(Vtp+Vtn)以上になったときに、安定に一定の電流を供給するための基準電圧を生成することができる。
電流源用基準電圧発生回路121は、その一方導通端子が内部電源ノード1に接続され、そのゲートがノードK3に接続されるpチャネルMOSトランジスタP60と、その一方導通端子がMOSトランジスタP60の他方導通端子に接続され、そのゲートおよび他方導通端子がノードK1に接続されるpチャネルMOSトランジスタP61と、その一方導通端子およびゲートがノードK1に接続され、その他方導通端子が接地ノードVSSに接続されるnチャネルMOSトランジスタN60を含む。MOSトランジスタP60は、定電流発生回路127のMOSトランジスタP66とカレントミラー回路を構成し、このMOSトランジスタP66を介して流れるミラー電流をMOSトランジスタP61およびN60へ与える。MOSトランジスタP61およびN60は、そのチャネル抵抗に従って抵抗素子として機能し、抵抗分割によりノードK1に、一定の基準電圧CSTLを生じさせる。この電流源基準電圧発生回路121は、また外部電源電圧VCEがVtn+Vtp以上に増加したときに動作し、外部電源電圧VCEに依存しない一定の基準電圧CSTLを生成する。
ノーマル用基準電圧発生回路122は、その一方導通端子が外部電源ノード1に接続され、そのゲートがノードK3に接続されるpチャネルMOSトランジスタP62と、MOSトランジスタP62の他方導通端子と接地ノードVSSの間に直列に接続される3つのMOSトランジスタP63、P64およびP65とを含む。MOSトランジスタP63〜P65のゲートは接地ノードVSSに接続され、これらのMOSトランジスタP63〜P65はそれぞれのオン抵抗(チャネルコンダクタンス)に従った抵抗素子として機能する。
このノーマル用基準電圧発生回路122においてMOSトランジスタP62が、定電流発生回路127のMOSトランジスタP66とカレントミラー回路を構成しており、MOSトランジスタP62が、MOSトランジスタP66の供給する電流のミラー電流をMOSトランジスタP63〜P65へ供給する。MOSトランジスタP64は、その抵抗値が変更可能である。この抵抗値が変更可能な構成は、複数の直列または並列に接続されたMOSトランジスタを配線またはヒューズ素子などにより選択的に分離または短絡することにより実現することができる。
このノーマル基準電圧発生回路122のノードK2から出力される基準電圧VrefNLは、MOSトランジスタP62が供給する電流とMOSトランジスタP64およびP65の抵抗値の和との積により与えられる。MOSトランジスタP62が供給する電流は、安定時には外部電源電圧VCEと無関係に一定であり、基準電圧VrefNLの外部電源電圧VCEと無関係の一定値となる。MOSトランジスタP62の供給する電流が一定となるまでは、この基準電圧VrefNLは、図67に示すように、外部電源電圧VCEに従って上昇する。
バーンイン用基準電圧発生回路124は、その一方導通端子が外部電源ノード1に接続され、かつその抵抗値がヒューズまたは配線により変更可能なpチャネルMOSトランジスタP71と、その一方導通端子がMOSトランジスタP71の他方導通端子に接続され、かつそのゲートがMOSトランジスタP71のゲートに接続されかつ自身の他方導通端子に接続されるpチャネルMOSトランジスタP72と、その一方導通端子がMOSトランジスタP72のゲートおよび他方導通端子に接続され、かつそのゲートが接地ノードVSSに接続され、かつその他方導通端子がノードK5に接続されるpチャネルMOSトランジスタP73と、その一方導通端子がノードK5に接続され、そのゲートが接地ノードVSSに接続されるpチャネルMOSトランジスタK5と、その一方導通端子がMOSトランジスタP74の他方導通端子に接続され、その他方導通端子が接地ノードVSSに接続され、そのゲートがノードK4に接続されるnチャネルMOSトランジスタN64を含む。
MOSトランジスタP73およびP74はそのゲート電位が接地電圧VSSに固定され、そのオン抵抗により抵抗素子として機能する。MOSトランジスタP72は、抵抗モードで動作し、そのチャネルコンダクタンスに従って抵抗素子として機能する。
抵抗素子として機能するMOSトランジスタP71はその抵抗値が変更可能であるが、通常の抵抗モードにおける抵抗接続のようにそのゲートおよびドレインが接続されるのではなく、ゲートがMOSトランジスタP72のゲートおよび他方導通端子(ドレイン)に接続されているのは、MOSトランジスタP71およびP72のゲートを同一電圧レベルに設定し、MOSトランジスタP71およびP72を同じゲート電圧にバイアスすることにより、これらMOSトランジスタP71の基板効果を無くしMOSトランジスタP71のチャネルコンダクタンスを所望の値に確実に設定するためである。
MOSトランジスタN64は、定電流発生回路127のMOSトランジスタN62とカレントミラー回路を構成し、このMOSトランジスタN62を介して流れる電流のミラー電流がMOSトランジスタN64を介して流れる。したがって、このバーンイン用基準電圧発生回路124からは、MOSトランジスタP71およびP72がともにオン状態となったときに外部電源ノード1から接地ノードVSSへ一定の電流が流れ、ノードK5の電圧は、VCE−I・Rの関係に従って上昇する。ここでRはMOSトランジスタP71、P72およびP73の合成抵抗を示し、Iは、MOSトランジスタN64を介して流れる電流を示す。このMOSトランジスタP71およびP72のゲート電圧をともに等しくすることにより、また、バーンイン用基準電圧発生回路124におけるMOSトランジスタP71およびP72がともにオン状態となるタイミングを定電流発生回路127において電流が流れるタイミングとほぼ同じとすることができる(MOSトランジスタP71のゲートはMOSトランジスタP71のゲートおよびドレインに接続されており、外部電源電圧VCEがVtp以上となると、MOSトランジスタP71およびP72がともにオン状態となる。これはスタートアップ回路123による電流注入開始とほぼ同じタイミングである)。
上述のような構成により、定電流発生回路127が安定に一定の電流を供給する状態となった後はノードKから外部電源電圧VCEに従って上昇する基準電圧VrefBLを生成することができる。
振幅制限信号発生回路125は、外部電源ノード1とノードK6の間に直列に接続されるダイオード接続されたpチャネルMOSトランジスタP75、P76およびP77と、ノードK6と接地ノードVSSの間に接続されるnチャネルMOSトランジスタN65を含む。MOSトランジスタN65は定電流発生回路127のMOSトランジスタN62とカレントミラー回路を構成する。MOSトランジスタP75〜P77のゲート幅WはMOSトランジスタN65のそれよりも十分大きくされており、これらMOSトランジスタP75〜P77を、導通時にそれぞれそのしきい値電圧の絶対値Vtpの電圧降下を生じさせる。したがって、外部電源電圧VCEが所定の電圧レベル以上となったときには、振幅制限信号LMは、VCE−3・Vtpの電圧レベルとされる。振幅制限信号LMのレベルを外部電源電圧VCEに応じて変化させることにより、バーンインモード時においても外部電源電圧VCEのレベルに対応して所定の振幅制限機能が実現される。
基準電圧発生回路126は、その一方導通端子が外部電源ノード1に接続され、その他方導通端子がノードK7に接続されかつそのゲートがノードK7に接続されるpチャネルMOSトランジスタP78と、その一方導通端子が外部電源ノード1に接続され、その他方導通端子がノードK8に接続され、そのゲートがノードK7に接続されるpチャネルMOSトランジスタP79と、ノードK7とノードK9の間に接続され、そのゲートに基準電圧VrefNLを受けるnチャネルMOSトランジスタN66と、ノードK7とノードK9の間に設けられ、そのゲートに基準電圧VrefBLを受けるnチャネルMOSトランジスタN67と、ノードK8とノードK9の間に接続され、そのゲートがノードK8に接続されるnチャネルMOSトランジスタN68と、ノードK9と接地ノードVSSの間に接続され、そのゲートに電流源用基準電圧発生回路121からの基準電圧CSTLを受けるnチャネルMOSトランジスタN69を含む。MOSトランジスタN69は、電流源用基準電圧発生回路121のMOSトランジスタN60とカレントミラー回路を構成し、MOSトランジスタN60を流れる電流のミラー電流を生じさせる。MOSトランジスタP78およびP79はカレントミラー回路を構成する。MOSトランジスタN69は定電流源として機能する。今、基準電圧VrefLが基準電圧VrefNLおよびVrefBLの少なくとも一方よりも低いとき、MOSトランジスタN66またはN67のコンダクタンスはMOSトランジスタN68のそれよりも大きくなり、このMOSトランジスタN66およびN67を介して流れる電流が増加する。この電流はMOSトランジスタP78から供給され、応じてカレントミラー回路を構成するMOSトランジスタP79を介して流れる電流も増加する。MOSトランジスタN68は、このMOSトランジスタP79を介して供給される電流をすべて放出することはできず、したがって、ノードK8の電圧レベルが上昇する。すなわち基準電圧VrefNの電圧レベルが上昇する。
逆に基準電圧VrefLが基準電圧VrefNLおよびVrefBL両者よりも高い場合には、MOSトランジスタN68のコンダクタンスがMOSトランジスタN66およびN67のそれよりも大きくされ、MOSトランジスタN68は、MOSトランジスタP79からの供給される電流をすべてノードK9に放出する。これによりノードK8からの基準電圧VrefLの電圧レベルが低下する。すなわちこの基準電圧発生回路126は、基準電圧VrefLとして、基準電圧VrefNLおよびVrefBLのうちの高い方の電圧を出力する。
以上詳細に説明したように、外部電源電圧VCEが所定の電圧レベルに到達すると、安定に必要な基準電圧を発生することができる。
図69は、図66に示す内部電源電圧発生部130の具体的構成を示す図である。以下、図69を参照して各回路の構成および動作について説明する。
活性分圧回路134は、その一方導通端子が外部電源線135に接続され、そのゲートが接地ノードVSSに接続されるpチャネルMOSトランジスタP88と、MOSトランジスタP88の他方導通端子にその一方導通端子が接続されかつそのゲートが接地ノードVSSに接続されるpチャネルMOSトランジスタP89と、その一方導通端子がMOSトランジスタP89の他方導通端子に接続され、そのゲートに活性制御信号ACTを受けるnチャネルMOSトランジスタN87と、その一方導通端子がMOSトランジスタN87の他方導通端子に接続され、その他方導通端子が接地ノードVSSに接続され、そのゲートに基準電圧CSTLを受けるnチャネルMOSトランジスタN88を含む。MOSトランジスタP88およびP89はゲート電位が接地電圧VSSレベルに固定されており、その固有のオン抵抗により抵抗素子として機能する。MOSトランジスタN87は、活性制御信号ACTがHレベルとなり、半導体記憶装置のアクティブサイクルを示すときオン状態となる。MOSトランジスタM88は、図68に示す電流源用基準電圧発生回路121からの基準電圧CSTLを受けて定電流源として機能する。すなわちこのMOSトランジスタN88は、図68に示すMOSトランジスタN60とカレントミラー回路を構成し、一定の電流を供給する。したがってこの活性分圧回路134は、活性制御信号ACTがHレベルとなったとき、MOSトランジスタP88およびP89の抵抗値とMOSトランジスタN88が供給する電流に従った電圧、すなわち、VCI−I(N88)・R(P88)の電圧を出力する。ただし、I(N88)はMOSトランジスタN88を介して流れる電流であり、R(P88)はMOSトランジスタP88の抵抗値を示す。
MOSトランジスタP88およびP89が直列に設けられているのは、これらのオン抵抗の値によりMOSトランジスタN88のオン抵抗をほぼ無視できる値に設定し、ほほこの分圧回路134からの出力電圧のレベルはMOSトランジスタP88の抵抗値により決定することができるようにするためである。このMOSトランジスタP88の抵抗値は変更可能である(直列または並列に接続されたMOSトランジスタを選択的に配線またはヒューズ素子により接続する)。これにより分圧回路134の出力電圧のレベルを最適な値に設定することができる。 活性内部降圧回路132は、活性制御信号ACTに応答して活性化され、図68に示す基準電圧発生回路126からの基準電圧VrefLと分圧回路134からの出力電圧とを比較する比較回路150と、この比較回路150の第1の出力信号を増幅する増幅回路152と、比較回路150の第2の出力信号に応答して外部電源ノード1から内部電源線135へ電流を供給するpチャネルMOSトランジスタP83と、増幅回路152の出力信号に応答して外部電源ノード1から内部電源線135へ電流を供給するpチャネルMOSトランジスタP87と、この増幅回路152の出力信号のLレベルの振幅を制限する振幅制限回路154と、バーンインモード指定信号および電源投入検出信号BI/PORに応答して活性化され、MOSトランジスタP83およびP87のゲートを接地電圧VSSレベルに設定するnチャネルMOSトランジスタN93およびN94を含む。
比較回路150は、一方導通端子が外部電源ノード1に接続されその他方導通端子がノード160aに接続され、そのゲートがノード160cに接続されるpチャネルMOSトランジスタP80と、その一方導通端子が外部電源ノード1に接続され、その他方導通端子がノード160bに接続され、そのゲートがノード160cに接続されるpチャネルMOSトランジスタP81と、その一方導通端子が外部電源ノード1に接続され、その他方導通端子およびゲートがノード160cに接続されるpチャネルMOSトランジスタP82と、ノード160aとノード160dの間に接続され、そのゲートに基準電圧VrefLを受けるnチャネルMOSトランジスタN80と、ノード160bとノード160dの間に接続され、そのゲートに基準電圧VrefLを受けるnチャネルMOSトランジスタN81と、ノード160dと接地ノードVSSの間に直列に接続されるnチャネルMOSトランジスタN83およびN84を含む。
MOSトランジスタN83はそのゲートに活性制御信号ACTを受け、MOSトランジスタN84はそのゲートに基準電圧CSTLを受ける。このMOSトランジスタN84の電流駆動力は変更可能であり(配線またはヒューズ素子によりMOSトランジスタを並列に接続することにより電流駆動力を大きくすることができる)、比較回路150の応答特性および動作電流に応じて最適な電流を供給する定電流源が実現される。この比較回路150は、実質的に図58に示す比較回路3の構成と同じてあり(分圧回路からのレベルシフトされた電圧が伝達されることを除いて)、活性制御信号ACTが非活性状態のLレベルのとき、MOSトランジスタN83がオフ状態であり、この比較回路150においては電流が流れないため、ノード160aおよび160bは、ほぼ外部電源電圧VCEレベルに設定される。
活性制御信号ACTが活性状態のHレベルとされると、分圧回路134からの出力電圧と基準電圧VrefLの関係に従ってノード160aおよび160bの出力信号の電圧レベルが変化する。ドライブ用のMOSトランジスタP83がこのノード160a上の信号電圧に従って外部電源ノード1から内部電源線135へ電流を供給する。この分圧回路134に内部電源電圧VCIの電圧レベルを低下させて比較回路150へ与えることにより、比較回路150は、最も感度のよい領域で比較動作を行なうことができ、高速応答性に優れた比較回路を実現することができる。MOSトランジスタP83のサイズは大きくされており、大きな電流供給力をもって外部電源ノード1から内部電源線135へ電流を供給する。活性制御信号ACTによりMOSトランジスタN83およびN87をオフ状態とすることにより、活性内部降圧回路132および活性分圧回路134におけるスタンバイ時における消費電流をほぼ0とする。
MOSトランジスタN93およびN94はバーンインモード時または電源投入時に活性状態のHレベルとなる信号BI/PORに応答して導通し、MOSトランジスタP83およびP87のゲートを接地電圧VSSレベルに設定する。これによりMOSトランジスタP83およびP87は外部電源電圧VCEを内部電源線135上に伝達し、高速で電源投入時に内部電源電圧VCIを上昇させるとともにバーンインモード時には内部電源電圧VCEを外部電源電圧VCEに等しくする。
常時分圧回路138は、基準電圧CSTLをゲートに受けるnチャネルMOSトランジスタN89と、MOSトランジスタN89と内部電源線135の間に直列に接続されるpチャネルMOSトランジスタP90およびP91を含む。MOSトランジスタP90およびP91は、そのゲートが接地電圧VSSレベルに設定されており、抵抗素子として機能する。この常時分圧回路138も、活性分圧回路134と同様、内部電源電圧VCIを所定値シフトダウンさせる。すなわち、MOSトランジスタN89を流れる定電流に従ってMOSトランジスタP90が有する抵抗値に従って内部電源電圧VCIを所定値低下させる。
常時内部降圧回路136は、基準電圧VrefLをゲートに受けるnチャネルMOSトランジスタN90と、常時分圧回路138の出力電圧をゲートに受けるnチャネルMOSトランジスタN91と、MOSトランジスタN90およびN91の共通接続ノードと接地ノードVSSの間に設けられ、そのゲートに基準電圧CSTLを受けるnチャネルMOSトランジスタN92と、MOSトランジスタN90およびN91へそれぞれ電流を供給するpチャネルMOSトランジスタP92およびP93を含む。MOSトランジスタP92およびP93はカレントミラー回路を構成し、MOSトランジスタP93を流れる電流と同じ大きさの電流MOSトランジスタP92を介して流れる。MOSトランジスタN92の電流駆動力は変更可能であり(配線またはヒューズ素子のプログラムにより)、この常時比較回路136の動作電流、すなわち応答特性が適当な値に設定される。
MOSトランジスタP92およびN90の接続ノードからドライブ用pチャネルMOSトランジスタP94のゲートへ電圧が与えられる。このMOSトランジスタP94は、そのゲート電圧に従って外部電源ノード1から内部電源線135へ電流を供給する。MOSトランジスタP94の電流駆動力は比較的小さくされる。スタンバイ時においては、内部電源線135上の内部電源電圧VCIはほぼ一定であり、大きな電流駆動力は要求されないためである。スタンバイ時においては、単にリーク電流などのスタンバイ電流が消費され、これにより内部電源電圧VCIが低下するためこのスタンバイ電流を補償する能力がMOSトランジスタP90に要求されるだけである。
[アレイ用内部降圧回路]
図70は、図60に示すアレイ用内部降圧回路110aおよび110bの構成を概略的に示すブロック図である。図70においては、2つの内部降圧回路110aおよび110bのうちの一方のみ構成を示す。内部降圧回路110aおよび110bは同じ構成を備える。
図70において、アレイ用内部降圧回路110(110a,110b)は、基準電圧VrefHを発生する基準電圧発生部220と、基準電圧発生部220からの基準電圧VrefHと内部電源電圧VCIとを比較し該比較結果に従って内部電源電圧VCEの電圧レベルの調整(電流を供給する)を行なう内部電圧発生部230を含む。
基準電圧発生部220は、図66に示す周辺回路用内部降圧回路の構成と同様、一定の電流を供給する定電流発生回路227と、内部電源電圧VCIの投入時に定電流源発生回路227を正確に動作させるためのスタートアップ回路223と、電流源用の基準電圧CSTLを発生する電流源用基準電圧発生回路221と、通常動作モード時に使用される基準電圧VrefNHを発生するノーマル用基準電圧発生回路222と、バーンインモード時に用いられる基準電圧VrefBHを発生するバーンイン用基準電圧発生回路224と、振幅制限信号LMを発生する振幅制限信号発生回路225と、基準電圧発生回路222および224からの基準電圧VrefNHおよびVrefBHのうち高い方の基準電圧を基準電圧VrefHとして出力する基準電圧発生回路226を含む。
この基準電圧発生部220の詳細構成および動作は図68および図69に示す周辺回路用内部降圧回路に含まれる基準電圧発生部の対応のものと同じである。異なっているのは、ノーマル用基準電圧発生回路222およびバーンイン用基準電圧発生回路224が発生する基準電圧VrefNHおよびVrefBHの電圧レベルが基準電圧VrefNLおよびVrefBLよりもそれぞれ高くされていることである。この基準電圧VrefNHおよびVrefBHをそれぞれ基準電圧VrefNLおよびVrefBLよりも高くする構成は、図68に示す構成においてMOSトランジスタP64(基準電圧122に含まれる)およびMOSトランジスタP71(基準電圧発生回路124に含まれる)の抵抗値をそれぞれ大きくおよび小さくすることにより実現される。この基準電圧発生部220の詳細構成および動作は、先に図68を参照して説明したものと同じであり、単に基準電圧VrefNHおよびVrefBHの電圧レベルが高くされているのが異なるだけであり、その詳細説明は省略する。この基準電圧VrefNHおよびVrefBHが高くされる理由については後に詳細に説明する。
内部電圧発生部230は、2つの内部電源電圧発生系を含む。図65に示すように、2つのメモリセルアレイに対して1つのアレイ用内部降圧回路が設けられ、それぞれのメモリセルアレイに対し別々の系統から内部電源電圧を供給するためである。
すなわちこの内部電圧発生部230は、活性制御信号ACTおよびバーンインモード指示信号/電源投入検出信号BI/PORに応答して動作する活性内部降圧回路232および234と、スタンバイ時にそれぞれ内部電源電圧VCIの電圧レベルを所定レベルに維持するための常時内部降圧回路236および238を含む。活性内部降圧回路232および常時内部降圧回路236は内部電源線235a上の内部電源電圧VCIの電圧レベルの制御を行ない、活性内部降圧回路234および常時内部降圧回路238は内部電源線235b上の内部電源電圧VCIの電圧レベルを調整する。
この図70に示す活性内部降圧回路232および234ならびに常時内部降圧回路236および238の内部構成は図64に示すものと同じである。単に基準電圧VrefHの電圧レベルが異なりまたそれぞれ内部電源線235aおよび235b上の内部電源電圧VCIが直接比較回路へ与えられる点が異なっているだけである。構成およびその動作は図69に示すものと実質的に同じでありその詳細説明は省略する。
図70に示すようにアレイ用内部降圧回路として分圧回路を用いずに内部電源電圧VCIの電圧レベルの調整を行なうことにより低消費電流の内部降圧回路を実現することができる。
なお、基準電圧発生部220および内部電圧発生部230へは外部電源パッド1aへ与えられた外部電源電圧VCEがローパスフィルタ240によりフィルタ処理された後動作電源電圧として伝達される。
MOSトランジスタN93およびN94が設けられており、バーンインモード時トランジスタP83,P87がオン状態とされ、比較回路150の出力が無視されるにもかかわらず、バーンイン用基準電圧発生回路124および224が設けられており、バーンインモード時にこの基準電圧VrefBLおよびVrefBHをそれぞれ外部電源電圧VCEに従ってその電圧レベルを上昇させるのは以下の理由による。図69に示すように、MOSトランジスタP83およびP87のゲート電圧はバーンインモード時接地電圧VSSレベルに設定され、内部電源線135上の電源電圧VCIは外部電源電圧VCEに等しくされる。このとき活性内部降圧回路132,232において、図69に示すノード160aの電圧レベルが接地電圧VSSのとき、内部電源電圧VCIが基準電圧VrefLよりも高いときには、MOSトランジスタP82を介して大きな電流が流れ、この電流と同じ大きさの電流がMOSトランジスタP80およびP81を介して流れる。このため比較回路150の消費電流が増大する。これを防止するために基準電圧VrefLおよびVrefHはそれぞれ外部電源電圧VCEに応じてバーンインモード時には上昇させる。このときまたはMOSトランジスタN93およびN94の電流駆動力は不必要な電流消費を防止するため十分小さくされる。また同様に、常時内部降圧回路においては、そのドライブ用のMOSトランジスタのゲート電圧は接地電圧レベルに放電されないため、常時内部降圧回路において正確に外部電源電圧VCEと内部電源電圧VCIを等しくする動作を実現するためにもこの基準電圧VrefLおよびVrefHを外部電源電圧VCEに応じて高くする必要がある。上述の構成により、低消費電流で安定に内部電源電圧VCIを発生するアレイ用内部降圧回路を実現することができる。
[変更例1]
図71は、アレイ用内部降圧回路の第1の変更例を示す図である。図71において、アレイ用内部降圧回路は、活性化時、内部電源線245aおよび内部電源電圧の電圧レベルを調整する活性内部降圧回路242と、活性化時内部電源線245b上の内部電源電圧VCIbの電圧レベルを調整する活性内部降圧回路244と、この内部電源線245aおよび245b上の内部電源電圧VCIaおよびVCIbの電圧レベルを調整する常時内部降圧回路247を含む。内部電源線245aおよび245bは別々の配線で構成されてもよく、また同一の配線であってもよい。すなわち内部電源線245aおよび245bはそれぞれ別々のメモリセルアレイへ内部電源電圧VCIaおよびVCIbを供給する構成であればよい。常時内部降圧回路247が基準電圧VrefHと内部電源線245aおよび245bの共通接続ノード249上の電圧とを比較することにより内部電源電圧VCIaおよびVCIbの電圧レベルを調整する。活性内部降圧回路242は、活性制御信号ACT、振幅制限信号LNおよびバーンインモード指示信号/電源投入検出信号BI/PORに応答して所定の上で説明した電圧調整動作を実行する。活性内部ワード回路444も同様、活性制御信号ACT、振幅制限信号LNおよびバーンインモード指示信号/電源投入検出信号BI/PORに従って上で説明した電源電圧調整動作を実行する。
活性制御信号ACTが活性状態のときには、活性内部降圧回路242および244をそれぞれを互いに独立に内部電源線245aおよび245b上の内部電源電圧VCIaおよびVCIbの電圧調整を実行する。内部電源線245aおよび245bが異なる配線で構成されている場合では、この内部電源電圧VCIaおよびVCIbの電圧変動レベルが異なる場合が生じる。したがってこれらの内部電源電圧VCIaおよびVCIbの動作時における変化に対応して正確に内部電源電圧VCIaおよびVCIBを所定の電圧レベルに維持することができる。
スタンバイ時においては、活性内部降圧回路242および活性内部降圧回路244は非活性状態とされる。このときには、常時内部降圧回路247により内部電源電圧VCIaおよびVCIbの電圧レベルの調整が行なわれる。スタンバイ時においては、内部電源線245aおよび245bに接続される内部回路はスタンバイ状態にあり、その消費電流はリーク電流などにおいてのみ生じるだけであり、内部電源電圧VCIaおよびVCIbの変動はごくわずかであり、小さな電流駆動力を有する常時内部構成回路247であっても正確に内部電源電圧VCIaおよびVCIbを所定の電圧レベルに維持することができる。
図71に示す構成の場合、常時内降圧回路247は活性内部降圧回路242および244で共用される(内部電源線245aおよび245bで共用される)。したがって、この常時内部降圧回路247の占有面積を低減することができ、また消費電流を低減することができ、低占有面積で低消費電流のアレイ用内部降圧回路を実現することができる。
[変更例2]
図72は、この発明に従った内部電源電圧発生回路の第2の変更例の構成を示す図である。図72に示す構成においては、内部電源線245aおよび245bがそれぞれ、活性制御信号/ACTに応答して導通するnチャネルMOSトランジスタでたとえば構成されるスイッチング素子250aおよび250bにより常時内部降圧回路247から分離される。すなわち、このスイッチング素子250aおよび250bは活性化時(信号/ACTが活性状態のLレベル)のときには内部電源線245aおよび245bは常時内部降圧回路247から分離される。内部電源線245aおよび245b上の内部電源電圧VCIaおよびVCIbはそれぞれ活性内部降圧回路242および244によりそれぞれの電圧レベルが調整される。常時内部降圧回路247は、基準電圧VrefHとノード249上の電圧とを比較し、該比較結果に従ってノード249上の電源電圧のレベルを基準電圧VrefHの電圧レベルに維持する。
活性制御信号/ACTがHレベルとなると、スイッチング素子255aおよび255bがオン状態状態となり、内部電源線VCIaおよびVCIbがノード249に接続される。この状態において、活性制御信号ACTはLレベルの非活性状態にあり、活性内部降圧回路242および244は非活性状態とされ、電源電圧調整動作は停止される。この状態すなわちスタンバイ時においては、常時内部構成回路247がノード249を介して内部電源線245aおよび245b上の内部電源電圧VCIaおよびVCIbの電圧レベルを一定の基準電圧VrefHの電圧レベルに調整する。この図72に示す構成においても、同様に常時内部降圧回路247が2つの活性内部降圧回路242および244に共用されるため、内部降圧回路の占有面積および消費電力を低減することができる。またこの図72に示す構成の場合、ノード249は内部電源線245aおよび245bから分離されており、ノード249の電圧レベルの変動はほぼ0とすることができ、常時内部降圧回路247における消費電流はほぼ0とすることができる(外部電源ノード1からのし249への電流供給動作はほとんど行なわれないため)。ただし比較回路における動作電流は流れる。
なお、図72に示す構成において、スイッチング素子250aおよび250bの一方のみが設けられる構成が用いられてもよい。すなわち常時内部降圧回路247は常時内部電源線245aおよび245bの一方に接続されており、スタンバイ時においてのみ内部電源線245aおよび245bがノード249に接続される構成が利用されてもよい。
この変更例1および2の構成に従えば、常時内部降圧回路を2つの活性内部降圧回路により共有することができ、低消費電力で低占有面積の内部降圧回路を実現することができる。
なお、アレイ用内部降圧回路および周辺用内部降圧回路を共用する場合、高周波応答特性および直流応答特性(アレイ充電動作時おける緩やかな変化に対応する特性)を両者実現する必要がある。この場合には、図59に示す回路構成を利用することができ、この図59に示す回路構成を利用する場合には、図71および図72に示す構成を利用するこにとより、より内部降圧回路の占有面積を低減することができる。
この場合には、活性内部降圧回路が、アレイ用および周辺用両者を兼用するため、その区別は設けられない。
なお、第11の実施例において、半導体記憶装置を一例として示しているがこれは、所定の内部ノードの電圧レベルが比較回路の出力信号により一定の電圧レベルに保持される構成を備える半導体装置であればすべて本発明を適用することができる。
[実施例12]
図73は、この発明の第12の実施例である半導体装置の要部の構成を示す図である。図73において、3つの内部電圧発生回路が設けられる。第1の内部電圧発生回路は、内部電源線5上の内部電源電圧VCIと第1の基準電圧Vref1とを比較する、差動増幅器で構成される比較器3aと、外部電源電圧が供給されるノード(以下、電圧源ノードと称す)1と内部電源線5の間に接続され、比較器3aの出力信号に従ってそのコンダクタンスが変化し、電圧源ノード1と内部電源線5の間に流れる電流量を調整する可変コンダクタンス素子としてのドライブ素子2aで構成される。
第2の内部電圧発生回路は、動作タイミング信号ENに応答して活性化され、活性化時に内部電源線5上の内部電源電圧VCIと基準電圧Vref1とを比較する比較器3bと、電圧源ノード1と内部電源線5の間に接続されて、比較器3bの出力信号に従って電圧源ノード1と内部電源線5の間を流れる電流量を調整するドライブ素子2bで構成される。
第3の内部電圧発生回路は、第1の基準電圧Vref1よりも高い第2の基準電圧Vref2と内部電源線5上の内部電源電圧VCIとを比較する比較器3cと、この比較器3cの出力信号に従って電圧源ノード1と内部電源線5の間を流れる電流量を調整するドライブ素子2cで構成される。ドライブ素子2a〜2cが接続する電圧源ノード1は、単に外部電源電圧が伝達されるノードであればよく、共通のノードである必要はなく、別々のノードであってもよい。
ドライブ素子2aの電流供給力および比較器3aの駆動力(応答速度)は比較的小さくされる。比較器3aは、常時動作するため、その消費電流を低減するためである。比較器3bは、負荷回路7が動作する期間を設定する動作タイミング信号ENに応答してトランジスタ2300が導通して電流経路が形成され、これにより活性化される。この比較器3bは、負荷回路7の動作による内部電源線5上の電源電圧変動を補償するため、その応答速度は比較的大きくされ、またドライブ素子2bの電流供給力も比較的大きくされる。ドライブ素子2cの電流駆動力および比較回路3cの応答速度は、消費電流を低減するため、ともに小さくされる。次にこの図73に示す内部電源電圧発生回路の動作をその動作波形図である図74を参照して説明する。
動作タイミング信号ENが非活性状態のローレベルのとき、比較回路3bは非活性状態にあり(電流源トランジスタ2300オフ)、ドライブ素子2bはほぼオフ状態を維持している。この動作タイミング信号ENの非活性化時においては、負荷回路7は動作せず、半導体装置がスタンバイ状態にある。この状態においては、比較回路3aおよび3cが動作し、ドライブ素子2aおよび2cを介して内部電源線5に対する充電動作が行なわれる。基準電圧Vref2の電圧レベルは基準電圧Vref1のそれよりも高い。したがってこの状態においては、内部電源線5上の内部電源電圧VCIは第2の基準電圧Vref2の電圧レベルとされる。この内部電源線5上の充電電圧、この内部電源線5に付随する寄生容量(図示せず)に過剰電荷として蓄積される。
動作タイミング信号ENが論理ハイレベルの活性状態とされると、比較回路3bが活性状態とされ、比較動作を行なう。負荷回路7の動作前においては、内部電源線5上の電源電圧VCIは、第2の基準電圧Vref2の電圧レベルにされる。次いで、負荷回路7が動作し、内部電源線5上の電圧(電流)を消費し、この内部電源線5上の電源電圧VCIの電圧レベルが低下する。このとき、内部電源線5の寄生容量に蓄積された過剰電荷から負荷回路7へ電流が供給されるため、内部電源線5上の電源電圧VCIは、第2の基準電圧Vref2の電圧レベルから低下する。したがって、この内部電源線5上の電源電圧VCIが第1の基準電圧Vref1以下に低下するのを抑制することができる。比較回路3bは、この内部電源線5上の電源電圧VCIの低下に応答して高速で追随して、ドライブ素子2bを介してこの内部電源線5上の電源電圧VCIを第1の基準電圧Vref1の電圧レベルに復帰させる。比較回路3cは、単にスタンバイ時においてこの内部電源線5上に過剰電荷を蓄積するために用いられるだけであり、この負荷回路7の動作時における高速追随性は何ら要求されない。高速追随性は、単に比較回路3bに対してのみ要求されるだけである。
比較回路3aおよび3cは、常時動作している。比較回路3cおよびドライブ素子2cは、比較回路3aおよびドライブ素子2aにより充電された内部電源線5上の電圧をさらに上昇させるだけである。したがって、第1の基準電圧Vref1までの充電は2つの比較回路3aおよび3c(およびドライブ素子2aおよび2c)により実行され、第2の基準電圧Vref2までの充電が比較回路3cおよびドライブ素子2cにより実行されるため、これらの構成要素の電流駆動力は十分小さくすることができる。
しかしながら、この比較回路3aおよびドライブ素子2aは省略されてもよい。構成要素の数が低減されるため、回路の占有面積が低減され、また消費電流を低減することができる(ドライブ素子2aがほぼオフ状態される状態においても、比較回路3aにおいては動作電流が常時流れており、この動作電流を削減することができるためである)。
以上のように、この第12の実施例に従えば、負荷回路の動作前に、内部電源線の電圧レベルをより高い電圧レベルに充電し、内部電源線に過剰電荷を蓄積するように構成したために、負荷回路動作時において、この内部電源線上の電圧レベルが所定値レベル以下に低下するのを抑制することができ、安定に内部電源電圧を供給することができる。
[実施例13]
図75は、この発明の第13の実施例である半導体装置の要部の構成を示す図である。この図75に示す構成においては、内部電源線5の電圧VCIを第2の基準電圧Vref2のレベルへ充電するための比較器2301が、活性化信号EQaに応答して導通する活性化トランジスタ2302により活性状態とされる。他の構成は、図73に示す構成と同じであり、対応する部分には同一の参照番号を付し、その詳細説明は省略する。活性化信号EQaは、動作タイミング信号ENの非活性化時に所定期間活性状態(図示の例では論理ハイレベル)とされる。内部電源線5上の電圧レベルを第2の基準電圧Vref2の電圧レベルにまで上昇させるための比較器2301の動作期間(活性化期間)を低減することにより、電流消費の低減を図る。次に、この図75に示す構成の動作をその動作波形図である図76を参照して説明する。
動作タイミング信号ENの非活性化時、活性化トランジスタ2300が非導通状態であり、比較器3bは非活性状態とされる。この動作タイミング信号ENの非活性期間の所定の期間、活性化信号EQaが活性状態の論理ハイレベルとされる。活性化トランジスタ2302が導通し、比較器2301において動作電流が流れる経路が形成され、比較器2301が動作し、内部電源線5上の電圧VCIを第2の基準電圧Vref2のレベルまで上昇させる。この内部電源線5の充電電圧は、先の実施例12と同様、内部電源線5に付随する寄生容量に充電される。この活性化信号EQaが非活性状態の論理ローレベルとされると、比較器2301が非活性状態とされ、ドライブ素子2cを介しての内部電源線5の充電動作が停止される。
次いで、動作タイミング信号ENが活性状態とされ、活性化トランジスタ2300により、比較器3bが活性状態とされ、内部電源線5上の電圧レベルの調整動作を実行する。この動作タイミング信号ENに従って負荷回路7が所定のタイミングで動作し、内部電源線5上の電圧VCIを消費する。このとき、負荷回路7は、内部電源線5に付随する図示しない寄生容量に充電された過剰電荷から電流を供給されるため、負荷回路7の動作時に大きな電流が消費される場合においても、この内部電源線5上の電圧VCIが大幅に低下するのを防止することができる。すなわち、内部電源線5上の電圧レベルの低下時においてその低下速度が内部電源線5に格納された過剰電荷により緩和され、その緩和された電圧低下に比較器3bが追随して、ドライブ素子2bを介して電流を供給するためである。比較器3bにおける消費電流を低減するために、その応答速度がそれほど早くない場合においても、過剰電荷により、この内部電源線5上の電圧変化速度を低下させることにより、比較器3bによりこの内部電源線5上の電圧変化に追随して内部電源電圧VCIを安定に供給することができる。
動作タイミング信号ENは、半導体記憶装置において、たとえばチップイネーブル信号または内部ロウアドレスストローブ信号RASであってもよい。活性制御信号EQaは、この動作タイミング信号ENの非活性化に応答して所定期間活性状態とされる。
[変更例]
図77は、この発明の第13の実施例の変更例を示す図である。図77に示す動作波形図は、図75の回路の動作を示す。この図77に示す動作波形図においては、半導体装置は、半導体記憶装置である場合が示される。図77において、動作タイミング信号ENとして、ロウアドレスストローブ信号RASが用いられる。ロウアドレスストローブ信号RASが非活性状態の論理ローレベルのときには、この半導体装置はスタンバイ状態にあり、内部回路は動作をしていない。この状態においては、図75に示す比較器3aのみが動作し、内部電源線5上の電源電圧VCIを第1の基準電圧Vref1の電圧レベルに維持している。
ロウアドレスストローブ信号RASが活性状態とされると、この半導体装置が動作状態とされる。これにより、比較器3bが活性状態とされ、内部回路(負荷回路および他の図示しない回路)が動作し、内部電源線5上の電源電圧VCIの電圧レベルが変動する。しかしながらこの場合においては、内部回路による電流消費は少なく、その電流変化も小さいため、比較器3bの応答の遅れがあっても、十分その電源電圧VCIの変化に追随してもとの電源電圧レベルへ復帰させることができる。
この内部ロウアドレスストローブ信号RASの活性化に応答して所定期間動作制御信号EQaが活性状態とされる。これにより比較器2301が活性状態とされ、ドライブ素子2cを介して内部電源線5上の電源電圧VCIが第2の基準電圧Vref2レベルにまで充電される。
この動作タイミング信号EQaの活性期間が経過した後、負荷回路駆動信号が活性状態とされる。この負荷回路駆動信号により負荷回路7が動作し、大電流を消費する。この負荷回路駆動信号としては、半導体記憶装置におけるセンスアンプ駆動信号がたとえば相当する。この場合、負荷回路7はセンスアンプであり、ビット線の充放電を行なう。この場合には、内部電源線5上に大きな電流変化が生じる。しかしながら、既に比較器2301により、内部電源線5上の電圧レベルが第2の基準電圧Vref2の電圧レベルにまで上昇しているため、この電流変化を等価的に小さな電流変化とすることができ、低速応答性の比較器3bを用いても十分にこの変化に追随して内部電源線5上の電源電圧VCIの電圧レベルを所定電圧レベルに復帰させることができる。
活性制御信号EQaは、したがって、負荷回路7が動作し、大電流変化が生じる可能性がある場合においてのみ予め活性状態とされればよい。通常、半導体記憶装置においては、このような大電流消費が行なわれる状態は、たとえばセンスアンプ動作時のように予め予測することができ、動作タイミング信号ENに従って、所定期間必要なときのみこの動作制御信号EQaを活性状態とすることができる。
なお、図77において、この動作制御信号EQaは、破線で示すように、動作制御信号EQaが負荷回路駆動信号の活性状態においても活性状態とされるタイミング関係が用いられてもよい。
以上のように、この発明の第13の実施例の構成に従えば、動作タイミング信号に従って、所定期間のみ内部電源線5上の第2の基準電圧Vref2の電圧レベルにまで充電する比較器を活性状態としているため、第12の実施例の効果に加えて、さらに低消費電流化を実現することができる。
[実施例14]
図78は、この発明の第14の実施例である半導体装置の要部の構成を示す図である。図78において、この半導体装置は、基準電圧発生回路2310からの基準電圧Vrefと内部電源線5上の電源電圧VCIとを比較する比較器2330aと、比較器2330aの出力信号に従って電圧源ノード1と内部電源線5の間を流れる電流量を調整するドライブ素子2320aと、基準電圧発生回路2310からの基準電圧Vrefと内部電源線5上のVCIとを比較する比較器2330bと、比較器2330bの出力信号に従って電圧源ノード1から内部電源線5へ流れる電流量を調整するドライブ素子2320bを含む。比較器2330aは、半導体装置(負荷回路7)の活性化時に活性状態とされる動作タイミング信号ENaに応答して導通する活性化トランジスタ2305aにより、動作電流が供給されて作動状態とされる。比較器2330bは、特定の動作モードを除く通常動作モード時における負荷回路7の活性時(すなわち動作時)においてのみ活性状態とされる動作制御信号ENbに応答して導通する活性制御トランジスタ305bにより、動作電流が供給されて作動状態とされる。
基準電圧発生回路2310は、一例として、電圧源ノードに結合されて一定の基準電流を供給する定電流源2312と、定電流源2312と接地ノード(他方電圧源ノード)の間に直列に接続される抵抗素子2313aおよび2313bを含む。基準電圧Vrefは、抵抗素子2313aおよび2313bの抵抗値と定電流源2312が与える定電流により決定される。次にこの図78に示す内部電源電圧発生回路の動作について説明する。以下の説明において、この半導体装置は、半導体記憶装置であると仮定する。
半導体装置に対する外部アクセスが行なわれる場合には、内部回路(負荷回路7)は高速動作が要求される(高速アクセスを実現するため)。この場合、負荷回路7の動作タイミングに併せて、活性制御信号EQaおよびEQbがともに活性状態とされ、比較器2330aおよび2330bがともに作動状態とされる。2つの比較器2330aおよび2330bの制御のもとに、ドライブ素子2320aおよび2320bにより、内部電源線5上に電流が供給され、負荷回路7(内部回路)の動作時における電源電圧VCIの変動を抑制する。2つのドライブ素子2320aおよび2320bにより内部電源線5へ電流が供給されるため、負荷回路7の動作時において内部電源線5の電圧が急激に変動しても、十分その変化に追随して高速でこの内部電源電圧VCIの低下を補償し、所定の基準電圧Vrefの電圧レベルに電源電圧VCIを復帰させることができる。
リフレッシュサイクルまたはデータ保持モードなどの特定の動作時においては、活性制御信号ENbは常時非活性状態とされ、比較器2330bの比較動作が禁止される。活性制御信号ENaのみが負荷回路7の動作タイミングに併せて活性状態とされる。この場合においては、内部電源線5は、1つのドライブ素子2320aを介してのみ電流が供給される。このため、内部電源線5上の電圧VCIの電圧レベルへの復帰は、通常動作サイクル時におけるよりも遅れる。しかしながら、リフレッシュサイクルおよびデータ保持モードなどにおいては、外部アクセスは何ら行なわれず、高速アクセスは要求されない。したがって、負荷回路7の動作開始タイミングは、この内部電源線5上の電源電圧VCIが安定化した後に行なわれるように構成されても、何ら外部においては問題は生じない。リフレッシュサイクルおよびデータ保持モードなどにおいて1つの比較器のみを駆動することにより、消費電流を低減することが可能となる。
図79は、図78に示す活性制御信号ENaおよびENbを発生するための回路構成の一例を概略的に示す図である。図79において、制御信号発生系は、外部から与えられるロウアドレスストローブ信号extRASを受けて内部ロウアドレスストローブ信号を出力するRASバッファ2340と、内部ロウアドレスストローブ信号extRAS、外部コラムアドレスストローブ信号extCASおよび外部ライトイネーブル信号extWEを受けて、特定の動作モードであるリフレッシュモードおよびスリープモード(データ保持モード)が指定されたか否かを検出する動作モード検出器2342と、動作モード検出器2342の出力信号とRASバッファ2340の出力信号に従って内部ロウアドレスストレージ信号intRASを出力するゲート回路2344と、動作モード検出器2342からの出力信号に従って、データのリフレッシュに必要な動作を所定のタイミングで実行するリフレッシュ制御回路2346と、ゲート回路2344の出力する内部ロウアドレスストローブ信号intRASとリフレッシュ制御回路2346が出力する活性化信号とに応答して、内部のロウ系回路(行選択動作に関連する回路:ロウアドレスデコーダ、およびセンスアンプ、およびプリチャージ/イコライズ回路等)を活性化するための内部活性化信号ENa(φRAS)を出力する内部活性化回路2348を含む。
動作モード検出器2342は、たとえば外部ロウアドレスストローブ信号extRASの活性化(立下がり)よりも先に外部コラムアドレスストローブ信号extCASおよび外部ライトイネーブル信号extWEが活性状態(ローレベル)とされたときに、リフレッシュサイクルが指定されたことを検出する。この動作モード検出器2342は、また加えて、特定のアドレスキーを用いて特定の動作モードが指定されたか否かを検出する構成とされてもよい。この動作モード検出器2342が検出する動作モードは外部アクセスが行なわれないリフレッシュサイクルまたはデータ保持のみを行なうデータ保持モードである。
ゲート回路2344は、動作モード検出器2342が特定の動作モードが指定されたことを検出したときには、RASバッファ2340の出力信号の伝達を禁止する。それ以外の通常動作モード時においては、このゲート回路2344は、RASバッファ2340の出力信号を伝達する。ゲート回路2344として、RASバッファ2340および動作モード検出器2342の出力する信号が活性状態となるときの論理レベルおよび内部ロウアドレスストローブ信号intRASの活性時の論理レベルに併せて、2入力のゲート回路を用いて実現することができる。
リフレッシュ制御回路2346は、動作モード検出器2342により特定の動作モードが指定されたとき、所定のタイミングでリフレッシュを行なうための制御信号を発生する。このリフレッシュ制御回路2346は、内部ロウアドレスストローブ信号intRASに対応するロウ系回路活性化信号を所定のタイミングで出力する。セルフリフレッシュサイクル時およびデータ保持モード時においては、所定の時間間隔で、この内部ロウ系回路活性化信号が活性状態とされる。
内部活性化回路2348は、ゲート回路2344およびリフレッシュ制御回路2346からの信号の一方が活性状態とされたときに、その活性制御信号ENaを活性状態とする。内部活性化回路2348も、内部ロウアドレスストローブ信号intRASの活性時における論理レベルおよびリフレッシュ制御回路2346から出力されるロウ系回路制御信号の活性化時における論理レベルに併せて2入力ゲート回路で構成することができる。このゲート回路2344から出力される内部アドレスストローブ信号intRASが活性制御信号ENbとして用いられる。
内部活性化回路2348からの内部活性化制御信号φRASが活性化制御信号ENaとして用いられる。これにより、通常動作モード時においては、ゲート回路2344からの内部ロウアドレスストローブ信号intRASに従って活性制御信号ENaおよびENbがともに活性状態とされ、図78に示す比較器2330aおよび2330bが作動状態とされる。リフレッシュサイクルおよびデータ保持モード時においては、活性制御信号ENaがリフレッシュ制御回路2346からの内部ロウ系回路活性化制御信号に従って活性状態とされる。活性制御信号ENbは、ゲート回路2344により、非活性状態に固定される。したがって、この場合においては、比較器2330aのみ作動状態とされる。
なお、この図78に示す構成において、負荷回路7の動作サイクルおよびスタンバイサイクルにかかわらず常時動作する比較器およびその常時動作する比較器出力に応答して電流を内部電源線5へ伝達するドライブ素子が設けられてもよい。
以上のように、この第14の実施例の構成に従えば、通常動作サイクルにおいて内部回路(負荷回路)が動作する場合には、複数の比較器を作動状態として、大きな電流供給力を持って高速で内部電源線5上の電源電圧の変動を補償し、リフレッシュサイクルおよびデータ保持モードなどの特定の動作モードにおいては、1つの比較器に従って内部電源線上の電源電圧の変動を補償している。したがって、高速アクセスおよび特定モード時における低消費電流を実現することができる。
[実施例15]
図80は、この発明の第15の実施例である内部電源電圧発生回路の構成を概略的に示す図である。図80に示す構成においては、電圧源ノード1と内部電源線5の間に、基準電圧発生回路2310からの基準電圧Vrefをゲートに受けるnチャネルMOSトランジスタが電流ドライブ素子2350として設けられる。この電流ドライブ素子2350は、そのしきい値電圧が0Vまたはほぼ0Vに近い小さなしきい値電圧を備える。
この内部電源電圧発生回路は、さらに、通常動作モード時において、内部回路の動作タイミングに併せて活性状態とされる制御信号ENbに応答して導通する活性制御トランジスタ2305bにより作動状態とされる比較器2330bと、比較器2330bの出力信号に従って電圧源ノード1から内部電源線5へ電流を供給するドライブ素子2320bを含む。
基準電圧発生回路2310は、図78に示す構成と同様、定電流源2312および抵抗素子2313aおよび2313bを含む。この図80に示す内部電圧発生回路の構成においては、常時電流ドライブ素子2350が導通し、そのゲート電極に与えられる基準電圧Vrefに従って電圧源ノード1から内部電源線5へ電流が供給される。この電流ドライブ素子2350のしきい値電圧はほぼ0Vであり、内部電源線5上の電源電圧VCIは、比較器2330bの非活性化時ほぼ基準電圧Vrefの電圧レベルに固定される。
通常動作時においては、内部回路(図80には示さず)の動作タイミングに併せて、活性制御信号ENbが活性状態とされ、比較器2330bが動作し、ドライブ素子2320bを介して内部電源線5上の電源電圧VCIを基準電圧Vrefの電圧レベルに調整する。活性制御信号ENbが活性状態とされるのは、通常動作サイクルにおける外部アクセスが行なわれ、高速アクセス動作が要求されるときである。すなわち、電源ドライブ素子2350およびドライブ素子2320bをともに動作させることにより、内部電源線5へ供給される電流量が増加し、この内部電源線5上の電源電圧の変動に対し高速で追随して内部電源電圧VCIを所定の電圧Vrefレベルに調整することができる。外部アクセスが行なわれない場合には、単に電流ドライブ素子2350のみが内部電源線5上で電流を供給しており、消費電流が低減される。
[変更例]
図81は、この発明の第15の実施例である内部電源電圧発生回路の変更例を示す図である。この図81に示す構成においては、基準電圧発生回路2310は、定電流源2312と抵抗素子2313aの間に配置される、ダイオード接続されたnチャネルMOSトランジスタ2314を備える。MOSトランジスタ2314のチャネル抵抗は、抵抗素子2313aおよび2313bの抵抗値よりも十分小さく、また大きな電流駆動力を有しており、定電流源2312から与えられる電流をすべて抵抗素子2313aおよび2313bへ供給する。この場合、MOSトランジスタ2314はダイオードモードで動作し、そのゲートおよびドレインとソースの間にしきい値電圧Vthの電圧降下をもたらす。すなわちこの基準電圧発生回路2310は、2つの基準電圧VREFおよびVrefを発生する。基準電圧VREF=Vref+Vthである。電圧源ノード1と内部電源線5の間に接続されるnチャネルMOSトランジスタで構成される電流ドライブ素子2352は、そのゲートに基準電圧VREFを受ける。
比較器2330b、ドライブ素子2320bは、図80で示す構成と同じであり、基準電圧Vrefを受ける。電流ドライブ素子2352が、基準電圧発生回路2310に含まれるトランジスタ2314と同じしきい値電圧Vthを有する場合、この電流ドライブ素子2352は、ソースホロワで動作し、内部電源線5上の電源電圧VCIを基準電圧VREFの電圧レベルに維持する。内部電源線5上の電源電圧VCIの電圧レベルが低下したとき、電流ドライブ素子2352はそのゲート−ソース間電圧が大きくなり、この電流ドライブ素子2352を介して流れるドレイン電流が増加する。内部電源線5上の電源電圧VCIの電圧レベルが上昇したとき、電流ドライブ素子2352のゲート−ソース間電圧が小さくなり、この電流ドライブ素子2352の供給するドレイン電流が低下する。これにより、比較器を用いる電圧発生回路と同様に、内部電源線5上の電源電圧VCIの電圧レベルに応じた電流を供給し、この電源電圧VCIの電圧レベル調整を実行する。すなわち、この電源ドライブ素子2352は、内部電源線5上の電源電圧VCIを基準電圧VREF−Vthの電圧レベルにクランプする機能を備える。
この図81に示す構成においては、基準電圧発生回路2310において、しきい値電圧Vthのシフトを実現するMOSトランジスタ2314が用いられている。したがって電流ドライブ素子2352として、しきい値電圧が0Vまたはそれに近い低しきい値電圧のnチャネルMOSトランジスタを用いる必要がなく、しきい値電圧調整のための余分の製造工程は何ら必要とされず、製造工程が簡略化される。
基準電圧発生回路2310は、電圧源ノード1xから電流を供給される。この場合、電圧源ノード1xに与えられる電源電圧と基準電圧Vrefの差が小さい場合、定電流源2312に電流が流れず、またMOSトランジスタ14がオン状態とならない場合が生じることが考えられる。したがって、この基準電圧発生回路2310を確実に動作させるため、電圧源ノード1xへは、電圧源ノード1へ与えられる電圧レベルよりも高い昇圧電圧を与える。半導体装置が半導体記憶装置である場合には、内部にワード線駆動のための昇圧電圧を発生する回路が設けられており、この昇圧電圧を電圧源ノード1xへ与える構成を利用することができる。
外部アクセスが行なわれない場合には、nチャネルMOSトランジスタで構成される電流ドライブ素子のみを用いて内部電源電圧を発生し、外部アクセスが行なわれる場合には、比較器およびドライブ素子を用いて内部電源電圧レベルの調整を行なっているため、高速応答特性が要求されるときのみ比較器を動作させるだけであり、消費電流を低減することができるとともに、高速アクセスを実現することができる。
[実施例16]
図82は、この発明の第16の実施例である内部電源電圧発生回路の構成を示す図である。図82において、内部電源電圧発生回路は、内部電源線5上の電源電圧VCIと基準電圧Vrefとを比較する比較器2330と、電圧源ノード1と内部電源線5の間を流れる電流量を比較器2330の出力信号に従って調節するドライブ素子2320cと、比較器2330の出力信号に従ってそのコンダクタンスが変化する可変コンダクタンス素子としてのドライブ素子2320dと、ドライブ素子2320dと直列に接続され、動作モード指定信号φMDに従って導通/非導通状態とされるpチャネルMOSトランジスタで構成されるドライブ素子2360を含む。
この動作モード指定信号φMDは、2値信号であり、この半導体装置の動作モードに応じて論理ハイレベルまたは論理ローレベルに設定される。この動作モードとしては、以下の動作モードがある。
(1) リフレッシュ動作時において、選択状態とされるワード線の数を、通常動作時における選択ワード線の数よりも増加させる。
(2) テストモード時において、マージン試験などおよび多ビットデータのテストを行なうために、選択ワード線の数を通常動作時における選択ワード線の数よりも増加させる。
(3) テスト動作時において、多ビットのデータを同時に良不良を検証するために、選択されるコラム選択線(ビット線対を選択するためのコラム選択信号を伝達するコラムデコーダの出力信号線)の数を、通常動作時におけるそれよりも増加させる。
これらの動作モードにおいては、通常動作時におけるよりも、内部電源線5上に接続される負荷回路7(または内部回路)の消費する電流が増加し、電源電圧VCIの変動が大きくなる。この大きな消費電流を補償するために、動作モード指定信号φMDをローレベルに設定し、ドライブ素子2360を導通状態とする。この状態においては、内部電源線5はドライブ素子2320cおよび2320dを介して比較器2330の制御のもとに内部電源線5上の電源電圧VCIの電圧レベルを調整する。2つのドライブ素子2320cおよび2320dが並列に動作するため、電圧源ノード1から内部電源線5へ大きな電流を供給することができ、内部電源電圧VCIの低下を高速で補償することができる。
また動作モード指定信号φMDが指定する動作モードとしては、さらに半導体装置が、動作時に消費する電流のマージンを検証するために、内部電源線5へ供給することの可能な電流量を減少させる動作電流マージンテストがある。この場合には、動作モード指定信号φMDは論理ハイレベルに設定され、ドライブ素子2360は非導通状態とされる。この場合には、通常動作時においては、2つのドライブ素子2320cおよび2320dにより内部電源線5上の電圧調整が行なわれ、テストモード時においては、ドライブ素子2320cによってのみ内部電源線5への電流供給が行なわれる。内部回路(負荷回路)の消費電流量に応じてその内部電源電圧の電流供給能力を切換えることにより、動作モードに応じて安定に必要とされる電流を供給して内部電源線5上の電源電圧VCIを安定化させることができる。
また半導体装置ごとに、リフレッシュサイクルにおいて選択されるワード線の数が異なる構成が用いられることがある(リフレッシュサイクルを装置用途に応じて切換える)。この場合においても、そのリフレッシュサイクルに応じて動作モード指定信号φMDを論理ハイレベルまたは論理ローレベルに設定することにより、必要とされる電流供給能力を内部電源電圧発生回路へ与えることができ、安定に内部電源電圧VCIを発生することができる。
図83は、動作モード指定信号φMDを発生するための回路構成を示す図である。図83(A)においては、動作モード指定信号発生回路は、外部から与えられる制御信号をデコードするデコーダ2362で構成される。デコーダ2362を用いることにより、複数種類の動作モードに対応して必要な電流供給能力を内部電源電圧発生回路へ与えることができる。またデコーダ2362を用いることにより、この内部電源電圧発生回路の電流供給能力の増加および減少いずれをも実現することができる。
図83(B)に示す動作モード指定信号発生回路は、信号線2363と電圧源ノード1との間に接続される高抵抗の抵抗素子2365を含む。信号線2363はパッド2364に接続される。このパッド2364を、選択的にフレーム2367へボンディングワイヤ2366を介して接続される。フレーム2367へは、外部から接地電圧Vssが与えられる。パッド2364とフレーム2367とがボンディングワイヤ2366により接続されたとき、信号線2363からの動作モード指定信号φMDは接地電圧Vssレベルの論理ローレベルとされる。抵抗素子2365は高抵抗であり、その消費電流は無視することのできる値である。パッド2364とフレーム2367の間にボンディングワイヤ2366が接続されない場合には、信号線2363は抵抗素子2365により内部電源電圧レベルの論理ハイレベルとされる。
ボンディングワイヤ2366の有無により動作モード指定信号φMDを発生する構成とすることにより、この半導体装置が用いられる用途に応じて内部電源電圧発生回路の供給する電流供給能力を適切にプログラムすることができる。
図84は図82に示す動作モード指定信号を発生するためのさらに他の構成を示す図である。図84(A)に示す構成においては、電圧源ノード1と出力ノード2372の間に溶断可能なリンク素子2370が設けられ、出力ノード2372と接地電圧供給ノードとの間に高抵抗の抵抗素子2371が設けられる。出力ノード2372から動作モード指定信号φMDが出力される。リンク素子2370の導通時においては、出力ノード2372の電圧レベルは電圧源1へ与えられる電圧レベルである。リンク素子2370を溶断すると、この出力ノード2372の電圧レベルは抵抗素子2371により接地電圧Vssレベルに設定される。 図84(B)に示す構成においては、信号線2374と電圧源ノード1または接地電圧Vss供給ノードの間に、選択的に配線2373aおよび2373bの一方が配設される。この配線2373aまたは配線2373bを選択的に接続することにより、動作モード指定信号φMDを所望の論理レベルに設定することができる。
以上のように、この発明の第16の実施例の構成に従えば、動作モードに従って内部電源電圧発生回路の電源供給能力を切換えるように構成したため、動作モードによる内部回路(負荷回路)の消費する電流量に併せて内部電源電圧発生回路の電流供給能力を調整することができ、安定に内部電源電圧VCIを生成することができる。
すなわち、大きな電流供給能力による、必要以上の電流供給に伴う内部電源電圧VCIのリンギングの発生および小さな電流供給力による内部電源電圧VCIの変動に対する非追随性をなくし、安定に内部電源電圧VCIを供給することができる。
[実施例17]
図85は、この発明の第17の実施例である内部電源電圧発生回路の構成を示す図である。
図85において、内部電源電圧発生回路は、内部電源線5上の電圧VCIと基準電圧Vrefとを比較する比較器2330、比較器2330の出力信号に従ってそのコンダクタンスが変化し、応じて電流供給量が変化するドライブ素子2320と、ドライブ素子2320と電圧源ノード1との間に接続され、そのゲートに動作モード指定信号φMAを受けるドライブ素子2360を含む。このドライブ素子2360はpチャネルMOSトランジスタで構成され、そのゲートへ与えられる動作モード指定信号φMAは、電圧源ノード1へ与えられる電圧と接地電圧Vssの間での中間電位レベルを有する。ドライブ素子2360は、この中間電位レベルの動作モード指定信号φMAに従って、そのチャネル抵抗が変化する。動作モードに応じてこのドライブ素子2360のコンダクタンスが変更され、動作モードに応じた電流供給力を内部電源電圧発生回路へ与えることができ、負荷回路7の消費電流に応じた最適な電流供給力を内部電源電圧発生回路へ与えることができる。
この動作モード指定信号φMAが指定する動作モードは、先の実施例16における動作モードと同様である。動作モード指定信号φMAの電圧レベルが高くなれば、ドライブ素子2360のコンダクタンスが小さくされ、そこを流れる電流量が制限され、内部電源電圧発生回路の電源供給力が小さくされる。一方、動作モード指定信号φMAの電圧レベルが低くされた場合には、ドライブ素子2360のコンダクタンスが大きくなり、このドライブ素子2320へ供給される電流量が増加し、応じて内部電源電圧発生回路の電流供給力が大きくされる。ドライブ素子2320は、この可変コンダクタンス素子としてのドライブ素子2360を電流源として、比較器2330の出力信号に従って内部電源線5へ電流を供給し、内部電源電圧VCIの変動を調整する。
図86は、図85に示す動作モード指定信号φMAを発生するための構成の一例を示す図である。
図86(A)においては、動作モード指定信号発生回路は、電圧源ノード1と信号線2380の間に接続される一定電流を供給するための定電流源2382と、定電流源2382と接地電圧Vss供給ノードとの間で直列に接続される抵抗素子2382a〜2382dと、抵抗素子2382b〜2382d各々と並列に接続される溶断可能なリンク素子2383a〜2383cを含む。抵抗素子2382a〜2382dの数は任意であり、また同様にリンク素子2383a〜2383cの数も任意である。リンク素子2383a〜2383cのすべてが導通状態のときには、信号線2380上の動作モード指定信号φMAの電圧レベルは定電流源2382が供給する電流と抵抗素子2382aが有する抵抗値とにより決定される電圧レベルとされる。リンク素子2383a〜2383cを選択的に溶断することにより、信号線2380と接地電圧供給ノードとの間の抵抗の値が大きくなり、動作モード指定信号φMAの電圧レベルが増加する。これにより、動作モードに応じてリンク素子2383a〜2383cを選択的に溶断する(プログラムする)ことにより、動作モード指定信号φMAの電圧レベルを所望の中間電位レベルに設定することができる。
図86(B)においては、複数ビットのモード設定信号を受けてデジタル−アナログ変換するD/Aコンバータ2385が動作モード指定信号発生回路として用いられる。モード設定信号のビットの組合せにより、この動作モード指定信号φMAの電圧レベルを設定することができる。モード設定信号としては、たとえばWCBR条件下において動作モード指定信号電圧レベル設定動作が指定され、この動作モード指定信号φMAの設定する電圧レベルが、そのときに与えられるアドレス信号ビットの組合せにより決められる構成が用いられてもよい。また後に説明するような、半導体記憶装置において通常用いられているコマンドレジスタにモード設定信号が設定される構成が用いられてもよい。半導体記憶装置の初期動作時に動作モード指定信号φMAの電圧レベルを容易の所望の電圧レベルに設定することができる。
図86(C)に示す動作モード指定信号発生回路は、電圧源ノード1に結合され、この電圧源ノード1から所定の値の一定の電流を供給する定電流源2390と、定電流源2390と接地電圧供給ノードとの間に直列に接続される抵抗素子2392a〜2393cと、信号線2397を介して与えられる選択信号に従ってノード2394aおよびノード2394bの一方の電圧を選択するセレクタ2395を備える。セレクタ2395は、信号線2397上の信号電位に従って抵抗素子2392aおよび2393bの間のノード2394a上の電圧レベルを選択するpチャネルMOSトランジスタ2395aと、信号線2397上の電位が論理ハイレベルのときに抵抗素子2393bおよび2393cの間のノード2394b上の電圧を選択するnチャネルMOSトランジスタ2395bを含む。セレクタ2395から動作モード指定信号φMAが出力される。
信号線2397はパッド2399aに接続され、かつ高抵抗の抵抗素子2398を介して電圧源ノード1に接続される。パッド2399aは、接地電圧Vssを供給するフレーム2399cにボンディングワイヤ2399dを介して選択的に接続される。ボンディングワイヤ2399dが設けられない場合、信号線2397上の電位は抵抗素子2398により電圧源ノード1上の電圧レベルとされ、セレクタ2395においては、MOSトランジスタ2395bが導通状態となり、MOSトランジスタ2395aが非導通状態とされる。この状態においては、ノード2394b上の電圧が選択され、動作モード指定信号φMAとして出力される。一方ボンディングワイヤ2399dがパッド2390aとフレーム2399cの間に接続された場合には、信号線2397上の電圧レベルは接地電圧Vssレベルとなる。この状態においては、MOSトランジスタ2395aが導通状態、MOSトランジスタ2395bが非導通状態とされる。したがってこの場合には、動作モード指定信号φMAとして、ノード2394a上の電圧が選択されて出力される。パッドに対するボンディングワイヤの有無により、2つの電圧レベルのうちの一方の電圧レベルを有する動作モード指定信号φMAを生成することができる。
以上のように、この発明の第17の実施例に従えば、比較器の出力信号に従って内部電源線5上の電源電圧レベルを調整するドライブ素子と直列にそのコンダクタンスが変更可能な可変コンダクタンス素子を接続したため、半導体装置の使用状況に応じた電流供給能力を備える半導体装置を実現することができる。またこのとき、可変コンダクタンス素子1つが用いられるだけであり内部電源電圧発生回路の規模が低減される。
[実施例18]
図87は、この発明の第18の実施例に従う内部電源電圧発生回路の構成を概略的に示す図である。図87において、内部電源電圧発生回路は、基準電圧発生回路2310から基準電圧伝達線2402上に伝達された基準電圧Vrefと内部電源線5上の電源電圧VCIを比較する比較器2330と、この比較器2330の出力信号に従って電圧源ノード1から内部電源線5へ流れる電流量を調整するドライブ素子2302と、この内部電源線上の電源電圧VCIと基準電圧伝達線2402上の基準電圧Vrefに従って基準電圧Vrefの電圧レベルを調整するレベル調整回路2401を含む。
基準電圧発生回路2310は、電圧源ノード1と接地電圧供給ノードとの間に直列に接続される抵抗素子2400aおよび2400bで構成されるように示される。抵抗素子2400aに代えて定電流源が用いられてもよい。
レベル調整器2401は、電源線5上の電源電圧VCIを正入力に受け、基準電圧伝達線2402上の基準電圧Vrefを負入力に受ける差動増幅器で構成される比較器2410と、この比較器2410の出力信号に従って電圧源ノード1から基準電圧伝達線2402へ電流を供給する電流ドライブ素子2411と、内部電源線5上の電源電圧VCIを正入力に受け、かつ基準電圧伝達線上の基準電圧Vrefを負入力に受ける差動増幅器で構成される比較器2412と、この比較器2412の出力信号に従って基準電圧伝達線2402から接地電圧供給ノードへ電流を放電する電流ドライブ素子2413とを含む。基準電圧伝達線2402には、安定化のための容量2405が設けられる。この容量2405は、基準電圧伝達線2402の寄生容量で構成されてもよい。次に動作について説明する。
基準電圧発生回路2310からは、抵抗素子2400aおよび2400bの有する抵抗値で決定される基準電圧Vrefが出力される。比較器2330は、内部電源線5上の電源電圧VCIとこの基準電圧伝達線2402上の基準電圧Vrefとを比較する。電源電圧VCIが基準電圧Vrefよりも低い場合には、比較器2330の出力が電圧レベルが低下し、ドライブ素子2320のコンダクタンスが増加する。レベル調整器2401においても、比較器2410および2412が比較器2330と同様の態様で比較動作を行なっており、電流ドライブ素子2411のコンダクタンスが大きくなり、一方電流ドライブ素子2413のコンダクタンスが低下する。これにより、基準電圧伝達線2402上に、電流ドライブ素子2411を介して電圧源ノード1から電流が供給され、この基準電圧Vrefの電圧レベルが増加し、応じて比較器2330の出力信号の電圧レベルがさらによく低下し、ドライブ素子2320のコンダクタンスがより小さくされ、高速で電源電圧VCIの電圧レベルを上昇させる。
一方、電源電圧VCIが基準電圧Vrefよりも高い場合には、比較器2330の出力信号の電圧レベルが上昇し、電流ドライブ素子2320のコンダクタンスは低下する。これにより、電圧源ノード1から内部電源線5への電流供給がほぼ停止される。この状態においては、レベル調整器2401において、比較器2410および2412の出力信号の電圧レベルが上昇し、電流ドライブ素子2411がほぼ非導通状態とされ、電流ドライブ素子2413のコンダクタンスが大きくなり、基準電圧伝達線2402(安定化容量2405)の電圧レベルを低下させる。これにより、比較器2330の出力信号の電圧レベルがより高くされ、ドライブ素子2320がほぼ完全に非導通状態とされる。
レベル調整器2401による基準電圧Vrefの電圧レベル調整により、比較器2330により、ドライブ素子2320が大きな電流量を供給する必要がある場合には、基準電圧Vrefの電圧レベルが上昇し、比較器2330の出力の電圧レベルが上昇し、一方ドライブ素子2320が大きな電流を供給する必要がない場合には、基準電圧Vrefの電圧レベルを低下させ、比較器2330の出力信号をよりその電圧レベルを上昇させる。レベル調整器2401により、基準電圧Vrefの電圧レベルを調整し、応じて比較器2330の応答速度が改善され、高速で、この内部電源線5上の電源電圧VCIが負荷回路7の動作により変動する場合においても、安定に一定の電圧レベルの電源電圧VCIを供給することができる。
また、この基準電圧Vrefのレベルは、基準電圧発生回路2310に含まれる抵抗素子2400aおよび2400bと、電流ドライブ素子2411および2413のコンダクタンスにより決定される。基準電圧発生回路2310においては、正確な一定電流レベルの基準電流を発生する定電流源を用いる必要がない。したがって基準電圧発生回路2310の回路構成を簡略化することができる。
以上のように、この第18の実施例の構成に従えば、レベル調整器により、内部電源電圧VCIの電圧レベルに応じて基準電圧Vrefの電圧レベルを調整し、比較器330の応答速度を等価的に早くしているため、負荷回路7の動作状況に応じて高速でドライブ素子2320の電流供給力を調整することができ、安定に内部電源電圧VCIを出力することができる。
[実施例19]
図88は、この発明の第19の実施例の内部電源電圧発生回路の構成を概略的に示す図である。図88において、内部電源電圧発生回路は、複数の互いに電圧レベルの異なる基準電圧Vrefa、Vrefb、Vrefc、およびVrefdを発生する基準電圧発生回路2420と、この基準電圧発生回路2420の出力する基準電圧Vrefa〜Vrefdのうちの1つを選択する信号を発生する選択信号発生回路2430と、選択信号発生回路2430からの基準電圧選択信号に応答して、基準電圧発生回路2420からの基準電圧Vrefa〜Vrefdの1つを選択して出力する選択回路2440と、選択回路2440からの基準電圧Vrefと内部電源線5上の内部電源電圧VCIとを比較する比較器2330と、比較器2330の出力信号に従って電圧源ノード1から内部電源線5へ電流を供給するドライブ素子2320を含む。
基準電圧発生回路2420は、電圧源ノード1に結合され、一定の電流を供給する定電流源2421と、定電流源2421と接地電圧供給ノードとの間に直列に接続される抵抗素子2422a、2422b、2422c、および2422dを含む。定電流源2421と抵抗素子2422aの間の接続ノード2424a、および抵抗素子2422a〜2422dの各接続ノード2424b、2424cおよび2424dからそれぞれ基準電圧Vrefa、Vrefb、VrefcおよびVrefdが出力される。
選択回路2440は、基準電圧Vrefa〜Vrefdそれぞれに対応して設けられ、選択信号発生回路2430(この構成については後に詳細に説明する)からの選択信号に従って導通し、対応の基準電圧を通過させる選択ゲート2442a〜2442dを含む。図88において、選択ゲート2442a〜2442dは、nチャネルMOSトランジスタで構成されるように示される。しかしながら、選択ゲート2442a〜2442dは、CMOSトランスミションゲートであってもよい。
次に動作について説明する。
基準電圧発生回路2420は、定電流源2421が供給する電流と抵抗素子2422a〜2422dの各抵抗値とに従ってそれぞれ互いに電圧レベルの異なる基準電圧Vrefa〜Vrefdを出力する。選択回路2440は、この選択信号発生回路2430からの選択信号に従って1つの基準電圧を選択して出力する。負荷回路7の高速動作性が要求されない場合、選択信号発生回路2430は、比較的低い電圧レベルの基準電圧を選択する信号を発生する。比較器2330およびドライブ素子2320により、内部電源線5上の電源電圧VCIが、選択回路2440により選択された基準電圧Vrefの電圧レベルに電源電圧VCIの電圧レベルを設定する。負荷回路7が構成要素としてMOSトランジスタを含む場合、そのMOSトランジスタの動作速度は、電源電圧VCIにより決定される。MOSトランジスタの内部ノードの充放電速度は、ゲート電位および電源電圧を受けるドレインまたはソースの電位により決定されるためである。また、基準電圧Vrefの電圧レベルが低い場合、負荷回路7の動作時において電源電圧VCIの電圧レベルが低下しても、この負荷回路7の高速動作は要求されていないため、負荷回路7動作時において電源電圧VCIが仮に急激に変化した場合においても、比較器2330およびドライブ素子2320によるフィードバックループによる電源電圧VCIの復元が遅れても何ら問題は生じない。
一方、負荷回路7が高速動作性を要求される場合、選択信号発生回路2430は、比較的電圧レベルの高い基準電圧を選択する信号発生する。この場合、比較器2330およびドライブ素子2320により、内部電源線5上の電源電圧VCIは比較的高い電圧レベルに設定される。したがって、負荷回路7が高速で動作することができる。また、負荷回路7の動作時において急激に電源電圧VCIが変動しても、この基準電圧Vrefの電圧レベルが内部電源電圧VCIの必要最小限の電圧レベルよりも高い電圧レベルに設定されていれば、負荷回路7を高速動作させるために要求される電圧レベルからの電源電圧VCIの低下を抑制することができ(先の実施例16および17におけるスタンバイ時において内部電源電圧VCIの電圧レベルを所定値よりも高くする状態に対応する)、安定に必要とされる電源電圧VCIを供給することができ、負荷回路7の高速動作性を保証することができる。
図89は、図88に示す選択信号発生回路2430の構成の一例を示す図である。図89において、選択信号発生回路2430は、外部からの信号ZRAS、ZCAS、ZWEおよびアドレス信号Abに従って基準電圧レベルを設定するモードが指定されたことを検出するモード検出回路2432と、このモード検出回路2432からのモード検出信号に従って内部からのアドレス信号AdmおよびAdnを取込み保持するコマンドレジスタ2434と、コマンドレジスタ2434の保持するデータをデコードし、選択信号を発生するデコーダ2436を含む。モード検出回路2432はいわゆる「WCBR+アドレスキー」条件に従って基準電圧レベル設定モードが指定されたか否かを検出する。WCBR+アドレスキー条件は、ロウアドレスストローブ信号ZRASの立下がり前に、コラムアドレスストローブ信号ZCASおよびライトイネーブル信号ZWEが立下がり、かつ特定のアドレス信号ビットAbが予め定められた値に設定される状態を示す。コマンドレジスタ2434としては、通常、半導体記憶装置においては、内部動作条件を指定するために設けられており、このコマンドレジスタを利用することができる。コマンドレジスタ2434は、ラッチ機能を備えており、その与えられたアドレス信号AdmおよびAdnを取込んで持続的に保持しかつ出力する。デコーダ2436は、このコマンドレジスタ2434からの2ビットのアドレス信号AbmおよびAbnをデコードし、図88に示す4つの基準電圧Vrefa〜Vrefdのうちのいずれかを選択する信号を出力する。コマンドレジスタ2434が、4ビットのアドレス信号を受ける構成とされている場合、デコーダ2436を介することなく直接、選択信号がそのときに与えられるアドレス信号に従って発生される構成が用いられてもよい。
この図89に示す選択信号発生回路の構成に従えば、半導体装置の動作条件に応じて基準電圧すなわち内部電源電圧VCIの電圧レベルを設定することができる。したがって、高速アクセスが要求されないリフレッシュサイクルおよびデータ保持モード時において、基準電圧のレベルを低くし、高速アクセスが要求される通常動作時においては、基準電圧Vrefを高い電圧レベルに設定することができ、低消費電流特性が要求される動作モードにおいて、内部電源電圧VCIの電圧レベルを低くすることにより、内部電源線5の充電電流を低減することができる。
図90は、図88に示す選択信号発生回路2430の他の構成を示す図である。図90に示す構成においては、基準電圧Vrefa〜Vrefdそれぞれに対応してリンク素子2437(2437a〜2437d)および抵抗素子2438(2438a〜2438d)およびインバータ2439(2439a〜2439d)が設けられる。リンク素子2437および抵抗素子2438は電圧源ノード1と接地ノードの間に直列に接続される。インバータ2439は、抵抗素子2438の一方端(接地ノードに接続されないノード)上の信号電位を受けて反転して選択信号を出力する。
リンク素子2437a〜2437dが導通状態(非切断状態)の場合、インバータ2439a〜2439dの出力信号はすべて論理ローレベルである。リンク素子2437a〜2437dのいずれかを切断すると、対応のインバータ2439a〜2439dの出力信号が論理ハイレベルとなり、対応の基準電圧Vrefa〜Vrefdが選択される。たとえば、リンク素子2437aが切断されると、インバータ2439aの入力信号は、抵抗素子2438aにより論理ローレベルとなり、インバータ2439aの出力信号も論理ハイレベルとなる。それにより、基準電圧Vrefaが伝達される。
なお、図90に示す構成においては、リンク素子を切断することにより、対応の基準電圧を選択するように構成されている。しかしながら、リンク素子導通時において対応の基準電圧を選択する信号が発生されるように構成されてもよい。このリンク素子の溶断/非溶断のプログラムにより基準電圧レベルを設定する構成の場合、半導体装置の用途すなわち高速動作が要求される半導体装置および高速動作が要求されない半導体装置それぞれに応じて基準電圧レベルを設定することができ、同一回路構成で、高速動作する半導体装置および低消費電力性が強調される半導体装置いずれにも対応することが可能となる。
以上のように、この発明の第19の実施例の構成に従えば、内部電源電圧VCIの電圧レベルを決定する基準電圧Vrefの電圧レベルを選択可能としているため、半導体装置の動作条件および使用用途に応じて最適な基準電圧レベルを設定することができ、動作状況に応じて基準電圧を介して電源電圧VCIを安定に供給することができる。
[実施例20]
図91は、この発明の第20の実施例に従う内部電源電圧発生回路の構成を示す図である。図91において、ドライブ素子2320のゲート電位を基準電圧Vrefおよび内部電源線5上の電源電圧VCIの差に従って調節する比較器2330は、その応答速度が動作モードに応じて切換えられる。
すなわち、比較器2330は、カレントミラー段を構成するpチャネルMOSトランジスタ2440および2441と、基準電圧Vrefと内部電源電圧VCIとを比較する差動段を構成するnチャネルMOSトランジスタ2442および2443と、この比較器2330を流れる動作電流の量を決定する電流源トランジスタ2444および2445を含む。MOSトランジスタ2440はそのゲートおよびドレインが接続される。MOSトランジスタ2440およびMOSトランジスタ2442は直列に接続され、MOSトランジスタ2441およびMOSトランジスタ2443は直列に接続される。
電流源トランジスタ2444はそのゲートに一定電圧レベルの基準電圧CSTを受ける。この基準電圧CSTは電圧源ノード1に与えられる電源電圧であってもよい。この電流源トランジスタ2444と並列に、動作モード指定信号φMに応答して選択的に導通状態とされるスイッチング電流源トランジスタ2445が設けられる。この動作モード指定信号φMは2値の論理信号であり、スイッチング電流源トランジスタ2445は導通状態または非導通状態の一方の状態にこの動作モード指定信号φMに従って設定される。
この比較器2330は、通常の差動増幅器で構成されており、基準電圧Vrefと内部電源電圧VCIの差を反転増幅してドライブ素子2320のゲートへ与える。この比較器2330の動作速度は、この電流源トランジスタ2444および2445を流れる動作電流により決定される。すなわち、MOSトランジスタ2443を介して流れる電流が大きければ、このドライブ素子2320のゲートへ与えられる電位は高速で変化し、一方、MOSトランジスタ2443を流れる電流量が小さい場合には、このドライブ素子2320のゲート電位は緩やかに変化する。したがって、この電流源トランジスタ2444および2445を流れる電流量を調整することにより、比較器2330の応答速度を調整することができ、外部電源電圧VCIの急激な変化に高速で追随する場合および比較的緩やかに追跡する場合の2つの状態を設定することができる。
すなわち、動作モード指定信号φMが論理ローレベルであり、スイッチング電流源トランジスタ2445が非導通状態の場合には、この比較器2330の動作電流は、電流源トランジスタ2444により決定される。この場合には、比較器2330の出力ノードの電位変化は緩やかとなり、その応答速度が小さくされる。一方、動作モード指定信号φMが論理ハイレベルとされ、スイッチング電流源トランジスタ2445が導通状態とされた場合には、この比較器2330の動作電流は電流源トランジスタ2444および2445に流れる電流量により決定されるため、動作電流が増加する。したがってこの場合には、比較器2330によるドライブ素子2320のゲート電位変化速度が大きくされ、比較器2330の応答速度が速くされる。これにより、内部電源線5上の電源電圧VCIの急激な変化にも高速で追随して安定に内部電源電圧を供給することができる。次にこの動作モード指定信号φMの発生態様について説明する。
図92は、図91に示す動作モード指定信号発生回路の構成を示す図である。図92(A)において、動作モード指定信号発生回路は、電圧源ノード1と接地ノード(接地電圧供給ノード)の間に直列に接続されるリンク素子2450および抵抗素子2452を含む。リンク素子2450と抵抗素子2452の間の接続ノード2451から動作モード指定信号φMが出力される。リンク素子2450を溶断することにより、プルダウン抵抗2452により、動作モード指定信号φMが接地電圧レベルの論理ローレベルとされる。リンク素子2450が導通状態のとき(非溶断状態のとき)、動作モード指定信号φMは、抵抗素子2452が高抵抗を有するため、電圧源ノード1へ与えられる電圧レベルは、論理ハイレベルとされる。リンク素子2450のプログラムにより動作モード指定信号φMの電圧レベルを設定することにより、この半導体装置の使用される用途に応じて比較器の応答速度を固定的に設定することができ、高速アクセスが要求される装置および低消費電流特性が要求される装置それぞれに応じて比較器の動作特性を固定的に設定することができる。
図92(B)に示す動作モード指定信号発生回路は、外部から与えられるロウアドレスストローブ信号ZRAS、コラムアドレスストローブ信号ZCAS、ライトイネーブル信号ZWE、およびアドレス信号Adに従って所定の動作モードが指定されたか否かを検出し、所定の動作モードが指定されたときにこの動作モード指定信号φMを論理ハイレベルまたは論理ローレベルに設定する動作モード検出器2454で構成される。この動作モード指定信号φMが論理ハイレベルとされ、比較器2330の動作速度(応答速度)を速くする動作モードとして以下のものがある:ページモード、スタティックコラムモード、周期的に与えられるクロック信号に同期して動作するクロック同期動作、およびEDOモードがある。EDOモードにおいては、ニブルモードと通常の動作が行なわれるが、データ出力をリセットするタイミングが、ニブルモードの場合には、コラムアドレスストローブ信号ZCASの立上がりタイミングであるのに対し、このコラムアドレスストローブ信号ZCASの立下がりタイミングまたは信号ZCASおよびZRASがともにハイレベルとされるタイミングとされる。出力データが確定状態とされる期間が長くなり、ニブルモードよりも高速動作が実現される。これらの高速動作モードにおいては、内部電源線5上の電源電圧を高速で所定の電圧レベルに復帰させる必要がある。この場合には、動作モード指定信号φMを論理ハイレベルとして比較器2330の応答速度を速くする。
外部アクセスが要求されないデータ保持モードまたはリフレッシュ動作時においては、この動作モード指定信号φMは論理ローレベルとされる。これらの動作モードにおいては、高速動作性は要求されず、低消費電流性が要求されるためである。リフレッシュサイクルとして、外部からのロウアドレスストローブ信号ZRASによりリフレッシュ動作を制御するRASオンリーリフレッシュ、ライトイネーブル信号ZWE、コラムアドレスストローブ信号ZCASおよびロウアドレスストローブ信号ZRASのタイミング関係によりリフレッシュが指定されるCBRリフレッシュおよび内部で所定期間ごとに自動的にリフレッシュが行なわれるセルフリフレッシュがある。この他に、アクセスされたメモリブロックと別の非選択ブロックに対してリフレッシュが行なわれるヒドンリフレッシュサイクルがある。このヒドンリフレッシュサイクルの場合、内部電源線5が各メモリブロック個々に設けられている場合には、リフレッシュが行なわれるメモリブロックに対して設けられた内部電源線5のみが比較器2330の応答速度が遅くされるように構成されればよい。内部電源線5がすべてのメモリブロックに対し共通に設けられている場合には、通常アクセス動作とヒドンリフレッシュ動作が共通に行なわれるため、この場合には、動作モード指定信号φMを論理ハイレベルと設定することにより、内部電源線5の電流消費による電源電圧VCIの低下を補償する。
またテストモードにおいては、比較器2330の応答速度を意図的に遅らせる動作マージンテストを行なう場合には、この動作モード指定信号φMは論理ローレベルとされる。一方、テストモードにおいて、通常動作時における選択メモリセルのビット数よりも、より多くのメモリセルを選択状態として、複数のメモリセルデータを同時に良/不良を判定する構成の場合、この動作モード指定信号φMを論理ハイレベルとして、比較器2330の応答速度を速くし、その内部電源線5上の電流消費による電源電圧VCIの電圧低下を補償する。
図92(C)に示す動作モード指定信号発生回路は、電圧源ノード1と信号線2456の間に接続される高抵抗抵抗素子2455を含む。信号線2456はパッド2457に接続される。パッド2457とフレーム2458とを選択的にボンディングワイヤ2459により接続することにより、この動作モード指定信号φMの論理レベルを固定的に設定する。図92(A)に示すリンク素子2450によるプログラムと同様の目的および効果が達成される。この図92(C)に示す構成の場合、さらに、入出力データビット数が装置に応じて異なる場合、その入出力データビット数に併せてボンディングワイヤ2459により、動作モード指定信号φMの論理レベルを設定し、比較器2330の応答速度を固定的に設定することができる。同一の回路構成で、複数種類の入力データビット数の半導体記憶装置に対応することができる。
[変更例]
図93はこの発明の第20の実施例の内部電源電圧発生回路の変更例の要部の構成を示す図である。この図93においては、ドライブ素子2320(図91参照)のゲート電位を調整するための比較器2330のみが示される。この図93に示す比較器2330においては、比較器2330の動作電流を決定する電流源トランジスタとして、それぞれのゲートが電圧源ノード1に結合されるnチャネルMOSトランジスタ2460a〜2460cが設けられる。これらのMOSトランジスタ2460a〜2460cと直列に、リンク素子2462a,2462bおよび2462cが設けられる。リンク素子2462a〜2462cを選択的に溶断することにより、この比較器2330の動作電流を調整することができ、目的とする応答速度を比較器2330に対し与えることができる。
比較器2330の、他の構成、すなわちカレントミラー手段および差動段を構成する部分は、図91に示す構成と同じである。
[変更例2]
図94は、この発明の第20の実施例に従う内部電源電圧発生回路の他の変更例の要部の構成を示す図である。この図94に示す構成においては、比較器2330の電流減トランジスタ2460のゲートへ与えられる基準電圧CSTの電圧レベルが変更される。比較器2330の構成は、図91に示す比較器の構成と同じである。
基準電圧CSTを発生する基準電圧発生回路2470は、電圧源1に結合されて一定の電流を供給する定電流源2471と、定電流源2471と接地ノードの間に直接に接続される抵抗素子2472a〜2472cと、抵抗素子2472bおよび2472cと並列に接続されるリンク素子2474aおよび2474bを含む。定電流源2471と抵抗素子2472aの間のノードから信号線2473上に基準電圧CSTが出力される。リンク素子2474aおよび2474bがともに導通状態(非溶断状態)のとき、抵抗素子2472bおよび2472cがリンク素子2474aおよび2474bにより短絡され、信号線2473上の基準電圧CSTの電圧レベルは、定電流源2471が供給する電流と抵抗素子2472aの有する抵抗値とにより決定される。リンク素子2474aおよび2474bを選択的に溶断することにより、この信号線2473と接地ノードの間の接続される抵抗素子の数が増大し、応じてこの信号線2473上の基準電圧CSTの電圧レベルが上昇する。電流源トランジスタ2444は、この基準電圧CSTの電圧レベルが高い場合には、そのコンダクタンスが大きくされ、大きな動作電流を生じさせ、一方、基準電圧CSTの電圧レベルが小さい場合には、比較的小さな動作電流を生じさせる。MOSトランジスタは、一般に、その供給するドレイン電流は、ゲートの電位により決定されるためである。この図94に示すように、先の図91ないし図93に示す電流源トランジスタのゲート幅(チャネル幅)を等価的に変化させる構成と異なり、ゲート電位を調整しても、比較器2330の動作電流量を調整することができる。この場合においても、先の図91ないし図93に示す構成と同様の効果を得ることができる。
また、この図91および図93に示す電流源トランジスタの数および図94に示す基準電圧発生回路の抵抗素子の数は任意であり、必要に応じて適当な数が設けられればよい。
さらに、この図94に示す構成において、基準電圧発生回路2470が複数の電圧レベルの基準電圧CSTを発生し、動作モードに応じて複数の基準電圧のうち1つの基準電圧が選択されて電流源トランジスタ2444のゲートへ与えられる構成が用いられてもよい。
以上のように、この発明の第20の実施例の構成に従えば、動作モードまたは使用状況に応じて、このドライブ素子の電流供給量を調整する比較器の応答速度をその動作電流調整により変更するようにしたため、高速アクセスおよび低消費電流それぞれに対応した動作特性を備える内部電源電圧発生回路(比較器)を容易に実現することができる。
[実施例21]
図95はこの発明の第21の実施例である内部電源電圧発生回路の要部の構成を示す図である。図95においては、内部電源線5上の電源電圧VCIの電圧レベルを設定する基準電圧Vrefが、この半導体装置が動作する動作速度を決定する外部から周期的に与えられるクロック信号CLKの周波数に従って設定される。一般に、クロック同期型半導体装置(たとえばSDRAM)においては、外部から周期的にクロック信号が与えられ、このクロック信号に同期して、外部制御信号の取込みおよびデータの入出力が行なわれる。このクロック信号としてはシステムクロックが一般に用いられる。このクロック信号CLKの周波数としては、30MHz、50MHz、および100MHzまたはそれ以上の周波数が用いられる。内部回路である負荷回路7は、このクロック信号CLKに同期して動作する(内部制御信号の発生タイミングはクロック信号CLKにより決定される)。したがって、このクロック信号CLKの周波数により、高速動作および低速動作が決定される。このクロック信号CLKの周波数に従って内部電源電圧VCIの電圧レベルを調整することにより、この負荷回路7の動作速度に応じた電圧レベルに内部電源電圧VCIを設定することができる。
複数の互いに電圧レベルの異なる基準電圧Vrefa、Vrefb、Vrefc、およびVrefdを出力する基準電圧発生回路500から1つの基準電圧を選択するために、外部から周期的に与えられるクロック信号CLKの周波数を検出する周波数検出器510と、この周波数検出器510で検出された周波数情報に従って、対応の基準電圧を選択するための選択情報を発生する選択情報発生器520と、選択情報発生器520からの基準電圧選択情報に従って、基準電圧Vrefa〜Vrefdのうちの1つを選択して基準電圧Vrefとして出力する選択回路530が設けられる。基準電圧発生回路500は、電圧源ノード1から一定の電流を供給する定電流源501と、この定電流源501と接地ノードとの間に直列に接続される抵抗素子502a〜502dを含む。抵抗素子502a〜502dの各々の一方端から基準電圧Vrefa〜Vrefdが出力される。
周波数検出器510は、その構成については後に詳細に説明するが、クロック信号CLKの周波数を示す情報(パラメータ)を出力する。選択情報発生器520は、この周波数検出器510の出力する周波数情報が高い周波数を示す場合には、高い電圧レベルの基準電圧を選択する選択情報を発生する。選択回路530は、基準電圧Vrefa〜Vrefdそれぞれに対応して設けられる選択ゲート531a〜531dを含み、選択情報発生器520からの選択情報に従って1つの選択ゲートを導通状態として、複数の基準電圧Vrefa〜Vrefdのうちの1つを選択して基準電圧Vrefとして出力する。
この図95に示す構成にように、外部から周期的に与えられるこの半導体装置の動作速度を決定するクロック信号CLKの周波数に従って基準電圧Vrefの電圧レベルを調整することにより、動作速度に応じた電圧レベルに内部電源電圧VCIを設定することができ、高速動作時における内部電源電圧VCIが所定の電圧レベル以下に低下した場合、その基準電圧Vrefの電圧レベルが所定電圧レベルよりも高い場合には、高速で比較器2330が応答して電源電圧VCIを所定電圧レベルに復帰させることができる。次に選択回路の具体的構成について説明する。
図96は、図95に示す周波数検出器510および選択情報発生器520の具体的構成を示す図である。図96において、周波数検出器510は、PLLで構成される。すなわち、周波数検出器510は、クロック信号CLKと電圧制御発振器(VCO)514の出力信号との位相を比較する位相比較器511と、この位相比較器511からの位相誤差信号DおよびUをアナログ変換するD/Aコンバータとしてのチャージポンプ回路512と、チャージポンプ回路512の出力信号によりその充電電位が設定されるループフィルタ513と、ループフィルタ513から与えられる電圧に従ってその発振周波数が変化するVCO514を含む。
チャージポンプ回路512は、位相比較器511からの誤差信号Dをゲートに受けるpチャネルMOSトランジスタ512aと、位相比較器511からの位相誤差信号Uをゲートに受けるnチャネルMOSトランジスタ512bで構成される。ループフィルタ513は、ローパスフィルタとして機能し、一例として、抵抗RおよびキャパシタCを備える。チャージポンプ回路512の出力信号により、キャパシタCの充電電位が変化する。
VCO514は、奇数段の縦列接続されるインバータ515a〜515cと、インバータ515a〜515cに対しそれぞれ動作電流を供給するためのpチャネルMOSトランジスタ516a〜516cおよびnチャネルMOSトランジスタ517a〜517cと、nチャネルMOSトランジスタ517a〜517cの動作電流を決定するnチャネルMOSトランジスタ514bを含む。MOSトランジスタ514aおよびMOSトランジスタ514bは電源ノード(内部電源電圧を受けるノードであってもよく、また外部電源電圧を受けるノードであってもよい)と接地ノードとの間に直列に接続される。MOSトランジスタ514bは、ゲートとドレインとが相互接続され、MOSトランジスタ517a〜517cに対するカレントミラー回路のマスター段を構成する。MOSトランジスタ517a〜517cにおいては、MOSトランジスタ514bに流れる電流と同じ大きさの電流が流れる(MOSトランジスタ514bおよび517a〜517cが同じサイズを備えるとき)。
選択情報発生器520は、このループフィルタ513から与えられる充電電位をデジタル信号に変換するA/Dコンバータ520aで構成される。A/Dコンバータ520aのステップ(各デジタル値の間のアナログ値の大きさ)は選択回路(図95参照)で選択される基準電圧の数により適当に決定される。次に動作について簡単に説明する。
この周波数検出器510は、通常のPLLの構成である。位相比較器511は、クロック信号CLKの位相がVCO514からの出力信号の位相よりも早い場合には、信号DおよびUをともにハイレベルとし、クロック信号CLKの位相がVCO514の出力信号の位相よりも遅れている場合には、信号DおよびUをともにローレベルとする。クロック信号CLKの位相とVECO514の出力信号の位相が同じ場合には、位相比較器511は、信号Dをハイレベル、信号Uをローレベルとする。チャージポンプ回路512では、この信号DおよびUに従ってMOSトランジスタ512aおよび512bが選択的に導通/非導通状態とされる。このチャージポンプ回路512により、ループフィルタ513に含まれるキャパシタCの充電電位が決定される。チャージポンプ回路512におけるMOSトランジスタ512aおよび512bの導通/非導通は、クロック信号CLKとVCOの出力信号の位相差に対応している。したがって、このループフィルタ513に含まれるキャパシタCの充電電位は、クロック信号CLKとVCO514の出力信号の位相差に応じた電圧レベルである。VCO514は、奇数段のインバータ515a〜515cで構成されており、リングオシレータとして発振動作を行なう。
インバータ515a〜515cの動作速度は、MOSトランジスタ516a〜516cおよび517a〜517cを介して与えられる動作電流により決定される。動作電流が大きければインバータ515a〜515cが高速で動作し、その発振周波数が高くなる。一方、動作電流が小さくなれば、インバータ515a〜515cの動作速度が遅くなり、発振周波数が低下する。このMOSトランジスタ516a〜516cを流れる電流量は、ループフィルタ513に含まれるキャパシタCの充電電圧により決定される。キャパシタCの充電電圧が高ければ、MOSトランジスタ516a〜516cのゲート電位が高くなり動作電流が低下する。一方、このローパスフィルタ513のキャパシタCの充電電位が低くなれば、MOSトランジスタ516a〜516cのゲート電位が低下し、インバータ515a〜515cの動作電流が増加する。MOSトランジスタ514aを流れる電流はMOSトランジスタ514bを介して流れる。MOSトランジスタ514bは、MOSトランジスタ517a〜517cとカレントミラー回路を構成する。したがって、MOSトランジスタ514aおよび514bを流れる電流と同じ大きさの電流がMOSトランジスタ516a〜516cおよびMOSトランジスタ517a〜517cを介して流れる。この位相比較器511における位相比較動作に従ってループフィルタ513に含まれるキャパシタCの電圧レベルが最終的に安定化し、VCO514の出力信号がクロック信号CLKと位相同期した状態に至る。
クロック信号CLKの周波数が高い場合には、VCO514が高速で発振動作を行なうため、ローパスフィルタ513に含まれるキャパシタCの充電電位は低くなる。一方、クロック信号CLKの周波数が低い場合には、VCO514の発振周波数が応じて低くなるため、ローパスフィルタフィルタ513のキャパシタCの充電電位が高くなる。このループフィルタ513のキャパシタCの充電電位をA/Dコンバータ520aで選択情報に変換する。このA/Dコンバータ520aからの選択情報に従って、図95に示す基準電圧発生回路500から出力される基準電圧Vrefa〜Vrefdを選択する。これにより、クロック信号CLKの周波数、すなわち半導体装置の動作速度に応じた基準電圧を選択することができる。
なお、図96に示す周波数検出器510に含まれるチャージポンプ回路およびループフィルタ513の構成は単なる一例であり、他の回路構成が用いられてもよい。クロック信号CLKの周波数に対応する電圧が与えられればよい。
[変更例]
図97は図95に示す選択情報発生器の他の構成を示す図である。図97に示す構成においては、選択情報発生回路520は、図96に示すVCO514における動作電流をモニタして選択情報を発生する。
すなわち、選択情報発生器520は、VCO514に含まれるMOSトランジスタ514aのゲート電位(図96に示すループフィルタ513のキャパシタCの充電電位)をゲートに受けるpチャネルMOSトランジスタ521aと、MOSトランジスタ521aを電流源として動作するダイオード接続されたnチャネルMOSトランジスタ521bと、基準電圧Vrefa〜Vrefdそれぞれに対応して設けられる電流源522a〜522dと、電流源522a〜522dそれぞれに対応して設けられるnチャネルMOSトランジスタ523a〜423dを含む。MOSトランジスタ523a〜523dは、各ゲートがMOSトランジスタ521bのゲートに接続され、カレントミラー回路のスレーブ段を構成する。電流源522a〜522dは、それぞれ互いに異なる大きさの電流ia〜idを供給する。次に動作について説明する。
今、電流源522a〜522dが供給する定電流ia〜idが、以下の条件を満足すると仮定する。
ia>ib>ic>id
MOSトランジスタ521aには、VCO514におけるリングオシレータの動作電流に対応する電流が流れる。MOSトランジスタ521bにおいても、このMOSトランジスタ521aから供給される電流Iが流れる。MOSトランジスタ521bは、カレントミラー回路のマスター段を構成しており、カレントミラー回路のスレーブ段を構成するMOSトランジスタ523a〜523dには、この電流Iと同じ大きさの電流が流れる(MOSトランジスタ521bおよびMOSトランジスタ523a〜523dは同じサイズとする)。今、この電流Iが、定電流ia〜idのすべてよりも大きい場合、MOSトランジスタ523a〜523dは、対応の電流源522a〜522dから供給される電流よりも大きな電流を放電する。したがって、このMOSトランジスタ523a〜523dの出力ノード(ドレイン端)の電位はローレベルとなる。一方、電流Iが、一定電流ia〜idすべてよりも小さい場合には、MOSトランジスタ523a〜523dは、対応の定電流源522a〜522dから供給される定電流ia〜idをそれぞれ接地ノードへ放電することができない。したがって、この場合には、MOSトランジスタ523a〜523dのドレイン端子の電位はハイレベルとなる。すなわち、MOSトランジスタ523a〜523dのドレイン端子の電位レベルは、MOSトランジスタ521bを流れる電流Iと対応の定電流源522a〜522dから与えられる定電流ia〜idの大きさにより決定される。これにより、その選択情報発生回路520からは、電流Iに従って基準電圧を選択する情報を出力することができる。
なお、この図97に示す選択情報発生回路520の構成において、出力段に、さらに増幅回路が設けられていてもよい。電流Iと定電流ia〜idの差が小さい場合、微小な電位差を増幅して正確に基準電圧選択情報を出力することができる。
[変更例]
図98は、この発明の第21の実施例による内部電源電圧発生回路の変更例の構成を示す図である。この図98に示す内部電源電圧発生回路の構成において、先の図95に示す構成と同様、外部から動作速度を示すクロック信号CLKが与えられ、このクロック信号CLKの周波数に従って基準電圧Vrefの電圧レベルを調整する。周波数情報を検出するための構成としては、先の図96に示す構成と同様の構成が用いられる。
すなわち、図98において、周波数情報を検出する周波数情報検出手段としてのVCO514と、このVCO514に含まれるMOSトランジスタ514bを流れる電流量を検出することにより、基準電圧レベル調整情報を出力する基準電圧レベル調整回路550と、基準電圧レベル調整回路550からの供給電流に従ってその電圧レベルが設定される基準電圧Vrefを発生する基準電圧発生回路540を含む。この基準電圧発生回路540からの基準電圧Vrefが、内部電源電圧VCIと基準電圧Vrefとを比較する比較器2330へ与えられる。比較器2330の出力信号は図示しないドライブ素子のゲートへ与えられる。
基準電圧発生回路540は、電圧源ノード1に結合され、一定の電流を供給する定電流源541と定電流源541に直列に接続される抵抗素子542を含む。 レベル調整回路550は、VCO540に含まれるMOSトランジスタ514bのゲートおよびドレインの電位をゲートに受けるnチャネルMOSトランジスタ553と、nチャネルMOSトランジスタ553と直列に電源ノード(外部電源ノードまたは内部電源ノードいずれであってもよい)の間に直列に接続されるpチャネルMOSトランジスタ551と、pチャネルMOSトランジスタ551とカレントミラー回路を構成するpチャネルMOSトランジスタ552を含む。MOSトランジスタ551のゲートおよびドレインが相互接続される。このMOSトランジスタ552の出力ノード(ドレイン端子)が基準電圧発生回路540に含まれる抵抗素子542の一方端に接続される。次に動作について説明する。 クロック信号CLKの周波数が大きい場合、周波数情報検出器510に含まれるVCO514におけるMOSトランジスタ514bを流れる電流が大きくなり、応じてレベル調整回路550に含まれるMOSトランジスタ553を介して流れる電流が大きくなる。MOSトランジスタ553を介して流れる電流は、MOSトランジスタ551から供給される。このMOSトランジスタ551を介して流れる電流は、MOSトランジスタ552により鏡映され、このレベル調整回路550から、VCO514とMOSトランジスタ514bを流れる電流に対応する大きさの電流が基準電圧発生回路540の抵抗素子542へ与えられる。基準電圧Vrefの電圧レベルは、定電流源541から与えられる電流とこのレベル調整回路550から与えられる電流の合成電流値と抵抗素子542における抵抗値とによって決定される。したがって、この場合には、抵抗素子542を介して流れる電流値が大きくなり、基準電圧Vrefの電圧レベルが増加する。一方、クロック信号CLKが低周波数の場合、MOSトランジスタ514bを介して流れる電流は小さくされ、応じてレベル調整器550から抵抗素子542へ供給される電流量が低下する。これにより、基準電圧Vrefの電圧レベルが低くなる。すなわち、クロック信号CLKが高周波数であり、半導体装置が高速動作する場合には、基準電圧Vrefの電圧レベルが高くされ、一方クロック信号CLKの周波数が低く、半導体装置が低速動作する場合には、基準電圧Vrefの電圧レベルが低くされる。これにより、半導体装置(半導体記憶装置)の動作速度に応じて基準電圧Vrefの電圧レベルを設定することができる。すなわち、高速動作時においては、内部電源線上の電源電圧VCIの電圧レベルが高くされ、半導体装置の高速動作が可能となる。
以上のように、この発明の第21の実施例の構成に従えば、半導体装置の動作速度を規定するクロック信号の周波数を検出し、その検出したクロック信号の周波数に応じて内部電源電圧の電圧レベルを決定する基準電圧Vrefの電圧レベルを設定しているため、半導体装置の動作速度に応じて適切な電圧レベルに内部電源電圧VCIを設定することができ、安定に動作する半導体装置(半導体記憶装置)を実現することができる。基準電圧Vrefを高くした場合に高速動作が安定に実現されるのは先の実施例の場合と同様の理由による。
[実施例22]
図99は、この発明の第22の実施例である半導体装置の要部の構成を示す図である。図99に示す構成においては、一旦、電源電圧よりも高い電圧VPP′を生成し、この電圧VPP′から必要とされる高電圧VPPを生成する。
すなわち、図99において、半導体装置は、高圧線600上に必要とされる電圧レベルの高電圧VPP′を発生する昇圧電圧発生回路610および615と、第2の高圧線602上の高電圧VPPと基準電圧Vrefhとを比較する比較器604と、比較器604の出力信号に従って第1の高圧線600から第2の高圧線602へ流れる電流量を調整するpチャネルMOSトランジスタで構成されるドライブ素子605と、動作タイミング信号ENに応答して活性化され、活性化時第2の高電圧線602上の高電圧VPPと基準電圧Vrefhとを比較する比較器606と、比較器606の出力信号に従って第1の高電圧線600から第2の高電圧線602へ流れる電流量を調整するpチャネルMOSトランジスタで構成される第2のドライブ素子607と、第1の高電圧線600上の電圧レベルを検出し、その検出結果に従って昇圧電圧発生回路610の昇圧電圧発生を選択的に停止または弱くさせるレベル検出器620を含む。昇圧電圧発生器615は、比較器606の出力信号に従ってその発振周波数が変化するリングオシレータ616と、リングオシレータ616からのクロック信号に従ってチャージポンプ動作を行なって高電圧VPP′を発生するチャージポンプ618を含む。次に動作について、この図99に示す半導体装置の動作波形図である図100を用いて説明する。
基準電圧Vrefhは内部電源電圧VCIよりも高い電圧レベルであり、定電流源と抵抗素子を高電圧VPP′供給ノード(第1の高電圧線600)と接地ノードとの間に接続することにより生成することができる。この基準電圧Vrefhは、第2の高電圧VPPの電圧レベルを設定する。動作タイミング信号ENが非活性状態のとき、第2の高電圧線602上の電圧VPPを使用する負荷回路(図示せず)はスタンバイ状態にあり、この第2の高電圧線602上の電圧VPPは利用されず、ほぼ基準電圧Vrefhの電圧レベルを維持する。このスタンバイサイクル時においては、比較器604およびドライブ素子605により、この高電圧VPPの電圧レベルの調整動作が実行される。昇圧電圧発生回路610はレベル検出器620の制御の下に昇圧動作を実行しており、この第1の高電圧線600上の高電圧VPP′を所定の電圧レベルに維持する。昇圧電圧発生回路615では、比較器606が非動作状態であり、リングオシレータ616の動作電流が極めて少なくされ、ほぼ発振動作を停止しているかまたは極めて低速で動作している。チャージポンプ618、このリングオシレータ616からの出力信号に従ってチャージポンプ動作を行なうために、この状態においてはほとんどチャージポンプ動作は行なっていない。
動作タイミング信号ENが活性状態とされると、所定のタイミングで図示しない負荷回路が動作し、第2の高電圧線602から電流がこの動作する負荷回路により消費され、高電圧VPPの電圧レベルが低下する。この低下時においては、比較回路606の出力信号のレベルが低下し、ドライブ素子607を介して比較的大きな駆動力を持って第1の高電圧線600から第2の高電圧線602へ電流が供給され、この第2の高電圧VPPの電位低下が補償される。第2の高電圧線602への電流供給により、第1の高電圧線600上の高電圧VPP′の電圧レベルが低下したとき、レベル検出器620の出力信号に従って昇圧電圧発生回路610が昇圧動作を行ない、高速でこの第1の高電圧線600上の高電圧VPP′を所定の電圧レベルに復帰させる。また比較器606の出力信号に従って、昇圧電圧発生回路615に含まれるリングオシレータ616の発振周波数が大きくされ、チャージポンプ618により、またこの第1の高電圧線600へ電荷が供給され、第1の高電圧VPP′が所定電圧レベルに高速で復帰する。第2の高電圧線602上の高電圧VPPを使用する回路は安定に高電圧VPPを供給されて動作する。常時動作する比較器604と動作タイミング信号ENの活性化時のみ動作する比較器606とを設け、これらによりドライブ素子605および607を駆動する構成とすることにより、第2の高電圧線602上の高電圧VPPの電圧レベルが低下するとき、大きな電流駆動力を有するドライブ素子607を用いて第1の高電圧線600から第2の高電圧線602へ電流を供給することにより、先の実施例における内部電源電圧VCIの電圧レベルと同様、安定な電圧レベルを維持する高電圧VPPを供給することができる。またレベル検出器620および昇圧電圧発生回路615により、この第1の高電圧線600から第2の高電圧線602へ電流が流れ、高電圧VPP′が低下する場合においても、高電圧VPP′が急激に変化するのは、動作タイミング信号ENの活性化時であり、2つの昇圧電圧発生回路610および615により、高速で第1の高電圧線600上の高電圧VPP′を所定電圧レベルに復帰させることができる。
図101は、図99に示す昇圧電圧発生回路610およびレベル検出回路620の構成の一例を示す図である。図101においてレベル検出回路620は、第1の高電圧線600とノード623の間に直列に接続されるpチャネルMOSトランジスタ620a,620bおよび621と、ノード623と接地ノードの間に接続される抵抗素子622と、ノード623上の電位を増幅する2段の縦続接続されたインバータ623aおよび623bを含む。
pチャネルMOSトランジスタ620aおよび620bは、ダイオード接続されており、導通時にはしきい値電圧の絶対値Vthpの電圧降下を生じささせる。pチャネルMOSトランジスタ621は、そのゲートに内部電源電圧VCIを受ける。
昇圧電圧発生回路610は、2段のインバータ611aおよび611bと、インバータ611bの出力信号とレベル検出回路620内のインバータ623bの出力信号を受ける2入力NORゲート612と、このNORゲート612の出力信号に従ってチャージポンプ動作を行なうチャージポンプ614を含む。チャージポンプ614は、周知の回路で構成され、キャパシタのチャージポンプ動作により、高電圧VPP′を発生する。チャージポンプ614は、効率的に高電圧VPP′を発生するように、外部電源電圧を好ましく利用する。次に動作について説明する。
レベル検出器620において、pチャネルMOSトランジスタ621は、そのゲート電位がソース電位よりもしきい値電圧の絶対値Vthpよりも低くなったときに導通する。一方、MOSトランジスタ620aおよび620bは、導通時においては、しきい値電圧の絶対値Vthpの電圧降下を生じさせる。したがって、高電圧線600上の電源電圧VPP′が、VCI+3・Vthp以上のときには、MOSトランジスタ620a,620bおよび621が導通し、抵抗素子622に電流が流れ、ノード623上の電位がハイレベルとされ、インバータ623aおよび623bにより、ハイレベルの信号φLが出力される。したがって、昇圧電圧発生回路610においては、NORゲート612の出力信号がローレベルに固定され、チャージポンプ814はチャージポンプ動作が禁止される。
[昇圧電圧発生回路610の変更例]
図102は、昇圧電圧発生回路610の第1の変更例の構成を示す図である。図102において、昇圧電圧発生回路102は、クロック信号を発生するリングオシレータ630と、レベル検出信号φLVに応答してリングオシレータ630の出力信号を通過させるトランスファーゲート631aと、トランスファーゲート631aから伝達されたクロック信号を波形整形して出力するインバータドライバ632aと、インバータドライバ632aの出力信号に従ってチャージポンプ動作を行なうチャージポンプキャパシタ633aと、レベル検出信号φLVに応答して、チャージポンプキャパシタ633aにより供給された電荷を伝達するためのトランスファゲート634aと、ノード637を、電圧源1に与えられる電圧レベル(しきい値電圧レベルの低い電圧レベル)にクランプするダイオード接続されたnチャネルMOSトランジスタ635と、ノード637に与えられた電荷を出力ノード638へ伝達するためのダイオード接続されたnチャネルMOSトランジスタで構成される出力ゲート636を含む。MOSトランジスタ635および636は、その基板領域が接地電圧レベルに固定される。ノード637の電位が高くなったとき、基板領域と不純物領域との間に形成されるPN接合が順バイアス状態とされるのを防止する。
昇圧電圧発生回路610は、さらに、レベル検出信号φLVの相補な信号であるレベル検出信号φZLVに応答してリングオシレータ630からのクロック信号を伝達するnチャネルMOSトランジスタで構成されるトランスファゲート631bと、トランスファゲート631bから与えられたクロック信号を波形整形するインバータドライバ632bと、インバータドライバ632bから与えられる信号に従ってチャージポンプ動作を行なうチャージポンプキャパシタ633bと、レベル検出信号φZLVに応答してチャージポンプキャパシタ633bから与えられた電荷をノード637へ伝達するnチャネルMOSトランジスタで構成されるトランスファゲート634bを含む。ドライバ632aおよびチャージポンプキャパシタ633aの有する電荷駆動力は、インバータドライバ632bおよびキャパシタ633bが有する電荷駆動力よりも大きくされる。チャージポンプ動作において、クロック信号の1回の変化によりノード637へ与えられる電荷量は、チャージポンプキャパシタの容量、クロック信号の幅およびその電圧高さにより決定される。これらのパラメータを適当に定めてそれぞれの電荷供給力の大きさに違いがつけられる。
レベル検出信号φLVおよびφZLVは、図102に示すレベル変換回路から出力される。ノード637の電位が高電圧VPP′レベルとなるためである。すなわち、図102に示すように、信号φLVおよびφZLVは、図101に示すレベル検出回路からのレベル検出信号φLのレベルをノード638と接地ノードの間に接続されるレベル変換回路により生成する。このレベル変換回路は、レベル検出信号φLをゲートに受けるnチャネルMOSトランジスタ639aと、レベル検出信号φLを反転するインバータ639bと、インバータ639bの出力信号をゲートに受けるnチャネルMOSトランジスタ639cと、ノード638とMOSトランジスタ639aの間に直列に接続されるpチャネルMOSトランジスタ639dと、ノード638とMOSトランジスタ639cの間に直列に接続されるpチャネルMOSトランジスタ639eを含む。ノード639fからレベル検出信号φLVが出力されてノード639eからレベル検出信号φZLVが出力される。
このレベル変換回路においては、レベル検出信号φLがハイレベルのとき、MOSトランジスタ639aが導通状態、MOSトランジスタ639cが非導通状態とされ、ノード639fがMOSトランジスタ639eによりノード638の電圧レベルまで充電され、ハイレベルとされる。一方、ノード639eは、MOSトランジスタ639aにより放電されてローレベルとされる。これによりレベル変換されたレベル検出信号φLVおよびφZLVが出力される。昇圧電圧レベルに変換して昇圧電圧発生回路の切換の信号を生成することにより、MOSトランジスタにおけるしきい値電圧損失を補償し、効率的に電荷を伝達することができる。
レベル検出信号φLがハイレベルにあり、高電圧VPP′が所定の電圧レベルよりも低い場合には、トランスファゲート631aおよび634aが導通し、トランスファゲート631bおよび634bがともに非導通状態とされる。この状態においては、駆動力の大きなインバータドライバ632aおよび/または容量の大きなチャージポンプキャパシタ633aによりチャージポンプ動作が行なわれ、電荷注入が効率的に行なわれ、ノード638の高電圧VPP′が高速で所定電圧レベルにまで復帰される。
ノード638上の電圧VPP′が所定の電圧レベル以上のときには、レベル検知信号φLがローレベルとなり、応じてトランスファゲート631aおよび634aが非導通状態、トランスファゲート631bおよび634bが導通状態とされる。この状態において、インバータドライバ632bおよびチャージポンプキャパシタ633bで構成される比較的小さな電荷駆動力を有する回路部分が動作し、ノード637に対するチャージポンプ動作が行なわれる。この状態においては、単に出力ノード638から出力される高電圧VPP′の電圧レベルを維持することが行なわれるだけである。
上述のように、高電圧VPP′の電圧レベルに応じて昇圧電圧発生回路の電荷供給力を切換えることにより、低消費電流でかつ安定に高電圧VPP′を供給することができる。インバータドライバ632bの駆動力が小さく、その消費電流が小さくされるために低消費電流特性が実現される。
なお、図102に示すリングオシレータ630は、奇数段のインバータで構成される。
[昇圧電圧発生回路の変更例2]
図103は、図99に示す昇圧電圧発生回路610の他の変更例を示す図である。この図103に示す構成においては、リングオシレータ630からのクロック信号を波形整形するインバータドライバ632と、インバータドライバ632の出力信号に従ってチャージポンプ動作を行なうチャージポンプキャパシタ633aと、チャージポンプ動作により与えられたノード637の電荷を出力ノード638へ伝達する出力トランジスタ626が設けられる。図103においては、ノード637を所定電位にクランプするためのクランプトランジスタ(図102のトランジスタ635)は図面を簡略化するために示していない。この図103に示す構成においては、さらに、レベル検出信号φLVに応答して導通するトランスファゲート641aおよび641bにより、チャージポンプキャパシタ633aと並列にチャージポンプキャパシタ633bが接続される。すなわち、高電圧VPP′が所定電圧レベルよりも低いとき、レベル検出信号φLVがハイレベルとなり、トランスファゲート641aおよび641bが導通し、チャージポンプキャパシタ633aと並列にチャージポンプキャパシタ633bが接続される。ノード637へ電荷を供給するチャージポンプキャパシタの容量が大きくなり、ノード637に蓄積される電荷量が増加する。Q=C・Vであり、インバータドライバ632が与える電圧変化量Vが一定であっても、チャージポンプキャパシタの容量値Cが増加するため、ノード637に蓄積される電荷量Qが増加するためである。これにより、出力トランジスタ636を介して多くの電荷が出力ノード638へ伝達され、高速で高電圧VPP′を所定電圧レベルへ復帰させることができる。
なお、図107に示す構成において、チャージポンプキャパシタ633aおよび633bの容量値が互いに異なり、レベル検出信号φLVに従って、一方のチャージポンプキャパシタのみを用いてチャージポンプ動作が行なわれるように構成されてもよい。
[昇圧電圧発生回路610の変更例3]
図104は、図99に示す昇圧電圧発生回路610のさらに他の構成を示す図である。図104に示す構成においては、チャージポンプ動作を駆動するためのインバータドライバとして、インバータドライバ632aおよび632bが用いられる。インバータドライバ632aは、その入力部がトランスファゲート642aを介してリングオシレータ630の出力部(インバータドライバ632aの入力部)に接続され、かつその出力部がトランスファゲート642bを介してインバータドライバ632aの出力部に接続される。トランスファゲート642aおよび642bは、nチャネルMOSトランジスタで構成され、レベル検出信号φLVに応答して導通する。この図104に示す構成においても、ノード637を所定電圧レベルにプリチャージするためのダイオード接続されたトランジスタは図面を簡略化するために示していない。
この図104に示す構成においては、高電圧VPP′が所定電圧レベルよりも低いときに、レベル検出信号φLVがハイレベルとなり、トランスファゲート642aおよび642bが導通する。リングオシレータ630からのクロック信号が2つのインバータドライバ632aおよび632bへ与えられ、その出力信号がチャージポンプキャパシタ633の一方電極へ与えられる。このため、チャージポンプキャパシタ633の一方電極へは、2つのインバータドライバ632aおよび632bから電荷が供給されるため、応じてチャージポンプ動作によりその2つのドライバ632aおよび632bから与えられた電荷に対応する電荷量がノード637へ伝達される。したがって、この場合においても、ノード637へ与えられる電荷量が大きくなり、出力トランジスタ636を介して出力ノード638へ伝達される電荷量が応じて大きくなり、高速で高電圧VPP′を所定電圧レベルへ復帰させることができる。レベル検出信号φLVがローレベルとなり、高電圧VPP′が所定電圧レベル以上のときには、トランスファゲート642aおよび642bがともに非導通状態とされ、リングオシレータ630の出力信号(クロック信号)はインバータドライバ632aのみへ与えられる。したがってこの場合においては、インバータドライバ632aおよびチャージポンプキャパシタ633のみに従ってチャージポンプ動作が行なわれ、高電圧VPP′の電圧レベルの保持動作が行なわれる。
なおこの図104に示す構成においても、インバータドライバ632aおよび632bの駆動力が互いに異なるとき、レベル検出信号φLVの論理レベルに従って一方のインバータドライバのみが動作する構成が用いられてもよい。
この図104に示す構成においては、高電圧VPP′が所定電圧レベル以上のときには、1つのインバータドライバのみが動作し、応じて消費電流を低減することができる。また高電圧VPP′が所定電圧レベルよりも低くなった場合には、2つのインバータドライバが動作しており、高速で高電圧VPP′を所定電圧レベルで復帰させることができる。
[昇圧電圧発生回路の変更例4]
図105は、図99に示す昇圧電圧発生回路610のさらに他の構成を示す図である。図105に示す構成においては、リングオシレータ630からのクロック信号を波形整形するインバータドライバ632と、このインバータドライバ632の出力信号に従ってチャージポンプ動作を行なうチャージポンプキャパシタ633により行なわれる。ノード637と出力ノード638の間に、2つの出力トランジスタ636aおよび636bが配置される。出力トランジスタ636bは、レベル検出信号に従って導通するトランスファゲート643aおよび643bによりノード637および出力ノード638の間に接続される。
トランスファゲート643aおよび643bのゲートへは、レベル変換回路によりレベル変換されたレベル検出信号φLVが与えられる。このレベル変換回路は、レベル検出信号φLVをゲートに受けるnチャネルMOSトランジスタ644aと、レベル検出信号φLVの反転信号φZLをゲートに受けるnチャネルMOSトランジスタ644bと、ノード637とノード644eの間に接続され、かつそのゲートがノード644fに接続されるpチャネルMOSトランジスタ644cと、ノード637とノード644fの間に接続され、そのゲートがノード644eに接続されるpチャネルMOSトランジスタ644dを含む。ノード644fからトランスファゲート643aおよび643bのゲートへ与える信号が出力される。なお、この図105に示す構成においても、ノード637を所定電圧レベルにクランプするためのダイオード接続されたトランジスタ(図102のトランジスタ635)は図面を簡略化するために示していない。
ノード638から出力される高電圧VPP′が所定電圧レベル以上のとき、レベル検出信号φLはローレベル、レベル検出信号φZLがハイレベルである。この状態においては、ノード644fは接地電圧レベルのローレベルとなり、トランスファゲート643aおよび643bはともにオフ状態とされる。したがって、この状態においては、リングオシレータ630、インバータドライバ632およびチャージポンプキャパシタ633によりノード637へ伝達された電荷は、出力トランジスタ636aのみを介して出力ノード638へ伝達される。したがってこの状態においては、比較的緩やかに電荷供給動作が行なわれ、高電圧VPP′の電圧レベルの維持のみが行なわれる。
出力ノード638からの高電圧VPP′が所定電圧レベルよりも低くなったときには、レベル検出信号φLがハイレベル、レベル検出信号φZLがローレベルとなる。この状態においては、レベル変換回路においてノード644eの電圧レベルが接地電圧レベルのローレベルとなり、MOSトランジスタ644dが導通しノード644fの電位はノード637の電位レベルとされる。ノード637の電位レベルは、チャージポンプキャパシタ633のチャージポンプ動作によりその電圧レベルが変化する。したがって、このトランスファゲート643aおよび643bへ与えられるゲート電圧が、このノード637上の電位レベルに応じて変化する。チャージポンプキャパシタ633によりチャージポンプ動作が行なわれてノード637の電位が上昇したとき、ノード637の電位レベルは出力ノード638の電位レベルよりも高い(出力トランジスタ636aのしきい値電圧分ノート637の電位が高い)、トランスファゲート643aおよび643bがオン状態とされ、ノード637および出力ノード638の間に出力トランジスタ636bが接続される。これにより、ノード637に蓄積された電荷は出力トランジスタ636aおよび636bを介して出力ノード638へ伝達されることになり、ノード637から出力ノード638へ高速でかつ効率的に電荷が伝達され、高電圧VPP′の電圧レベルが高速で変化する。
インバータドライバ632の出力信号がローレベルとされ、ノード637の電位が低下するとき、出力トランジスタ636aが逆バイアス状態とされ、非導通状態となる。このとき、またトランスファゲート643bが、そのゲート電位が仮にトランスファゲート643aおよび643bが導通状態にあっても、出力トランジスタ636bが逆バイアス状態とされて、この出力トランジスタ636bが非導通状態とされる。またこのとき、トランスファゲート643bは、そのゲート電位がドレイン(出力ノード638の電位)よりも低くなり、抵抗素子として作用し、この出力ノード638から出力トランジスタ636bへ電荷が流れるのを抑制する。
以上のように、図105に示す構成のように、高電圧VPP′が所定電圧レベルよりも低い場合には、1つの出力トランジスタにより、内部ノード637から出力ノード638へ電荷を供給することにより、出力ノード638へ伝達される電荷量の伝達速度が速くなり、出力ノード638への電荷注入効率が大きくされ、高速で高電圧VPP′を所定電圧レベルへ供給させることができる。
[昇圧電圧発生回路615の構成]
図106は、図99に示す昇圧電圧発生回路615の具体的構成を示す図である。この図106においては、リングオシレータ616の部分の構成を示し、チャージポンプ618の具体的構成は示していない。このチャージポンプ618の構成は、先の図102ないし図105に示したチャージポンプと同様で、インバータドライバおよびチャージポンプキャパシタ、および出力用のダイオード接続されたトランジスタおよびクランプ用のダイオード接続されたトランジスタを備える。ここでは、チャージポンプ618の電荷供給能力は、固定的に設定されると想定する。
図106において、リングオシレータ616は、電圧源ノード1に結合され、比較器606の出力信号に従って電流を供給するpチャネルMOSトランジスタ610aと、pチャネルMOSトランジスタ610aと接地ノードとの間に接続されるダイオード接続されたnチャネルMOSトランジスタ610bと、電圧源ノード1に結合され、それぞれが比較器606の出力信号をゲートに受けるpチャネルMOSトランジスタ651a〜651eと、pチャネルMOSトランジスタ651a〜651eそれぞれから動作電流を供給される奇数段のインバータ652a〜652eと、インバータ652a〜652eそれぞれに対応して設けられ、対応のインバータ652a〜652eの接地ノードへの放電電流を供給するnチャネルMOSトランジスタ653a〜653eを含む。MOSトランジスタ653a〜653eのゲートは、MOSトランジスタ610bのゲートに接続される。すなわち、MOSトランジスタ610bおよび653a〜653eは、MOSトランジスタ650bをマスタ段とするカレントミラー回路を構成する。このインバータ652eから、チャージポンプ618へ与えられるクロック信号が出力される。次に動作について説明する。
pチャネルMOSトランジスタ610aは、比較器606の出力信号の電圧レベルに応じた電流をMOSトランジスタ610bへ供給する。同様に、MOSトランジスタ651a〜651eも、この比較器606の出力信号に応じた電流を電圧源1から対応のインバータ652a〜652eへ供給する。MOSトランジスタ653a〜653eは、MOSトランジスタ610bを流れる電流と同じ大きさの電流の流れを生じさせる(これらのMOSトランジスタ650bおよび653a〜653bのサイズが同じとき)。また、MOSトランジスタ650aおよび651a〜651eもそのサイズが同じであるとする。
比較器606の出力信号がハイレベルのとき、pチャネルMOSトランジスタ610aおよび651a〜651eを流れる電流量は小さいかまたはほとんど生じない。同様に、MOSトランジスタ610bは、MOSトランジスタ610aから電流を供給され、このMOSトランジスタ610aを流れる電流と同じ大きさの電流の流れを生じさせる。したがって、MOSトランジスタ653a〜653eにおいても、MOSトランジスタ651a〜651eと同じ大きさの電流が流れる。したがって、この状態においては、インバータ652a〜652eは、その動作電流が極めて小さいかまたはほとんどなく、きわめて低速で動作し、このインバータ652eから出力されるクロック信号周波数はきわめて小さいか、またはほとんど発振動作が行なわれない。この状態においては、チャージポンプ618は、ほとんどチャージポンプ動作を行なわないか、またはきわめて緩やかなチャージポンプ動作を行なっている。この比較器606の出力信号がハイレベルのときは、高電圧VPPの電圧レベルが高い状態にあり、ドライブ素子を介して高圧線600から別の高圧線602へ電流を供給する必要のないときである。したがってこの状態においては、リングオシレータ616の発振周波数をきわめて低くし、昇圧電圧発生動作を停止させるかまたはきわめて緩やかに動作させる。この状態は、また比較器606が動作タイミング信号ENが非活性状態において非活性化時においては、比較器606の出力信号はほぼ電圧源レベルのハイレベルにあり、MOSトランジスタ610aおよび651a〜651bはほぼオフ状態にあり、リングオシレータ616の発振動作は停止される(動作電流の供給が行なわれないため)。
動作タイミング信号ENが活性状態とされ、比較器606が活性状態となると、高電圧VPPはその負荷回路の動作により(急激に)変化する。この状態において、比較器606の出力信号のレベルが低下し、応じてMOSトランジスタ610aおよび651a〜651eを流れる電流量が増加し、応じてMOSトランジスタ610bおよび653a〜653eを流れる電流が増加する。インバータ652a〜652eの動作電流が増加し、インバータ652a〜652eの動作速度が増加する。これにより、インバータ652eから出力されるクロック信号の周波数が増加し、チャージポンプ618が高速でチャージポンプ動作を行ない、高速で電荷を生成して、第1の高電圧線600へ電荷を供給し、この高電圧VPP′の電位レベルを上昇させる。この一連の動作により、高電圧VPP低下時における高電圧VPP′の低下を抑制し、応じて高電圧VPPをドライブ素子607(図99参照)を介して所定電圧レベルに復帰させる。
また、リングオシレータ616およびチャージポンプ618の動作電圧源として、電圧源ノード1を用いることによって、内部電源電圧を用いる場合よりも、そのクロック信号の振幅を大きくすることができ、またチャージポンプにおける内部ノードのクランプ電位を高くすることができ、応じて効率的に高電圧VPP′を発生することができる。この昇圧電圧発生回路は、図99に示す昇圧電圧発生回路610に用いられてもよい。
[昇圧電圧発生回路の変更例1]
図107は、図99に示す昇圧電圧発生回路の他の構成を示す図である。図107に示す構成においては、第1の高電圧VPPおよび第2の高電圧VPP′のいずれの電圧レベルの変動が検出されてもよい。
図107において、昇圧電圧発生回路は、高電圧線660(第1または第2の高電圧線)の電圧レベルを検出するレベル検出器670と、このレベル検出器670の検出信号に応答して、その発振周波数が変化するリングオシレータ680を含む。リングオシレータ680の出力信号は図示しないチャージポンプへチャージポンプ動作駆動用のクロック信号として与えられる。
レベル検出器670は、一例として、3つの電圧レベル検出部672,674および676を含む。第1のレベル検出部672は、高電圧ノード660に直列に接続される、それぞれがダイオード接続されたnチャネルMOSトランジスタ672aおよび672bと、MOSトランジスタ672bと接地ノードとの間に接続される電流源672cと、電圧源ノード1に結合されて電流を供給する電流源672dと、電流源672dからの電流を受けかつそのゲートがMOSトランジスタ672bのゲートに接続されるnチャネルMOSトランジスタ672eと、MOSトランジスタ672eと接地ノードとの間に接続される電流源672fを含む。電流源672cおよび672fの電流供給量は、電流源672dの供給する電流よりも大きくされる。
第2のレベル検出部674は、高電圧ノード660に直列に接続される、それぞれがダイオード接続されたnチャネルMOSトランジスタ674a〜674cと、MOSトランジスタ674cと接地ノードの間に接続される電流源674dと、電圧源ノード1から電流を供給する電流源674eと、電流源674eから電流を供給されかつそのゲートがMOSトランジスタ674cのゲートに接続されるnチャネルMOSトランジスタ674fと、MOSトランジスタ674fと接地ノードとの間に接続される電流源674eを含む。電流源674eの電流供給量は、電流源674dおよび674fそれぞれの電流供給量よりも小さくされる。
第3のレベル検出器676は、高電圧ノード660に直列に接続されかつそれぞれがダイオード接続されたnチャネルMOSトランジスタ676a〜676dと、MOSトランジスタ676dと接地ノードとの間に接続される電流源676eと、電圧源ノード1に結合され、電圧源ノード1から電流を供給する電流源676fと、電流源676fから電流を供給されかつそのゲートがMOSトランジスタ676dのゲートに接続されるnチャネルMOSトランジスタ676gと、MOSトランジスタ676gと接地ノードとの間に接続される電流源676hを含む。電流源676fの供給電流量は、電流源676eおよび676hの電流供給量よりも小さくされる。レベル検出器670のレベル検出信号は、信号線673,674および675上に伝達される。
リングオシレータ680は、電圧源ノード1とノード682dの間に配置されるダイオード接続されたpチャネルMOSトランジスタ681aと、ノード682dに互いに並列に接続され、かつそれぞれのゲートが信号線673,674および675に接続されるnチャネルMOSトランジスタ682a,682bおよび682cと、MOSトランジスタ682a〜682cそれぞれと接地ノードとの間に直列に接続される電流源683a,683b,および683cを含む。
リングオシレータ680は、さらに、電圧源ノード1と接地ノードの間に直列に接合されるpチャネルMOSトランジスタ684aと、nチャネルMOSトランジスタ684bを含む。MOSトランジスタ684aは、そのゲートがMOSトランジスタ681aのゲートに接続される。MOSトランジスタ684bは、そのゲートおよびドレインが相互接続される。
リングオシレータ680は、さらに、奇数段の縦列接続されるインバータ685a,685b,685c,685dおよび685eと、電圧源ノード1に結合されかつそのゲートがMOSトランジスタ684aのゲートに接続され、それぞれ対応のインバータ685a〜685eへ充電電流を供給するpチャネルMOSトランジスタ686a〜686eと、インバータ685a〜685eそれぞれと接地ノードとの間に配置され、かつそのゲートがMOSトランジスタ684bのゲートに接続されるnチャネルMOSトランジスタ687a,687b,687c,687dおよび687eを含む。インバータ685a〜685eは、動作時においてリングオシレータを構成する。次に、動作について説明する。
第1のレベル検出器672は、高電圧ノード660の電圧レベルが第1の所定値(電流源672cの動作する電圧とMOSトランジスタ672aおよび672bのしきい値電圧の和)以上となったときに導通する。以下の説明において、説明を簡単にするため、電流源672c,674d,676eは、電圧VT以上の電圧が与えられたときに作動状態とされるとする。またMOSトランジスタのしきい値電圧はすべてVthであるとする。
第1のレベル検出器672では、高電圧ノード660の電圧レベルがVT+2・Vth以上のときに、MOSトランジスタ672aおよび672bが導通して、この経路に電流が流れる。応じてMOSトランジスタ672eが導通し、電流源672dから供給される電流を、電流源672fが駆動する電流量に従って放電する。電流源672fの放電電流量は、電流源672aが与える電流量よりも大きい。したがって、この場合には、信号線673上の電圧レベルはローレベルとなる。一方、高電圧ノード660の電圧がVT+2・Vthよりも小さい場合には、このMOSトランジスタ672aおよび672bは非導通状態とされ、これらのMOSトランジスタにおいては電流は流れない。応じて、MOSトランジスタ672eにおいても電流は流れない(MOSトランジスタ672eのゲート電位は、MOSトランジスタ672bのゲート電位と同じであり、電流が流れない場合、ローレベルである)。したがって、信号線673上の電位は電流源672dにより充電されてハイレベルとなる。
第2のレベル検出器674においては、高電圧ノード660の電圧レベルがVT+3・Vthのときに、信号線674の電位がローレベルとなり、高電圧ノード660の電位がVT+3・Vthよりも低い場合にはハイレベルとなる。
第3のレベル検出器676においては、高電圧ノード660の電圧レベルがVT+4・Vth以上のときに電流の流れが生じ、信号線675上の電位がローレベルとなり、高電圧ノード660の電位がVT+4・Vthよりも低い場合には、電流源676fにより充電されてハイレベルとなる。
リングオシレータ680においては、MOSトランジスタ682a〜682cが信号線673〜675上の電位に応じて選択的に導通状態とされる。すなわち、信号線673上の電位がすべてハイレベルのとき、すなわち高電圧ノード660の電圧がVT+2・Vthよりも低い場合には、MOSトランジスタ682a〜682cがすべて導通し、電流源683a〜683cによりMOSトランジスタ681aに大きな電流が流れる。一方、信号線673〜675上の電位がすべてローレベルのときには、すなわち高電圧ノード660上の電圧がVT+4・Vth以上のときには、MOSトランジスタ682a〜682cがすべて非導通状態とされ、MOSトランジスタ681aには電流は流れない。
上述のような構成により、高電圧ノード660の電圧レベルに応じてリングオシレータの発振周波数を調整することにより、高速でこの高電圧ノード660の電位レベルを所定電位レベルに復帰させることができる。また高電圧ノード660の電圧レベルが高くされて高速動作が要求されない場合には、その動作電流を少なくすることにより応じて消費電流も低減することができる。
[昇圧電圧発生回路の変更例2]
図108は、図99に示す昇圧電圧発生回路610または615の変更例の構成を示す図である。図108に示す構成においては、図107に示す構成と異なり、リングオシレータを構成するインバータの動作電流を与える駆動電流源690は、後に示すレベル検出器からのアナログ的に変化する制御信号により、その駆動電流量をアナログ的に変化させる。これにより、高電圧ノードの電圧レベルに応じてアナログ的にリング発振器の周波数を変化させる。
この図108において図107のリング発振器と対応する部分には同一参照番号を付し、その詳細説明は省略する。
図109は、図108に示すリングオシレータの動作電流を調整するための信号を出力するレベル検出器700の構成を示す図である。図109において、レベル検出器700は、高電圧ノード660の電圧レベルに応じてその電流値が変化する低下電流IBを供給する低下電流源702と、常時一定の電流を供給する一定電流源704と、低下電流源702および一定電流源704の出力信号を合成(引算)して図108に示す駆動電流源690の流れる電流量を調整する信号VTを出力する引算回路706を含む。
低下電流源702は、電圧源ノード1に接続されるカレントミラー回路を構成するpチャネルMOSトランジスタ702aおよび702bと、MOSトランジスタ702aから電流を供給されるnチャネルMOSトランジスタ702cと、MOSトランジスタ702bから電流を供給される、抵抗接続されたnチャネルMOSトランジスタ702dと、MOSトランジスタ702cと接地ノードとの間に接続され、そのゲートに高電圧ノード660上の信号を受けるnチャネルMOSトランジスタ702eを含む。MOSトランジスタ702dのゲートはMOSトランジスタ702cのゲートに接続される。MOSトランジスタ702cの電流供給力(βまたはチャネル幅)はMOSトランジスタ702dのそれよりも十分大きくされる。また、MOSトランジスタ702aはそのゲートとドレインとが相互接続される。
一定電流源704は、電圧源ノード1に結合される、カレントミラー回路を構成するpチャネルMOSトランジスタ704aおよびと704bと、MOSトランジスタ704aから電流を供給されるnチャネルMOSトランジス704dと、MOSトランジスタ704bと接地ノードとの間に接続される抵抗接続されたnチャネルMOSトランジスタ704cと、MOSトランジスタ704dと接地ノードとの間に接続される抵抗素子704eを含む。MOSトランジスタ704aのゲートとドレインは相互接続される。MOSトランジスタ704dの電流供給量は、MOSトランジスタ704cのそれよりも十分大きくされる。
引算回路706は、電圧源ノード1に結合され、そのゲートがMOSトランジスタ704aおよび704bのゲートに接続されるpチャネルMOSトランジスタ706aと、pチャネルMOSトランジスタ706aから電流を供給され、一定の電流ICを引抜くnチャネルMOSトランジスタ706cと、MOSトランジスタ706aと接地ノードとの間に接続され、かつそのゲートがMOSトランジスタ702cおよび702dのゲートに接続されるnチャネルMOSトランジスタ706bを含む。次に動作について説明する。
一定電流源704においては、MOSトランジスタ704cが飽和領域で動作し、そのドレイン電流Iは、2乗特性で表わされる。一方、MOSトランジスタ704dは十分大きな電流供給力を有しており、そのゲートソース間電位がそのほぼしきい値電圧Vthレベルである。したがって、この抵抗素子704eには、MOSトランジスタ704dのソース電位に応じた電流が流れる。MOSトランジスタ704dへは、MOSトランジスタ704aから電流を供給される。MOSトランジスタ704aおよび704bはカレントミラー回路を構成している。したがって、このMOSトランジスタ704dを流れる電流のミラー電流がMOSトランジスタ704bおよび704cを介して流れる。最終的に、MOSトランジスタ704cへは、
Id=β(Vgs(704)−Vth)2
で表わされる電流が流れる。Vgs(704)はMOSトランジスタ704cのゲート−ソース間電圧である。抵抗素子704eを介して流れる電流は、したがって、
I=(Vgs(704)−Vth)/R(704e)
で表わされる電流が流れる。ただし、R(704e)は抵抗704eの抵抗値を示す。最終的に、MOSトランジスタ704aおよび704bのサイズが同じであれば、Id=Iとなり、MOSトランジスタ704eのゲート電位が一定となり、この一定電位Vgs(704)と抵抗704eの抵抗値R(704e)で与えられる電流が流れる。
低下電流源702においては、この一定電流源704の抵抗704eの代わりに、そのゲートが高電圧ノード660に接続されるMOSトランジスタ702eが設けられる。したがって、このMOSトランジスタ702eのチャネル抵抗が高電圧ノード660の電圧レベルに応じて変化する。したがって、この場合においては、同様の動作から、低下電流源702からは、高電圧ノード660の電圧レベルに応じた電圧IBが流れる(ここで、MOSトランジスタ702dとMOSトランジスタ706bはサイズが同じであるとする)。高電圧ノード660の電圧レベルが高くなれば、MOSトランジスタ702eのチャネル抵抗が低くなり、応じてこの低下電流IBが増加する。一方、高電圧ノード660の電圧レベルが低下すれば、逆にMOSトランジスタ702eのチャネル抵抗が大きくなり、低下電流IBが低下する。
引算回路706においては、MOSトランジスタ706aを介して一定電流源704により決定される大きさの電流IAが流れる。この電流IAは、一定値である。この一定電流IAがMOSトランジスタ706bおよび706cを介して流れる。このMOSトランジスタ706bおよび706cを介して流れる電流IBおよびICは、IA=IB+ICの関係を満たす。したがって、低下電流IBが増加すれば、定電流ICが減少し(VTが低下し)、逆に低下電流IBが減少すれば定電流ICが増加する(VTが増加する)。この定電流ICは、駆動電流源690を構成するMOSトランジスタを介して流れる。したがって、この図108に示す駆動電流源690の流れる電流を高電圧ノード660の流れる電流量を高電圧ノード660の電圧レベルに応じて調節することができ、応じてリングオシレータの発振周波数を調節することができる。
すなわち、図110に示すように、高電圧ノード660の電圧が一定値以上となったとき、各MOSトランジスタが導通し、各回路部分において電流が流れ、一定電流IAが流れる。低下電流IBは高電圧ノード660の電圧(VPPまたはVPP′)の電圧レベルが上昇するにつれて増加する。定電流IE(IC)は、その一定電流IAと低下電流IBの差で表わされるため、この電圧ノード660の高電圧(VPPまたはVPP′)の電圧レベルの上昇に従って減少する。これにより高電圧を発生するためのリングオシレータの発振周波数を高電圧の電圧レベルに応じて低くすることができる。
なお、このMOSトランジスタ702eのゲートへは、図99に示す比較器606の出力信号と相補な出力信号が与えられるように構成されてもよい。または、このMOSトランジスタ702eにpチャネルMOSトランジスタを用い、このpチャネルMOSトランジスタのゲートへ図99に示す比較器606の出力信号が与えられるように構成されてもよい。
またこの図108および図109に示すリングオシレータの発振周波数を調整する構成は、一般に、動作電源電圧の低下時に、その発振周波数が高くなるような構成に適用されてもよい。さらに、この図109に示す電圧源ノード1へは、外部電源電圧でなく、内部電源電圧が与えられてもよい。
以上のように、この発明の第22の実施例の構成に従えば、第1の高電圧から実際の負荷回路が使用する第2の高電圧を発生する回路構成において、この第1または第2の高電圧変動時に昇圧電圧発生回路の駆動力を大きくするように構成しているため、安定な高電圧を負荷回路へ供給することができ、応じて負荷回路を安定に動作させることができる。
なお、第22の実施例の構成においては、電源電圧から高電圧を発生し、次いで第2の高電圧を発生する構成としている。しかしながら、電源電圧から一旦、別の電圧レベルの電圧を生成し、この別の電圧レベルの電圧から必要とされる電圧を発生する回路に対してこの第22の実施例の構成は、すべて適用可能である。
[実施例23]
図111は、この発明の第23の実施例である内部電源電圧発生回路の構成を概略的に示す図である。図111において、内部電源電圧発生回路は、基準電圧Vrefを発生する基準電圧発生回路710と、複数の負荷回路7a〜7cそれぞれに対応して分散配置され、基準電圧伝達線720を介して伝達される基準電圧Vrefに従って内部電源線725へ内部電源電圧を伝達する複数のドライブ素子730a〜730cを含む。ドライブ素子730a〜730cの各々は、nチャネルMOSトランジスタで構成され、ソースフォロア態様で動作し、電圧源ノード1から内部電源線725へ電流を供給し、この内部電源線725上の電源電圧をVref−Vthの電圧レベルに維持する。
基準電圧発生回路710は、電圧源ノード1へ与えられる電圧よりも高い電圧レベルの昇圧電圧を発生する昇圧電圧発生回路712と、昇圧電圧発生回路712に結合されて一定の電流を供給する定電流源714と、定電流源714と接地ノードとの間に接続される抵抗素子716を含む。この基準電圧発生回路710において、昇圧電圧発生回路712が設けられているのは、基準電圧Vrefとして、内部電源線725上の内部電源電圧よりもドライブ素子730a〜730cが有するしきい値電圧だけ高い電圧を発生するためである。
ドライブ素子730a〜730cは、ソースフォロア態様で動作し、内部電源線725上の電源電位が低下した場合には、電圧源ノード1から電流を供給し、この内部電源線725上の電位レベルを上昇させる。負荷回路7a〜7cそれぞれに対応してドライブ素子が設けられているため、内部電源線725に対する電流供給力を大きくし、応じて内部電源線725における配線抵抗等に起因する電圧低下を抑制する。また負荷回路7a〜7cそれぞれに対応してドライブ素子730a〜730cを配置することにより、ドライブ素子730a〜730cと負荷回路7a〜7cの間の距離が短くなり、応じて電圧変化の配線抵抗および配線容量による遅れを補償することができ、高速で負荷回路7a〜7c動作時における電圧変化に対応してドライブ素子730a〜730cにより内部電源線725へ電圧源ノード1から電流を供給することができ、応答特性が改善される。なお、ドライブ素子730a〜730cの動作については、内部電源線725の電位が低下したとき、ドライブ素子730a〜730cのゲート電位が等価的に上昇し、応じてそのドレイン電流が増加し、内部電源線725の電位低下が防止される。
[変更例]
図112は、この発明の第23の実施例の変更例の構成を示す図である。この図112に示す構成においては、基準電圧発生回路710は、外部電源電圧を受ける電圧源ノード1から基準電圧Vrefを発生する。昇圧電圧発生回路712は用いられていない。この場合、ドライブ素子730a〜730cを構成するnチャネルMOSトランジスタのしきい値電圧は0Vとするか、または低しきい値電圧のMOSトランジスタが用いられる。ドライブ素子730a〜730cとしてデプレーション型のMOSトランジスタが用いられてもよい。内部電源電圧VCIとドライブ素子730a〜730cを構成するMOSトランジスタのしきい値電圧Vthから基準電圧Vrefの電位レベルが決定される(VCI+Vth=Vref)。
この図112に示す構成においては、昇圧電圧発生回路712は用いられていないため、この基準電圧発生回路における消費電流を大幅に低減することができる。したがって、この内部電源電圧発生回路の構成を、たとえば半導体記憶装置に適用した場合、ドライブ素子を駆動する比較器および昇圧電圧発生回路の両者が用いられていないため、低消費電流特性を備える半導体記憶装置を実現することができる。特に、パーソナルコンピュータなどの電池駆動型コンピュータにおける記憶装置として用いられる半導体メモリに適用される場合、データ保持モードなどにおいての消費電力を大幅に低減することのできる内部電源電圧発生回路を実現することができる。
なお、図111および図112の構成において、内部電源線725は、負荷回路7a〜7cそれぞれに対応して互いに分離される分割内部電源線が用いられてもよい。
[実施例24]
図113は、この発明の第24の実施例である内部電源電圧発生回路の構成を示す図である。図113において、内部電源電圧発生回路は、互いに電圧レベルの異なる基準電圧VRaおよびVRbを発生する基準電圧発生回路740を含む。この基準電圧発生回路740は、電源電圧(内部および外部電源電圧両者)よりも高い電圧レベルの昇圧電圧を発生する昇圧電圧発生回路742に結合され、一定の電流を供給する定電流源744と、定電流源744と接地ノードとの間に直列に接続される抵抗素子745および746を含む。定電流源744と抵抗素子745の接続ノードから基準電圧VRaが出力され、抵抗素子745と抵抗素子746の接続ノードから基準電圧VRbが出力される。基準電圧VRaが、定電流源744が供給する電流と抵抗素子745および746の合成抵抗値とにより決定される電圧レベルを有し、基準電圧VRbは、定電流源744が供給する電流値と抵抗素子746の有する抵抗値とにより決定される電圧レベルを有する。
内部電源電圧発生回路は、さらに、複数の負荷回路7a〜7cそれぞれに対応して配置され、基準電圧VRbに従って電圧源ノード1から内部電源線725へ電流を供給するnチャネルMOSトランジスタで構成されるドライブ素子730a〜730cと、電圧源ノード1に結合される一方導通ノードを有しかつこのゲートに基準電圧VRaを受けるnチャネルMOSトランジスタで構成されるドライブ素子750aおよび750bと、ドライブ素子750aおよび750bと直列に接続され、動作タイミング信号EQaに応答して導通するnチャネルMOSトランジスタで構成されるスイッチングトランジスタ752aおよび752bを含む。動作タイミング信号EQaは、図76および図77に示す動作タイミング信号EQaと同様である、負荷回路7a〜7cの活性化前の所定期間ハイレベルの活性状態とされる。次に動作について簡単に説明する。
動作タイミング信号EQaの非活性化時、スイッチングトランジスタ752aおよび752bはともに非導通状態であり、ドライブ素子750aおよび750bと内部電源線725の間の電流経路は遮断される。この状態においては、ドライブ素子730a〜730cにより、内部電源線725上の電圧レベルは、基準電圧VRbとドライブ素子730a〜730cのしきい値電圧とで決定される電圧レベルに設定される。負荷回路7a〜7cが動作する前の所定期間動作タイミング信号EQaが活性状態とされ、スイッチングトランジスタ752aおよび752bがともに導通状態とされる。この状態において、ドライブ素子750aおよび750bと内部電源線725との間に電流経路が形成され、内部電源線725上の電圧レベルは基準電圧VRaとドライブ素子750aおよび750bの有するしきい値電圧とで決定される電圧レベルに上昇する。
負荷回路7a〜7cの動作時においては、この電圧レベルの上昇した電圧が利用されるため、内部電源線725上の電圧レベルが基準電圧VRb以下に低下するのを抑制することができ、この内部電源線725上の電圧レベルを所定の電圧レベルに維持することができる。すなわち、負荷回路7a〜7cの動作時において、この内部電源線725上の電源電圧レベルを基準電圧VRaレベルにまで上昇させることにより、この内部電源線725の蓄積電荷を用いることにより、内部電源線725の電流供給能力を増加させ、応じて内部電源線725における電源電圧のレベル低下を抑制する。これにより、負荷回路7a〜7c動作時において大きな電流が消費される場合においても、内部電源線725上の電源電圧レベルの低下を抑制する。
特に、負荷回路7a〜7cそれぞれに対応してドライブ素子730a〜730cを配置しかつさらに内部電源線725に対し複数のドライブ素子750aおよび750bを分散配置させることにより、複数のドライブ素子750aおよび750bを介して内部電源線725へ電流を供給することができ、内部電源線725の配線抵抗および配線容量の影響を受けることなく、安定に、この内部電源線725上の電圧レベルを基準電圧VRaレベルに維持することができる。
なおこの動作タイミング信号EQaは、負荷回路7aの動作前の所定期間のみ活性状態とされるのではなく、負荷回路7a〜7cの動作期間活性状態とされてもよい。
以上のように、この発明の第24の実施例の構成に従えば、複数の負荷回路7a〜7cの動作時において、内部電源線725上の電圧を高い基準電圧VRaの電圧レベルに充電するように構成しているため、内部電源線725の電流供給力が等価的に増加し、この負荷回路7a〜7c動作時において内部電源線725における電圧低下を抑制することができ、安定に内部電源電圧を供給することができる。
なお、この第23および24の実施例において内部電源線725へ伝達される電圧は、動作電源電圧のみならず、一般に用いられる基準電圧(たとえば中間電圧)または高電圧VPPであってもよい。
[実施例25]
[分散ドライブ素子のレイアウト1]
図114は、この発明の第25の実施例による要部の構成を示す図である。図114においては、図111ないし図113に示す分散配置されたドライブ素子730a〜730cのレイアウトを示す。図114においては、1つの負荷回路に対応して設けられるドライブ素子730を代表的に示す。
負荷回路が、負荷回路形成領域7′に形成される。この負荷回路形成領域7′は、pチャネルMOSトランジスタが形成されるNウェル760と、nチャネルMOSトランジスタが形成されるnチャネルMOSトランジスタ形成領域765を含む。このnチャネルMOSトランジスタ形成領域765は、半導体基板表面のPウェル内に形成されてもよい。またこの負荷回路形成領域7′は、トリプルウェル構造を備えていてもよい。
負荷回路形成領域7′に対応して配置されるドライブ素子730は、基準電圧が伝達されるゲート電極層752と、電圧源ノード1に接続される第2層アルミニウム配線層で構成される外部電源線752と、コンタクト孔750aおよび750bを介して接続される一方活性領域と、負荷回路形成領域7′のNウェル760上にわたって延在して配置される第2層アルミニウム配線層で構成される内部電圧伝達線755にコンタクト孔750cおよび750dを介して接続される他方活性領域を含む。コンタクト孔750aは、後に説明するが、第2層アルミニウム配線層よりも下に形成される第1層アルミニウム配線層と内部電源配線750とを接続する。コンタクト孔750bは、この第1層アルミニウム配線層と一方活性領域とを接続する。コンタクト孔750cは、他方活性領域と別の第1層アルミニウム配線層とを接続する。コンタクト孔750dは、この別の第1層アルミニウム配線層を第2層アルミニウム配線層で構成される内部電圧伝達線755と接続する。ドライブ素子730のゲート幅(チャネル幅)は内部電圧伝達線755の延在方向と垂直な方向の長さ、すなわち幅と同じ広さを備える。十分大きな電流供給力をこのドライブ素子は備える。
Nウェル760には、pチャネルMOSトランジスタが構成される。図114においては、2つのpチャネルMOSトランジスタを代表的に示す。一方のpチャネルMOSトランジスタは、ゲート電極層762aと、内部電圧伝達線755にコンタクト孔764aおよび765を介して接続される一方活性領域と、コンタクト孔763aを介してたとえば第1層アルミニウム配線層で構成される、この負荷回路内の内部配線層に接続される他方活性領域とを備える。
他方のpチャネルMOSトランジスタは、ゲート電極層762bと、別の第1層アルミニウム配線層にコンタクト孔764bを介して接続される一方活性領域と、コンタクト孔763bを介して図示しない内部配線層に接続する他方活性領域とを備える。このNウェル760内に形成されるpチャネルMOSトランジスタのゲート幅はドライブ素子730のゲート幅よりも十分小さくされている。負荷回路形成領域7′における内部電源線の充放電を行なうことが要求されるだけであり、設計ルールに従ってそのゲート幅(チャネル幅)が決定される。
負荷回路形成領域7′のnチャネルMOSトランジスタ形成領域765上にわたって、内部電圧伝達線755と平行に第2層アルミニウム配線層で形成される、接地ノードに接続される接地線768が配置される。この接地線768の下に、nチャネルMOSトランジスタが形成される。このnチャネルMOSトランジスタは、一例として、ゲート電極層772と、コンタクト孔774および775を介して接地線768に接続される一方活性領域と、コンタクト孔773を介して内部配線(図示せず)に接続される他方活性領域とを備える。
図115は図114に示すラインA−Aに沿った断面構造を示す図である。図115において、ドライブ素子730は、P型半導体基板761の表面に形成されたPウェル751内に形成される。ドライブ素子730は、一方活性領域として、このPウェル751表面に形成されたN型不純物領域753aを含み、他方活性領域として、このNウェル751に形成されるN型不純物領域753bを含む。不純物領域753aは、コンタクト孔750bを介して第1層アルミニウム配線層754aに接続される。第1層アルミニウム配線層754aはコンタクト孔750aを介して外部電源配線750に接続される。他方活性領域753bは、コンタクト孔750cを介して第1層アルミニウム配線層754bに接続される。この第1層アルミニウム配線層754bは、コンタクト孔750dを介して内部電圧伝達線755に接続される。不純物領域753aおよび753bの間のチャネル領域上に図示しないゲート絶縁膜を介して基準電圧伝達線752が配設される。この基準電圧伝達線752は、低抵抗のポリシリコン配線で形成されてもよく、またアルミニウムで裏打ちされたポリシリコン配線層で形成されてもよく、またモリブデンまたはタングステンなどの高融点金属層で構成される多層配線で構成されてもよい。低抵抗であれば、その配線抵抗による電位低下をなくして各所定の電圧レベルの基準電圧を伝達することができる。
負荷回路形成領域7′の構成要素であるpチャネルMOSトランジスタは、Nウェル755の表面に互いに離れて形成されるP型不純物領域756aおよび756bを含む。一方活性領域となる不純物領域756aは、コンタクト孔764aを介して第1層アルミニウム配線層757aに接続される。この第1層アルミニウム配線層757aはコンタクト孔765を介して内部電圧線755に接続される。他方活性領域756bは、コンタクト孔763aを介して内部配線層を形成する第1層アルミニウム配線層757bに接続される。不純物領域756aおよび756bの間のチャネル領域上にゲート絶縁膜(図示せず)を介してゲート電極762aが配設される。なお、内部配線757bは第1層アルミニウム配線でなく、別の配線層で形成されてもよい(たとえば低抵抗のポリシリコン配線層)。第1層アルミニウム配線層754a,754bおよび757aを介在させて第2層アルミニウム配線層750および755と活性領域753a,753bおよび756aを接続することによりコンタクト領域におけるアスペクト比を低減して良好なコンタクトを実現する。
この図114および図115に示すように、ドライブ素子730のチャネル幅を、内部電圧伝達線755の幅とほぼ同程度とし、負荷回路に含まれる構成要素であるpチャネルMOSトランジスタのチャネル幅よりも十分大きくすることにより、負荷回路形成領域7′に形成された構成要素であるpチャネルMOSトランジスタの動作時において十分安定に所定の電圧レベルの内部電圧を伝達することができる。大きな電流駆動力をもっているため、この負荷回路形成領域7′に形成された回路素子の動作時においても大きな電流を供給することができ、この負荷回路7の動作時における内部電圧の変動を抑制することができる。
なお、図115に示す構成においては、ドライブ素子730は、Pウェル751内に形成されているが、半導体基板761表面に直接形成されてもよい。
[ドライブ素子のレイアウト2]
図116は、ドライブ素子の第2のレイアウトを示す図である。図116に示す構成においては、負荷回路形成領域7′の一方側に沿って電圧源ノード1に接続される第2層アルミニウム配線層で形成される外部電源線780が配設される。ドライブ素子730は、この外部電源線780の延在方向に沿って所定の幅に形成され、かつコンタクト孔785aおよび786aを介して外部電源線780に接続される一方活性領域と、コンタクト孔783aおよび783bを介して基準電圧を伝達する低抵抗のたとえば第1層アルミニウム配線層で形成される基準電圧伝達線782に接続されるゲート電極層584と、コンタクト孔785bおよび786bを介して内部電圧伝達線790に接続される他方活性領域とを備える。この内部電圧伝達線790は、負荷回路形成領域7′(負荷回路形成領域7′におけるpチャネルMOSトランジスタ形成領域)上にわたって配設される第2層アルミニウム配線層で形成される。この第2層アルミニウム配線層で形成される内部電圧伝達線790の下にpチャネルMOSトランジスタを形成するためのNウェル760が形成される。図116において、このNウェル760に形成される2つのpチャネルMOSトランジスタを代表的に示す。この図116においてNウェル760に形成される構成要素としてのpチャネルMOSトランジスタに対しては、図114におけるpチャネルMOSトランジスタの参照番号と同じ参照番号を付し、その詳細説明は省略する。これらのpチャネルMOSトランジスタは内部電圧伝達線790に接続されて所定の電圧を受ける。
負荷回路形成領域7′において、この内部電圧伝達線790と平行に負荷回路形成領域7′上にわたって第2層アルミニウム配線層で形成される接地線768が形成される。この接地線768の下にnチャネルMOSトランジスタが形成される。このMOSトランジスタに対しても、図114に示すnチャネルMOSトランジスタと同一の参照番号を付し、その詳細説明は省略する。
この図116に示す配置において、負荷回路形成領域7′に形成される負荷回路が、たとえば半導体記憶装置のメモリセルアレイの場合、メモリセルトランジスタのゲート電極がポリシリコンで形成される場合に、このポリシリコンゲートの抵抗を等価的に低くするために、いわゆる「ワード線シャント構造」が用いられる。ワード線駆動信号を低抵抗の第1層アルミニウム配線層を介して伝達し、所定の領域で、メモリセルトランジスタのゲート電極を構成するポリシリコンと低抵抗のコンタクトを介して物理的に接続する。このワード線シャント構造において用いられる第1層アルミニウム配線層と同一製造プロセスにおいて、この基準電圧伝達線782を形成する。これにより、ドライブ素子730のゲート電極層784として、ポリシリコンなどの比較的抵抗の高い材料が用いられた場合においても、基準電圧を各ドライブ素子のゲートへ、配線抵抗に起因する電圧低下を伴うことなく伝達することができる。
また図116に示す配置の場合、負荷回路形成領域7′の一方側側部に沿って外部電源配線780を延在して配置し、この外部電源線780に沿ってドライブ素子730の活性領域を形成している。したがって、ドライブ素子730のゲート幅を十分大きくすることができ、安定にこの負荷回路形成領域7′に形成される負荷回路に対し一定の電圧レベルの外部電圧を伝達することができる(負荷回路動作時における電流が消費された場合においても、ドライブ素子730の大きな電流駆動力により、十分余裕をもって動作電流を供給することができる)。
なお、この図116に示す構成において、たとえば第1層アルミニウム配線層で形成される基準電圧伝達線782が設けられず、ゲート電極層784がアルミで裏打ちされたポリシリコン層または高融点シリサイド層などの低抵抗材料が用いられる場合においては、このゲート電極層784が直接基準電圧を伝達するように構成されてもよい。
[ドライブ素子のレイアウト3]
図117は、ドライブ素子のさらに他の構成を示す図である。図117において、負荷回路形成領域7′内に形成される、pチャネルMOSトランジスタ形成のためのNウェル760の延在方向に沿って、第2層アルミニウム配線層で形成される外部電源線800が配置される。
ドライブ素子730は、このNウェル760の領域外部に、Nウェル760の延在方向に沿って外部電源配線800と平面図的に見て重ね合う領域に、形成される。このドライブ素子730は、たとえば第1層アルミニウム配線層で形成される基準電圧伝達線814に所定の位置に形成されるコンタクト孔812aおよび812bを介して接続されるゲート電極配線810と、外部電源配線800にコンタクト孔815aおよび816を介して接続される一方活性領域と、コンタクト孔815bを介してたとえば第1層アルミニウム配線層で形成される内部電圧伝達線820に接続される他方活性領域とを備える。この内部電圧伝達線820は、Nウェル760内に形成されるpチャネルMOSトランジスタの一方活性領域にコンタクト孔823(823a,823b)を介して接続される。この負荷回路の構成要素であるpチャネルMOSトランジスタは、それぞれゲート電極層822(822a,822b)および図示しない内部配線にコンタクト孔824(824a,824b)を介して接続される他方活性領域を備える。
この外部電源配線800と平行に、負荷回路形成領域7′上にわたってたとえば第2層アルミニウム配線層で形成される接地電圧を伝達する接地線768が配置される。この接地線768は、Nウェル760の外部の領域に形成されるnチャネルMOSトランジスタ形成領域上に形成される。負荷回路の構成要素であるnチャネルMOSトランジスタは、この接地線768にコンタクト孔774および775を介して接続される一方活性領域と、図示しない内部配線にコンタクト孔773を介して接続される他方活性領域を備える。図117においては、2つのnチャネルMOSトランジスタを代表的に示す。
この図117に示すように、Nウェル760の外部領域に、このNウェル760延在方向に沿ってドライブ素子730を形成することにより、十分大きなゲート幅(チャネル幅)を有するドライブ素子を形成することができる。またNウェル760に形成されたpチャネルMOSトランジスタに対し、第1層アルミニウム配線層で形成される内部電圧伝達線820を配置することにより、必要な領域に対してのみ内部電圧伝達線を配置するだけでよく、内部電圧伝達線820のレイアウトが容易となり、また不必要な部分に対してはこの内部電圧伝達線を設ける必要がなく、内部電圧伝達線の占有面積が低減されて、他の内部配線のレイアウトが容易となる。またドライブ素子730を負荷回路形成領域7′内部に形成するため、負荷回路形成領域外部にドライブ素子を設ける必要がなく、内部電圧を伝達するための素子の占有面積を低減することができる。
なお、この図117に示す配置においても、ゲート電極配線810が十分低い抵抗を有する配線層(高融点金属層を含む多層配線構造またはアルミニウムで裏打ちされたポリシリコン配線)が用いられる場合には、基準電圧伝達線814を特に設ける必要はない。
以上のように、この発明の第24の実施例に従えば、負荷回路形成領域近傍または内部に、その構成要素であるMOSトランジスタのチャネル幅よりも十分大きなチャネル幅を有するドライブ素子を配置し、外部電源配線からこの大きなチャネル幅を有するドライブ素子を介して負荷回路形成領域内へ内部電圧を伝達するようにしたため、大きな電流供給力をもって内部電圧を対応の負荷回路へ供給することができ、安定に負荷回路を動作させることができる。
なお、この実施例24における内部電圧伝達線755,790および820上に伝達される電圧は動作電源電圧でなく、他の一定の電圧レベルが要求される基準電圧(高電圧または中間電圧)であってもよい。
また、負荷回路形成領域7′上に対してのみ内部電圧伝達線が配置されるため、内部電圧が内部配線抵抗により低下するのを抑制することができ、各負荷回路に対し所定の電圧レベルの内部電圧を伝達することができ、各負荷回路を同じ動作条件で動作させることができ、装置の信頼性が改善される。
[実施例26]
図118は、この発明の第26の実施例の構成を概略的に示す図である。図118において、半導体装置が形成される半導体チップ850上に、外部ピン端子に接続するフレームリード855からボンディングワイヤ861を介して外部電源電圧を受け、所定の内部電圧を発生する電流供給回路860が設けられる。この電流供給回路860は、先の実施例において示されるドライブ素子と比較器の構成を備える。内部電源電圧を発生してもよく、また高電圧VPPを発生する回路であってもよい。
半導体チップ850には、外部装置とのインタフェースをとるための(信号の授受の行なうための)フレームリード856a〜856iが配置される。これらのリード856a〜856iについては、接続先は図面を簡略化するために示していない。半導体チップ850上に、リードフレームの図118には示さないフレーム(金型)にボンディング時には支持される、内部電圧を伝達するためのフレーム(ダミーリードと称す)870が設けられる。このダミーリード870は、たとえばボンディングワイヤ862を介して電流供給回路860の出力部に接続される。このダミーリード870は、半導体チップ850上に形成された負荷回路7近傍領域においてその内部電圧供給ノード864へボンディングワイヤ863を介して接続される。ここで、図118においては、1つの負荷回路7のみを代表的に示す。
ダミーリード870は、外部ピン端子に接続されるフレームのリードと同じ材料で構成され、ほぼ同様の幅を有している。ダミーリード870は、したがって、アルミニウムなどで形成される内部配線よりも、線幅が十分広く、また材料も銅およびニッケルなどの低抵抗材料が用いられている。したがって、半導体チップ850上にわたって配置されるダミーリード870を用いて電流供給回路860から負荷回路7近傍にまで電圧/電流を伝達することにより、電流供給回路860から負荷回路7への配線抵抗を大幅に低減することができ、各負荷回路7に対し所定の電圧レベルの内部電圧を伝達することができる。またこのダミーリード870は、内部配線層よりもさらに上層に形成されているため、内部配線に対するレイアウトの影響を受けることなく各負荷回路に対し所定の電圧レベルの内部電圧を伝達することができる。またこの内部電圧を伝達するための内部電圧配線が、ダミーリード870で構成されているため、半導体チップ850上の回路配置により、電流供給回路860を各負荷回路に対応して分散配置させるのが困難な場合においても、1つの電流供給回路860から各負荷回路に対し何ら電圧低下をもたらすことなく一定電圧レベルの内部電圧を各負荷回路7に対し供給することができる。またダミーリード870はその線幅が十分広いため、大きな電流を流すことができ、1つの電流供給回路860から各負荷回路7に対し、安定に電流を供給して、応じて安定な電圧レベルの内部電圧を供給することができる。
図119は、図118に示すフレームの形態の一例を示す図である。図119において、半導体チップ850はフレーム880に支持されるリード882に接続するマウント台(図示せず)上に配置される。このフレーム880へは、半導体チップ850上に形成されたボンディングパッドに対応してフレームリード856が設けられる。このフレーム(金型)880に対しさらに、ダミーリード870が固定的に保持される。この状態で、各フレームリード856およびダミーリード870に対する必要なワイヤリングが行なわれる。この後、樹脂を用いて封止した後、このフレーム880を切り離すための金型の打ち抜き工程が行なわれる。この状態において、図119において破線で示すようにダミーリード870が切断される。したがってダミーリード870は装置外部に対しては(パッケージ外部)へは取出されないため、何ら問題は生じず、パッケージ内部で必要な電圧レベルの内部電圧をこのダミーリード870が伝達するだけである。
[内部配線とダミーリードとの接続位置]
図120は、内部配線とダミーリードとの接続の一例を示す図である。図120において、電流供給回路860からの内部電圧を伝達する内部電圧線890は、比較的幅が広くされた接続領域890aにおいて、ボンディングワイヤ893aによりダミーリード870に接続される。この内部電圧線890は、第1層アルミニウム配線層であってもよく、また第2層アルミニウム配線層であってもよい。この内部電圧線890上には、半導体装置の最終保護膜であるパッシベーション層892aが形成される。負荷回路7においては、同様内部電圧伝達線894は、比較的その幅が大きくされた接続領域894aにおいてボンディングワイヤ893bを介してダミーリード870に接続される。この内部電圧伝達線894a上には同様パッシベーション層892bが形成される。電流供給回路860と負荷回路7の間には、絶縁層895が配置されるように示される。この絶縁層895は、単に図面を簡略化するために示しているだけであり、この領域において他の内部回路が配置されていてもよい。
上述のように、内部電圧線890および内部電圧伝達線894それぞれにおいて、比較的幅の広い領域890aおよび894aを設けることにより、ボンディングワイヤ893aおよび893bを用いて確実にダミーリード870と電流供給回路860および負荷回路7とを相互接続することができる。
[ダミーリードと内部配線との接続2]
図121に示す構成においては、接続領域890aおよび894aにおいて、ハンダ層で形成されるバンプ球896aおよび896bがそれぞれ形成される。このバンプ球896aおよび896bとダミーリード870とが接続される。このバンプ球896aおよび896bを用いてダミーリード870と内部電圧線890および内部電圧伝達線894を相互接続する構成は、通常の、フリップチップをバンプ球を用いて回路基板に直接接続する表面実装技術と同様の手法を用いて行なうことができる。
なおこのハンダで形成されるバンプ球896aおよび896bに代えて、たとえば柱状のアルミニウムなどが堆積され、この堆積されたアルミニウムとダミーリード870とのコンタクトがとられる構成が用いられてもよい。すなわち、バンプ球896aおよび896bの位置にアルミニウム層が形成されてもよい。
なお、図118に示すフレームの配置においては、信号および電源電圧/接地電圧を入出力するためのパッドが半導体チップ850の外部周辺部両側に配置されている。しかしながら、このフレームの配置は、半導体チップ850の4辺すべてにわたって配置されていてもよく、または半導体チップ850の中央部に信号入出力用のおよび電源電圧/接地電圧入力のためのパッドが配置されるいわゆるLOC(リード・オン・チップ)構造でのフレームであってもよい。
[変更例]
図122は、この発明の第26の実施例の変更例を示す図である。図122においては、半導体チップ900に対し、信号の入出力を行なうためのフレームリード903a〜903jが配置される。これらのフレームリード903a〜903jは、それぞれ半導体チップ900上に形成されたパッド(図において●印で示す)にボンディングワイヤ904a〜904jを介してそれぞれ接続される。これらのフレームリード903a〜903eを囲むように、チップ900上にわたって電源電圧VCCを伝達するためのコの字型に形成される一方側電源フレームリード902が形成される。この電源フレームリード902と対称的な形状に、フレームリード903f〜903jを囲むように、略コの字型に電源電圧を伝達する他方電源フレームリード904が配置される。
この電源フレームリード902および904は、半導体チップ900上に形成された各回路部分へ電源電圧を伝達するためにボンディングワイヤ902aおよび904aを介して内部電源ノード(パッド)に接続される。電源フレームリード902および904を半導体チップ900上にわたって延在して配置することにより、半導体チップ900上に形成された回路部分に対し安定に電源電圧を供給することができる。
半導体チップ900には、さらに、その周辺部に,電源フレームリード902から電源電圧を受けてこの電源電圧VCCより高い高電圧VPPを発生するVPP発生回路910が配置される。このVPP発生回路910からの高電圧を半導体チップ900上に形成された各回路部分へ伝達するために、電源フレームリード902および904の間に高電圧用フレームリード(ダミーリード)920が配置される。このダミーリード920は、先の図118に示すダミーリード870に相当する。このダミーリード920は、VPP発生回路910の高電圧出力ノードにボンディングワイヤ912により接続される。このダミーリード920は、またボンディングワイヤ913を介して半導体チップ900上に形成された高電圧VPPを利用する負荷回路の高電圧ノードに接続される。低抵抗のダミーリード920を用いることにより、電圧降下をもたらすことなく半導体チップ900上に形成された高電圧を利用する負荷回路すべてに対し安定に高電圧VPPを供給することができる。
なお、このボンディングワイヤ912および913の代わりにアルミニウム配線またはハンダなどのバンプが用いられてもよい。
またこの図122に示す変更例においても、フレームの形状は任意であり、この半導体チップ900が収納されるパッケージの形状に応じたフレームが用いられればよい。
以上のように、この発明の第26の実施例の構成に従えば、所定の電圧レベルの電圧を伝達するためにフレームリードを用いたため、低抵抗で電圧降下をもたらすことなく半導体チップ上の回路へ所定の電圧レベルの内部電圧を伝達することができ、またこのフレームリードは幅が内部配線よりも十分広いため大きな電流供給力を維持しており、各負荷回路に対し安定な電圧レベルの内部電圧を供給することができる。
[実施例27]
図123は、この発明の第27の実施例である半導体装置の要部の構成を示す図である。この図123に示す構成においては、先の図122に示す構成に代えて、高電圧VPP発生回路910からの高電圧VPPを発生するために、フレームリード902,903a〜903jおよび904よりも上層のフレームリード930aおよび930bが用いられる。他の構成は図122に示す構成と同じであり、対応する部分には同一参照番号を付す。
図123において、半導体チップ900の一方側のフレームリード902および903a〜903e上に形成されるフレームリード(ダミーリード)930aは、ボンディングワイヤ931aを介してVPP発生回路910の出力部に接続され、また半導体チップ900の他方端部において、ボンディングワイヤ932aを介して高電圧VPPを利用する負荷回路近傍の高電圧ノードに接続される。フレームリード902および904の間の領域の上層に形成されるダミーリード930bは、ボンディングワイヤ931bを介してVPP発生回路910の高電圧出力部に接続され、かつボンディングワイヤ932bを介して高電圧VPPを利用する負荷回路の高電圧ノードに接続される。VPP発生回路910は、電源フレーム902から電源電圧を受けて所定の電圧レベルの高電圧VPPを発生する。
この図123に示す配置においては、半導体チップ900上の負荷回路に対し安定に高電圧VPPを供給することができる効果に加えて以下の効果が得られる。すなわち、フレーム902、903a〜903jおよび904と同層のダミーリードを用いた場合、このダミーリードと内部の負荷回路との接続位置は、フレーム902、903a〜903jおよび904の形状の影響を受ける(LOC構造の場合)。このような場合においても、ダミーリードとフレームリードとを多層構造とすることにより、半導体チップ900上の任意の位置に高電圧VPPを伝達するためのダミーリード930aおよび930bを配置することができ、半導体チップ900上の任意の位置の高電圧を利用する回路部分へ安定に高電圧VPPを供給することができる。
図124は、上層のダミーリードと下層のフレームリードとの配置を示す図である。図124(A)においては、ダミーリード930とそのフレーム903(902または904)との間は中空構造とされる。図示しない枠にこれらのリード930および903(902または904)は保持されており、特に問題は生じない。
図124(B)においては、ダミーリード930と下層のフレーム903(902または904)の間にたとえばポリイミドである高分子絶縁材料またはTAB(テープ・オートメティッド・ボンディング)などにおいて用いられる絶縁性のテープ(フィルム)で構成される絶縁層935が配置される。確実にダミーリード930とフレーム903(902または904)との絶縁性を維持することができる。また、ダミーリード930はフレームリード903の下層に形成されてもよい。
なおこのダミーリード930aおよび930b上を伝達される電圧は高電圧VPPと異なり、別の一定の電圧レベルを必要とされる基準電圧(内部高圧電圧または中間電圧)であってもよい。
[変更例2]
図125は、この発明の第27の実施例の第2の変更例の構成を示す図である。図125において、半導体チップ940の長辺側両側に、配置されたパッドそれぞれに対応して信号入出力のためのフレームリード954a〜954lが配置される。これらのフレームリード954a〜954lはそれぞれ対応のパッドにボンディングワイヤを介して接続される。
半導体チップ940上全面にわたって、電源電圧VCCを伝達するための電源フレームリード952が配置される。この電源フレームリード952は、複数のループを形成するように、一方方向(図125の水平方向)に延びる部分と他方方向(図125の垂直方向)に延在する部分とを有する。電源フレームリード952の、各ループ内部は何も形成されない空き領域である。この電源フレームリード952上層に、電源フレームリード952から電源電圧を受けて所定の電圧レベルの内部電圧を発生する内部電圧発生部950からの内部電圧を伝達するためのダミーリード960が配置される。このダミーリード960は、電源フレームリード952が延在する方向と直交する方向に延在する部分を有し、複数のループを有する。電源フレームリード952とダミーリード960のループ形成領域は、互いに直交する方向であり、平面図的に見て空き領域が存在する。この空き領域において、電源フレームリード952およびダミーリード960からそれぞれ所定の回路へボンディングワイヤまたはバンプまたはアルミニウムなどの接続部材953および962を用いて電気的コンタクトが形成される。半導体チップ940上に形成された回路部分すべてに対し安定に電源電圧を供給することができるとともに、一定の電圧レベルの内部電圧を伝達することができる。
なお、この図125において、ダミーリード960および電源フレームリード952のループを形成する形状は任意である。
電源フレームリード952および内部電圧伝達用のダミーリード960をそれぞれ複数のループを有するように形成することにより、ノイズ発生時において各ループにおいて流れる電流が逆方向となり、ノイズが相互に打ち消されることになり、ノイズ発生時においても安定に電源電圧および内部電圧を供給することができる。
以上のように、この発明の第27の実施例の構成に従えば、信号入出力用および電圧入力のためのフレームと所定の内部電圧を伝達するフレームとを別々の層に形成したため、半導体チップ上の内部電圧を利用する回路部分へ安定に所定の電圧レベルの内部電圧を伝達することができる。
[実施例28]
図126は、この発明の第28の実施例である半導体装置の要部の構成を示す図である。図126において、内部電圧線1000上には、内部電圧発生回路1010からの内部電圧が伝達される。この内部電圧線1000は、寄生容量を有しており、この内部電圧発生回路1010からの内部電圧レベルにその電位レベルが決定される。内部電圧発生回路1010は、電圧源ノード1に結合され、一定の電流を供給する定電流源1011と、定電流源1011と接地ノードとの間に接続される抵抗素子1012を含む。抵抗素子1012は、定電流源1011から与えられる電流Iに従って内部電圧を発生する。この内部電圧発生回路1010が発生する内部電圧は動作電源電圧、半導体記憶装置においてプリチャージ時に利用される中間電圧、または必要とされる基準電圧いずれであってもよい。
内部電圧線1000に対し、複数の互いに分離されるサブ内部電圧線1002a,1002b,1003c,…が配置される。これらのサブ内部電圧線1002a〜1003c,…それぞれと内部電圧線1000との間に溶断可能なリンク素子1004a,1004b,1004c,…が配置される。
このサブ内部電圧線1002a〜1003c,…は、それに接続される負荷回路の機能に応じて配置されてもよく、また半導体チップ上での負荷回路の位置に応じて配置されてもよく、また後にその一例を示すが、半導体記憶装置のメモリブロックのように、1つの機能単位となるブロックごとに設けられてもよい。
製造工程時においては、パーティクルの混入などにより、サブ内部電圧線1002bと接地線1015の間にショート(抵抗Rsで示す)が発生する場合がある。この場合、短絡抵抗Rsの抵抗値が比較的大きく、サブ内部電圧線1002b上の電圧を所定値レベル以上に保持することができる場合であっても、基準電圧発生回路1010は、そのサブ内部電圧線1002bを一定電圧レベルに維持するために大きな電流を供給する必要がある。またこの短絡抵抗Rsの抵抗値が小さい場合には、このサブ内部電圧線1002b上の電圧レベルが低下し、応じて他の内部電圧線1002a,1003c,…上の電圧レベルが低下し、半導体装置が正常に動作しなくなることが生じる。そこで、リンク素子1004bをたとえばレーザブローにより溶断し、このサブ内部電圧線1002bを内部電圧線1000から分離する。これにより、サブ内部電圧線1002a,1003c,…は、この短絡抵抗Rsの影響を受けることなく、安定な一定電圧レベルの電圧を内部電圧発生回路1010から受けることができる。また内部電圧発生回路1010は、この短絡抵抗Rsによる消費電流増加を生じることがなく、安定に一定の電圧レベルの内部電圧を発生することができる。
なお、電圧源ノード1は、外部電源電圧ではなく、内部電源電圧であってもよい。
[変更例1]
図127は、この発明の第28の実施例の変更例の構成を示す図である。図127に示す構成においては、サブ内部電圧線1003a〜1003c,…それぞれに対応して導通時対応のサブ内部電圧線を内部電圧線1000に接続するpチャネルMOSトランジスタでそれぞれが構成されるスイッチング素子1020a,1020b,1020c,…が設けられる。
スイッチング素子1020a〜1020c,…それぞれに対応して、これらのスイッチング素子1020a〜1020c,…の導通/非導通を制御するための信号を発生するプログラム回路1025a,1025b,…が配置される。図127においては、2つのプログラム回路1025aおよび1025bを代表的に示す。プログラム回路1025aおよび1025bは、同じ構成を備え、各々は、電圧源ノード1に接続される一方導通ノードと、接地ノードに接続されるゲート電極と、リンク素子1031を介して信号線1035に接続される他方導通ノードとを有するpチャネルMOSトランジスタ1030と、信号線1035に接続される一方導通ノードと接地ノードに接続される他方導通ノードと接地電位に接続されるゲート電極を有するpチャネルMOSトランジスタ1032と、信号線1035上の電位を反転するインバータ1033と、インバータ1033の出力信号に従って選択的に信号線1035を接地ノードへ接続するnチャネルMOSトランジスタ1034を含む。次に動作について説明する。
短絡抵抗Rsが何ら存在しない場合においては、プログラム回路1025aおよび1025bにおいては、リンク素子1031は導通状態(非溶断状態)とされる。この状態においては、信号線1035上の電位がMOSトランジスタ1030によりハイレベルに充電され、応じてインバータ1033の出力信号がローレベルとなる。MOSトランジスタ1034はこのときには非導通状態である。したがって、プログラム回路1025a,1025b,…からはローレベルの信号が出力され、スイッチング素子1020a〜1020c,…はすべて導通状態にあり、サブ内部電圧線1003a〜1003c,…は内部電圧線1000に接続され、内部電圧発生回路1010からの内部電圧を受ける。
一方、サブ内部電圧線1003bに短絡抵抗Rsが存在する場合、このサブ内部電圧線1003bに対応するプログラム回路1025bにおいて、リンク素子1031が溶断される。MOSトランジスタ1030が信号線1035から切り離され、フローティング状態とされる。MOSトランジスタ1032はそのゲート電位が接地電圧レベルでありローレベルである。電源投入時の初期状態においては、信号線1035は、したがってローレベルであり、電源投入にしたがって、インバータ1033の出力信号はハイレベルに立上がり応じてMOSトランジスタ1034が導通し、このプログラム回路1025bからの出力信号はハイレベルに固定される。プログラム回路1025aでは、リンク素子1031は導通状態にあり、したがってこのプログラム回路1025aからは正常状態時と同様のローレベルの信号が出力される。したがって、サブ内部電圧線1003bに対して設けられたスイッチング素子1020bのみが非導通状態とされ、短絡が生じたサブ電圧線1003bが内部電圧線1000から切り離される。これにより短絡抵抗Rsの影響を排除し、安定に残りの正常なサブ内部電圧線1003aおよび1003c,…へ所定の電圧レベルの内部電圧を供給することができる。
サブ内部電圧線1003a〜1003c,…および内部電圧線1000の間にスイッチング素子を設けることにより、この短絡発生時においてこの対応のサブ内部電源線とメイン内部電圧線とを分離するとき、リンク素子溶断による飛散した切片により内部電圧線と正常なサブ内部電圧線との短絡または短絡の生じたサブ内部電圧線と内部電圧線との短絡が生じるのを防止することができ、確実に不良が発生したサブ内部電圧線を内部電圧線から分離することができる。
[変更例2]
図128は、この発明の第28の実施例の第2の変更例の構成を示す図である。この図128に示す構成は、図127に示す構成と、内部電圧発生回路1010に代えて、ドライブ素子2と比較器3で構成される内部電源電圧発生回路が用いられることを除いて同じである。したがって図128において、図127に示す構成と対応する部分には同一参照番号を付し、その詳細説明は省略する。
この内部電源電圧発生回路は、内部電圧線1000上の電圧と基準電圧Vrefとを比較器3で比較し、この比較結果に従ってドライブ素子2を介して電圧源ノード1から内部電圧線1000へ電流を供給する。したがって内部電圧線1000およびサブ内部電圧線1003a〜1003c,…は電源電圧線として機能する。不良(短絡抵抗Rs)の発生したサブ内部電圧線1003bを内部電圧線1000から切り離すことにより、各回路に対し安定に一定の電圧レベルの内部電源電圧を供給することができ、応じて半導体装置を安定に動作させることができる。また不良が生じた内部電源線を内部電源電圧発生回路から切り離すことにより、この内部電源電圧発生回路の消費電流が低減される(不良(短絡抵抗)におけるリーク電流が不要となるため)。
なお、この比較器3およびドライブ素子2で構成される内部電源電圧発生回路の構成に代えて、さらに高電圧VPPを発生する回路が用いられてもよい。
以上のように、この発明の第28の実施例の構成に従えば、不良の発生したサブ内部電圧線を内部電圧線から切り離すように構成したため、正常なサブ内部電圧線へ安定に一定の電圧レベルの内部電圧を供給することができ、サブ内部電圧線上の電圧を使用する内部回路を安定に動作させることができる。また、この不良におけるリーク電流がなくなるため、内部電圧発生回路の消費電流が低減される。
[実施例29]
図129は、この発明の第29の実施例である半導体装置の要部の構成を示す図である。図129においては、半導体記憶装置のメモリセルアレイ部の構成が一例として示される。
図129において、半導体装置は、行および列のマトリクス状に配列される複数のメモリセルを含む。図129においては、一例として、4行1列に配置されたメモリセルMC0〜MC3を代表的に示す。半導体装置は、さらにメモリセルアレイの各行に対応して配置され、それぞれに対応の行のメモリセルが接続されるワード線WL0〜WL3と、メモリセルの各列に対応して配置され、それぞれに対応の列のメモリセルが接続されるビット線対BL,ZBLを含む。ビット線対BLおよびZBLは互いに相補なデータ信号を伝達する。ここで、ワード線WL0〜WL3が、1つのグループを構成する。
半導体装置は、さらに、図示しないアドレスバッファからの内部アドレス信号をデコードし、このワード線WL0〜WL3のグループを指定するワード線グループ信号を出力するロウデコーダ1100と、図示しないアドレスバッファからの内部アドレス信号をプリデコードするプリデコーダ1102と、ワード線WL0〜WL3それぞれに対応して配置され、プリデコーダ1102の出力信号に従って対応のワード線上へワード線選択信号を伝達するXデコーダX0〜X3を含む。プリデコーダ1102は、たとえば2ビットのアドレス信号をプリデコードし、XデコーダX0〜X3のいずれかを選択状態とする信号を出力する。XデコーダX0〜X3の各々は、直列接続されたnチャネルMOSトランジスタで構成されるNAND型デコーダの構成を備える。
XデコーダX0〜X3それぞれに対し、ロウデコーダ1100からのワード線グループ指定信号に応答して導通し、対応のXデコーダX0〜X3の出力信号を伝達するデコーダとして機能する選択ゲートTrXが配置される。
ワード線WL0〜WL3それぞれに対応して、この選択ゲートTrXから与えられる信号のレベル変換を行なって選択されたワード線上へ高電圧VPPレベルの電圧を伝達するワードドライバWD0〜WD3が配置される。ワードドライバWD0〜WD3の各々は、選択時、高電圧印加ノード1114a〜1114dに与えられた高電圧を対応のWL0〜WL3へ伝達する。ワードドライバWD0〜WD3は、それぞれ同一構成を備え、高電圧印加ノード1114(1114a〜1114d)と接地ノードとの間に接続されて対応の選択ゲートTrXを介して与えられた信号を反転するインバータを構成するpチャネルMOSトランジスタXPbおよびnチャネルMOSトランジスタXNと、対応のワード線WL(WL0〜WL3)上の電位がローレベルのとき高電圧印加ノード1114(1114a〜1114d)に与えられた高電圧をMOSトランジスタXPbおよびXNのゲートへ伝達するpチャネルMOSトランジスタXPaを含む。すなわち、ワードドライバWD0〜WD3は、「ハーフラッチ」のレベル変換器の構成を備える。
ワードドライバWD0〜WD3のそれぞれの高電圧印加ノード1114a〜1114dと高電圧発生回路(先の実施例のいずれの高電圧発生回路であってもよい)の高電圧が伝達される高電圧ノード1100との間に、溶断可能なリンク素子1112a〜1112dが設けられる。次に動作について説明する。
正常時においては、リンク素子1112a〜1112dはすべて導通状態にある。この状態においては、プリデコーダ1102の出力信号に従ってXデコードX0〜X3のいずれかが選択され、選択状態とされたXデコーダがローレベルの信号を出力する。ロウデコーダ1100からのグループ指定信号WLG1が選択状態のハイレベルとされると、選択ゲートTrXが導通状態とされる。このとき他のワード線グループを指定するワード線グループ指定信号WLG2はローレベルである。
この状態で、選択ワード線WL0に接続されるメモリセルMC0のデータがビット線BL上に読出され、図示しないセンスアンプにより検知増幅された後に、データの読出/書込が実行される。
上述のように、不良ワードドライバ(短絡の発生したワードドライバ)に対する高電圧印加ノードを高電圧発生回路から切り離すことにより、高電圧発生回路の消費電流を低減し、各ワードドライバに対し安定に一定の電圧レベルの高電圧VPPを供給することができる。
[変更例1]
図130は、この発明の第29の実施例の第1の変更例の構成を示す図である。図130においても、4本のワード線WL0〜WL3が1つのグループとしてロウデコーダ1100の出力信号により選択される。図130において、図129の構成と対応する構成には同一の参照番号を付し、その詳細説明は省略する。この図130に示す構成においては、1つのグループを構成するワードドライバWD0〜WD3の高電圧印加ノード1114a〜1114dが低抵抗配線1115により相互接続される。1つのワードドライバWD0の高電圧印加ノード1114aがリンク素子1112を介して高電圧ノード1110に結合される。1つのワード線グループにおいて不良ワードドライバが存在する場合には、リンク素子1112が溶断される。これにより4つのワードドライバWD0〜WD3の高電圧印加ノード1114a〜1114dが高電圧ノード1110から切り離され、これらのワードドライバWD0〜WD3に対する高電圧供給が禁止される。図129に示す構成においては、1本のワード線(ワードドライバ)ごとに救済が可能であるが、この図130に示す構成においては、1つのワード線グループを単位として救済(置換)が行なわれる。確実に不良ワードドライバにおけるリーク電流を抑制することができる。
上述のように、ワード線不良(ワードドライバ不良)が生じた場合、単にワード線の置換のみを行なうのではなく、ワードドライバに対する高電圧供給をも停止することにより、高電圧発生回路の負荷が軽減され、応じて安定に高電圧を各正常な回路へ供給することができる。また応じて高電圧発生回路の消費電流も低減され、低消費電流の半導体装置(半導体記憶装置)が実現される。
[冗長部の構成]
図131は、図130に示す不良ワードドライバと置換されるべき冗長回路の部分の構成を示す図である。図131においては、ワード線WL0〜WL3のグループと置換されるスペアワード線SWL0〜SWL3が設けられる。スペアワード線SWL0〜SWL3それぞれに対応してスペアワードドライバSWD0〜SWD3が設けられる。スペアワードドライバSWD0〜SWD3の構成は、図130に示すワードドライバWD0〜WD3の構成と同じであり、対応する構成要素に対し末尾に“s”を付し、その詳細説明は省略する。スペアワードドライバSWD0〜SWD3の高電圧印加ノード1114as〜1114dsの各々は信号線(低抵抗配線)1115sを介して相互接続される。スペアワードドライバSWD0の高電圧印加ノード1114asは、プログラム回路1120の出力信号に応答して導通するpチャネルMOSトランジスタで構成されるスイッチングトランジスタ1125を介して高電圧ノード1110に結合される。
プログラム回路1120は、電圧源ノード(外部電源電圧、内部電源電圧いずれであってもよい)1121に結合される一方導通ノードと接地ノードに接続されるゲート電極とリンク素子1123に接続される他方導通ノードを有するpチャネルMOSトランジスタ1122と、リンク素子に接続される一方導通ノードと接地電位に接続されるゲート電極と接地電位に接続される他方導通ノードとを有するnチャネルMOSトランジスタ1124と、リンク素子1123とMOSトランジスタ1120の接続ノードに接続される信号線1128上の電位を反転するインバータ1126と、インバータ1126の出力信号に応答して信号線1128を選択的に接地電位へ結合するスイッチング素子1125と、インバータ1126の出力信号を反転するインバータ1127を含む。インバータ1127は、ワードドライバWD0〜WD3およびスペアワードドライバSWD0〜SWD3と同様、レベル変換機能を備え、高電圧VPPレベルのハイレベルの信号を出力する。
このスペアワードドライバSWD0〜SWD3のグループを選択するために不良ワード線(不良ワードドライバ)選択時に活性化されてグループの指定信号を出力するスペアロウデコーダ1101と、不良ワード線(不良ワードドライバ)選択時に活性状態とされ、スペアワード線SWL0〜SWL3のうちの1つを特定する信号を出力するためのスペアプリデコーダ1103と、スペアプリデコーダ1103の出力信号をデコードする、スペアワード線SWL0〜SWL3それぞれに対応して設けられるスペアXデコーダSX0〜SX3と、スペアロウデコーダ1101の出力信号に従ってスペアXデコーダX0〜X3の出力信号を対応のスペアワードドライバSWD0〜SWD3へ伝達する選択ゲートSTrXを含む。
プログラム回路1120では、このスペアワード線SWL0〜SWL3が使用されないとき(不良ワード線または不良ワードドライバが存在しないとき)においては、リンク素子1123は導通状態とされる。この状態においては、信号線1128上の電位がハイレベルであり、インバータ1126の出力信号が接地電位レベルのローレベルとされる。この場合、インバータ1127からは高電圧VPPレベルの信号が出力され、スイッチング素子1130が非導通状態とされてスペアワードドライバSWD0〜SWD3へは高電圧が供給されない。
不良ワード線(または不良ワードドライバ)が存在するとき、リンク素子1123が溶断され、信号線1128上の電位が接地電位レベルとなる(MOSトランジスタ1124が非導通状態であるが、電源投入時の信号線1128上の電位はローレベルであり、インバータ1126およびスイッチング素子1125により接地電位レベルの電位に固定される)。応じてインバータ1127の出力信号が接地電位レベルのローレベルとなり、スイッチングトランジスタ1130が導通し、スペアワードドライバSWD0〜SWD3へ高電圧ノード1110からの高電圧が各高電圧印加ノード1114as〜1114dsへ伝達される。この状態において、不良ワードドライバが選択されたときには、スペアロウデコーダ1101およびスペアプリデコーダ1103が活性状態とされ、不良ワード線と置換されたスペアワード線が選択状態とされる。
上述の構成において不良ワード線(または不良ワードドライバ)が存在するときのみ冗長回路部分へ高電圧を印加することができ、不必要な高電圧の使用を停止することができ、高電圧発生回路の負荷が軽減される。
なお、上述の半導体装置においては、不良ワード線の救済(置換)は4本のワード線をグループ(単位)として救済(置換)が行なわれている。しかしながら、この不良救済は、1つのメモリブロック(たとえばワード線64本)単位で置換が行なわれる構成であっても本実施例の構成は適用可能である。
[実施例30]
図132は、この発明の第30の実施例である半導体装置の要部の構成を示す図である。図132においては、内部電圧線1300上には電圧発生部1302からの内部電圧が伝達される。この電圧発生部1302は、外部電源電圧を電圧線1300へ与えてもよく、また高電圧VPPを発生してもよく、また内部降圧された電源電圧を発生してもよい。この内部電圧線1300に対し並列にそれぞれが同じ機能を実現する複数の内部回路1302a〜1302gがリンク素子1305a〜1305gを介して相互接続される。内部回路1302a〜1302eは、それぞれが同じ機能を実現する回路であればよく、たとえば半導体記憶装置における1つのメモリブロックまたはメモリアレイであってもよく、また1つのメモリブロックにおけるセンスアンプ、またはワードドライバであってもよい。
内部回路1302a〜1302gと同一の機能を実現する冗長内部回路1302hおよび1302iがそれぞれ、また、並列にスイッチング素子1310a〜1310bを介して内部電圧線1300に接続される。スイッチング素子1310aおよび1310bはそれぞれに対応して設けられるプログラム回路1320aおよび1320bの出力信号によりその導通/非導通が制御される。
内部回路1302a〜1302gが正常状態においては、リンク素子1305a〜1305gは導通状態とされる。同様、プログラム回路1320aおよび1320bにおいてもリンク素子1325は導通状態とされる。この状態においては、プログラム回路1320aからは、先の実施例と同様にして、インバータからローレベルの信号が出力され、スイッチングトランジスタ1310aおよび1310bは非導通状態とされて冗長内部回路1308aおよび1308bは内部電圧伝達線1300から切り離される。
内部回路1302a〜1302gのいずれかにおいて不良が発生した場合、不良が発生した内部回路の対応のリンク素子1305が溶断され、内部電圧伝達線1300から不良内部回路が切り離される。同様、プログラム回路1320aおよび1320bの一方または双方においてリンク素子1325が溶断され、プログラム回路1320aおよび/または1320bからの信号がハイレベルとされ、スイッチングトランジスタ1310aおよび/または1310bが導通状態とされ、冗長内部回路1308aおよび/または1308bが内部電圧線1300に接続される。これにより、不良内部回路と冗長内部回路との置換が行なわれる。これにより、電圧発生部1302は不良内部回路から切り離されるため、不必要な電流消費がなくなり、安定に一定の電圧レベルの電圧を各内部回路および/または冗長内部回路へ供給することができ、安定な内部電圧を伝達する内部電圧発生系を実現することができる。