JPH052612B2 - - Google Patents

Info

Publication number
JPH052612B2
JPH052612B2 JP63095836A JP9583688A JPH052612B2 JP H052612 B2 JPH052612 B2 JP H052612B2 JP 63095836 A JP63095836 A JP 63095836A JP 9583688 A JP9583688 A JP 9583688A JP H052612 B2 JPH052612 B2 JP H052612B2
Authority
JP
Japan
Prior art keywords
aluminate hydrate
calcium aluminate
calcium
hydrothermal synthesis
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63095836A
Other languages
Japanese (ja)
Other versions
JPH01270509A (en
Inventor
Tsuneo Morie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP63095836A priority Critical patent/JPH01270509A/en
Publication of JPH01270509A publication Critical patent/JPH01270509A/en
Publication of JPH052612B2 publication Critical patent/JPH052612B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、有毒ガスを発生しない安価な無機系
難燃性充填剤用のカルシウム・アルミネート水和
物の製造方法に関し、更に詳しくは各種合成樹脂
に配合した場合難燃性並びに機械的特性に優れ
た、高純度で粒度分布の均一なカルシウム・アル
ミネート水和物の製造方法に関するものである。 〔従来の技術〕 従来、カルシウム・アルミネート水和物
3CaO・Al2O3・6H2O(以下、C3AH6と略称す
る)は、等軸晶系に属し、その粒子の形状は合成
条件によつて6,8,12,24,68面体など球形に
近く、従つて合成樹脂に混練した場合多量配合が
可能であることが一般に知られている。 そしてその組成中に6分子の結合水を含み、結
合水の大部分を理論的には240〜350℃で分解放出
させる性質を持つものであり、粒子径が1〜
3μm、好ましくはより微細な粒子のものが難燃効
果が大きいとされているが、その反面、微細粒子
は合成樹脂に対し分散性が極めて悪いという欠点
がある。 従つて、従来難燃性樹脂用充填剤としてのカル
シウム・アルミネート水和物としては、難燃性能
に機械的特性を加味して1〜3μmの均一粒子径の
ものが良いとされており、その製造を主とし、加
えて結合水の分解温度の低い準安定物質の残存を
極力無くする方法が考えられている。 例えば、特開昭59−203727号公報に、結合水の
分解温度を高くすることに依り熱硬化性樹脂は勿
論のこと、成形加工温度の高い熱可塑性樹脂への
利用に有利なカルシウム・アルミネート水和物微
粉末を提供する試みがなされている。これは水熱
合成中に一部生成され混晶される結合水の分解温
度の低い準安定鉱物のカルシウム・アルミネート
水和物、例えばC4AH13、C3AH12等を乾燥工程
において、150〜200℃で空気乾燥加熱し高純度化
することに依り0.5〜5μmの粒子径を示す微粉末
を得るものである。 また、特開昭62−128919号公報に、難燃性能の
向上を目的とした樹脂への分散性の良好な均一で
しかも1〜3μmの粒子径を示すカルシウム・アル
ミネート水和物を提供する試みがなされている。
この試みは、水酸化カルシウム・水酸化アルミニ
ウムの混合スラリーを60℃以下で前処理し、ここ
で多量の結晶核を生成せしめ引続き水熱合成温度
に上昇させてC3AH6の反応を完了させるもので、
結晶核による結晶成長を行なわせて微細で均一な
粒度の粉末を得るものである。 〔発明が解決しようとする課題〕 ところが、上記従来の方法のうち、前者の方法
では、乾燥時において粒子の二次凝集が避けられ
ず、均一な粒子径の製品が得られ難く、合成樹脂
への分散性に劣るという欠点がある。従つて高純
度化はなるものの難燃性、機械的特性において劣
るという問題があつた。また後者の方法では、製
造工程が簡単で生産コストの低減化を図り得る利
点はあるが、一般処理における一次核の生産量並
びにその核の大きさが最終的にC3AH6の粒度分
布を決定する要因となるので、原料の水酸化カル
シウム並びに水酸化アルミニウムの品質、特に活
性度および反応性のバラツキを考えれば回分方法
による製法においては所望の微細粒子、均一なカ
ルシウム・アルミネート水和物を得られ難いとい
う問題があり、未だ難燃性、機械的特性の両性能
を満足しうるカルシウム・アルミネート水和物を
得ることが困難であり、難燃性の向上改善ととも
に、難燃性能と併せて機械的特性の向上をも併せ
もつた合成樹脂充填用のカルシウム・アルミネー
ト水和物を製造し得ることが望まれていた。 本発明は、かかる点に鑑みてなされたものであ
り、に所望の粒子径を自由に得ることが出来、
しかも均一で高純度であるカルシウム・アルミネ
ート水和物の提供、に粒子の表面を改質するこ
とにより合成樹脂に対し、分散性、親和性の優れ
たカルシウム・アルミネート水和物の提供、に
との両方の特徴を生かしたカルシウム・アル
ミネート水和物の提供を目的とするものである。 〔課題を解決するための手段〕 本発明者らは、上記目的を達成すべく種々研究
の結果、第3物質の添加により所望の粒子径を自
由に得る事が出来、しかも均一で高純度であり、
更に合成樹脂に対し分散性、親和性の優れたカル
シウム・アルミネート水和物を製造し得るに至つ
た。 すなわち、本発明に係るカルシウム・アルミネ
ート水和物の製造方法は、水酸化カルシウムと水
酸化アルミニウムを水熱合成せしめ、C3AH6
を主成分とするカルシウム・アルミネート水和物
を生成するにあたり、水熱合成開始前乃至は水熱
合成途中に有機酸を添加する、C3AH6を主成
分にカルシウム、アルミネート水和物を生成する
にあたり、水熱合成開始前乃至は水熱合成途中に
アルカリけい酸塩水溶液を添加する、C3AH6
を主成分とするカルシウム・アルミネート水和物
を生成するにあたり、水熱合成開始前乃至は水熱
合成途中に有機酸とアルカリけい酸塩水溶液を添
加する、ことを特徴とするものである。 本発明において、水酸化カルシウムとしては、
生石灰、消石灰、カーバイド滓が使用出来るが微
粒子で活性度大、反応性大で高純度品が望まし
く、同様に水酸化アルミニウムも市販品が用いら
れるが、その品質性状は高純度品が望ましい。 水酸化カルシウムと水酸化アルミニウムの配合
比率は、モル比でCaO/Al2O3が3/1が基準と
なるが、2.9/1〜3.2/1の範囲で用いることが
でき、2.9/1以下の場合、結合水の分解開始温
度が低下傾向を示し、3.2/1以上では、F−
CaOの残存量が増加することとなり好ましくな
い。 また、水酸化カルシウムと水酸化アルミニウム
の濃度については別に制約はないが、工業的に製
造するには固形物濃度〔Ca(OH)2+Al(OH)3
が100〜500g/の範囲がよく、100g/以下
の場合は生成粒子が4〜10μmと大きくなり、ま
た均一性においても劣り、経済性の点でも好まし
くない。500g/以上の場合は水熱合成時スラ
リーの粘性が16000cp以上と大きくなり均一な攪
拌混合が出来ずC3AH6以外の準安定鉱物の生成
量が多くなり好ましくない。 有機酸とアルカリけい酸塩水溶液の使用時期に
ついても特段の制約はないが、好ましくは水熱合
成前乃至は水熱合成途中が良く、併用の場合の添
加順序については有機酸を先に添加し充分攪拌の
後アルカリけい酸塩水溶液を添加することが最も
好ましい。 前述の有機酸のみを使用した場合は、所望の
均一な粒子径並びに結合水の分解温度の高いカル
シウム・アルミネート水和物が得られる。しか
し、難燃性能並びに機械的特性においては従来品
より向上はするもののより優れたものではない。 前述のアルカリケイ酸塩水溶液のみを使用し
た場合は、難燃性能並びに機械的特性において優
れたものが得られる。しかし、結合水の分解温度
については従来品よりも向上はするものの、より
優れたものではない。 前述の有機酸とアルカリけい酸塩水溶液との
併用の場合においては、上記およびに示され
る効果を併せて示すことのできる所望の均一粒子
径で結合水の分解温度が高く難燃性能および機械
的特性においても特段に優れた高純度のカルシウ
ム・アルミネート水和物が簡単に安価で製造出来
る。 本発明において使用される有機酸としては、蟻
酸、酢酸、プロピオン酸、酪酸、安息香酸、グリ
コール酸、乳酸、酒石酸等が挙げられ、1種また
は2種以上混合して用いられる。使用量は、生成
されるカルシウム・アルミネート水和物に対し
0.1〜12重量%であり、この範囲において使用量
が増加する程生成されるC3AH6の粒子径は小さ
くなると共に均一化効果が顕著であるが、粒子の
微細化と均一化効果の点でより好ましくは1〜10
重量%がよく、1%以下では微細化効果の点で有
利ではあるが均一化効果が低くなり、10重量%以
上では、微細化及び均一化効果は使用量の増加に
比しその効果が劣ることとなり、製品の歩留り、
経済性の点から工業製造上、当範囲が有利であ
る。 本発明において使用されるアルカリけい酸塩水
溶液としては、けい酸ソーダ、けい酸カリウム等
が挙げられ、これ等は1種または2種以上混合し
て用いられる。使用量は、生成されるカルシウ
ム・アルミネート水和物に対してSiO2換算で0.2
〜15重量%であり、この範囲において難燃性能、
機械的特性の向上並びに結合水の分解温度の向上
が顕著であるが、より好ましくは1〜12重量%で
あり、1%以下では難燃性能向上に顕著な効果が
なく、12%以上では水熱合成時のスラリー粘性が
大となり、均一な攪拌が出来ず、生成するC3
AH6の表面改質にムラを生じせしめ合成樹脂に
対する機械的特性付与効果にバラツキを生じせし
めることとなる。 本発明におけるカルシウム・アルミネート水和
物の水熱合成方法は、常圧法、加圧法のいずれで
もよい。水熱合成温度についても別段制約はない
が、工業製造上、90〜160℃の範囲が生産性並び
に省エネ、整備管理維持において好適であり、90
℃以下では合成に要する時間が長時間となり工業
的に不向きであり、160℃以上では合成設備(ボ
イラー、配管等)の維持管理に特別の経費を要し
経済性効率上好ましくない。 また、水熱合成所要時間は95℃において4時
間、160℃において2時間で完了する。 本発明で得られるカルシウム・アルミネート水
和物スラリーは各種脂肪酸ソーダ塩、樹脂酸(含
合成品)ソーダ塩、その他の各種界面活性剤また
は各種カツプリング剤にて表面処理し、または表
面処理することなくこれを遠心分離機、フイルタ
ープレス等で脱水し、100〜200℃で通気式乾燥
機、スプレー乾燥機、フラツシユ乾燥機、パドル
式乾燥機等にて乾燥し、各種樹脂充填剤として用
いることが出来る。 〔作用〕 前述の発明においては、有機酸が主に原料の
水酸化カルシウムと反応して溶解度の大きい有機
酸のカルシウム塩となり、これが水熱合成下にお
いて生成されるC3AH6粒子の微細化、均一化を
促すものである。 前述の発明においては、アルカリけい酸塩水
溶液は水熱合成下においてアルミニウム酸と反応
し反応性の優れたSiO2を生成せしめ、これがC3
AH6の粒子表面をコートすると共に粒子表面を
改質し、合成樹脂に対し親和性を大きくするとと
もに分散性を向上し、機械的特性を付与せしめ、
難燃性を向上させるものである。 前述の発明においては、上記,の両作用
が達成されるものである。 〔実施例〕 以下本発明を実施例、比較例によりさらに具体
的に説明する。 実施例 1 純度99.7%、平均粒子径52μmの品質性状を示
す水酸化アルミニウム430gと、有効石灰分97.5
%、平均粒子径6.2μmの水酸化カルシウム625g
を混合し水を加えて4とし、純度90%の工業用
酢酸55gを添加し、次に3号けい酸ソーダ250g
を1に希釈し添加・攪拌混合後、有効容積7
のステンレス鋼製容器に入れ95℃において4時間
水熱合成を行なつた。生成されたカルシウム・ア
ルミネート水和物スラリーに固形物に対し0.5%
のステアリン酸ナトリウムを加え表面処理した。
引続きフイルターにて濾過脱水し、次いで水3
を加えて水洗・脱水後電気乾燥機にて110±5℃
で乾燥し、200メツシユ金網篩を使用し削砕して
試料を得た。 得たる試料は0.8〜1μmの均一な粒子であり、
第1図にその粒子構造を示す図面代用走査電子顕
微鏡写真(5000倍)を示す。第2図にこのものの
X線回折チヤートを示す、殆どC3AH6である。
第3図にこのものの示差熱重量分析(TGA・
DTA)チヤートを示す、結合水の分解開始温度
は260℃であつた。また、化学分析結果よりT−
SiO2=6.21%、Na=0.014%、F−CaO=0.22%
であつた。 難燃性能並びに機械的特性を評価すべく以下に
その方法を示すと共にその結果を第1表に示す。
得たる試料をポリエチレン樹脂DFDA−1137〔日
本ユニカー(株)商品名〕に対し125PHRとステアリ
ン酸カルシウム1PHR配合し160±5℃の下で2
本ロールにて混練し、次に170±5℃で20分間プ
レスキユアにより厚さ2mmと3mmに成形し
JISK6760に規定された方法により引張試験を行
なうと共に、厚さ3mmの板を長さ127mm幅13mm寸
法に切り出しこれを試験片としてUL94水平燃焼
試験を実施し、試験片の76mm間の燃焼速度(mm/
min)から難燃性能を評価した。 実施例 2 実施例1と同一品質・同一量の水酸化カルシウ
ム、水酸化アルミニウムおよび水を使用し、実施
例1と同一品質の酢酸33gおよび3号けい酸ソー
ダ150gを添加し、以下の操作は実施例1と同一
方法にて実施した。得たる試料につき、粒子の大
きさ、結合水の分解開始温度を測定した。結果を
第2表に示す。更に難燃性能並びに機械的特性の
結果を第1表に示す。 実施例 3 実施例1と同一品質・同一量の水酸化カルシウ
ム、水酸化アルミニウムおよび水を使用し、実施
例1と同一品質の酢酸11gおよび3号けい酸ソー
ダ50gを添加し、以下の操作は実施例1と同一方
法にて実施した。得たる試料は、1.5〜2μmの均
一な粒子であり、第4図にその粒子構造を示す図
面代用走査電子顕微鏡写真(5000倍)を示す。 結合水の分解開始温度を第2表に示す。更に難
燃性能並びに機械的特性の結果を第1表に示す。 実施例 4 実施例1と同一品質・同一量の水酸化アルミニ
ウムと水酸化カルシウムを混合、水を加えて4
とし、実施例1と同一品質の酢酸11gを添加し混
合後有効容積7のステンレス鋼製容器に入れ95
℃にて水熱合成する。1.5時間経過後、実施例1
と同一品質の3号けい酸ソーダ50gを1に希釈
し添加する。添加終了後引続き95℃にて3時間水
熱合成せしめた。以下の操作は実施例と同一方法
にて実施した。得たる試料は、粒子表面が極微細
な針状結晶で覆われた2〜2.5μmの粒子であり、
第5図にその粒子構造を示す図面代用透過電子顕
微鏡写真(10000倍)を示す。第6図にこのもの
のX線回折チヤートを示す。第7図にこのものの
示差熱重量分析(TGA・DTA)チヤートを示
す。結合水の分解開始温度は255℃であつた。難
燃性能並びに機械的特性の結果を第1表に示す。 実施例 5 実施例1と同一品質・同一量の水酸化アルミニ
ウムと水酸化カルシウムを混合、水を加えて4
とし、乳酸(試薬1級)30gを添加し、次に実施
例1と同一品質の3号けい酸ソーダ150gを1
に希釈し添加・攪拌混合し、以下の操作は実施例
1と同一方法にて実施した。得たる試料は0.8〜
1μmの均一な粒子であり、第8図にその粒子構造
を示す図面代用走査電子顕微鏡写真(5000倍)を
示す。結合水の分解開始温度を第2表に、難燃性
能並びに機械的特性の結果を第1表に示す。 実施例 6 実施例1と同一品質・同一量の水酸化アルミニ
ウムと水酸化カルシウムを混合、水を加えて4
とし、3号けい酸ソーダ250gを1に希釈し添
加・攪拌混合し、以下の操作は実施例1と同一方
法にて実施した。得たる試料は、2〜3μmの粒子
であり、第9図にその粒子構造を示す図面代用走
査電子顕微鏡写真(5000倍)を示す。第10図に
このものの示差熱重量分析(TGA・DTA)チヤ
ートを示す、結合水の分解開始温度は240℃であ
つた。また、化学分析結果よりT−SiO2=6.27
%、Na=0.010%、F−CaO=0.27%であつた。
難燃性能並びに機械的特性の結果を第1表に示
す。 実施例 7 実施例1と同一品質・同一量の水酸化アルミニ
ウムと水酸化カルシウムを混合、水を加えて5
とし、実施例1と同一品質の酢酸33gを添加・攪
拌混合し、以下の操作は実施例1と同一方法にて
実施した。得たる試料は1〜1.4μmの均一な粒子
であり、第11図にその粒子構造を示す図面代用
走査電子顕微鏡写真(5000倍)を示す。結合水の
分解開始温度を第2表に、難燃性能並びに機械的
特性の結果を第1表に示す。 比較例 1 実施例1と同一品質・同一量の水酸化アルミニ
ウムと水酸化カルシウムを混合、水を加えて5
とし、攪拌混合後、有効容積7のステンレス鋼
製容器に入れ95℃にて5時間水熱合成し、以下実
施例1と同一方法にて試料を得た。得たる試料は
1〜3μmの粒子であり、第12図にその粒子構造
を示す図面代用走査電子顕微鏡写真(5000倍)を
示す。第13図にこのもののX線回折チヤートを
示す。第14図にこのものの示差熱重量分析
(TGA・DTA)チヤートを示す。結合水の分解
開始温度は130℃であつた。また、化学分析結果
より、F−CaO=0.34%であつた。難燃性能並び
に機械的特性の結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing calcium aluminate hydrate for use as an inexpensive inorganic flame-retardant filler that does not generate toxic gases, and more specifically, it relates to a method for producing calcium aluminate hydrate for use as an inexpensive inorganic flame-retardant filler that does not generate toxic gases. This invention relates to a method for producing calcium aluminate hydrate with high purity and uniform particle size distribution, which has excellent flammability and mechanical properties. [Conventional technology] Conventionally, calcium aluminate hydrate
3CaO・Al 2 O 3・6H 2 O (hereinafter abbreviated as C 3 AH 6 ) belongs to the equiaxed crystal system, and the shape of its particles can be 6, 8, 12, 24, or 68-hedral depending on the synthesis conditions. It is generally known that it has a nearly spherical shape, so it is possible to mix it in a large amount when kneaded into a synthetic resin. It contains 6 molecules of bound water in its composition, and theoretically has the property of decomposing and releasing most of the bound water at 240 to 350°C, and has a particle size of 1 to 350°C.
It is said that particles of 3 μm, preferably finer, have a greater flame retardant effect, but on the other hand, fine particles have the disadvantage of extremely poor dispersibility in synthetic resins. Therefore, conventional calcium aluminate hydrate used as a filler for flame-retardant resins has been considered to have a uniform particle size of 1 to 3 μm, taking into account flame-retardant performance and mechanical properties. A method is being considered that focuses mainly on the production of such substances, and also minimizes the residual presence of metastable substances that have a low decomposition temperature of bound water. For example, JP-A No. 59-203727 discloses that calcium aluminate is advantageous for use not only in thermosetting resins but also in thermoplastic resins that require high molding temperatures by increasing the decomposition temperature of bound water. Attempts have been made to provide hydrate fine powders. This is because calcium aluminate hydrate, a metastable mineral with a low decomposition temperature of bound water that is partially generated and mixed crystallized during hydrothermal synthesis, such as C 4 AH 13 and C 3 AH 12 , is processed in the drying process. A fine powder having a particle size of 0.5 to 5 μm is obtained by air drying and heating at 150 to 200°C for high purity. In addition, JP-A-62-128919 provides a calcium aluminate hydrate that is uniform and has a particle size of 1 to 3 μm and has good dispersibility in resin for the purpose of improving flame retardant performance. Attempts are being made.
In this attempt, a mixed slurry of calcium hydroxide and aluminum hydroxide is pretreated at a temperature below 60°C to generate a large amount of crystal nuclei, and then raised to the hydrothermal synthesis temperature to complete the C 3 AH 6 reaction. Something,
A powder with a fine and uniform particle size is obtained by causing crystal growth using crystal nuclei. [Problems to be Solved by the Invention] However, among the above conventional methods, the former method cannot avoid secondary agglomeration of particles during drying, making it difficult to obtain products with uniform particle diameters, and It has the disadvantage of poor dispersibility. Therefore, although high purity can be achieved, there is a problem that flame retardancy and mechanical properties are inferior. Although the latter method has the advantage of simplifying the manufacturing process and reducing production costs, the amount of primary nuclei produced during general processing and the size of the nuclei ultimately affect the particle size distribution of C 3 AH 6 . Considering the quality of the raw materials calcium hydroxide and aluminum hydroxide, especially the variation in activity and reactivity, it is important to obtain the desired fine particles and uniform calcium aluminate hydrate in the batch method. It is still difficult to obtain calcium aluminate hydrate that can satisfy both flame retardancy and mechanical properties. It has been desired to be able to produce a calcium aluminate hydrate for filling synthetic resins that also has improved mechanical properties. The present invention was made in view of this point, and it is possible to freely obtain a desired particle size,
In addition, we provide a calcium aluminate hydrate that is uniform and highly pure, and by modifying the surface of the particles, we provide a calcium aluminate hydrate that has excellent dispersibility and affinity for synthetic resins. The purpose of this product is to provide a calcium aluminate hydrate that takes advantage of the characteristics of both Nito and Nito. [Means for Solving the Problem] As a result of various studies to achieve the above object, the present inventors have found that by adding a third substance, the desired particle size can be freely obtained, and that the particle size is uniform and highly pure. can be,
Furthermore, it has been possible to produce a calcium aluminate hydrate with excellent dispersibility and affinity for synthetic resins. That is, the method for producing calcium aluminate hydrate according to the present invention hydrothermally synthesizes calcium hydroxide and aluminum hydroxide to produce C 3 AH 6
To produce calcium aluminate hydrate whose main component is C 3 AH 6 , an organic acid is added before or during hydrothermal synthesis. To produce C 3 AH 6 , an aqueous alkali silicate solution is added before or during hydrothermal synthesis.
In producing a calcium aluminate hydrate containing as a main component, an organic acid and an aqueous alkali silicate solution are added before or during hydrothermal synthesis. In the present invention, calcium hydroxide includes:
Quicklime, slaked lime, and carbide slag can be used, but those with fine particles, high activity, high reactivity, and high purity are desirable.Aluminum hydroxide can also be commercially available, but it is desirable to have high purity. The standard blending ratio of calcium hydroxide and aluminum hydroxide is a molar ratio of CaO/Al 2 O 3 of 3/1, but it can be used in the range of 2.9/1 to 3.2/1, and should not exceed 2.9/1. In the case of
This is not preferable because the residual amount of CaO increases. In addition, there are no particular restrictions on the concentrations of calcium hydroxide and aluminum hydroxide, but for industrial production, the solid concentration [Ca(OH) 2 + Al(OH) 3 ] is required.
A range of 100 to 500 g/ is preferable, and if it is less than 100 g/, the produced particles will be as large as 4 to 10 μm, and the uniformity will be poor, which is also unfavorable from the economic point of view. If the amount is more than 500 g/min, the viscosity of the slurry during hydrothermal synthesis becomes 16,000 cp or more, making uniform stirring and mixing impossible, resulting in a large amount of metastable minerals other than C 3 AH 6 being produced, which is not preferable. There are no particular restrictions on the timing of using the organic acid and aqueous alkali silicate solution, but preferably before or during hydrothermal synthesis, and when used together, the organic acid should be added first. Most preferably, the alkali silicate aqueous solution is added after thorough stirring. When only the above-mentioned organic acid is used, a calcium aluminate hydrate having the desired uniform particle size and a high decomposition temperature of bound water can be obtained. However, although the flame retardant performance and mechanical properties are improved over conventional products, they are not superior. When only the above aqueous alkali silicate solution is used, excellent flame retardant performance and mechanical properties can be obtained. However, although the decomposition temperature of bound water is improved over conventional products, it is not superior. In the case of using the above-mentioned organic acid and aqueous alkali silicate solution in combination, it is possible to achieve the desired uniform particle size, which can exhibit the effects shown above and in combination, with a high decomposition temperature of bound water, flame retardant performance, and mechanical properties. High purity calcium aluminate hydrate with particularly excellent properties can be easily produced at low cost. Examples of the organic acids used in the present invention include formic acid, acetic acid, propionic acid, butyric acid, benzoic acid, glycolic acid, lactic acid, and tartaric acid, which may be used singly or in combination of two or more. The amount used is based on the calcium aluminate hydrate produced.
The amount is 0.1 to 12% by weight, and within this range, as the amount used increases, the particle size of the generated C 3 AH 6 becomes smaller and the uniformity effect becomes more pronounced. and more preferably 1 to 10
% by weight is good; if it is less than 1%, it is advantageous in terms of the fineness effect, but the uniformity effect is low; if it is more than 10% by weight, the effect of fineness and uniformity is inferior to the increase in the amount used. As a result, product yield,
This range is advantageous in terms of economy and industrial production. Examples of the aqueous alkali silicate solution used in the present invention include sodium silicate and potassium silicate, which may be used alone or in combination of two or more. The amount used is 0.2 in terms of SiO 2 for the calcium aluminate hydrate produced.
~15% by weight, flame retardant performance within this range,
The improvement in mechanical properties and decomposition temperature of bound water is remarkable, but it is more preferably 1 to 12% by weight; below 1%, there is no significant effect on improving flame retardant performance, and above 12%, water The viscosity of the slurry during thermal synthesis increases, making it impossible to stir uniformly, resulting in increased C 3
This causes uneven surface modification of AH 6 and causes variations in the effect of imparting mechanical properties to the synthetic resin. The hydrothermal synthesis method of calcium aluminate hydrate in the present invention may be either a normal pressure method or a pressurization method. There are no particular restrictions on the hydrothermal synthesis temperature, but for industrial manufacturing purposes, a range of 90 to 160 degrees Celsius is suitable for productivity, energy saving, and maintenance management.
If the temperature is below 160°C, the time required for synthesis will be long and it is not suitable for industrial use, and if it is above 160°C, special expenses will be required to maintain and manage the synthesis equipment (boilers, piping, etc.), which is not favorable from an economic standpoint. The hydrothermal synthesis time required is 4 hours at 95°C and 2 hours at 160°C. The calcium aluminate hydrate slurry obtained in the present invention may be surface-treated with various fatty acid soda salts, resin acid (including synthetic products) soda salts, other various surfactants, or various coupling agents. This can be dehydrated using a centrifuge, filter press, etc., and dried at 100-200°C using a ventilation dryer, spray dryer, flush dryer, paddle dryer, etc., and used as various resin fillers. I can do it. [Function] In the above-mentioned invention, the organic acid mainly reacts with the raw material calcium hydroxide to form a calcium salt of the organic acid with high solubility, which is used to refine the C 3 AH 6 particles produced under hydrothermal synthesis. , which promotes uniformity. In the above invention, an aqueous alkali silicate solution reacts with aluminum acid under hydrothermal synthesis to generate highly reactive SiO 2 , which is converted into C 3
Coating the particle surface of AH 6 and modifying the particle surface to increase affinity for synthetic resins, improve dispersibility, and impart mechanical properties.
It improves flame retardancy. In the above-mentioned invention, both of the above effects are achieved. [Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. Example 1 430g of aluminum hydroxide with quality characteristics of 99.7% purity and average particle size of 52μm, and effective lime content of 97.5
%, 625 g of calcium hydroxide with an average particle size of 6.2 μm
Mix and add water to make 4, add 55g of industrial acetic acid with 90% purity, and then add 250g of No. 3 sodium silicate.
After diluting to 1 and adding and stirring, the effective volume is 7.
Hydrothermal synthesis was carried out at 95°C for 4 hours in a stainless steel container. 0.5% of solids in the produced calcium aluminate hydrate slurry
The surface was treated by adding sodium stearate.
Next, filter and dehydrate with a filter, then add water 3
After washing with water and dehydration, dry in an electric dryer at 110±5℃.
and crushed using a 200 mesh wire mesh sieve to obtain a sample. The obtained sample is a uniform particle of 0.8 to 1 μm,
Fig. 1 shows a scanning electron micrograph (5000x) showing the particle structure. Figure 2 shows an X-ray diffraction chart of this product, which is mostly C 3 AH 6 .
Figure 3 shows differential thermogravimetric analysis (TGA/
The temperature at which bound water starts to decompose, indicating the DTA) chart, was 260°C. Also, from the chemical analysis results, T-
SiO 2 = 6.21%, Na = 0.014%, F-CaO = 0.22%
It was hot. The method for evaluating flame retardant performance and mechanical properties is shown below, and the results are shown in Table 1.
The obtained sample was mixed with 125 PHR and calcium stearate 1 PHR in polyethylene resin DFDA-1137 (trade name of Nippon Unicar Co., Ltd.) and heated at 160±5℃ for 2 hours.
Knead with this roll, then press cure at 170±5℃ for 20 minutes to form 2mm and 3mm thick.
In addition to conducting a tensile test according to the method specified in JISK6760, a 3 mm thick plate was cut into 127 mm length and 13 mm width, and a UL94 horizontal combustion test was conducted using this as a test piece, and the burning rate (mm /
The flame retardant performance was evaluated from (min). Example 2 Calcium hydroxide, aluminum hydroxide and water of the same quality and the same amount as in Example 1 were used, 33 g of acetic acid and 150 g of No. 3 sodium silicate of the same quality as in Example 1 were added, and the following operations were carried out. It was carried out in the same manner as in Example 1. The particle size and bound water decomposition onset temperature were measured for the obtained sample. The results are shown in Table 2. Furthermore, the results of flame retardant performance and mechanical properties are shown in Table 1. Example 3 Calcium hydroxide, aluminum hydroxide and water of the same quality and the same amount as in Example 1 were used, 11 g of acetic acid and 50 g of No. 3 sodium silicate of the same quality as in Example 1 were added, and the following operations were carried out. It was carried out in the same manner as in Example 1. The obtained sample was a uniform particle with a size of 1.5 to 2 μm, and FIG. 4 shows a scanning electron micrograph (magnified at 5000 times) as a substitute for a drawing showing the particle structure. Table 2 shows the starting temperature for decomposition of bound water. Furthermore, the results of flame retardant performance and mechanical properties are shown in Table 1. Example 4 Aluminum hydroxide and calcium hydroxide of the same quality and amount as Example 1 were mixed, water was added, and 4
11 g of acetic acid of the same quality as in Example 1 was added, and after mixing, the mixture was placed in a stainless steel container with an effective volume of 7.95 g.
Hydrothermally synthesized at ℃. After 1.5 hours, Example 1
Dilute 50g of No. 3 sodium silicate of the same quality to 1 and add. After the addition was completed, hydrothermal synthesis was continued at 95°C for 3 hours. The following operations were performed in the same manner as in the examples. The obtained sample is a 2-2.5 μm particle whose surface is covered with ultrafine needle-like crystals.
FIG. 5 shows a transmission electron micrograph (10,000 times magnification) as a substitute for a drawing showing the particle structure. FIG. 6 shows an X-ray diffraction chart of this product. Figure 7 shows a differential thermogravimetric analysis (TGA/DTA) chart of this material. The starting temperature for decomposition of bound water was 255°C. The results of flame retardant performance and mechanical properties are shown in Table 1. Example 5 Aluminum hydroxide and calcium hydroxide of the same quality and amount as in Example 1 were mixed, water was added, and 4
30g of lactic acid (1st grade reagent) was added, and then 150g of No. 3 sodium silicate of the same quality as in Example 1 was added.
The following operations were performed in the same manner as in Example 1. The obtained sample is 0.8 ~
They are uniform particles of 1 μm in size, and FIG. 8 shows a scanning electron micrograph (5000x) showing the particle structure. Table 2 shows the decomposition start temperature of bound water, and Table 1 shows the results of flame retardant performance and mechanical properties. Example 6 Aluminum hydroxide and calcium hydroxide of the same quality and amount as in Example 1 were mixed, water was added, and 4
Then, 250 g of No. 3 sodium silicate was diluted to 1, added, stirred and mixed, and the following operations were carried out in the same manner as in Example 1. The obtained sample had particles of 2 to 3 μm in size, and FIG. 9 shows a scanning electron micrograph (magnified at 5000 times) as a substitute for a drawing showing the particle structure. Figure 10 shows a differential thermogravimetric analysis (TGA/DTA) chart of this product, and the temperature at which decomposition of bound water began was 240°C. Also, from the chemical analysis results, T-SiO 2 = 6.27
%, Na=0.010%, and F-CaO=0.27%.
The results of flame retardant performance and mechanical properties are shown in Table 1. Example 7 Aluminum hydroxide and calcium hydroxide of the same quality and amount as in Example 1 were mixed, water was added, and 5
Then, 33 g of acetic acid of the same quality as in Example 1 was added and mixed with stirring, and the following operations were performed in the same manner as in Example 1. The obtained sample was a uniform particle with a size of 1 to 1.4 μm, and FIG. 11 shows a scanning electron micrograph (5000x) showing the particle structure. Table 2 shows the decomposition start temperature of bound water, and Table 1 shows the results of flame retardant performance and mechanical properties. Comparative example 1 Aluminum hydroxide and calcium hydroxide of the same quality and amount as in Example 1 were mixed, water was added, and 5
After stirring and mixing, the mixture was placed in a stainless steel container with an effective volume of 7 and subjected to hydrothermal synthesis at 95° C. for 5 hours. Samples were obtained in the same manner as in Example 1. The obtained sample had particles of 1 to 3 μm in size, and FIG. 12 shows a scanning electron micrograph (magnified at 5000 times) as a substitute for a drawing showing the particle structure. FIG. 13 shows an X-ray diffraction chart of this product. Figure 14 shows a differential thermogravimetric analysis (TGA/DTA) chart of this product. The decomposition temperature of bound water was 130°C. Furthermore, the chemical analysis results showed that F-CaO was 0.34%. The results of flame retardant performance and mechanical properties are shown in Table 1.

【表】【table】

〔効果〕〔effect〕

本発明は、C3AH6を主成分とするカルシウ
ム・アルミネート水和物の製造方法であり、前述
は有機酸の添加により、またその変量によつて
均一な所望の粒度分布を示す0.8〜2.5μmの粒子径
のカルシウム・アルミネート水和物を簡単に製造
することが出来、結合水の分解開始温度を260℃
に向上するものであり、前述はアルカリけい酸
塩水溶液を添加することにより、簡単に粒子表面
を改質し難燃性、機械的特性を向上するものであ
り、前述はおよびの効果を一挙に併せもつ
カルシウム・アルミネート水和物が簡単に安価で
得られるものである。 従つて、従来法の如く乾燥工程で高温熱風を使
用することなく、また結晶核粒子更には製造時に
温度条件を2段階に変更することもなく、第3物
質の添加により品質性能の安定したカルシウム・
アルミネート水和物を容易に製造し得るもので、
簡単な工程で経済性に優れ、生産コストの低減の
利点をもつものである。
The present invention is a method for producing calcium aluminate hydrate containing C 3 AH 6 as a main component, and the above-mentioned calcium aluminate hydrate has a uniform particle size distribution of 0.8 to 0.8 to Calcium aluminate hydrate with a particle size of 2.5μm can be easily produced, and the decomposition temperature of bound water is 260℃.
By adding an aqueous alkali silicate solution, the particle surface can be easily modified to improve flame retardancy and mechanical properties. Calcium aluminate hydrate, which has both properties, can be easily obtained at low cost. Therefore, unlike conventional methods, it is not necessary to use high-temperature hot air in the drying process, nor is it necessary to change the crystal nucleus particles or the temperature conditions in two stages during production.・
Aluminate hydrate can be easily produced,
It is a simple process, highly economical, and has the advantage of reducing production costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得た試料の粒子構造を示す
図面代用走査電子顕微鏡写真(5000倍)、第2図
は実施例1で得た試料のX線回折チヤート、第3
図は実施例1で得た試料の示差熱重量分析チヤー
ト、第4図は実施例3で得た試料の粒子構造を示
す図面代用走査電子顕微鏡写真(5000倍)、第5
図は実施例4で得た試料の粒子構造を示す図面代
用透過電子顕微鏡写真(10000倍)、第6図は実施
例4で得た試料のX線回折チヤート、第7図は実
施例4で得た試料の示差熱重量分析チヤート、第
8図は実施例5で得た試料の粒子構造を示す図面
代用走査電子顕微鏡写真(5000倍)、第9図は実
施例6で得た試料の粒子構造を示す図面代用走査
電子顕微鏡写真(5000倍)、第10図は実施例6
で得た試料の示差熱重量分析チヤート、第11図
は実施例7で得た試料の粒子構造を示す図面代用
走査電子顕微鏡写真(5000倍)、第12図は比較
例1で得た試料の粒子構造を示す図面代用走査電
子顕微鏡写真(5000倍)、第13図は比較例1で
得た試料のX線回折チヤート、第14図は比較例
1で得た試料の示差熱重量分析チヤートである。 第3図、第7図、第10図および第14図にお
いて、TGAとあるのは加熱減量曲線、DTAとあ
るのは示差熱分析曲線を示す。
Figure 1 is a scanning electron micrograph (5000x) showing the particle structure of the sample obtained in Example 1, Figure 2 is an X-ray diffraction chart of the sample obtained in Example 1, and Figure 3 is an X-ray diffraction chart of the sample obtained in Example 1.
The figure is a differential thermogravimetric analysis chart of the sample obtained in Example 1, Figure 4 is a scanning electron micrograph (5000x) showing the particle structure of the sample obtained in Example 3, and Figure 5
The figure is a transmission electron micrograph (10,000x) showing the particle structure of the sample obtained in Example 4, Figure 6 is an X-ray diffraction chart of the sample obtained in Example 4, and Figure 7 is a graph of the sample obtained in Example 4. A differential thermogravimetric analysis chart of the obtained sample, Fig. 8 is a scanning electron micrograph (5000x) showing the particle structure of the sample obtained in Example 5, and Fig. 9 shows the particles of the sample obtained in Example 6. A scanning electron micrograph (5000x) showing the structure as a substitute for a drawing, Figure 10 is Example 6
Figure 11 is a scanning electron micrograph (5000x) showing the particle structure of the sample obtained in Example 7, and Figure 12 is a differential thermogravimetric analysis chart of the sample obtained in Comparative Example 1. A scanning electron micrograph (5000x) showing the particle structure, Figure 13 is an X-ray diffraction chart of the sample obtained in Comparative Example 1, and Figure 14 is a differential thermogravimetric analysis chart of the sample obtained in Comparative Example 1. be. In FIG. 3, FIG. 7, FIG. 10, and FIG. 14, TGA indicates a heating loss curve, and DTA indicates a differential thermal analysis curve.

Claims (1)

【特許請求の範囲】 1 水酸化カルシウムと水酸化アルミニウムを水
熱合成せしめ、3CaO・Al2O3・6H2Oを主成分と
するカルシウム・アルミネート水和物を生成する
にあたり、水熱合成開始前乃至は水熱合成途中に
有機酸を添加することを特徴とするカルシウム・
アルミネート水和物の製造方法。 2 水酸化カルシウムと水酸化アルミニウムを水
熱合成せしめ、3CaO・Al2O3・6H2Oを主成分と
するカルシウム・アルミネート水和物を生成する
にあたり、水熱合成開始前乃至は水熱合成途中に
アルカリけい酸塩水溶液を添加することを特徴と
するカルシウム・アルミネート水和物の製造方
法。 3 水酸化カルシウムと水酸化アルミニウムを水
熱合成せしめ、3CaO・Al2O3・6H2Oを主成分と
するカルシウム・アルミネート水和物を生成する
にあたり、水熱合成開始前乃至は水熱合成途中に
有機酸とアルカリけい酸塩水溶液を添加すること
を特徴とするカルシウム・アルミネート水和物の
製造方法。
[Claims] 1 Hydrothermal synthesis of calcium hydroxide and aluminum hydroxide to produce calcium aluminate hydrate whose main components are 3CaO・Al 2 O 3・6H 2 O Calcium, which is characterized by adding an organic acid before the start or during the hydrothermal synthesis.
A method for producing aluminate hydrate. 2. When hydrothermally synthesizing calcium hydroxide and aluminum hydroxide to produce calcium aluminate hydrate whose main components are 3CaO・Al 2 O 3・6H 2 O, before the start of hydrothermal synthesis or A method for producing calcium aluminate hydrate, which comprises adding an aqueous alkali silicate solution during the synthesis. 3. When hydrothermally synthesizing calcium hydroxide and aluminum hydroxide to produce calcium aluminate hydrate whose main components are 3CaO・Al 2 O 3・6H 2 O, before the start of hydrothermal synthesis or A method for producing calcium aluminate hydrate characterized by adding an organic acid and an aqueous alkali silicate solution during the synthesis.
JP63095836A 1988-04-18 1988-04-18 Production of calcium aluminate hydrate Granted JPH01270509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095836A JPH01270509A (en) 1988-04-18 1988-04-18 Production of calcium aluminate hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095836A JPH01270509A (en) 1988-04-18 1988-04-18 Production of calcium aluminate hydrate

Publications (2)

Publication Number Publication Date
JPH01270509A JPH01270509A (en) 1989-10-27
JPH052612B2 true JPH052612B2 (en) 1993-01-12

Family

ID=14148468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095836A Granted JPH01270509A (en) 1988-04-18 1988-04-18 Production of calcium aluminate hydrate

Country Status (1)

Country Link
JP (1) JPH01270509A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722792B1 (en) * 1994-07-21 1996-09-06 Ceca Sa COMPOSITIONS OF THE MIXED HYDROXIDE TYPE OF ALUMINUM AND ALKALINE EARTH AS ANTICHLORINE AND ANTI-ACID AGENTS FOR THE STABILIZATION OF THERMOPLASTIC RESINS
JP2002128520A (en) * 2000-10-20 2002-05-09 Shiraishi Chuo Kenkyusho:Kk Spherical calcium aluminate and method of manufacturing it

Also Published As

Publication number Publication date
JPH01270509A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
JP5927253B2 (en) Precipitated magnesium carbonate
US5075093A (en) Calcium carbonate in a platelet-like particulate form and a method for the preparation thereof
KR100200082B1 (en) Composite metal hydroxide and its use
US20140004347A1 (en) Precipitated magnesium carbonate
US4842772A (en) Fire retardant pigment
JP2000239014A (en) Production of needle-like boehmite
HU187981B (en) Process for producing of medium granulated aluminium-hydroxide free choosable between 2 and 100 micron
JP3910503B2 (en) Method for producing basic magnesium carbonate
CN107446158A (en) Enhanced complex phase crystal preparation method based on calcite and aragonite
CN114291835A (en) Preparation method of precipitated calcium carbonate with dispersed size and cube
JPH03170325A (en) Production of magnesium hydroxide
CA1115025A (en) Process for producing calcium sulfate
JPH052612B2 (en)
CN104944448B (en) Preparation method for needle-shaped magnesium hydroxide
JPH02279515A (en) Superfine granular magnesium hydroxide and its production
JPH11513657A (en) Method for producing calcium borate
CA1299848C (en) Process for forming hydrated calcium silicate products
JP2005139012A (en) Method for producing acicular calcium carbonate
CN112408448A (en) Preparation method of mulberry fruit-shaped calcite micron calcium carbonate
JPH04362012A (en) Production of high-dispersive magnesium hydroxide
JP2882852B2 (en) Monodispersed plate-like calcium carbonate and method for producing the same
JPH0757686B2 (en) Synthetic xonotlite crystal aggregate and method for producing the same
JPS63277511A (en) Production of magnesium hydroxide and surface-treated magnesium hydroxide
CA2196124C (en) Process for preparing colloidal calcium carbonate by particle size
CN115818681B (en) Method for preparing large-particle monocrystalline aluminum hydroxide by one-stage method