JP5034682B2 - Method for producing particulate metal soap - Google Patents

Method for producing particulate metal soap Download PDF

Info

Publication number
JP5034682B2
JP5034682B2 JP2007144179A JP2007144179A JP5034682B2 JP 5034682 B2 JP5034682 B2 JP 5034682B2 JP 2007144179 A JP2007144179 A JP 2007144179A JP 2007144179 A JP2007144179 A JP 2007144179A JP 5034682 B2 JP5034682 B2 JP 5034682B2
Authority
JP
Japan
Prior art keywords
soap
metal
metal soap
acid
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007144179A
Other languages
Japanese (ja)
Other versions
JP2008297233A (en
Inventor
弘寿 江越
篤 宮田
敬一 長川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2007144179A priority Critical patent/JP5034682B2/en
Publication of JP2008297233A publication Critical patent/JP2008297233A/en
Application granted granted Critical
Publication of JP5034682B2 publication Critical patent/JP5034682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ステアリン酸金属石鹸を主成分とする微粒子金属石鹸の製造方法に関し、詳しくは、特別な操作や反応装置を必要とせず、一般的な装置を用いて、一般的な複分解法によって、平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子が5重量%以下である、ステアリン酸金属石鹸を主成分とする微粒子金属石鹸を容易に且つ効率よく製造する方法に関する。
The present invention relates to a method for producing a fine particle metal soap mainly composed of a metal stearate soap, and in particular, does not require a special operation or reaction apparatus, using a general apparatus, by a general metathesis method, The present invention relates to a method for easily and efficiently producing a fine particle metal soap mainly composed of a metal stearate having a mean particle size of 1.0 μm or less and particles having a particle size larger than 4 μm of 5% by weight or less.

金属石鹸の工業的な製造方法としては、脂肪酸を苛性ソーダや苛性カリにてケン化してアルカリ石鹸とした後、これを金属塩と反応させて、金属石鹸を得る複分解法と、脂肪酸を金属の酸化物や水酸化物と反応させて、金属石鹸を得る直接法が最も一般的である。これらの方法のうち、複分解法は、直接法に比べて、一次粒子径の小さい製品が得られるが、他方、乾燥温度によっては、一次粒子が強い二次凝集を起こして、平均粒子径が数μmから十数μmにわたる製品しか得られない。直接法によれば、得られる製品は、一次粒子径の分布幅が大きく、また、一次粒子径も大きい。   As an industrial method for producing metal soaps, fatty acids are saponified with caustic soda or caustic potash to obtain alkaline soaps, which are then reacted with metal salts to obtain metal soaps, and fatty acids are converted into metal oxides. The direct method of obtaining metal soap by reacting with or hydroxide is most common. Among these methods, the metathesis method gives a product with a smaller primary particle size compared to the direct method. On the other hand, depending on the drying temperature, the primary particles cause strong secondary aggregation, and the average particle size is several. Only products ranging from μm to over a dozen μm can be obtained. According to the direct method, the product obtained has a large primary particle size distribution width and a large primary particle size.

金属石鹸は、トナー、化粧品、顔料、繊維等の付着防止、滑性付与、分散付与等を目的とする添加剤として種々の産業分野において用いられているが、近年、トナー、化粧品、顔料等の微粒子化に伴い、それらの用途における添加剤として、金属石鹸についても、微粒子化の要望が強まってきている。   Metal soap is used in various industrial fields as an additive for the purpose of preventing adhesion of toner, cosmetics, pigments, fibers, etc., imparting lubricity, imparting dispersion, etc. In recent years, such as toners, cosmetics, pigments, etc. As fine particles have been made, there is an increasing demand for fine particles of metal soap as an additive in those applications.

金属石鹸を微粒子化するには、従来から既に知られている代表的な方法として、複分解法や直接法によって得られた金属石鹸の乾燥物を高圧空気による乾式粉砕や、シリコーンオイル等に分散させ、ビーズミルにて湿式粉砕する方法が知られている。しかし、乾式粉砕によれば、一般に、平均粒子径1μm以下にまで微粒子化することは困難であり、他方、湿式粉砕によれば、微粒子化はある程度は可能であるが、平均粒子径1μm以下にまで微粒子化するには長時間を要するという問題がある。   In order to make metal soap into fine particles, as a representative method that has been known in the past, a dry product of metal soap obtained by a metathesis method or a direct method is dispersed in dry pulverization with high-pressure air or silicone oil. A method of wet grinding with a bead mill is known. However, according to dry pulverization, it is generally difficult to make fine particles to an average particle diameter of 1 μm or less. On the other hand, according to wet pulverization, fine particle formation is possible to some extent, but the average particle diameter is 1 μm or less. There is a problem that it takes a long time to make fine particles.

そこで、脂肪酸アルカリ石鹸の水溶液と金属塩とを別々に混合機の回転子に直接供給して両者を瞬時に混合した後、反応生成物を直ちに混合機から排出するという特殊な方法にて反応を行う方法も知られているが(特許文献1参照)、得られる金属石鹸は依然として平均粒子径が2μm以上であって、微粒子化の要請に十分に応えるものではない。   Therefore, the aqueous solution of fatty acid alkaline soap and the metal salt are separately supplied directly to the rotor of the mixer, and both are instantaneously mixed, and then the reaction product is immediately discharged from the mixer. Although the method to perform is also known (refer patent document 1), the obtained metal soap still has an average particle diameter of 2 μm or more, and does not sufficiently meet the demand for fine particles.

また、炭素数4〜30の脂肪酸アルカリ金属塩又はアンモニウム塩の0.001〜20重量%水溶液と無機金属塩0.001〜20重量%水溶液又は分散液とを、生成する金属石鹸の結晶転移開始温度以下で混合して、金属石鹸のスラリーを得、次いで、これを金属石鹸の結晶転移開始温度以下で乾燥処理して、金属石鹸の微粒子を得る方法も知られている(特許文献2参照)。この方法によれば、微細な金属石鹸の一次粒子の乾燥温度をその金属石鹸の結晶転移開始温度以下とすることによって、乾燥による二次凝集を少なくするものと考えられ、概ね、平均粒子径2μm以下の金属石鹸を得ることができるが、乾燥に長時間を必要とし、生産効率に劣るうえに、得られる金属石鹸の粒子が未だ、凝集しているので、分散性もそれ程、改善されていない。
特開平1−299247号公報 特開平11−323396号公報
Moreover, the crystal transition start of the metal soap which produces | generates 0.001-20 weight% aqueous solution and inorganic metal salt 0.001-20 weight% aqueous solution or dispersion of C4-C30 fatty acid alkali metal salt or ammonium salt There is also known a method in which a metal soap slurry is obtained by mixing at a temperature lower than that, and then dried at a temperature lower than the crystal transition start temperature of the metal soap to obtain metal soap fine particles (see Patent Document 2). . According to this method, it is considered that the secondary aggregation due to drying is reduced by setting the drying temperature of the primary particles of the fine metal soap to be equal to or lower than the crystal transition start temperature of the metal soap. Although the following metal soaps can be obtained, drying takes a long time, the production efficiency is inferior, and the obtained metal soap particles are still agglomerated, so the dispersibility has not been improved so much. .
JP-A-1-299247 JP-A-11-323396

本発明は、金属石鹸の微粒子化における上述した問題を解決するためになされたものであって、特別な操作や反応装置を必要とせず、一般的な装置を用いて、一般的な複分解法によって、ステアリン酸金属石鹸を主成分とする微粒子金属石鹸を容易に且つ効率よく製造する方法を提供することを目的とする。更に、本発明は、そのような方法によって得られる微粒子金属石鹸を提供することを目的とする。   The present invention has been made to solve the above-described problems in metal soap micronization, and does not require any special operation or reaction apparatus. Another object of the present invention is to provide a method for easily and efficiently producing a fine particle metal soap mainly composed of a metal stearate soap. Furthermore, this invention aims at providing the fine particle metal soap obtained by such a method.

本発明によれば、ステアリン酸のアルカリ石鹸と、融点が70℃以上であって、ヒドロキシル基を有していてもよい第2の直鎖の飽和脂肪酸のアルカリ石鹸とを水中において金属塩と反応させ、得られたステアリン酸の金属石鹸と上記第2の脂肪酸の金属石鹸の混合物を水から分離し、これを上記ステアリン酸の金属石鹸の結晶転移温度以上の温度で乾燥させた後、粉砕することを特徴とする、平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子が5重量%以下である微粒子金属石鹸の製造方法が提供される。   According to the present invention, an alkaline soap of stearic acid and an alkaline soap of a second linear saturated fatty acid having a melting point of 70 ° C. or more and optionally having a hydroxyl group are reacted with a metal salt in water. The mixture of the resulting stearic acid metal soap and the second fatty acid metal soap is separated from water, dried at a temperature above the crystal transition temperature of the stearic acid metal soap, and then pulverized. There is provided a method for producing a fine particle metal soap having an average particle size of 1.0 μm or less and 5% by weight or less of particles having a particle size larger than 4 μm.

本発明によれば、上記第2の脂肪酸として、ベヘニン酸と12−ヒドロキシステアリン酸から選ばれる少なくとも1種が好ましく用いられる。また、上記第2の脂肪酸は、好ましくは、ステアリン酸と第2の脂肪酸の合計量に対して、2〜20重量%の範囲で用いられる。   According to the present invention, at least one selected from behenic acid and 12-hydroxystearic acid is preferably used as the second fatty acid. The second fatty acid is preferably used in a range of 2 to 20% by weight based on the total amount of stearic acid and the second fatty acid.

本発明の方法によれば、特別な操作や反応装置を必要とせず、一般的な複分解法によって、平均粒子径1.0μm以下、最大粒子径4μm以下のステアリン酸金属石鹸を主成分とする微粒子金属石鹸を容易に且つ効率的に得ることができる。   According to the method of the present invention, fine particles mainly composed of a metal stearate soap having an average particle size of 1.0 μm or less and a maximum particle size of 4 μm or less are obtained by a general metathesis method without requiring any special operation or reaction apparatus. Metal soap can be obtained easily and efficiently.

本発明による微粒子金属石鹸の製造方法は、ステアリン酸のアルカリ石鹸と、融点が70℃以上であって、ヒドロキシル基を有していてもよい第2の直鎖の飽和脂肪酸のアルカリ石鹸とを水中において金属塩と反応させ、得られたステアリン酸の金属石鹸と上記第2の脂肪酸の金属石鹸の混合物を分離し、これを上記ステアリン酸の金属石鹸の結晶転移温度以上の温度で乾燥させた後、粉砕することによって、平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子が5重量%以下である微粒子金属石鹸を得るものである。   The method for producing a fine particle metal soap according to the present invention comprises an alkaline soap of stearic acid and an alkaline soap of a second straight-chain saturated fatty acid having a melting point of 70 ° C. or higher and optionally having a hydroxyl group in water. And a mixture of the obtained stearic acid metal soap and the second fatty acid metal soap is separated and dried at a temperature equal to or higher than the crystal transition temperature of the stearic acid metal soap. By pulverizing, a fine particle metal soap having an average particle size of 1.0 μm or less and particles having a particle size larger than 4 μm is 5% by weight or less is obtained.

ステアリン酸は、化学的には、それ自体は、炭素数18の直鎖飽和脂肪酸を指す名称であるが、牛脂、豚脂等の動物性油脂やパーム油等の植物性油脂を原料とし、含まれる不飽和脂肪酸を水素添加したものも、工業的には、一般に、工業用ステアリン酸と呼ばれている。このような動植物油の不飽和脂肪酸を水素添加した工業用ステアリン酸の主成分は、炭素数18の直鎖飽和脂肪酸であるステアリン酸以外に、炭素数16の直鎖飽和脂肪酸であるパルミチン酸と少量の炭素数14の直鎖飽和脂肪酸であるミリスチン酸が含まれている。本発明においては、ステアリン酸というとき、炭素数18の直鎖飽和脂肪酸のみならず、上述したように、パルミチン酸とミリスチン酸を含む工業用ステアリン酸をも含むものとする。ステアリン酸のアルカリ石鹸としては、例えば、ナトリウム石鹸、カリウム石鹸、アンモニウム石鹸等が用いられる。   Stearic acid is a name that refers to a straight-chain saturated fatty acid having 18 carbon atoms in chemical terms, but contains animal oils such as beef tallow and lard, and vegetable oils such as palm oil. A product obtained by hydrogenating an unsaturated fatty acid is generally referred to as industrial stearic acid. The main components of industrial stearic acid obtained by hydrogenating unsaturated fatty acids of such animal and vegetable oils include palmitic acid, which is a linear saturated fatty acid having 16 carbon atoms, in addition to stearic acid, which is a linear saturated fatty acid having 18 carbon atoms. A small amount of myristic acid, which is a linear saturated fatty acid having 14 carbon atoms, is included. In the present invention, when referred to as stearic acid, not only linear saturated fatty acids having 18 carbon atoms but also industrial stearic acid including palmitic acid and myristic acid as described above are included. Examples of the alkaline soap of stearic acid include sodium soap, potassium soap, and ammonium soap.

本発明において、第2の脂肪酸は、融点が70℃以上であって、ヒドロキシル基を有していてもよい直鎖の飽和脂肪酸であって、例えば、アラキン酸、ベヘニン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の炭素数20〜30の直鎖飽和脂肪酸や12−ヒドロキシステアリン酸が好ましく用いられ、なかでも、ベヘニン酸又は12−ヒドロキシステアリン酸が好ましく用いられる。これらの第2の脂肪酸は、単独で用いてもよく、また、2種以上を併用してもよい。   In the present invention, the second fatty acid is a straight-chain saturated fatty acid having a melting point of 70 ° C. or higher and may have a hydroxyl group, and examples thereof include arachidic acid, behenic acid, lignoceric acid, and serotic acid. C20-30 linear saturated fatty acids such as montanic acid and melissic acid, and 12-hydroxystearic acid are preferably used. Among them, behenic acid or 12-hydroxystearic acid is preferably used. These 2nd fatty acids may be used independently and may use 2 or more types together.

本発明においては、第2の脂肪酸も、ステアリン酸の場合と同様に、一般に工業用として入手できるものでもよく、このような工業用の第2の脂肪酸は、例えば、工業用のベヘニン酸の場合であれば、ベヘニン酸以外に他の脂肪酸を含有していてもよい。但し、このように、工業用の第2の脂肪酸を用いる場合であっても、その融点は70℃以上であることが必要である。   In the present invention, as in the case of stearic acid, the second fatty acid may be generally available for industrial use. Such industrial second fatty acid is, for example, industrial behenic acid. If so, other fatty acids may be contained in addition to behenic acid. However, even when the industrial second fatty acid is used, the melting point must be 70 ° C. or higher.

本発明によれば、第2の脂肪酸のアルカリ石鹸も、ステアリン酸のアルカリ石鹸と同様に、例えば、ナトリウム石鹸、カリウム石鹸、アンモニウム石鹸等が用いられる。第2の脂肪酸のアルカリ石鹸におけるアルカリ成分(アルカリ金属成分又はアンモニウム成分)は、ステアリン酸のアルカリ石鹸におけるアルカリ成分と必ずしも同じである必要はないが、しかし、好ましくは、同じである。   According to the present invention, for example, sodium soap, potassium soap, ammonium soap or the like is used as the second fatty acid alkaline soap, like the stearic acid alkaline soap. The alkaline component (alkali metal component or ammonium component) in the second fatty acid alkaline soap is not necessarily the same as the alkaline component in the stearic acid alkaline soap, but is preferably the same.

本発明において、第2の脂肪酸は、ステアリン酸と第2の脂肪酸の合計量に対して、2〜20重量%の範囲で用いられ、好ましくは、5〜15重量%の範囲で用いられる。第2の脂肪酸の割合が2重量%よりも少ないときは、第2の脂肪酸を用いない場を含めて、得られた金属石鹸を乾燥させた後、粉砕しても、平均粒子径1.0μm以下の微粒子金属石鹸を得ることができず、また、粒径4μm以下の粒子の割合が5重量%以下である微粒子金属石鹸を得ることができない。第2の脂肪酸の割合が20重量%よりも多いときは、得られる金属石鹸がステアリン酸金属石鹸としての望ましい特性を害されるおそれがある。   In the present invention, the second fatty acid is used in the range of 2 to 20% by weight, preferably 5 to 15% by weight, based on the total amount of stearic acid and the second fatty acid. When the ratio of the second fatty acid is less than 2% by weight, the average particle diameter is 1.0 μm even when the obtained metal soap is dried and ground, including the place where the second fatty acid is not used. The following fine particle metal soap cannot be obtained, and the fine particle metal soap in which the proportion of particles having a particle diameter of 4 μm or less is 5% by weight or less cannot be obtained. When the proportion of the second fatty acid is more than 20% by weight, the obtained metal soap may impair the desirable properties as a metal stearate soap.

本発明において、微粒子金属石鹸を構成する金属種としては、特に制限はなく、リチウム、カルシウム、バリウム、マグネシウム、亜鉛、アルミニウム、銅、鉄、鉛、コバルト、ニッケル等であり、2種以上の金属種が混合されていてもよい。従って、本発明において、ステアリン酸のアルカリ石鹸と第2の脂肪酸のアルカリ石鹸と反応させる金属塩としては、特に限定されるものではないが、例えば、硫酸亜鉛、塩化カルシウム、硫酸マグネシウム等を挙げることができる。   In the present invention, the metal species constituting the fine particle metal soap is not particularly limited and includes lithium, calcium, barium, magnesium, zinc, aluminum, copper, iron, lead, cobalt, nickel, and the like, and two or more metals The seeds may be mixed. Accordingly, in the present invention, the metal salt to be reacted with the alkaline soap of stearic acid and the alkaline soap of the second fatty acid is not particularly limited, and examples thereof include zinc sulfate, calcium chloride, magnesium sulfate and the like. Can do.

本発明の方法による微粒子金属石鹸の製造は、従来から知られている一般的な複分解法に従って行われる。従って、反応操作や反応条件、反応装置等において、何ら特別なものは必要ではなく、例えば、ステアリン酸のアルカリ石鹸と第2の脂肪酸のアルカリ石鹸とを含むアルカリ石鹸の水溶液と上述したような金属塩の水溶液をそれぞれ調製し、これらを混合し、反応させればよい。上記アルカリ石鹸の水溶液は、通常、温水にステアリン酸と第2の脂肪酸を懸濁させ、これに、例えば、苛性ソーダ水溶液を加え、攪拌して、ステアリン酸のアルカリ石鹸と第2の脂肪酸のアルカリ金属石鹸を含む水溶液を調製し、これをアルカリ石鹸の水溶液として、後続する金属塩との反応に用いる。   Production of the fine particle metal soap by the method of the present invention is carried out according to a conventional metathesis method known in the art. Accordingly, there is no need in the reaction operation, reaction conditions, reaction apparatus, etc., for example, an aqueous solution of an alkaline soap containing an alkaline soap of stearic acid and an alkaline soap of a second fatty acid, and the metal as described above. An aqueous salt solution may be prepared, mixed, and reacted. The aqueous solution of the alkaline soap is usually obtained by suspending stearic acid and a second fatty acid in warm water, and adding, for example, a caustic soda aqueous solution to the mixture, stirring, the alkaline soap of stearic acid and the alkali metal of the second fatty acid An aqueous solution containing soap is prepared, and this is used as an aqueous solution of alkaline soap for the subsequent reaction with the metal salt.

ここに、本発明において、上記アルカリ石鹸の濃度は、通常、0.1〜15重量%の範囲であり、好ましくは、1〜10重量%の範囲である。他方、金属塩水溶液の濃度は、通常、0.1〜20重量%の範囲であり、好ましくは、0.1〜10重量%の範囲である。アルカリ石鹸と金属塩の水溶液を混合し、反応させる際の反応温度は、通常、20〜95℃の範囲であり、好ましくは、35〜80℃の範囲であり、最も好ましくは、50〜70℃の範囲である。   Here, in the present invention, the concentration of the alkali soap is usually in the range of 0.1 to 15% by weight, and preferably in the range of 1 to 10% by weight. On the other hand, the concentration of the aqueous metal salt solution is usually in the range of 0.1 to 20% by weight, and preferably in the range of 0.1 to 10% by weight. The reaction temperature at the time of mixing and reacting the alkaline soap and metal salt aqueous solution is usually in the range of 20 to 95 ° C, preferably in the range of 35 to 80 ° C, and most preferably 50 to 70 ° C. Range.

本発明において、上記アルカリ石鹸と金属塩の水溶液を混合する際に、一方を他方に徐々に加えて混合するバッチ式の片液添加法であっても、両方を同時に混合するバッチ式又は連続式の同時添加法であってもよい。   In the present invention, when mixing the aqueous solution of the alkali soap and the metal salt, even if it is a batch type single-liquid addition method in which one is gradually added to the other and mixed, the batch type or continuous type in which both are mixed simultaneously The simultaneous addition method may be used.

このようにして、アルカリ石鹸と金属塩の水溶液を混合し、反応させることによって、ステアリン酸の金属石鹸を主成分とし、これと第2の脂肪酸の金属石鹸との混合物が生成する。そこで、本発明によれば、このステアリン酸の金属石鹸と第2の脂肪酸の金属石鹸との混合物を濾過等の適宜の手段にて水から分離して、集め、これを上記ステアリン酸の金属石鹸の結晶転移温度以上の温度で乾燥させて、乾燥物を得る。この乾燥物を指で軽くほぐすことによって、嵩比重が0.5〜1.0g/mLの金属石鹸の凝集物が得られる。ここに、本発明によれば、このような金属石鹸の凝集物を粉砕することによって、平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子の割合が5重量%以下であり、好ましくは、嵩比重が0.1g/mL以下である微粒子金属石鹸を容易に得ることができる。   In this way, by mixing and reacting an aqueous solution of alkali soap and metal salt, a mixture of stearic acid metal soap as a main component and a second fatty acid metal soap is formed. Therefore, according to the present invention, the mixture of the stearic acid metal soap and the second fatty acid metal soap is separated from the water by an appropriate means such as filtration and collected, and this is collected. And dried at a temperature equal to or higher than the crystal transition temperature. By lightly loosening the dried product with a finger, an aggregate of metal soap having a bulk specific gravity of 0.5 to 1.0 g / mL can be obtained. Here, according to the present invention, by crushing such an aggregate of metal soap, the average particle size is 1.0 μm or less, and the proportion of particles having a particle size larger than 4 μm is 5% by weight or less. Yes, preferably, a particulate metal soap having a bulk specific gravity of 0.1 g / mL or less can be easily obtained.

本発明において、得られた金属石鹸を濾過し、水洗し、乾燥する方法は、特に限定されるものではなく、従来から知られている方法によればよい。また、乾燥させた金属石鹸を粉砕する方法も、特に限定されるものではなく、例えば、ピンミル、アトマイザー、ジェットミル等によることができる。   In the present invention, the method of filtering, washing and drying the obtained metal soap is not particularly limited, and may be a conventionally known method. Further, the method for pulverizing the dried metal soap is not particularly limited, and for example, a pin mill, an atomizer, a jet mill or the like can be used.

本発明によれば、複分解法による金属石鹸の製造において、ステアリン酸のアルカリ石鹸と融点が70℃以上の第2の脂肪酸のアルカリ石鹸を含む水溶液を調製し、これを金属塩の水溶液と混合して、反応させることによって、その理由は、必ずしも、明らかではないが、第2の脂肪酸を併用した場合、その金属石鹸がステアリン酸金属石鹸と混在することによって、ステアリン酸金属石鹸の結晶成長を抑え、且つ、乾燥時の凝集を防ぐ効果が生じると考えられる。   According to the present invention, in the production of metal soap by the metathesis method, an aqueous solution containing an alkaline soap of stearic acid and an alkaline soap of a second fatty acid having a melting point of 70 ° C. or more is prepared, and this is mixed with an aqueous solution of a metal salt. The reason for this reaction is not necessarily clear, but when the second fatty acid is used in combination, the metal soap is mixed with the metal stearate so that the crystal growth of the metal stearate soap is suppressed. And it is thought that the effect which prevents aggregation at the time of drying arises.

本発明において、上記ステアリン酸の金属石鹸の結晶転移温度とは、ステアリン酸の金属石鹸の結晶構造が変化し始める温度をいい、金属石鹸の金属種によって相違する。即ち、ステアリン酸の金属石鹸の結晶転移温度は、亜鉛塩が100℃、カルシウム塩は94℃、マグネシウム塩は73℃である。本発明において、特に好ましい乾燥温度は、ステアリン酸の金属石鹸の結晶転移温度よりも5℃高い温度から、融点よりも5℃低い温度までの範囲である。例えば、得られるステアリン酸金属石鹸がステアリン酸亜鉛を主成分とするときは、乾燥温度は、105〜118℃の範囲であることが好ましい。   In the present invention, the crystal transition temperature of the stearic acid metal soap refers to a temperature at which the crystal structure of the stearic acid metal soap starts to change, and differs depending on the metal type of the metal soap. That is, the crystal transition temperature of the metal soap of stearic acid is 100 ° C for the zinc salt, 94 ° C for the calcium salt, and 73 ° C for the magnesium salt. In the present invention, a particularly preferable drying temperature is in a range from a temperature 5 ° C. higher than the crystal transition temperature of the stearic acid metal soap to a temperature 5 ° C. lower than the melting point. For example, when the obtained metal stearate soap contains zinc stearate as a main component, the drying temperature is preferably in the range of 105 to 118 ° C.

本発明によれば、ステアリン酸のアルカリ石鹸とこれに対して所定の割合の第2の脂肪酸のアルカリ石鹸と金属塩とを水中で反応させ、得られたステアリン酸の金属石鹸を主成分とする金属石鹸の混合物を本発明に従ってステアリン酸の金属石鹸の結晶転移温度以上の温度で加熱し、水分量が所定値となるまで、乾燥させることによって、平均粒子径が2μm以上であり、粒径4μm以上の粒子の割合が10%以上である上記金属石鹸の混合物の凝集物が得られる。次いで、このような金属石鹸の混合物を通常の手段で粉砕することによって、容易に平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子が5重量%以下である微粒子金属石鹸を得ることができる。好ましい態様によれば、本発明に従って、このようにして得られる微粒子金属石鹸は、その嵩比重が0.1g/mL以下であり、特に、嵩比重が0.05〜0.1g/mLの範囲にある微粒子金属石鹸を得ることができる。   According to the present invention, an alkaline soap of stearic acid and a predetermined ratio of the second fatty acid alkaline soap and a metal salt are reacted in water, and the resulting stearic acid metal soap is a main component. The mixture of metal soaps is heated at a temperature not lower than the crystal transition temperature of stearic acid metal soap according to the present invention and dried until the water content reaches a predetermined value, whereby the average particle size is 2 μm or more and the particle size is 4 μm. An agglomerate of the above-mentioned metal soap mixture having a particle ratio of 10% or more is obtained. Subsequently, the mixture of such metal soaps is pulverized by ordinary means, whereby the average particle size is easily 1.0 μm or less and the particles having a particle size larger than 4 μm are 5% by weight or less. Can be obtained. According to a preferred embodiment, the particulate metal soap thus obtained according to the present invention has a bulk specific gravity of 0.1 g / mL or less, in particular a bulk specific gravity in the range of 0.05 to 0.1 g / mL. A fine particle metal soap can be obtained.

アルカリ石鹸と金属塩との反応によって得られた金属石鹸を、その金属石鹸の主成分であるステアリン酸の金属石鹸の結晶転移温度よりも低い温度で乾燥させるときは、場合によっては、平均粒子径1μm程度の金属石鹸を得ることができるが、所定の水分量とするための乾燥に長時間を必要とし、生産効率に劣る。   When the metal soap obtained by the reaction between the alkali soap and the metal salt is dried at a temperature lower than the crystal transition temperature of the metal soap of stearic acid, which is the main component of the metal soap, the average particle size may be reduced. Although a metal soap of about 1 μm can be obtained, it takes a long time for drying to obtain a predetermined amount of water, which is inferior in production efficiency.

以下に実施例によって本発明を説明するが、本発明はこれらの実施例によって何ら制限されるものではない。以下において、脂肪酸の融点はBUCHI製 Melting Point B−545を用いて測定した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Below, melting | fusing point of the fatty acid was measured using Melting Point B-545 made from BUCHI.

以下において用いた第2の脂肪酸はすべて工業用のものである。また、以下の実施例1〜7と比較例1〜4、8及び9において得られる金属石鹸は、ステアリン酸金属石鹸を主成分とする第2の脂肪酸の金属石鹸との混合物であるが、簡単のために、単に、ステアリン酸金属石鹸という。   The second fatty acids used below are all for industrial use. The metal soaps obtained in the following Examples 1 to 7 and Comparative Examples 1 to 4, 8 and 9 are a mixture of a second fatty acid metal soap mainly composed of a metal stearate soap, but simple. For this reason, it is simply called metal stearate soap.

実施例1
80℃の温水100Lに工業用牛脂ステアリン酸(ステアリン酸65%、パルミチン酸34%、ミリスチン酸1%、融点60.2℃)3.6kgとベヘニン酸(融点78.3℃)0.4kgを懸濁させ、これに400g/L濃度の苛性ソーダ水溶液1460mLを加え、30分間攪拌した後、70℃に冷却して、アルカリ石鹸水溶液を調製した。別に、70℃の温水50Lに硫酸亜鉛7水塩の結晶2.2kgを溶解させて、硫酸亜鉛水溶液を調製した。
Example 1
Industrial beef tallow stearic acid (stearic acid 65%, palmitic acid 34%, myristic acid 1%, melting point 60.2 ° C) 3.6kg and behenic acid (melting point 78.3 ° C) 0.4kg in 100L of 80 ° C hot water The suspension was suspended, and 1460 mL of 400 g / L sodium hydroxide aqueous solution was added thereto, stirred for 30 minutes, and then cooled to 70 ° C. to prepare an alkaline soap aqueous solution. Separately, 2.2 kg of zinc sulfate heptahydrate crystals were dissolved in 50 L of warm water at 70 ° C. to prepare an aqueous zinc sulfate solution.

上記硫酸亜鉛水溶液を上記アルカリ石鹸水溶液に温度70℃にて30分かけて加え、温度70℃を維持しながら、1時間攪拌して熟成した。このようにして得られた金属石鹸のスラリーを濾過し、得られたケーキを濾液の導電率が300μS/cm以下になるまで水洗し、続いて、このケーキを110℃の熱風乾燥器内で12時間乾燥した。   The zinc sulfate aqueous solution was added to the alkali soap aqueous solution at a temperature of 70 ° C. over 30 minutes, and the mixture was aged by stirring for 1 hour while maintaining the temperature of 70 ° C. The metal soap slurry thus obtained is filtered, and the cake obtained is washed with water until the filtrate has a conductivity of 300 μS / cm or less. Subsequently, the cake is washed in a hot air dryer at 110 ° C. for 12 minutes. Dry for hours.

得られた金属石鹸の粉砕前の粒度分布と嵩比重は、次のようにして測定した。即ち、得られた金属石鹸の乾燥ケーキを指で軽くほぐし、目開き5.6mmの篩を通し、その0.1gにエタノール60mLを加え、超音波分散機(日本精機(株)製)を用いて2分間分散処理して、金属石鹸の分散液を調製した。この後、測定溶媒としてエタノールを用い、粒度分布測定装置(日機装(株)マイクロトラックMT−3000)に上記金属石鹸の分散液を加えて、金属石鹸の粒度分布を測定した。また、同様に、得られた金属石鹸の乾燥ケーキを指で軽くほぐし、目開き5.6mmの篩を通したものについて、嵩比重をJIS K−6720によって測定した。結果を表1に示す。   The particle size distribution and bulk specific gravity before pulverization of the obtained metal soap were measured as follows. That is, lightly loosen the dried cake of the obtained metal soap with a finger, pass through a sieve with an opening of 5.6 mm, add 60 mL of ethanol to 0.1 g of the cake, and use an ultrasonic disperser (manufactured by Nippon Seiki Co., Ltd.). For 2 minutes to prepare a metal soap dispersion. Thereafter, ethanol was used as a measurement solvent, and the dispersion liquid of the metal soap was added to a particle size distribution measuring apparatus (Nikkiso Co., Ltd. Microtrac MT-3000) to measure the particle size distribution of the metal soap. Similarly, the dry cake of the obtained metal soap was lightly loosened with a finger and passed through a sieve having an opening of 5.6 mm, and the bulk specific gravity was measured according to JIS K-6720. The results are shown in Table 1.

次いで、乾燥ケーキをアトマイザーで粗砕した後、ジェットミルにて粉砕して、水分0.5%のステアリン酸亜鉛の粉体を得た。この粉砕後の金属石鹸の粉体についても、上記と同様の測定装置と方法で粒度分布と嵩比重を測定した。   Next, the dried cake was roughly crushed with an atomizer and then pulverized with a jet mill to obtain a zinc stearate powder having a moisture content of 0.5%. For the metal soap powder after pulverization, the particle size distribution and bulk specific gravity were measured using the same measuring apparatus and method as described above.

比較例1
110℃での乾燥に代えて、70℃で乾燥した以外は、実施例1と同様にして、ステアリン酸亜鉛の粉体を得た。但し、水分を0.5%とするのに2日間を要した。
Comparative Example 1
A zinc stearate powder was obtained in the same manner as in Example 1 except that the drying was performed at 70 ° C. instead of the drying at 110 ° C. However, it took 2 days to make the water content 0.5%.

実施例2
工業用牛脂ステアリン酸3.8kgと12−ヒドロキシステアリン酸(融点76.3℃)0.2kgを用いた以外は、実施例1と同様にして、水分0.5%のステアリン酸亜鉛の粉体を得た。
Example 2
A powder of zinc stearate having a water content of 0.5% in the same manner as in Example 1 except that 3.8 kg of industrial beef tallow stearic acid and 0.2 kg of 12-hydroxystearic acid (melting point: 76.3 ° C.) were used. Got.

実施例3
工業用牛脂ステアリン酸3.4kgとベヘニン酸0.4kgと12−ヒドロキシステアリン酸0.2kgを用いた以外は、実施例1と同様にして、水分0.3%のステアリン酸亜鉛の粉体を得た。
Example 3
A powder of zinc stearate having a moisture content of 0.3% was obtained in the same manner as in Example 1 except that 3.4 kg of industrial beef tallow stearic acid, 0.4 kg of behenic acid and 0.2 kg of 12-hydroxystearic acid were used. Obtained.

実施例4
80℃の温水100Lに工業用牛脂ステアリン酸3.4kgとベヘニン酸0.4kgと12−ヒドロキシステアリン酸0.2kgを懸濁させ、これに560g/L濃度の苛性カリ水溶液1460mLを加え、30分間攪拌した後、50℃に冷却して、アルカリ石鹸水溶液を調製した。別に、50℃の温水50Lに硫酸亜鉛7水塩の結晶2.2kgを溶解させて、硫酸亜鉛水溶液を調製した。
Example 4
Suspend 3.4 kg of industrial beef tallow stearic acid, 0.4 kg of behenic acid and 0.2 kg of 12-hydroxystearic acid in 100 L of warm water at 80 ° C., add 1460 mL of a caustic potash aqueous solution having a concentration of 560 g / L, and stir for 30 minutes. After cooling to 50 ° C., an alkaline soap solution was prepared. Separately, 2.2 kg of zinc sulfate heptahydrate crystals were dissolved in 50 L of warm water at 50 ° C. to prepare an aqueous zinc sulfate solution.

上記硫酸亜鉛水溶液を上記アルカリ石鹸水溶液に温度50℃にて30分かけて加え、温度50℃を維持しながら、1時間攪拌して熟成した。このようにして得られた金属石鹸のスラリーを濾過し、得られたケーキを濾液の導電率が300μS/cm以下になるまで水洗し、続いて、このケーキを110℃の熱風乾燥器内で12時間乾燥した。次いで、これをアトマイザーで粗砕した後、ジェットミルにて粉砕して、水分0.5%のステアリン酸亜鉛の粉体を得た。   The zinc sulfate aqueous solution was added to the alkali soap aqueous solution at a temperature of 50 ° C. over 30 minutes, and the mixture was aged by stirring for 1 hour while maintaining the temperature of 50 ° C. The metal soap slurry thus obtained is filtered, and the cake obtained is washed with water until the filtrate has a conductivity of 300 μS / cm or less. Subsequently, the cake is washed in a hot air dryer at 110 ° C. for 12 minutes. Dry for hours. Next, this was crushed with an atomizer and then pulverized with a jet mill to obtain a zinc stearate powder having a water content of 0.5%.

比較例2
110℃での乾燥に代えて、70℃で乾燥した以外は、実施例4と同様にして、ステアリン酸亜鉛の粉体を得た。但し、水分を0.5%とするのに2日間を要した。
Comparative Example 2
A zinc stearate powder was obtained in the same manner as in Example 4 except that the drying was performed at 70 ° C. instead of the drying at 110 ° C. However, it took 2 days to make the water content 0.5%.

実施例5
70℃の温水50Lに300g/L濃度の塩化カルシウム水溶液2760mLを加えて、塩化カルシウム水溶液を調製した。硫酸亜鉛水溶液に代えて、この塩化カルシウム水溶液を用いた以外は、実施例1と同様にして、水分2.3%のステアリン酸カルシウムの粉体を得た。
Example 5
An aqueous calcium chloride solution was prepared by adding 2760 mL of a 300 g / L aqueous calcium chloride solution to 50 L of warm water at 70 ° C. A calcium stearate powder having a moisture content of 2.3% was obtained in the same manner as in Example 1 except that this calcium chloride aqueous solution was used instead of the zinc sulfate aqueous solution.

比較例3
110℃での乾燥に代えて、70℃で乾燥した以外は、実施例5と同様にして、ステアリン酸カルシウムの粉体を得た。但し、水分を2.5%とするのに2日間を要した。
Comparative Example 3
Instead of drying at 110 ° C., calcium stearate powder was obtained in the same manner as in Example 5 except that drying was performed at 70 ° C. However, it took 2 days to make the water content 2.5%.

実施例6
工業用牛脂ステアリン酸3.5kgとベヘニン酸0.4kgと12−ヒドロキシステアリン酸0.1kgを用いた以外は、実施例5と同様にして、反応を行い、水分2.7%のステアリン酸カルシウムの粉体を得た。
Example 6
The reaction was carried out in the same manner as in Example 5 except that 3.5 kg of industrial beef tallow stearic acid, 0.4 kg of behenic acid and 0.1 kg of 12-hydroxystearic acid were used, and calcium stearate having a water content of 2.7% was used. A powder was obtained.

実施例7
70℃の温水50Lに硫酸マグネシウム7水塩の結晶1.9kgを溶解させて、硫酸マグネシウム水溶液を調製した。硫酸亜鉛水溶液に代えて、この硫酸マグネシウム水溶液を用いると共に、得られたケーキを90℃の熱風乾燥機内で一晩乾燥した以外は、実施例1と同様にして、水分2.0%のステアリン酸マグネシウムの粉体を得た。
Example 7
A magnesium sulfate aqueous solution was prepared by dissolving 1.9 kg of magnesium sulfate heptahydrate crystals in 50 L of warm water at 70 ° C. A stearic acid solution having a water content of 2.0% was used in the same manner as in Example 1 except that this magnesium sulfate aqueous solution was used in place of the zinc sulfate aqueous solution and the obtained cake was dried overnight in a hot air dryer at 90 ° C. Magnesium powder was obtained.

比較例4
90℃での乾燥に代えて、70℃で乾燥した以外は、実施例7と同様にして、ステアリン酸マグネシウムの粉体を得た。但し、水分を2.0%とするのに3日間を要した。
Comparative Example 4
Magnesium stearate powder was obtained in the same manner as in Example 7 except that drying at 70 ° C. was performed instead of drying at 90 ° C. However, it took 3 days to adjust the moisture to 2.0%.

比較例5〜7
工業用牛脂ステアリン酸4kgのみを用いた以外は、実施例1、5又は7と同様にして、それぞれ金属石鹸の粉体を得た。
Comparative Examples 5-7
A metal soap powder was obtained in the same manner as in Example 1, 5 or 7 except that only 4 kg of industrial beef tallow stearic acid was used.

比較例8
工業用牛脂ステアリン酸3.6kgとラウリン酸(融点42.0℃)0.4kgを用いた以外は、実施例1と同様にして、水分0.5%のステアリン酸亜鉛の粉体を得た。
Comparative Example 8
A powder of zinc stearate having a water content of 0.5% was obtained in the same manner as in Example 1 except that 3.6 kg of industrial beef tallow stearic acid and 0.4 kg of lauric acid (melting point: 42.0 ° C.) were used. .

比較例9
工業用ステアリン酸3.96kgと12−ヒドロキシステアリン酸0.04kgを用いた以外は、実施例1と同様にして、水分0.5%のステアリン酸亜鉛の粉体を得た。
Comparative Example 9
A powder of zinc stearate having a water content of 0.5% was obtained in the same manner as in Example 1 except that 3.96 kg of industrial stearic acid and 0.04 kg of 12-hydroxystearic acid were used.

以上のようにして、実施例1〜7と比較例1〜9において得られた金属石鹸0.1gにエタノール60mLを加え、超音波分散機(日本精機(株)製)を用いて2分間分散処理して、それぞれ金属石鹸の分散液を調製した。この後、測定溶媒としてエタノールを用い、粒度分布測定装置(日機装(株)マイクロトラックMT−3000)に上記金属石鹸の分散液を加えて、それぞれの金属石鹸の粒度分布を測定した。また、嵩比重はJIS K−6720によって測定した。結果を表1に示す。   As described above, 60 mL of ethanol was added to 0.1 g of the metal soaps obtained in Examples 1 to 7 and Comparative Examples 1 to 9, and dispersed for 2 minutes using an ultrasonic dispersing machine (manufactured by Nippon Seiki Co., Ltd.). Each was treated to prepare a metal soap dispersion. Thereafter, ethanol was used as a measurement solvent, the dispersion liquid of the metal soap was added to a particle size distribution measuring apparatus (Nikkiso Co., Ltd. Microtrac MT-3000), and the particle size distribution of each metal soap was measured. The bulk specific gravity was measured according to JIS K-6720. The results are shown in Table 1.

Figure 0005034682
Figure 0005034682

表1に示す結果から明らかなように、本発明の実施例によれば、粉砕前の粒子径は2μm以上であるが、これを粉砕することによって、平均粒子径が0.5〜1.0μmの範囲にあり、粒径が4μm以上の粒子の割合が5重量%以下である微粒子金属石鹸を得ることができる。これに対して、第2の脂肪酸を用いないか、又は第2の脂肪酸の割合が2重量%よりも少ないときは、反応によって得られた金属石鹸を粉砕しても、目的とする平均粒子径が1.0μm以下であり、粒径が4μm以上の粒子の割合が5重量%以下である微粒子金属石鹸を得ることができない。第2の脂肪酸として、例えば、融点が70℃よりも低いラウリン酸を併用しても、同様に、目的とする微粒子金属石鹸を得ることができない。
As is apparent from the results shown in Table 1, according to the examples of the present invention, the particle diameter before pulverization is 2 μm or more, but by pulverizing this, the average particle diameter is 0.5 to 1.0 μm. In this range, a fine particle metal soap having a particle size of 4 μm or more and a ratio of particles of 5% by weight or less can be obtained. On the other hand, when the second fatty acid is not used or the proportion of the second fatty acid is less than 2% by weight, the target average particle diameter can be obtained even if the metal soap obtained by the reaction is pulverized. Is 1.0 μm or less, and it is not possible to obtain a fine particle metal soap in which the proportion of particles having a particle size of 4 μm or more is 5% by weight or less. Even if, for example, lauric acid having a melting point lower than 70 ° C. is used as the second fatty acid, the intended fine metal soap cannot be obtained.

Claims (4)

ステアリン酸のアルカリ石鹸と、融点が70℃以上であって、ヒドロキシル基を有していてもよい第2の直鎖の飽和脂肪酸のアルカリ石鹸とを水中において、リチウム、カルシウム、バリウム、マグネシウム、亜鉛、アルミニウム、銅、鉄、鉛、コバルト及びニッケルから選ばれる1種又は2種以上の金属塩と反応させ、得られたステアリン酸の金属石鹸と上記第2の脂肪酸の金属石鹸の混合物を水から分離し、これを上記ステアリン酸の金属石鹸の結晶転移温度以上の温度で乾燥させた後、粉砕することを特徴とする、平均粒子径が1.0μm以下であり、粒径が4μmよりも大きい粒子が5重量%以下である微粒子金属石鹸の製造方法。 Lithium, calcium, barium, magnesium, zinc, and an alkaline soap of stearic acid and an alkaline soap of a second straight chain saturated fatty acid having a melting point of 70 ° C. or more and optionally having a hydroxyl group Reaction with one or more metal salts selected from aluminum, copper, iron, lead, cobalt and nickel, and the mixture of the resulting stearic acid metal soap and the second fatty acid metal soap from water The average particle size is 1.0 μm or less and the particle size is larger than 4 μm, characterized in that it is separated and dried at a temperature not lower than the crystal transition temperature of the metal stearate soap and then pulverized. A method for producing a fine particle metal soap having a particle content of 5% by weight or less. ステアリン酸と第2の脂肪酸の合計量に対して、第2の脂肪酸の割合が2〜20重量%の範囲である請求項1に記載の微粒子金属石鹸の製造方法。   The method for producing a particulate metal soap according to claim 1, wherein the ratio of the second fatty acid is in the range of 2 to 20 wt% with respect to the total amount of stearic acid and the second fatty acid. ステアリン酸のアルカリ石鹸と第2の脂肪酸のアルカリ石鹸とを水中において金属塩と20〜95℃の範囲の温度にて反応させる請求項1又は2に記載の微粒子金属石鹸の製造方法。   The method for producing a fine particle metal soap according to claim 1 or 2, wherein an alkali soap of stearic acid and an alkali soap of the second fatty acid are reacted with a metal salt in water at a temperature in the range of 20 to 95 ° C. 第2の脂肪酸がベヘニン酸と12−ヒドロキシステアリン酸から選ばれる少なくとも1種である請求項1から3のいずれかに記載の微粒子金属石鹸の製造方法。   The method for producing a particulate metal soap according to any one of claims 1 to 3, wherein the second fatty acid is at least one selected from behenic acid and 12-hydroxystearic acid.
JP2007144179A 2007-05-30 2007-05-30 Method for producing particulate metal soap Active JP5034682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144179A JP5034682B2 (en) 2007-05-30 2007-05-30 Method for producing particulate metal soap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144179A JP5034682B2 (en) 2007-05-30 2007-05-30 Method for producing particulate metal soap

Publications (2)

Publication Number Publication Date
JP2008297233A JP2008297233A (en) 2008-12-11
JP5034682B2 true JP5034682B2 (en) 2012-09-26

Family

ID=40171079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144179A Active JP5034682B2 (en) 2007-05-30 2007-05-30 Method for producing particulate metal soap

Country Status (1)

Country Link
JP (1) JP5034682B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241480B2 (en) * 2008-12-26 2013-07-17 花王株式会社 Method for producing nanoparticles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974200A (en) * 1982-10-21 1984-04-26 大日本インキ化学工業株式会社 Manufacture of large granule metal soap
JPS63264547A (en) * 1987-04-17 1988-11-01 Asahi Denka Kogyo Kk Production of metallic soap
JP2004270091A (en) * 2003-03-11 2004-09-30 Nof Corp Magnesium stearate for elastic fiber and method for producing the same
EP1911357B1 (en) * 2005-07-29 2017-06-21 Nof Corporation Metal soap for addition to food and process for production thereof

Also Published As

Publication number Publication date
JP2008297233A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5874849B2 (en) Basic zinc cyanurate fine particles
JP2018168032A (en) Anhydrous calcium hydrogen phosphate, and method for producing the same
CN102336645B (en) Granular stearate, and preparation method and application thereof
US8765864B2 (en) Melamine cyanurate in crystalline form
JP5034682B2 (en) Method for producing particulate metal soap
CN102121210B (en) Calcium stearate aqueous dispersion solution and preparation method thereof
CN106087552B (en) Preparation method of water-based zinc stearate dispersion liquid, product and application thereof
CN1982410A (en) Production of high-dispersion flake nano-magnesium hydrate fire retardant
JP4079983B1 (en) Method for producing fine particle platinum powder
TWI673261B (en) Iron soap, method for producing the same and thermoplastic resin composition containing the same
JP5732639B1 (en) Copper pyrithione aggregate and use thereof
CN103601223B (en) The preparation method of high-dispersion nano flake magnesium hydroxide
JP2020037502A (en) Manufacturing method of alumina particles
JP5096028B2 (en) Slurry containing light calcium carbonate-silica composite and aluminum-based water-soluble inorganic compound
US2355359A (en) Fluorescein and halogenated fluoresceins dye acids
CN100358831C (en) Method for preparing micrometer kaolin
JP2011127104A (en) Method for producing detergent granules
CN102796414A (en) Similar light calcium carbonate, active similar light calcium carbonate and preparation methods and uses thereof
JP2012193068A (en) Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution
JPH10183209A (en) Production of scaly silver powder
CN109988122B (en) Method for preparing zinc thiazole with micro particle size
JPH09268011A (en) Aqueous suspension of high concentration calcium hydroxide
CN114538485A (en) Method for preparing flame retardant magnesium hydroxide by taking industrial-grade magnesium hydroxide as raw material
JPH052612B2 (en)
WO1996009342A1 (en) Calcium-base filler and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250