JP5034151B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5034151B2
JP5034151B2 JP2003419959A JP2003419959A JP5034151B2 JP 5034151 B2 JP5034151 B2 JP 5034151B2 JP 2003419959 A JP2003419959 A JP 2003419959A JP 2003419959 A JP2003419959 A JP 2003419959A JP 5034151 B2 JP5034151 B2 JP 5034151B2
Authority
JP
Japan
Prior art keywords
trench
conductivity type
region
type semiconductor
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003419959A
Other languages
Japanese (ja)
Other versions
JP2005183547A (en
JP2005183547A5 (en
Inventor
匡 蛇沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2003419959A priority Critical patent/JP5034151B2/en
Publication of JP2005183547A publication Critical patent/JP2005183547A/en
Publication of JP2005183547A5 publication Critical patent/JP2005183547A5/ja
Application granted granted Critical
Publication of JP5034151B2 publication Critical patent/JP5034151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

この発明は、半導体装置およびその製造方法に関し、特に、電力制御などに用いられるトレンチゲート型のMOSFET(Metal−Oxide−Semicondactor Field Effect Transistor)などに適用して好適な半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device suitable for application to a trench gate type MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) used for power control and the like.

電力制御用の半導体装置として、パワーMOSFETやIGBT(Insulated Gate Bipolar Transistor)などのMOS型トランジスタがある。近年の省エネルギー化などの要求から、高効率な半導体装置が必要とされている。そして、これら電力制御用の半導体装置に対しては、素子の導通損失の低減すなわち「オン抵抗」の低減による高効率化が求められており、このためにセルの微細化によるオン抵抗の低減が図られてきた。
また、素子構造に「トレンチゲート構造」を採用することで、チャネル幅を稼ぎ、大幅な微細化が実現できるようになった。現在は、トレンチゲート構造による更なる微細化がなされ、素子のオン抵抗は大幅に改善されるに至っている。さらに、ソース領域にトレンチを形成してトレンチ側壁でソースコンタクトを確保する「トレンチコンタクト構造」が採用されている。
As semiconductor devices for power control, there are MOS transistors such as power MOSFETs and IGBTs (Insulated Gate Bipolar Transistors). Due to recent demands for energy saving, highly efficient semiconductor devices are required. These power control semiconductor devices are required to have high efficiency by reducing the conduction loss of the element, that is, by reducing the “on resistance”. For this reason, the reduction of the on resistance by miniaturization of the cell is required. It has been planned.
In addition, by adopting the “trench gate structure” as the element structure, it has become possible to increase the channel width and realize a significant miniaturization. At present, further miniaturization by the trench gate structure has been made, and the on-resistance of the element has been greatly improved. Furthermore, a “trench contact structure” is employed in which a trench is formed in the source region and a source contact is secured on the trench sidewall.

しかし、トレンチゲート構造の長所である高集積化は、オン抵抗に関しては最大の利点となるが、「アバランシェ耐量」という素子破壊耐量にとっては短所となるという問題がある。
図11は、コンタクトトレンチを有する従来の半導体装置の要部断面図を示す。n+ 半導体基板51の上に、n- エピタキシャル半導体層52、pベース領域53、n+ ソース領域54がこの順に形成され、これら積層構造に対して垂直方向に形成されたゲートトレンチTgの内壁面にゲート絶縁膜57が設けられ、さらにゲートトレンチTgを埋め込むようにゲート電極56を設ける。また、ソース領域54にはコンタクトトレンチTcが設けられ、その角部に高濃度のn++ソース領域54aが設けられるとともに、この部分のベース領域53の表面側には追加p+ 領域55が選択的に形成されている。ゲート電極56及びゲート絶縁膜57の上には、これらを覆うように層間絶縁膜58が設けられ、一方、n++ソース領域54aと追加p+ 型領域55に接触するようにソース電極59が設けられている。また、n+ 半導体基板51の裏面側には、ドレイン電極60が設けられている。この構造は例えば特許文献1に開示されている。
However, high integration, which is an advantage of the trench gate structure, is the greatest advantage in terms of on-resistance, but there is a problem in that it is disadvantageous in terms of the element breakdown tolerance of “avalanche resistance”.
FIG. 11 is a cross-sectional view of a main part of a conventional semiconductor device having a contact trench. On the n + semiconductor substrate 51, an n epitaxial semiconductor layer 52, a p base region 53, and an n + source region 54 are formed in this order, and the inner wall surface of the gate trench Tg formed in a direction perpendicular to the stacked structure. A gate insulating film 57 is provided, and a gate electrode 56 is provided so as to fill the gate trench Tg. In addition, a contact trench Tc is provided in the source region 54, and a high concentration n ++ source region 54a is provided at the corner, and an additional p + region 55 is selected on the surface side of the base region 53 in this portion. Is formed. On the gate electrode 56 and the gate insulating film 57, an interlayer insulating film 58 is provided so as to cover them, while the source electrode 59 is in contact with the n ++ source region 54a and the additional p + type region 55. Is provided. A drain electrode 60 is provided on the back surface side of the n + semiconductor substrate 51. This structure is disclosed in Patent Document 1, for example.

ここで、「アバランシェ破壊」について簡単に説明すると以下の如くである。
すなわち、図11に例示したようなMOSFETをターンオフ動作させるときは、ゲートG・ソースS間を短絡させてゲートG・ソースS電圧VGSを0Vとする。このとき、VGSがしきい電圧以下になると、チャネルが消滅する。電流経路が遮断されたため、ドレイン電流IDは0Aになるが、この電流変化により、インダクタンスを持つ負荷が逆起電力を発生し、これがドレインDに印加される。この印加された起電力が、n- エピタキシャル層52とpベース領域53とにより構成されるダイオードを逆バイアス状態とし、ブレイクダウンを引き起こす。
一方、MOSFETには、n+ ソース領域54、pベース領域53、n- エピタキシャル層52によって、寄生的にnpn型のバイポーラ・トランジスタが構成されている。このバイポーラ・トランジスタのベースとなるpベース領域53には、寄生抵抗(ベース抵抗RB )が生じている。上述したターンオフ時にブレイクダウンした電流は、n+ 半導体基板51とn- エピタキシャル層52とpベース領域53に流れ込み、バイポーラ・トランジスタがオン動作する。ベース抵抗RB が大きいと、ベース・エミッタ間の順バイアスが大きくなる。このバイポーラ動作の起きているセルでは熱発生による電子正孔対が生成され、これがさらに熱を発生させるといった循環作用により、そのセルでは電流が集中し破壊が起こる。これが、いわゆる「アバランシェ破壊」である。
Here, the “avalanche destruction” will be briefly described as follows.
That is, when the MOSFET as illustrated in FIG. 11 is turned off, the gate G and the source S are short-circuited to set the gate G and source S voltage VGS to 0V. At this time, when VGS is equal to or lower than the threshold voltage, the channel disappears. Since the current path is interrupted, the drain current ID becomes 0 A. However, due to this current change, a load having inductance generates a back electromotive force, which is applied to the drain D. The applied electromotive force causes the diode constituted by the n epitaxial layer 52 and the p base region 53 to be in a reverse bias state, and causes breakdown.
On the other hand, an npn bipolar transistor is parasitically formed in the MOSFET by the n + source region 54, the p base region 53, and the n epitaxial layer 52. A parasitic resistance (base resistance RB) is generated in the p base region 53 serving as the base of the bipolar transistor. The breakdown current at the time of turn-off described above flows into the n + semiconductor substrate 51, the n epitaxial layer 52, and the p base region 53, and the bipolar transistor is turned on. When the base resistance RB is large, the forward bias between the base and the emitter becomes large. In the cell in which the bipolar operation occurs, electron-hole pairs are generated due to heat generation, and this causes further heat generation, so that current concentrates in the cell and destruction occurs. This is so-called “avalanche destruction”.

このような「アバランシェ破壊」を解決する従来技術として、図11に表したようにベース領域53の一部分のベース濃度を高濃度化した追加p+ 領域55を設け、寄生トランジスタのベース抵抗を低減する技術がある。さらに、ソース領域54の濃度を下げることにより寄生トランジスタのバイポーラ動作を抑制するという技術があるが、ソース領域54の濃度を下げるとソース電極59とのオーミックコンタクトが形成しにくくなりオン抵抗が上昇するという問題が新たに発生するため、ソース領域54のコンタクトトレンチTcの側壁面に高濃度のn++ソース領域54aを設け、ソース電極59とのオーミックコンタクトを形成する工夫がなされている。
さらに、図11の半導体装置の製造方法が、同じ特許文献1に開示されているのでそれを説明する。
As a conventional technique for solving such “avalanche breakdown”, as shown in FIG. 11, an additional p + region 55 in which the base concentration of a part of the base region 53 is increased is provided to reduce the base resistance of the parasitic transistor. There is technology. Further, there is a technique of suppressing the bipolar operation of the parasitic transistor by lowering the concentration of the source region 54. However, when the concentration of the source region 54 is lowered, it becomes difficult to form an ohmic contact with the source electrode 59 and the on-resistance increases. As a new problem arises, a high-concentration n ++ source region 54a is provided on the side wall surface of the contact trench Tc of the source region 54 to make an ohmic contact with the source electrode 59.
Furthermore, since the manufacturing method of the semiconductor device of FIG. 11 is disclosed in the same Patent Document 1, it will be described.

図12−1〜図12−4は、図11のコンタクトトレンチを有する半導体装置の製造方法を示す図であり、工程順に示した製造工程断面図である。
図12−1に表したように、ウェハ表面のゲート絶縁膜57を除去する。その後、ソース領域54を形成するための第2の不純物注入工程502aで砒素(As)等のn型不純物を注入し、拡散させてn+ ソース領域54を形成する。
次に、図12−2に表したように、層間絶縁膜58を形成し、図示しないレジストを用いたパターニング、エッチングの各処理の後、このレジストパターニング開口部より、RIE(Reactive Ion Etching)により層間絶縁膜58の一部を除去し、シリコン表面を露出させる。レジストを剥離したのち、第3の不純物注入工程502b、拡散工程によって、図12−3に表したように高濃度のn++ソース領域54aを形成する。
12A to 12D are diagrams illustrating a method for manufacturing the semiconductor device having the contact trench of FIG. 11, and are manufacturing process cross-sectional views illustrated in the order of processes.
As shown in FIG. 12A, the gate insulating film 57 on the wafer surface is removed. Thereafter, in a second impurity implantation step 502a for forming the source region 54, an n-type impurity such as arsenic (As) is implanted and diffused to form the n + source region 54.
Next, as shown in FIG. 12B, an interlayer insulating film 58 is formed. After patterning and etching using a resist (not shown), the resist patterning opening is used to perform RIE (Reactive Ion Etching). A part of the interlayer insulating film 58 is removed to expose the silicon surface. After removing the resist, a high concentration n ++ source region 54a is formed by the third impurity implantation step 502b and the diffusion step as shown in FIG.

次に、図12−4に表したように、露出したシリコン表面からRIEによりシリコンの一部を除去し、形成されたコンタクトトレンチTcの底部にボロン(B)等のp型不純物を、第4の不純物注入工程により注入、拡散し、p型の高濃度領域である追加p+ 領域55を形成する。
特開2003−101019号公報 図1、図3
Next, as shown in FIG. 12-4, a part of silicon is removed from the exposed silicon surface by RIE, and a p-type impurity such as boron (B) is added to the bottom of the formed contact trench Tc. Then, an additional p + region 55 which is a p-type high concentration region is formed by implanting and diffusing in the impurity implantation step.
JP, 2003-101019, A FIG. 1, FIG.

しかしながら、図12−1〜図12−4に例示した従来技術の製造法によると、n++ソース領域54aは、コンタクトトレンチTcを形成する前のシリコン表面からイオン注入して拡散させて形成するため、図13で示すように、n++ソース領域54aの拡散深さを深くした場合(図の左のn++ソース領域54aのみ点線で示した)でも、不純物濃度が高濃度となる箇所はコンタクトトレンチTcの上部近傍だけである。そのため、ソース電極59と良好なオーミックコンタクトをする箇所はn++ソース領域54aの側面で、上部近傍であり、下部の箇所ではオーミックコンタクトが形成しにくくなり、オン抵抗を低減させるためには図11の従来構造では限界がある。
この発明の目的は、前記の課題を解決して、従来構造よりさらにオン抵抗を低減できる半導体装置およびその製造方法を提供することにある。
However, according to the conventional manufacturing method illustrated in FIGS. 12A to 12D, the n ++ source region 54a is formed by ion implantation and diffusion from the silicon surface before the contact trench Tc is formed. Therefore, as shown in Figure 13, when the deep diffusion depth of n ++ source region 54a even (indicated by dotted lines only n ++ source region 54a in the left in the figure), location where the impurity concentration of the high concentration Is only near the upper part of the contact trench Tc. For this reason, the portion that makes good ohmic contact with the source electrode 59 is on the side surface of the n ++ source region 54a, near the upper portion, and it is difficult to form the ohmic contact at the lower portion. The 11 conventional structures have their limitations.
An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can solve the above-described problems and can further reduce the on-resistance as compared with the conventional structure.

前記の目的を達成するために、第1導電型の半導体層と、前記半導体層の表面付近に形成された第2導電型の半導体領域と、前記第2導電型の半導体領域の上に設けられた第1導電型の半導体領域と、前記第1導電型の半導体領域から前記第2導電型の半導体領域を貫通して前記第1導電型の半導体層に至る第1トレンチと、前記第1導電型の半導体領域から前記第2導電型の半導体領域に至る第2トレンチと、前記第1トレンチの内壁に設けられた絶縁層と、前記第1トレンチにおける前記絶縁層の内側空間を充填する第1導電体と、前記第2トレンチの内側空間を充填し、前記第1導電型の半導体領域の側面に接続された電極とを備え、前記第1導電型の半導体領域は、前記電極との接続部において第1導電型不純物の濃度が高い第1高濃度領域を有する半導体装置において、前記第1高濃度領域の不純物濃度分布が前記第2トレンチの深さ方向に向う側面で一定であり、且つ前記第1導電型の半導体領域表面からの深さが記第2トレンチの深さの1/2から2/3までである構成とする。 In order to achieve the above object, a first conductive type semiconductor layer, a second conductive type semiconductor region formed near the surface of the semiconductor layer, and a second conductive type semiconductor region are provided. A first conductive type semiconductor region, a first trench extending from the first conductive type semiconductor region through the second conductive type semiconductor region to the first conductive type semiconductor layer, and the first conductive type A second trench extending from the first semiconductor region to the second conductivity type semiconductor region, an insulating layer provided on an inner wall of the first trench, and a first filling the inner space of the insulating layer in the first trench. A conductor and an electrode filling the inner space of the second trench and connected to a side surface of the first conductivity type semiconductor region, wherein the first conductivity type semiconductor region is connected to the electrode; In the first high concentration of the first conductivity type impurity is high In a semiconductor device having a degree region, the first impurity concentration distribution of the high-concentration region is constant on the side toward the depth direction of the second trenches, is and depth from the first conductivity type semiconductor region surface a configuration is from half the depth of the previous SL second trench to 2/3.

また、前記第2トレンチの開口部の幅が底面の幅より広いとよい。
また、前記第1高濃度領域の上方の表面での幅より、前記第2トレンチの深さ方向の側面での表面の幅が大きいとよい。
また、前記第2トレンチの底面と接する前記第2導電型の半導体領域の表面層に該第2導電型不純物の濃度が高い第2高濃度領域を有するとよい。
また、前記第1高濃度領域が前記第2導電型の半導体領域から離れているとよい。
また、前記半導体装置の製造方法において、
第1導電型の半導体層と、第2導電型の半導体領域と、第1導電型の半導体領域と、がこの順になるように形成する工程と、
前記第1導電型の半導体領域から前記第2導電型の半導体領域を貫通して前記第1導電型の半導体層に達する第1トレンチを形成する工程と、
前記第1トレンチの内壁面に絶縁層を形成する工程と、
前記第1トレンチの前記絶縁層の内側を導電体で埋め込む工程と、
前記第1導電型の半導体領域のうちで前記第1トレンチから離間した表面から前記第2導電型の半導体領域に達する第2トレンチを形成する工程と、
前記第1導電型の半導体領域の表面から前記第2トレンチ深さの1/2から2/3までとなる前記第2トレンチの側壁の範囲に第1導電型の不純物を斜めにイオン注入した後、熱処理して、前記第2導電型の半導体領域から離して前記第1導電型の半導体領域より濃度が高く且つ前記第2トレンチの深さ方向に向う側面にて濃度が一定である第1高濃度領域を形成する工程と、
前記第2トレンチを導電体で埋め込み、前記第1高濃度領域の側面と露出した前記第2導電型の半導体領域に電極を接続する工程と、
を備えた製造方法とする。
The width of the opening of the second trench may be wider than the width of the bottom surface.
Further, it is preferable that the width of the surface on the side surface in the depth direction of the second trench is larger than the width on the surface above the first high concentration region.
Further, it is preferable that the surface layer of the second conductivity type semiconductor region in contact with the bottom surface of the second trench has a second high concentration region where the concentration of the second conductivity type impurity is high.
The first high concentration region may be separated from the second conductivity type semiconductor region.
In the method for manufacturing the semiconductor device,
Forming a first conductive type semiconductor layer, a second conductive type semiconductor region, and a first conductive type semiconductor region in this order;
Forming a first trench extending from the first conductivity type semiconductor region through the second conductivity type semiconductor region to reach the first conductivity type semiconductor layer;
Forming an insulating layer on the inner wall surface of the first trench;
Filling the inside of the insulating layer of the first trench with a conductor;
Forming a second trench that reaches the second conductivity type semiconductor region from a surface separated from the first trench in the first conductivity type semiconductor region;
After obliquely implanting ions of the first conductivity type into the range of the sidewall of the second trench that is 1/2 to 2/3 of the depth of the second trench from the surface of the semiconductor region of the first conductivity type. The first high concentration is constant at a side surface that is away from the second conductive type semiconductor region and is higher in concentration than the first conductive type semiconductor region and that faces the depth direction of the second trench. Forming a concentration region;
Filling the second trench with a conductor and connecting an electrode to a side surface of the first high concentration region and the exposed semiconductor region of the second conductivity type;
It is set as the manufacturing method provided with.

また、前記露出された第2導電型の半導体領域の表面に第2導電型の不純物を導入して第2高濃度領域を形成する工程をさらに備える製造方法とするとよい。   The manufacturing method may further include a step of forming a second high concentration region by introducing a second conductivity type impurity into the exposed surface of the second conductivity type semiconductor region.

この本発明によれば、第1高濃度領域(n++ソース領域4a)の側面での不純物濃度がトレンチの深さ方向に高濃度で一定であるため、この第1高濃度領域の側面と接する電極(ソース電極)との間で良好なオーミックコンタクトが広い範囲で得られ、オン抵抗を低減することができる。
また、第2トレンチにテーパーを付けることで、電極内に空洞(ボイド)ができることが防止され、オン抵抗を低減することができる。
According to the present invention, the impurity concentration at the side surface of the first high concentration region (n ++ source region 4a) is constant at a high concentration in the depth direction of the trench. A good ohmic contact can be obtained in a wide range with the electrode in contact (source electrode), and the on-resistance can be reduced.
Further, by tapering the second trench, it is possible to prevent a void from being formed in the electrode, and to reduce the on-resistance.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の第1実施例の半導体装置の要部断面図である。同図は、トレンチゲート型のnチャネル型MOSFETを表す。従来型MOSFETとの違いは、n+ ソース領域4のうちのソース電極9との接触部の表面部に形成した高濃度のn++ソース領域4aにおいて、コンタクトトレンチTcの側壁と接するn++ソース領域4aの不純物濃度が、図2に示すように、n- エピタキシャル半導体層2の表面から深さ方向(Y方向)に向かって高濃度で一定の領域が存在する点が異なる。
図1のMOSFETの全体構造について説明すると、以下の如くである。すなわち、n+ ドレイン層となるn+ 半導体基板1の上には、n- ドリフト層となるn- エピタキシャル半導体層2、pベース領域3、n+ ソース領域4がこの順に形成されている。そして、これら積層構造に対して垂直方向に形成されたゲートトレンチTgの内壁面にゲート絶縁膜7が設けられ、さらにゲートトレンチTgを埋め込むようにゲート電極6が設けられている。前記のpベース領域3はn- エピタキシャル半導体層2の表面層に形成される。
FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. This figure shows a trench gate type n-channel MOSFET. The difference between conventional MOSFET is, n + in high concentration n ++ source regions 4a formed on the surface portion of the contact portion between the source electrode 9 of the source region 4, n ++ in contact with the side walls of the contact trenches Tc As shown in FIG. 2, the source region 4a is different in that there is a constant region at a high concentration from the surface of the n epitaxial semiconductor layer 2 in the depth direction (Y direction).
The overall structure of the MOSFET in FIG. 1 will be described as follows. That is, on the n + semiconductor substrate 1 made of an n + drain layer, n - a drift layer n - epitaxial semiconductor layer 2, p base region 3, n + source region 4 is formed in this order. A gate insulating film 7 is provided on the inner wall surface of the gate trench Tg formed in a direction perpendicular to the laminated structure, and a gate electrode 6 is provided so as to fill the gate trench Tg. The p base region 3 is formed in the surface layer of the n epitaxial semiconductor layer 2.

また、ソース領域4には、ゲートトレンチTg間で選択的に除去されたコンタクトトレンチTcが形成され、そのコンタクトトレンチTcの側壁表面部には、図2に示すように、深さ方向(Y方向)に向かって不純物濃度が高く一定であるn++ソース領域4aが設けられるとともに、コンタクトトレンチTcの底面部分であるウェル領域3の表面側には、追加p+ 領域5が選択的に形成されている。このn++ソース領域4aとpベース領域3とは所定の間隔をあける。この間隔を電子の拡散長より長くすることで、n++ソース領域4aからn+ ソース領域4を経由してpベース領域3への電子の注入を抑制し、アバランシェ時の寄生バイポーラ動作を抑制することができる。
ゲート電極6及びゲート絶縁膜7の上には、これらを覆うように層間絶縁膜8が設けられ、一方、n++ソース領域4aと追加p+ 領域5に接触するようにソース電極9が設けられている。また、n+ 半導体基板1の裏面側にはドレイン電極10が設けられている。
Further, in the source region 4, a contact trench Tc that is selectively removed between the gate trenches Tg is formed. As shown in FIG. 2, a depth direction (Y direction) is formed on the surface of the side wall of the contact trench Tc. N ++ source region 4a having a high and high impurity concentration toward the surface), and an additional p + region 5 is selectively formed on the surface side of well region 3 which is the bottom surface portion of contact trench Tc. ing. The n ++ source region 4a and the p base region 3 are spaced apart from each other by a predetermined distance. By making this distance longer than the diffusion length of electrons, injection of electrons from the n ++ source region 4a to the p base region 3 via the n + source region 4 is suppressed, and parasitic bipolar operation during avalanche is suppressed. can do.
An interlayer insulating film 8 is provided on the gate electrode 6 and the gate insulating film 7 so as to cover them, while a source electrode 9 is provided so as to be in contact with the n ++ source region 4a and the additional p + region 5. It has been. A drain electrode 10 is provided on the back surface side of the n + semiconductor substrate 1.

以上説明した構成において、n+ ソース領域4の一部を高濃度のn++ソース領域4aとし、コンタクトトレンチTcの側壁と接するこのn++ソース領域4aの不純物濃度を、図2に示すようにn- エピタキシャル半導体層2の表面から深さ方向(Y方向)に向かって高濃度で一定の領域が存在するようにすることで、ソース電極9と接するn++ソース領域4aの不純物濃度をコンタクトトレンチTcの開口部から深い領域まで高濃度とすることができる。その結果、ソース電極9とn++ソース領域4aのオーミックコンタクト領域が広くなり、オン抵抗を従来構造より低減することができる。
このようにして形成したn++ソース領域4aは、表面の長さ(横方向の長さ)より、トレンチの深さ方向(Y方向)の長さ(縦方向の長さ)が長くなり、従来のn++ソース領域54aの断面形状とは異なった形状となる。
In the configuration described above, a part of the n + source region 4 is a high concentration n ++ source region 4a, and the impurity concentration of the n ++ source region 4a in contact with the side wall of the contact trench Tc is as shown in FIG. The n ++ source region 4a in contact with the source electrode 9 has an impurity concentration by making a constant region with a high concentration from the surface of the n epitaxial semiconductor layer 2 to the depth direction (Y direction). The concentration can be increased from the opening of the contact trench Tc to the deep region. As a result, the ohmic contact region between the source electrode 9 and the n ++ source region 4a is widened, and the on-resistance can be reduced as compared with the conventional structure.
The n ++ source region 4a formed in this way has a length (longitudinal length) in the depth direction (Y direction) of the trench longer than the surface length (lateral length), The cross-sectional shape of the conventional n ++ source region 54a is different.

尚、本実施例では、半導体基板として、n+ 半導体基板1上にn- エピタキシャル半導体層2を設けたエピタキシャル成長基板を用いた場合を示しているが、FZ(フローティングゾーン)基板を用いても構わない。その場合は、FZ基板であるn- 半導体基板(n- エピタキシャル半導体層2に相当する)の一方の主面にpベース領域3を形成し、他方の主面にn+ ドレイン領域(n+ 半導体基板1に相当する)を形成する。 In this embodiment, the case where an epitaxial growth substrate in which the n epitaxial semiconductor layer 2 is provided on the n + semiconductor substrate 1 is used as the semiconductor substrate, but an FZ (floating zone) substrate may be used. Absent. In that case, the p base region 3 is formed on one main surface of an n semiconductor substrate (corresponding to the n epitaxial semiconductor layer 2) which is an FZ substrate, and an n + drain region (n + semiconductor) is formed on the other main surface. Corresponding to the substrate 1).

図3〜図6は、この発明の第2実施例の半導体装置の製造方法を示す図であり、工程順に示す要部工程断面図である。これは図1の半導体装置の製造方法である。
最初に図3に至るまでの製造工程を説明する。
まず、基板濃度1020cm-3のn+ シリコンのn+ 半導体基板1の主面上に1×1016cm-3程度の不純物濃度のn- エピタキシャル半導体層2を約10μm成長させる。次にn- エピタキシャル半導体層2表面上に酸化膜を形成し、表面にp型の不純物、例えばボロン(B)を1×1013〜1×1015cm-2のドーズ量でイオン注入し、拡散させ、pベース領域3を形成する。
次に、PEP(Photo−Engraving Process)技術を用いて酸化膜表面にレジストマスクを設け、例えばRIE法により、シリコン表面に達するまでドライエッチングを行い、レジストを除去してゲートトレンチマスクを形成する。
3 to 6 are views showing a method of manufacturing a semiconductor device according to the second embodiment of the present invention, and are cross-sectional views of essential parts shown in the order of steps. This is a method of manufacturing the semiconductor device of FIG.
First, the manufacturing process up to FIG. 3 will be described.
First, an n epitaxial semiconductor layer 2 having an impurity concentration of about 1 × 10 16 cm −3 is grown on the main surface of n + semiconductor substrate 1 of n + silicon having a substrate concentration of 10 20 cm −3 and about 10 μm. Next, an oxide film is formed on the surface of the n epitaxial semiconductor layer 2, and a p-type impurity such as boron (B) is ion-implanted on the surface with a dose of 1 × 10 13 to 1 × 10 15 cm −2 . The p base region 3 is formed by diffusing.
Next, a resist mask is provided on the surface of the oxide film using a PEP (Photo-Engraving Process) technique, and dry etching is performed until the silicon surface is reached by, for example, RIE, and the resist is removed to form a gate trench mask.

次に、RIE法により、n- エピタキシャル半導体層2に達するまでドライエッチングを行い、ゲートトレンチTgを形成する。次にCDE(Chemical Dry Etching)および犠牲酸化等を用いて、ゲートトレンチTg内壁面のエッチングダメージを除去し、ゲートトレンチTgの内壁面及びその周囲の表面に、ゲート絶縁膜7を形成する。
次に、n型の不純物が高濃度にドープされたポリシリコンをゲートトレンチTgが十分に埋まるまで堆積させてゲート電極6を形成する。
次に、ウェハの表面に堆積されたポリシリコンをRIEもしくはCDE等によりエッチングし、ゲートトレンチTgの内部のみにゲート電極6としてのポリシリコンが埋められた状態にする。
Next, dry etching is performed by RIE until the n epitaxial semiconductor layer 2 is reached, thereby forming a gate trench Tg. Next, etching damage on the inner wall surface of the gate trench Tg is removed by using CDE (Chemical Dry Etching), sacrificial oxidation, or the like, and the gate insulating film 7 is formed on the inner wall surface of the gate trench Tg and its surrounding surface.
Next, polysilicon doped with a high concentration of n-type impurities is deposited until the gate trench Tg is sufficiently filled to form the gate electrode 6.
Next, the polysilicon deposited on the surface of the wafer is etched by RIE or CDE so that the polysilicon as the gate electrode 6 is filled only in the gate trench Tg.

次に、ウェハ表面のゲート絶縁膜7を除去し、その後、ソース領域4を形成するために、砒素(As)等のn型不純物を1×1015cm-2のドーズ量でウェハ表面から垂直にイオンを注入し、拡散させて第1のソース領域4を形成する。次に、CVD(Chemical Vapor Deposition)法により層間絶縁膜8を形成し、図示しないレジストを用いたパターニング、CDEの各処理の後、このレジストパターニング開口部より、RIEによって層間絶縁膜8の一部を除去し、シリコン表面を露出させる。このとき、層間絶縁膜8の開口部角は、CDE等の処理によってラウンドされるため、後工程のソース電極埋め込みの際にカバレージが良好となる。次にレジストを剥離し、図4に至る。
次に、図4に表したように、露出したシリコン表面からRIEによりn+ ソース領域4の一部を除去し、pベース領域3に達するコンタクトトレンチTcを形成する。
Next, the gate insulating film 7 on the wafer surface is removed, and then an n-type impurity such as arsenic (As) is vertically applied from the wafer surface at a dose of 1 × 10 15 cm −2 in order to form the source region 4. Ions are implanted into and diffused to form the first source region 4. Next, an interlayer insulating film 8 is formed by a CVD (Chemical Vapor Deposition) method. After each patterning and CDE process using a resist (not shown), a part of the interlayer insulating film 8 is formed by RIE from this resist patterning opening. To expose the silicon surface. At this time, since the opening angle of the interlayer insulating film 8 is rounded by a process such as CDE, the coverage is improved when the source electrode is embedded in a later process. Next, the resist is peeled off, and FIG. 4 is reached.
Next, as shown in FIG. 4, a part of the n + source region 4 is removed from the exposed silicon surface by RIE, and a contact trench Tc reaching the p base region 3 is formed.

次に、図5に表したように、コンタクトトレンチTcの底部に不純物注入工程101で例えばボロン(B)等のp型不純物を1×1015cm-2のドーズ量でウェハ表面から垂直にイオン注入し、拡散させて、p型の高濃度領域である追加p+ 領域5を形成する。
次に、図6に表したように、コンタクトトレンチTcの壁面に不純物注入工程102で砒素(As)等のn型不純物を5×1015cm-2のドーズ量でウェハ表面から斜めにイオン注入し、拡散させてコンタクトトレンチTcの壁面の表面部に高濃度のn++ソース領域4aを形成する。
このとき、コンタクトトレンチTc壁面上のn++ソース領域4aは、シリコン表面からのコンタクトトレンチTcの深さの1/2から2/3までとする。これ以上深くすると、アバランシェ時にn++ソース領域4aからn+ ソース領域4を経由してpベース領域3に注入される電子量が増大し、寄生バイポーラ動作によりアバランシェ破壊が生じる心配がある。
Next, as shown in FIG. 5, a p-type impurity such as boron (B) is ionized vertically from the wafer surface at a dose of 1 × 10 15 cm −2 in the impurity implantation step 101 at the bottom of the contact trench Tc. Implanted and diffused, an additional p + region 5 which is a p-type high concentration region is formed.
Next, as shown in FIG. 6, an n-type impurity such as arsenic (As) is implanted into the wall surface of the contact trench Tc obliquely from the wafer surface at a dose of 5 × 10 15 cm −2 in the impurity implantation step 102. Then, a high concentration n ++ source region 4a is formed on the surface portion of the wall surface of the contact trench Tc.
At this time, the n ++ source region 4a on the wall surface of the contact trench Tc is set to 1/2 to 2/3 of the depth of the contact trench Tc from the silicon surface. If deeper than this, the amount of electrons injected from the n ++ source region 4a through the n + source region 4 into the p base region 3 during avalanche increases, and there is a concern that avalanche breakdown may occur due to parasitic bipolar operation.

不純物注入工程102での打ち込み領域の範囲の調整は、コンタクトトレンチTcの深さと幅および斜めイオン注入の角度で行う。垂直方向の打ち込み角度を90°として この角度を小さくすると(垂直方向から離れるほど)、コンタクトトレンチTcの側壁に打ち込まれる不純物の範囲が上方に上がってきて打ち込み領域が狭くなる。
このように、コンタクトトレンチTcの側壁にイオン注入するために、トレンチ側壁と接する面でn++ソース領域4aの不純物濃度が最も高くなり、打ち込んだ面に垂直方向(横方向)へ進むにつれて低くなる。そのため、イオン注入された領域では、図2に示すように、コンタクトトレンチTcの深さ方向(Y方向)の不純物濃度は一定となる。また、ソース電極9と接するn++ソース領域4aの不純物濃度が高く、広くなるので、良好なオーミックコンタクトが得られる領域が広くなり、オン抵抗を低減することができる。
The range of the implantation region in the impurity implantation step 102 is adjusted by the depth and width of the contact trench Tc and the angle of oblique ion implantation. When the vertical implantation angle is 90 ° and this angle is reduced (as the distance from the vertical direction increases), the range of impurities implanted into the side wall of the contact trench Tc rises upward and the implantation region becomes narrower.
As described above, since ions are implanted into the side wall of the contact trench Tc, the impurity concentration of the n ++ source region 4a is highest on the surface in contact with the trench side wall, and decreases as it proceeds in the vertical direction (lateral direction) to the implanted surface. Become. For this reason, in the ion-implanted region, as shown in FIG. 2, the impurity concentration in the depth direction (Y direction) of the contact trench Tc is constant. In addition, since the impurity concentration of the n ++ source region 4a in contact with the source electrode 9 is high and wide, a region where a good ohmic contact can be obtained is widened, and the on-resistance can be reduced.

なお、本実施例では、コンタクトトレンチTcを形成した後、追加p+ 領域5を形成し、その後でn++ソース領域4aを形成したが、先にn++ソース領域4aを形成し、その後で追加p+ 領域5を形成してもよい。最後に、ソース電極9とドレイン電極10を形成し、図示しないパッシベーション膜の形成、パターニングを経て、図1に表したMOSFETが完成する。 In this embodiment, after the contact trench Tc is formed, the additional p + region 5 is formed and then the n ++ source region 4a is formed. However, the n ++ source region 4a is formed first, and then An additional p + region 5 may be formed. Finally, the source electrode 9 and the drain electrode 10 are formed, and a passivation film (not shown) is formed and patterned to complete the MOSFET shown in FIG.

図7および図8は、この発明の第3実施例の半導体装置の製造方法を示す図であり、工程順に示す要部工程断面図である。これは前記の図1の半導体装置の別の製造方法である。
第2実施例の図4の層間絶縁膜8をパターニングするまでの工程は同じである。
次に、図7に表したように、露出したシリコン表面からRIEによりn+ ソース領域の一部を除去し、コンタクトトレンチTcを、n++ソース領域4aを形成する箇所の深さまで(pベース領域に達しない箇所の深さまで)形成し、コンタクトトレンチTcの壁面に不純物注入工程102で砒素(As)等のn型不純物を5×1015cm-2のドーズ量でウェハ表面から斜めにイオン注入し、拡散させてコンタクトトレンチTcの壁面の表面部にn++ソース領域4aを形成する。
7 and 8 are views showing a method of manufacturing a semiconductor device according to the third embodiment of the present invention, and are cross-sectional views of essential parts shown in the order of steps. This is another method for manufacturing the semiconductor device shown in FIG.
The steps up to patterning the interlayer insulating film 8 of FIG. 4 of the second embodiment are the same.
Next, as shown in FIG. 7, a part of the n + source region is removed from the exposed silicon surface by RIE, and the contact trench Tc is formed to the depth where the n ++ source region 4 a is formed (p base). The n-type impurity such as arsenic (As) is ionized obliquely from the wafer surface at a dose of 5 × 10 15 cm −2 in the impurity implantation step 102 on the wall surface of the contact trench Tc. Implanted and diffused, an n ++ source region 4a is formed on the surface of the wall surface of the contact trench Tc.

このようにすると、イオン注入の角度に依らず、n++ソース領域4aの深さ方向の範囲を正確に決めることができる。
このn++ソース領域4aの形成に当たっては、例えばAsH3 などのドーパントガスを用いたECR(Electron Cycrotron Resonance)プラズマなどによる気相拡散法によってn型不純物を注入してもよい。その後、活性化のための熱処理を適宜施すことにより、n++ソース領域4aを形成することができる。
次に、コンタクトトレンチTcの底部を開口したマスクを用い、図8に表したように、RIEによってさらにコンタクトトレンチTcをpベース領域に達する深さまでエッチングする。そして、コンタクトトレンチTcの底部に不純物注入工程101で例えばボロン(B)等のn型不純物を1×1015cm-2のドーズ量でウェハ表面から垂直にイオン注入し、拡散させて、追加p+ 領域5を形成する。
In this way, the range in the depth direction of the n ++ source region 4a can be accurately determined regardless of the ion implantation angle.
In forming the n ++ source region 4a, an n-type impurity may be implanted by a vapor phase diffusion method using ECR (Electron Cyclotron Resonance) plasma using a dopant gas such as AsH 3 . Thereafter, the n ++ source region 4a can be formed by appropriately performing heat treatment for activation.
Next, as shown in FIG. 8, the contact trench Tc is further etched by RIE to a depth reaching the p base region using a mask having an opening at the bottom of the contact trench Tc. Then, an n-type impurity such as boron (B), for example, is implanted into the bottom of the contact trench Tc vertically from the wafer surface at a dose of 1 × 10 15 cm −2 in an impurity implantation step 101, and diffused to add p + Region 5 is formed.

最後に、ソース電極9とドレイン電極10を形成し、図示しないパッシベーション膜の形成、パターニングを経て、図1に表したMOSFETが完成する。
前記の第1実施例の半導体装置において、微細化が進むと、コンタクトトレンチTcのアスペクト比が高くなり、前記ソース電極9を埋め込む際に、開口部の入り口が先に埋まってしまい、前記ソース電極9内に空隙(ボイド)が発生してオン抵抗が上昇する。これを解決する方法をつぎに説明する。
Finally, the source electrode 9 and the drain electrode 10 are formed, and a passivation film (not shown) is formed and patterned to complete the MOSFET shown in FIG.
In the semiconductor device of the first embodiment, as the miniaturization progresses, the aspect ratio of the contact trench Tc increases, and when the source electrode 9 is embedded, the entrance of the opening is buried first, and the source electrode A void (void) is generated in 9 and the on-resistance increases. A method for solving this will be described below.

図9は、この発明の第4実施例の半導体装置の要部断面図である。図1の構成と異なる点は、コンタクトトレンチTcが垂直に形成されるのではなく、開口部幅を底部幅より広くして、コンタクトトレンチTcをテーパ形状に形成することである。これにより、微細化によってコンタクトトレンチTcのアスペクト比が高くなっても、ソース電極9を形成するための導電材料の充填が良好に行われ、前記ソース電極9内に空隙(ボイド)が発生しなくなり、オン抵抗の増大を防止できる。   FIG. 9 is a sectional view showing the principal part of a semiconductor device according to the fourth embodiment of the present invention. The difference from the configuration of FIG. 1 is that the contact trench Tc is not formed vertically, but the opening width is wider than the bottom width and the contact trench Tc is formed in a tapered shape. Thereby, even when the aspect ratio of the contact trench Tc is increased by miniaturization, the conductive material for forming the source electrode 9 is satisfactorily filled, and voids (voids) are not generated in the source electrode 9. , Increase in on-resistance can be prevented.

図10は、この発明の第5実施例の半導体装置の製造方法を示す要部工程断面図である。これは図9の半導体装置の製造方法である。
第2実施例の図3の層間絶縁膜8をパターニングするまでの工程は同じである。
図10に表したように、露出したシリコン表面からRIEによりn+ ソース領域4の一部を除去し、コンタクトトレンチTcをテーパ形状に形成する。このときのテーパ角度θは88〜89°程度が望ましい。その後の工程は、図5〜図6と同様とする。
最後に、ソース電極9とドレイン電極10を形成し、図示しないパッシベーション膜の形成、パターニングを経て、図9に表したMOSFETが完成する。
FIG. 10 is a cross-sectional view showing the principal part of the method of manufacturing the semiconductor device according to the fifth embodiment of the present invention. This is a method of manufacturing the semiconductor device of FIG.
The steps up to patterning the interlayer insulating film 8 of FIG. 3 in the second embodiment are the same.
As shown in FIG. 10, a part of the n + source region 4 is removed from the exposed silicon surface by RIE to form a contact trench Tc in a tapered shape. In this case, the taper angle θ is preferably about 88 to 89 °. The subsequent steps are the same as those shown in FIGS.
Finally, the source electrode 9 and the drain electrode 10 are formed, and a passivation film (not shown) is formed and patterned to complete the MOSFET shown in FIG.

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. 図1のY方向の不純物濃度分布を示す図The figure which shows the impurity concentration distribution of the Y direction of FIG. この発明の第2実施例の半導体装置の要部工程断面図Sectional process sectional view of a semiconductor device according to a second embodiment of the present invention. 図3に続く、この発明の第2実施例の半導体装置の要部工程断面図FIG. 3 is a cross-sectional view of main steps of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図4に続く、この発明の第2実施例の半導体装置の要部工程断面図FIG. 4 is a cross-sectional view of the essential part of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図5に続く、この発明の第2実施例の半導体装置の要部工程断面図FIG. 5 is a cross-sectional view of main steps of the semiconductor device according to the second embodiment of the present invention, continued from FIG. この発明の第3実施例の半導体装置の要部工程断面図Sectional process sectional view of a semiconductor device according to a third embodiment of the present invention. 図7に続く、この発明の第3実施例の半導体装置の要部工程断面図FIG. 7 is a cross-sectional view of main steps of the semiconductor device according to the third embodiment of the present invention, continued from FIG. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. この発明の第5実施例の半導体装置の要部工程断面図Sectional process sectional view of the semiconductor device according to the fifth embodiment of the present invention. コンタクトトレンチを有する従来の半導体装置の要部断面図Cross-sectional view of the main part of a conventional semiconductor device having a contact trench 図11の半導体装置の製造方法を示す要部工程断面図FIG. 11 is a fragmentary process cross-sectional view illustrating the manufacturing method of the semiconductor device in FIG. 図12−1に続く、図11の半導体装置の製造方法を示す要部工程断面図FIG. 12-1 is a principal process cross-sectional view illustrating the manufacturing method of the semiconductor device of FIG. 図12−2に続く、図11の半導体装置の製造方法を示す要部工程断面図FIG. 12B is a principal process cross-sectional view illustrating the manufacturing method of the semiconductor device of FIG. 図12−3に続く、図11の半導体装置の製造方法を示す要部工程断面図FIG. 12-3 is a fragmentary process cross-sectional view illustrating the manufacturing method of the semiconductor device of FIG. 図11のY方向の不純物濃度分布を示す図The figure which shows the impurity concentration distribution of the Y direction of FIG.

符号の説明Explanation of symbols

1 n+ 半導体基板
2 n- エピタキシャル半導体層
3 pベース領域
4 n+ ソース領域
4a n++ソース領域
5 追加p+ 領域
6 ゲート電極
7 ゲート絶縁膜
8 層間絶縁膜
9 ソース電極
10 ドレイン電極 Tg ゲートトレンチ
Tc コンタクトトレンチ
1 n + semiconductor substrate 2 n - epitaxial semiconductor layer 3 p base region 4 n + source region 4 a n ++ source region 5 additional p + region 6 gate electrode 7 gate insulating film 8 interlayer insulating film 9 source electrode 10 drain electrode Tg gate Trench Tc Contact trench

Claims (7)

第1導電型の半導体層と、前記半導体層の表面付近に形成された第2導電型の半導体領域と、前記第2導電型の半導体領域の上に設けられた第1導電型の半導体領域と、前記第1導電型の半導体領域から前記第2導電型の半導体領域を貫通して前記第1導電型の半導体層に至る第1トレンチと、前記第1導電型の半導体領域から前記第2導電型の半導体領域に至る第2トレンチと、前記第1トレンチの内壁に設けられた絶縁層と、前記第1トレンチにおける前記絶縁層の内側空間を充填する第1導電体と、前記第2トレンチの内側空間を充填し、前記第1導電型の半導体領域の側面に接続された電極とを備え、前記第1導電型の半導体領域は、前記電極との接続部において第1導電型不純物の濃度が高い第1高濃度領域を有する半導体装置において、前記第1高濃度領域の不純物濃度分布が前記第2トレンチの深さ方向に向う側面で一定であり、且つ前記第1導電型の半導体領域表面からの深さが記第2トレンチの深さの1/2から2/3までであることを特徴とする半導体装置。 A first conductivity type semiconductor layer; a second conductivity type semiconductor region formed near a surface of the semiconductor layer; and a first conductivity type semiconductor region provided on the second conductivity type semiconductor region; A first trench extending from the first conductivity type semiconductor region through the second conductivity type semiconductor region to the first conductivity type semiconductor layer, and from the first conductivity type semiconductor region to the second conductivity type. A second trench extending to the semiconductor region of the mold, an insulating layer provided on an inner wall of the first trench, a first conductor filling an inner space of the insulating layer in the first trench, and a second trench And an electrode connected to a side surface of the first conductivity type semiconductor region, wherein the first conductivity type semiconductor region has a concentration of the first conductivity type impurity at a connection portion with the electrode. For a semiconductor device having a high first high concentration region There are, the impurity concentration distribution of the first high-concentration region is constant on the side toward the depth direction of the second trench, and a depth from the first conductivity type semiconductor region surface before Symbol of the second trench A semiconductor device having a depth of 1/2 to 2/3. 前記第2トレンチの開口部の幅が底面の幅より広いことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the width of the opening of the second trench is wider than the width of the bottom surface. 前記第1高濃度領域の上方の表面での幅より、前記第2トレンチの深さ方向の側面での表面の幅が大きいことを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a width of a surface on a side surface in a depth direction of the second trench is larger than a width of a surface above the first high concentration region. 前記第2トレンチの底面と接する前記第2導電型の半導体領域の表面層に該第2導電型不純物の濃度が高い第2高濃度領域を有することを特徴とする請求項1〜3のいずれか一項に記載の半導体装置。 4. The device according to claim 1, further comprising a second high concentration region having a high concentration of the second conductivity type impurity in a surface layer of the second conductivity type semiconductor region in contact with a bottom surface of the second trench. The semiconductor device according to one item. 前記第1高濃度領域が前記第2導電型の半導体領域から離れていることを特徴とする請求項1〜4のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first high concentration region is separated from the second conductivity type semiconductor region. 第1導電型の半導体層と、第2導電型の半導体領域と、第1導電型の半導体領域と、がこの順なるように形成する工程と、
前記第1導電型の半導体領域から前記第2導電型の半導体領域を貫通して前記第1導電型の半導体層に達する第1トレンチを形成する工程と、
前記第1トレンチの内壁面に絶縁層を形成する工程と、
前記第1トレンチの前記絶縁層の内側を導電体で埋め込む工程と、
前記第1導電型の半導体領域のうちで前記第1トレンチから離間した表面から前記第2導電型の半導体領域に達する第2トレンチを形成する工程と、
前記第1導電型の半導体領域の表面から前記第2トレンチ深さの1/2から2/3までとなる前記第2トレンチの側壁の範囲に第1導電型の不純物を斜めにイオン注入した後、熱処理して、前記第2導電型の半導体領域から離して前記第1導電型の半導体領域より濃度が高く且つ前記第2トレンチの深さ方向に向う側面にて濃度が一定である第1高濃度領域を形成する工程と、
前記第2トレンチを導電体で埋め込み、前記第1高濃度領域の側面と露出した前記第2導電型の半導体領域に電極を接続する工程と、
を備えたことを特徴とする半導体装置の製造方法。
Forming a first conductive type semiconductor layer, a second conductive type semiconductor region, and a first conductive type semiconductor region in this order;
Forming a first trench extending from the first conductivity type semiconductor region through the second conductivity type semiconductor region to reach the first conductivity type semiconductor layer;
Forming an insulating layer on the inner wall surface of the first trench;
Filling the inside of the insulating layer of the first trench with a conductor;
Forming a second trench that reaches the second conductivity type semiconductor region from a surface separated from the first trench in the first conductivity type semiconductor region;
After obliquely implanting ions of the first conductivity type into the range of the sidewall of the second trench that is 1/2 to 2/3 of the depth of the second trench from the surface of the semiconductor region of the first conductivity type. The first high concentration is constant at a side surface that is away from the second conductive type semiconductor region and is higher in concentration than the first conductive type semiconductor region and that faces the depth direction of the second trench. Forming a concentration region;
Filling the second trench with a conductor and connecting an electrode to a side surface of the first high concentration region and the exposed semiconductor region of the second conductivity type;
A method for manufacturing a semiconductor device, comprising:
前記露出された第2導電型の半導体領域の表面に第2導電型の不純物を導入して第2高濃度領域を形成する工程をさらに備えたことを特徴とする請求項6に記載の半導体装置の製造方法。The semiconductor device according to claim 6, further comprising a step of introducing a second conductivity type impurity into the exposed surface of the second conductivity type semiconductor region to form a second high concentration region. Manufacturing method.
JP2003419959A 2003-12-17 2003-12-17 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5034151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419959A JP5034151B2 (en) 2003-12-17 2003-12-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419959A JP5034151B2 (en) 2003-12-17 2003-12-17 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011266361A Division JP5578165B2 (en) 2011-12-06 2011-12-06 Manufacturing method of semiconductor device

Publications (3)

Publication Number Publication Date
JP2005183547A JP2005183547A (en) 2005-07-07
JP2005183547A5 JP2005183547A5 (en) 2006-08-31
JP5034151B2 true JP5034151B2 (en) 2012-09-26

Family

ID=34781679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419959A Expired - Fee Related JP5034151B2 (en) 2003-12-17 2003-12-17 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5034151B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385248B2 (en) * 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
JP5014839B2 (en) * 2007-03-06 2012-08-29 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP2010147380A (en) * 2008-12-22 2010-07-01 Denso Corp Method for manufacturing semiconductor device
JP5045733B2 (en) 2008-12-24 2012-10-10 株式会社デンソー Semiconductor device
JP5564798B2 (en) * 2009-01-26 2014-08-06 富士電機株式会社 Semiconductor device and manufacturing method thereof
US8809911B2 (en) 2010-11-30 2014-08-19 Fuji Electric Co., Ltd. Semiconductor device
JP2013084904A (en) * 2011-09-29 2013-05-09 Toshiba Corp Semiconductor device
JP2013219161A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
JP5831526B2 (en) * 2013-01-17 2015-12-09 株式会社デンソー Semiconductor device and manufacturing method thereof
JP6526591B2 (en) * 2016-03-16 2019-06-05 株式会社東芝 Semiconductor device
JP6972691B2 (en) * 2017-06-19 2021-11-24 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276548A (en) * 1985-09-30 1987-04-08 Toshiba Corp Semiconductor device
JP4225711B2 (en) * 2001-06-29 2009-02-18 株式会社東芝 Semiconductor device and manufacturing method thereof
JP4024503B2 (en) * 2001-09-19 2007-12-19 株式会社東芝 Semiconductor device and manufacturing method thereof
JP4469524B2 (en) * 2001-09-20 2010-05-26 株式会社東芝 Manufacturing method of semiconductor device
US7102182B2 (en) * 2001-11-30 2006-09-05 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP4025063B2 (en) * 2001-12-06 2007-12-19 株式会社ルネサステクノロジ Semiconductor device

Also Published As

Publication number Publication date
JP2005183547A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5530602B2 (en) Semiconductor device and manufacturing method thereof
JP5729331B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4024503B2 (en) Semiconductor device and manufacturing method thereof
JP3954493B2 (en) A method of manufacturing a power MOSFET using a power MOSFET and a self-aligned body injection process.
JP5767430B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20060267085A1 (en) Trech-type vertical semiconductor device having gate electrode buried in rounded hump opening
WO2018052098A1 (en) Semiconductor device, and production method therefor
US20080017897A1 (en) Semiconductor device and method of manufacturing same
WO2000005767A1 (en) Semiconductor device and method for fabricating the same
JP2005285913A (en) Semiconductor device and manufacturing method thereof
JP2006210392A (en) Semiconductor device and manufacturing method thereof
JP2012114209A (en) Semiconductor device and method of manufacturing the same
JP3704007B2 (en) Semiconductor device and manufacturing method thereof
US7026214B2 (en) Offset-gate-type semiconductor device
TW202006956A (en) Power MOSFET with an integrated pseudo-Schottky diode in source contact trench
JP2012009545A (en) Semiconductor device manufacturing method
JP2011134985A (en) Trench gate type semiconductor device, and method of manufacturing the same
JP4091921B2 (en) Semiconductor device and manufacturing method thereof
JP5034151B2 (en) Semiconductor device and manufacturing method thereof
US20200203514A1 (en) Self-aligned and robust igbt devices
JP4469524B2 (en) Manufacturing method of semiconductor device
JP3831615B2 (en) Semiconductor device and manufacturing method thereof
JP2007173379A (en) Semiconductor device and manufacturing method thereof
JP3642768B2 (en) Horizontal high voltage semiconductor device
JP2009277755A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5034151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees