JP5029173B2 - Coating unevenness evaluation device - Google Patents

Coating unevenness evaluation device Download PDF

Info

Publication number
JP5029173B2
JP5029173B2 JP2007174243A JP2007174243A JP5029173B2 JP 5029173 B2 JP5029173 B2 JP 5029173B2 JP 2007174243 A JP2007174243 A JP 2007174243A JP 2007174243 A JP2007174243 A JP 2007174243A JP 5029173 B2 JP5029173 B2 JP 5029173B2
Authority
JP
Japan
Prior art keywords
unevenness
moving average
light
average value
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007174243A
Other languages
Japanese (ja)
Other versions
JP2009014399A (en
Inventor
彰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007174243A priority Critical patent/JP5029173B2/en
Publication of JP2009014399A publication Critical patent/JP2009014399A/en
Application granted granted Critical
Publication of JP5029173B2 publication Critical patent/JP5029173B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、ワークの塗装ムラを精度よく判定し、評価するための塗装ムラ評価装置に関するものである。   The present invention relates to a coating unevenness evaluation apparatus for accurately determining and evaluating a coating unevenness of a workpiece.

たとえば、自動車ボディで採用されているメタリック塗装のムラを検査する方法は、熟練した検査員による官能検査に依拠しているのが現状である。この塗装ムラの見分けは極めて難しく、熟練検査員をもってして明らかに塗装ムラと分かるムラは判定し易いが、実際は塗装自体の色であってムラではないものを峻別する必要もある。   For example, the current method for inspecting unevenness in metallic paint used in automobile bodies relies on sensory inspection by a skilled inspector. It is very difficult to distinguish the coating unevenness, and it is easy to determine the unevenness that is clearly recognized as a coating unevenness by a skilled inspector.

このような判別困難な塗装ムラを熟練検査員を介さず、自動処理された検査装置でおこなうことができれば、量産される車両の製造ラインで効率的に塗装ムラ判定を実行することが可能となる。   If such a coating unevenness that is difficult to discriminate can be performed by an automatically processed inspection device without using a skilled inspector, it is possible to efficiently perform the coating unevenness determination on a production line of a mass-produced vehicle. .

上記のごとく塗装ムラを自動判定する従来の技術として、たとえば特許文献1,2を挙げることができる。特許文献1では、被塗装面をCCDカメラで撮像してなる画像を複数の小領域に分割し、各領域の平均受光量を求めてその分散値を求めるとともに、小領域が集合してなる大領域での平均受光量の最大、最小の差分値を求め、これらの値に基づいて塗装ムラを判定する装置と方法が開示されている。一方、特許文献2では、受光反射光の強度波形において、特定の波長成分の強度を計算し、該強度に基づいて塗装ムラを特定しようとする方法が開示されている。   For example, Patent Documents 1 and 2 can be cited as conventional techniques for automatically determining coating unevenness as described above. In Patent Document 1, an image obtained by picking up a surface to be coated with a CCD camera is divided into a plurality of small areas, the average amount of light received in each area is obtained and the dispersion value is obtained, and a large area formed by collecting the small areas. An apparatus and a method for determining the maximum and minimum difference values of the average received light amount in the region and determining the coating unevenness based on these values are disclosed. On the other hand, Patent Document 2 discloses a method for calculating the intensity of a specific wavelength component in the intensity waveform of received / reflected light, and trying to identify coating unevenness based on the intensity.

特開2005−106764号公報JP 2005-106764 A 特開平5−288690号公報JP-A-5-288690

特許文献1では、CCDカメラの撮影画像情報を処理するものであり、周囲の環境条件等(工場内の明るさ、温度、塗装色など)によって結果が大きく異なることから再現性が乏しく、評価に対する高い信頼性は得られにくい。また、特許文献2では、ムラの波長成分に着目しているものの、波長分離した解析結果を最終的に積分計算しているために、既述するように実際にムラが発生しているのか否かの微妙な判断には適さない。   In Patent Document 1, the captured image information of the CCD camera is processed, and the results are greatly different depending on the surrounding environmental conditions (brightness, temperature, paint color, etc. in the factory). High reliability is difficult to obtain. Further, in Patent Document 2, although attention is paid to the wavelength component of unevenness, whether or not unevenness has actually occurred as described above because the analysis result of wavelength separation is finally subjected to integral calculation. It is not suitable for such delicate judgments.

本発明は、上記する問題に鑑みてなされたものであり、熟練検査員を要することなく、塗装ムラを精度よく判定評価することのできる塗装ムラ評価装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a coating unevenness evaluation apparatus that can accurately determine and evaluate coating unevenness without requiring a skilled inspector.

前記目的を達成すべく、本発明による塗装ムラ評価装置は、ワークの塗装ムラを評価する塗装ムラ評価装置であって、前記塗装ムラ評価装置は、ワークの塗装面に光を照射する発光手段と、反射光を受光する受光手段と、受光手段にて受光された受光データを使用して演算を実行する演算手段と、演算手段による演算結果を表示する表示手段と、を車輪付きのボディに内蔵したものであり、前記演算手段では、塗装ムラ評価装置を塗装面上で所定距離移動させた際の所定間隔ごとの受光データを読み込むとともに、この所定距離の移動を複数回実行して第1の移動平均値を求め、前記間隔を変化させて塗装ムラ評価装置を複数回移動させて第2の移動平均値を求め、さらに前記間隔を変化させて第n−1、第nの移動平均値を求める第1ステップと、第nの移動平均値と第n−1の移動平均値の差分を求めて移動平均値の差分値n−1を求めるとともに、順次、差分値n−2、・・・・、1を求め、各移動平均値の差分値の標準偏差n−1’、n−2’、・・・・、1’を求める第2ステップと、該標準偏差の中から任意に2つの標準偏差を取り出して長波長側のムラ特性値および短波長側のムラ特性値とし、この2種類のムラ特性値で塗装ムラの有無領域をそれぞれ求める第3ステップと、を実行することを特徴とするものである。   In order to achieve the above object, the coating unevenness evaluation apparatus according to the present invention is a coating unevenness evaluation apparatus that evaluates the coating unevenness of a workpiece, and the coating unevenness evaluation apparatus includes a light emitting unit that irradiates light onto a painted surface of a workpiece. Built in the body with wheels is a light receiving means for receiving reflected light, a calculation means for executing calculation using received light data received by the light receiving means, and a display means for displaying a calculation result by the calculation means The calculation means reads the received light data at predetermined intervals when the coating unevenness evaluation apparatus is moved a predetermined distance on the coating surface, and executes the movement of the predetermined distance a plurality of times to perform the first operation. The moving average value is obtained, the interval is changed, the coating unevenness evaluation apparatus is moved a plurality of times to obtain the second moving average value, and the interval is changed to obtain the (n−1) th and nth moving average values. The first step to seek And the difference between the nth moving average value and the (n-1) th moving average value is obtained to obtain a difference value n-1 of the moving average value, and the difference value n-2,. The second step of obtaining the standard deviations n-1 ′, n-2 ′,..., 1 ′ of the difference values of the moving average values, and arbitrarily adding two standard deviations from the standard deviations The third step is to perform the third step of taking out the non-uniformity characteristic value on the long wavelength side and the non-uniformity characteristic value on the short wavelength side, and determining the presence / absence region of the coating nonuniformity with these two types of nonuniformity characteristic values. is there.

本発明の塗装ムラ評価装置は、発光素子などからなる発光手段からワークの塗装面に連続発光したり、あるいは装置の移動方向で微小間隔ごとに発光し、塗装面からの反射光を受光素子などからなる受光手段で受光して受光データを装置内に蓄積し、この受光データを適宜の演算手段にて演算して塗装ムラを判定評価するものである。この評価装置は小型のハンディタイプに構成されるものであり、検査員が手動で塗装面を走行させてその際に受光データを該装置にて読み込むことができ、大掛かりなマニピュレータ等による走行を必要としない。   The coating unevenness evaluation apparatus of the present invention continuously emits light from a light emitting means composed of a light emitting element or the like to a painted surface of a work, or emits light at every minute interval in the moving direction of the apparatus, and receives reflected light from the painted surface as a light receiving element or the like. The received light is received by the light receiving means, and the received light data is stored in the apparatus, and the received light data is calculated by an appropriate calculating means to determine and evaluate the coating unevenness. This evaluation device is configured in a small handy type, and the inspector can manually run the painted surface and read the received light data at that time, which requires running with a large manipulator etc. And not.

ここで、受光データの読み込みは、装置の移動方向で読み込み間隔を変化させておこなう。具体的には、全体で20cmの走行(移動)距離の場合、2mm間隔で受光データを読み込むステップと、5mm間隔で受光データを読み込むステップと、以後、10mm間隔、15mm間隔、20mm間隔、25mm間隔、30mm間隔等で受光データを読み込むステップを繰り返し、各読み込みデータを装置内に格納する。このようにデータ間隔を短いものから長いものまで計測することにより、ムラの長波長成分〜短波長成分までを求めることができる。かかる簡易な方法で波長成分を分離することで、たとえば高速フーリエ変換(FFT)などによって卓越する周波数成分(波長成分)を求めるといった大掛かりな装置とソフトを不要とすることができる。なお、このように波長成分に分解する目的は、明らかに塗装ムラと視認できる塗装面ではその反射光の波長成分が長波長側であるのに対し、ムラではないと特定できる塗装面ではその反射光の波長成分が短波長側であることが特定されていることから、かかる特性に着目してムラの有無を判定しようとするためである。   Here, the reading of the received light data is performed by changing the reading interval in the moving direction of the apparatus. Specifically, in the case of a total travel (movement) distance of 20 cm, a step of reading light reception data at intervals of 2 mm, a step of reading light reception data at intervals of 5 mm, and thereafter, 10 mm intervals, 15 mm intervals, 20 mm intervals, 25 mm intervals The step of reading the received light data is repeated at intervals of 30 mm, etc., and each read data is stored in the apparatus. By measuring the data interval from a short one to a long one in this way, it is possible to obtain a non-uniform long wavelength component to a short wavelength component. By separating the wavelength components by such a simple method, it is possible to eliminate the need for a large-scale apparatus and software for obtaining a superior frequency component (wavelength component) by, for example, fast Fourier transform (FFT). The purpose of decomposing into wavelength components in this way is that the wavelength component of the reflected light is on the longer wavelength side on the coating surface that can be clearly seen as coating unevenness, whereas the reflection is on the coating surface that can be identified as non-uniformity. This is because it is specified that the wavelength component of light is on the short wavelength side, and thus it is intended to determine the presence or absence of unevenness by paying attention to such characteristics.

また、各読み込みステップは2回以上繰り返してその平均値を取ることにより、任意幅間隔のデータの中央値を特定するとともにノイズを除去することができ、計測精度を高めることができる。このステップで、読み込み間隔ごとの移動平均値(たとえば、2mm間隔を2回実行した場合の第1の移動平均値〜30mm間隔を2回実行した場合の第nの移動平均値)を求める。   In addition, each reading step is repeated twice or more, and the average value thereof is taken, whereby the median value of the data with an arbitrary width interval can be specified, noise can be removed, and measurement accuracy can be improved. In this step, a moving average value for each reading interval (for example, the first moving average value when the 2 mm interval is executed twice to the nth moving average value when the 30 mm interval is executed twice) is obtained.

次に、相隣る移動平均値の差分を求め、それぞれの標準偏差を求める。例えば、上記例で言えば、短波長成分に関し、2mm間隔を2回実行してなる第1の移動平均値と、5mm間隔を2回実行してなる第2の移動平均値の差分を求め、その標準偏差を求めることにより、短波長側帯域でピークとなる波長成分を特定することができる。一方、上記例で言えば、25mm間隔、30mm間隔で同様に移動平均を求めて差分を計算し、その標準偏差を求めることによって長波長側帯域でピークとなる波長成分を特定することができる。   Next, a difference between adjacent moving average values is obtained, and respective standard deviations are obtained. For example, in the above example, with respect to the short wavelength component, the difference between the first moving average value obtained by executing the 2 mm interval twice and the second moving average value obtained by executing the 5 mm interval twice is obtained. By obtaining the standard deviation, it is possible to identify the wavelength component that peaks in the short wavelength side band. On the other hand, in the above example, it is possible to identify the wavelength component that peaks in the long wavelength side band by obtaining the moving average in the same manner at intervals of 25 mm and 30 mm, calculating the difference, and obtaining the standard deviation.

次いで、求められた標準偏差の中から任意に2つの標準偏差を取り出して長波長側のムラ特性値および短波長側のムラ特性値を設定する。例えば、上記例で言えば、2mm間隔と5mm間隔での標準偏差を選択して短波長側のムラ特性値に設定し、25mm間隔と30mm間隔での標準偏差を選択して長波長側のムラ特性値に設定する。   Next, two standard deviations are arbitrarily extracted from the obtained standard deviations, and the uneven characteristic value on the long wavelength side and the uneven characteristic value on the short wavelength side are set. For example, in the above example, the standard deviation at the intervals of 2 mm and 5 mm is selected and set to the non-uniformity characteristic value on the short wavelength side, and the standard deviation at the intervals of 25 mm and 30 mm is selected to determine the nonuniformity on the long wavelength side. Set to the characteristic value.

次いで、例えば縦軸を短波長側のムラ特性値、横軸を長波長側のムラ特性値とした座標系を設定し、実際の読み込み受光データをこの座標系にプロットする。   Next, for example, a coordinate system is set with the vertical axis representing the non-uniformity characteristic value on the short wavelength side and the horizontal axis representing the nonuniformity characteristic value on the long wavelength side, and the actual read received light data is plotted in this coordinate system.

次いで、ムラがないと評価されるプロット群、ムラがあると評価されるプロット群、ムラの有無が困難な(評価者によって評価が分かれる)プロット群の各群の境界ラインを、統計学上の判別分析手法にて設定する。なお、各プロットと熟練技術者がムラの有無を判定した結果を連動させ、上記各群を座標中で特定した後に境界ラインを設定してもよい。   Next, the boundary line of each group of the plot group evaluated as having no unevenness, the plot group being evaluated as having unevenness, and the plot group in which the presence or absence of unevenness is difficult (evaluation varies depending on the evaluator) is statistically determined. Set by discriminant analysis method. Note that the boundary lines may be set after the respective plots and the results obtained by the skilled engineer determining whether or not there is unevenness are linked and the groups are specified in the coordinates.

上記する2つの特性値、すなわち、長波長側のムラ特性値および短波長側のムラ特性値からなる座標系に受光データをプロットし、該座標系内でムラの有無を評価することにより、高い精度で、かつ瞬時にムラの有無を特定することができる。   By plotting the received light data in a coordinate system consisting of the above-mentioned two characteristic values, that is, the uneven characteristic value on the long wavelength side and the uneven characteristic value on the short wavelength side, and evaluating the presence or absence of unevenness in the coordinate system, high The presence or absence of unevenness can be specified with accuracy and instantaneously.

なお、評価結果は液晶画面等からなる装置の表示手段にて瞬時に表示することができ、検査員は、複数の受光間隔ごとにたとえば2回ずつ所定距離だけ装置を動かすだけで、上記演算手段で各群の境界ラインが設定され、塗装ムラの判定結果を視認することができる。   The evaluation result can be instantaneously displayed on the display means of the apparatus comprising a liquid crystal screen or the like, and the inspector simply moves the apparatus by a predetermined distance, for example, twice at a plurality of light receiving intervals. The boundary line of each group is set by and the judgment result of the coating unevenness can be visually recognized.

また、本発明による塗装ムラ評価装置の好ましい実施の形態において、前記演算手段では、一つの移動ラインで前記第1ステップと前記第2ステップまでを実行し、移動ラインを異にして前記第1ステップと前記第2ステップまでを実行し、各移動ラインごとに対応する標準偏差の平均値を求めて平均標準偏差とし、前記第3ステップでは該平均標準偏差の中から任意に2つの平均標準偏差が取り出され、長波長側のムラ特性値および短波長側のムラ特性値とすることを特徴とするものである。   Further, in a preferred embodiment of the coating unevenness evaluation apparatus according to the present invention, the calculation means executes the first step and the second step with one moving line, and the first step with different moving lines. And up to the second step, the average value of the standard deviation corresponding to each moving line is obtained to obtain the average standard deviation. In the third step, two average standard deviations are arbitrarily selected from the average standard deviations. It is taken out and is made into the non-uniformity characteristic value on the long wavelength side and the nonuniformity characteristic value on the short wavelength side.

塗装面は面的な広がりを有するものであることから、塗装面における計測ライン(装置の移動ライン)を複数設定し、各移動ラインごとで各読み込み間隔ごとに移動平均を求め、その差分を求めた後に標準偏差を求め、対応する読み込み間隔ごとに標準偏差の平均値を求めて平均標準偏差とする。この平均標準偏差の中から長波長側のムラ特性値と短波長側のムラ特性値を決定する2つの平均標準偏差を取り出して座標系を設定することにより、2次元的な塗装面でのより高精度な塗装ムラの評価結果を得ることができる。   Since the painted surface has a surface spread, multiple measurement lines (moving lines of the device) are set on the painted surface, the moving average is calculated for each reading interval for each moving line, and the difference is calculated. After that, the standard deviation is obtained, and the average value of the standard deviation is obtained for each corresponding reading interval to obtain the average standard deviation. By extracting two average standard deviations that determine the long wavelength side unevenness characteristic value and the short wavelength side unevenness characteristic value from this average standard deviation and setting the coordinate system, Highly accurate coating unevenness evaluation results can be obtained.

さらに、本発明による塗装ムラ評価装置の好ましい実施の形態において、前記発光手段からの発光はワークの塗装面に対する垂線または法線から15度傾斜した角度で実行されるものであり、前記受光手段による受光は前記垂線または法線上で実行されることを特徴とするものである。   Furthermore, in a preferred embodiment of the coating unevenness evaluation apparatus according to the present invention, the light emission from the light emitting means is executed at an angle inclined by 15 degrees from a perpendicular or normal to the painted surface of the workpiece, and the light receiving means Light reception is performed on the normal line or the normal line.

塗装ムラを精度よく評価するに際し、塗装面からの反射光強度が最も大きく、かつ、正反射光でない反射光の受光を実行するために、正反射光を受光しない限界の発光角度および受光角度の組み合わせとして、ワークの塗装面に対する垂線または法線から15度傾斜した角度で発光させ、該垂線または法線上で受光するものである。   When evaluating coating unevenness accurately, in order to receive the reflected light that has the highest reflected light intensity from the paint surface and is not specularly reflected, As a combination, light is emitted at an angle inclined by 15 degrees from a normal or normal to the painted surface of the workpiece, and light is received on the normal or normal.

以上の説明から理解できるように、本発明の塗装ムラ評価装置によれば、ムラの存在を示す反射光の長波長側成分とムラがないことを示す反射光の短波長側成分との2つの要素でムラの有無を評価することにより、より精度の高い塗装ムラの評価を実行することができる。また、本発明の塗装ムラ評価装置によれば、ハンディタイプであり、その演算アルゴリズムも簡易な手法で実行され、さらには、瞬時に評価結果が視認できることから、自動車の量産ラインへの適用に好適である。   As can be understood from the above description, according to the coating unevenness evaluation apparatus of the present invention, there are two components, that is, the long wavelength side component of reflected light indicating the presence of unevenness and the short wavelength side component of reflected light indicating no unevenness. By evaluating the presence / absence of unevenness by element, it is possible to perform more accurate evaluation of coating unevenness. Further, according to the coating unevenness evaluation apparatus of the present invention, it is a handy type, its calculation algorithm is also executed by a simple method, and furthermore, the evaluation result can be visually recognized instantly, so it is suitable for application to a mass production line of automobiles. It is.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明の塗装ムラ評価装置の外観斜視図であり、図2は本発明の塗装ムラ評価装置の内部構成を示した構成図である。図3は演算手段の内部を示したブロック図であり、図4は塗装ムラ評価装置によるムラ評価方法のフロー図である。図5は反射光の読み込みデータ間隔ごとの移動平均の振幅収縮率が異なることを示したグラフであり、図6は相隣る読み込みデータ間隔ごとの移動平均の差分を求め、該差分ごとに波長ピークを求めたグラフであり、図7は反射光の読み込みデータ間隔ごとの測定データ波形であって波形の振幅を標準偏差で表した図である。図8は長波長側ムラ特性値と短波長側ムラ特性値からなる座標系を示した図であって、ムラ有り領域、ムラ無し領域、評価困難領域が設定されている図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of the coating unevenness evaluation apparatus of the present invention, and FIG. 2 is a configuration diagram showing the internal configuration of the coating unevenness evaluation apparatus of the present invention. FIG. 3 is a block diagram showing the inside of the calculation means, and FIG. 4 is a flowchart of the unevenness evaluation method by the coating unevenness evaluation apparatus. FIG. 5 is a graph showing that the amplitude contraction rate of the moving average for each read data interval of reflected light is different. FIG. 6 shows the difference of the moving average for each adjacent read data interval, and the wavelength for each difference. FIG. 7 is a graph showing the peak, and FIG. 7 is a measurement data waveform for each read data interval of reflected light, and shows the amplitude of the waveform as a standard deviation. FIG. 8 is a diagram showing a coordinate system composed of long-wavelength side unevenness characteristic values and short-wavelength side unevenness characteristic values, in which unevenness areas, unevenness areas, and difficult evaluation areas are set.

図1は塗装ムラ評価装置の一実施の形態を示した図である。この塗装ムラ評価装置10は、コンパクトなハンディタイプに形成されており、人手でボディ1を把持し、ボディ1の下端に取り付けられた4つの車輪4,…でワークの塗装面上を移動させるものである。また、ボディ1の上面には液晶画面7が設けてあり、後述のように所定距離、所定回数だけ移動させた後にムラの評価結果が表示されるようになっている。   FIG. 1 is a diagram showing an embodiment of a coating unevenness evaluation apparatus. This coating unevenness evaluation apparatus 10 is formed in a compact handy type, and grips the body 1 by hand and moves it on the painted surface of the workpiece with four wheels 4 attached to the lower end of the body 1. It is. Further, a liquid crystal screen 7 is provided on the upper surface of the body 1, and an unevenness evaluation result is displayed after being moved a predetermined distance and a predetermined number of times as will be described later.

図2は、塗装ムラ評価装置の内部構成を示した構成図である。ワークWの法線もしくは垂線方向に受光素子3が配設され、発光素子2が受光素子3から15度傾斜した角度に発光方向が調整された態様で配設されている。   FIG. 2 is a configuration diagram showing the internal configuration of the coating unevenness evaluation apparatus. The light receiving element 3 is disposed in the normal or perpendicular direction of the workpiece W, and the light emitting element 2 is disposed in a manner in which the light emitting direction is adjusted to an angle inclined by 15 degrees from the light receiving element 3.

一つの車輪4にはロータリエンコーダ5が装着されており、移動距離を計測できるようになっていて、たとえば移動距離を20cmと設定しておき、20cm移動させた際に移動終了を表示もしくは移動停止を実行できるようになっている。   A rotary encoder 5 is mounted on one wheel 4 so that the moving distance can be measured. For example, the moving distance is set to 20 cm, and when moving 20 cm, the end of movement is displayed or the movement is stopped. Can be executed.

図3は、演算手段の内部を示したブロック図である。不図示の作動スイッチをONすると発光部61からデジタル指令信号が送信され、D/A変換器62を介して発光素子2に信号が送られる。一方、塗装面からの反射光(アナログ信号)はA/D変換器64を介して受光部63に送信され、これが演算部65に送られて格納される。   FIG. 3 is a block diagram showing the inside of the calculation means. When an operation switch (not shown) is turned on, a digital command signal is transmitted from the light emitting unit 61, and a signal is transmitted to the light emitting element 2 via the D / A converter 62. On the other hand, the reflected light (analog signal) from the painted surface is transmitted to the light receiving unit 63 via the A / D converter 64, and this is sent to the calculation unit 65 for storage.

塗装ムラ評価装置によるムラ評価方法、特に演算部65における演算アルゴリズムを図4のフローに基づいて説明する。車輪回転数認知センサ(ロータリエンコーダ)にて塗装ムラ評価装置10の塗装面上での所定距離の移動を制御し(ステップS1)、所定間隔ごとの反射光を受光して受光データを読み込むとともに(ステップS2)、この所定距離の移動を複数回実行して第1の移動平均値を求め、該間隔を変化させて塗装ムラ評価装置を複数回移動させて第2の移動平均値を求め、さらに該間隔を変化させて第n−1、第nの移動平均値を求める(ステップS3)。   An unevenness evaluation method using the coating unevenness evaluation apparatus, in particular, a calculation algorithm in the calculation unit 65 will be described based on the flow of FIG. The wheel rotation speed recognition sensor (rotary encoder) controls the movement of the coating unevenness evaluation device 10 on the coating surface by a predetermined distance (step S1), receives reflected light at predetermined intervals and reads the received light data ( Step S2), moving the predetermined distance a plurality of times to obtain a first moving average value, changing the interval, moving the coating unevenness evaluation device a plurality of times to obtain a second moving average value, By changing the interval, the (n-1) -th and n-th moving average values are obtained (step S3).

次いで、第nの移動平均値と第n−1の移動平均値の差分、および、順次第n−1の移動平均値と第n−2の移動平均値の差分を求めて移動平均値の差分値n−1、n−2、・・・・、1を求め(ステップS4)、各移動平均値の差分値の標準偏差n−1’、n−2’、・・・・、1’を求める(ステップS5)。   Next, the difference between the n-th moving average value and the (n−1) -th moving average value, and the difference between the n−1-th moving average value and the n−2th moving average value in sequence are obtained to obtain the difference between the moving average values. The values n-1, n-2,..., 1 are obtained (step S4), and the standard deviations n-1 ′, n-2 ′,. Obtained (step S5).

ここで、塗装面の面的広がりを勘案してより高精度にムラを評価するために、演算部65において、一つの移動ラインで上記ステップS1〜S5までを実行し、移動ラインを異にしてステップS1〜S5までを実行し、各移動ラインごとに対応する標準偏差の平均値を求める(ステップS6)。この演算結果は演算結果格納部66に蓄積される。なお、移動ラインの変更は10回程度実行されるのが好ましい。   Here, in order to evaluate the unevenness with higher accuracy in consideration of the spread of the painted surface, the calculation unit 65 executes steps S1 to S5 with one moving line, and the moving lines are different. Steps S1 to S5 are executed, and the average value of the standard deviation corresponding to each moving line is obtained (step S6). The calculation results are accumulated in the calculation result storage unit 66. Note that the movement line is preferably changed about 10 times.

最後に、演算結果格納部66中の標準偏差の平均値の中から最適な2つの平均値を取り出し(いずれの標準偏差を取り出すかは計測者によって予め設定されている)、長波長側のムラ特性値および短波長側のムラ特性値として座標系を形成し、実際の読み込み受光データをこの座標系にプロットし、ムラがないと評価されるプロット群、ムラがあると評価されるプロット群、ムラの有無が困難な(評価者によって評価が分かれる)プロット群の各群の境界ラインを、統計学上の判別分析手法にて設定するとともに、ムラの有無を表示する(ステップS7)。なお、上記各ステップは演算部6内のCPU67にて実行される。   Finally, two optimal average values are extracted from the average values of the standard deviations in the calculation result storage unit 66 (which standard deviation is extracted in advance by the measurer), and unevenness on the long wavelength side A coordinate system is formed as a characteristic value and a non-uniformity characteristic value on the short wavelength side, and actually read received light data is plotted in this coordinate system, a plot group evaluated as having no unevenness, a plot group being evaluated as having unevenness, The boundary line of each plot group in which the presence or absence of unevenness is difficult (evaluation varies depending on the evaluator) is set by a statistical discriminant analysis method and the presence or absence of unevenness is displayed (step S7). The above steps are executed by the CPU 67 in the calculation unit 6.

図5は、読み込み間隔ごとの移動平均の振幅収縮率を示したグラフである。同図より、読み込み間隔が大きくなるにつれて短波長成分が消失していることが分かる。   FIG. 5 is a graph showing the moving average amplitude contraction rate at each reading interval. From the figure, it can be seen that the short wavelength component disappears as the reading interval increases.

図6は、図5の移動平均の振幅収縮率を使用し、相隣る読み込みデータ間隔ごとの移動平均の差分を求め、該差分ごとに波長ピークを求めたグラフである。同図より、短波長成分の移動平均を差分したM4は10mm前後をピークにもち、長波長成分の移動平均を差分したM1は50〜70mm前後をピークにもつ。なお、図6では、4つの波長領域に分離しており、M3,M4を短波長側のムラ特性値、M2,M1を長波長側のムラ特性値に使用することができる。   FIG. 6 is a graph obtained by using the moving average amplitude contraction rate of FIG. 5 to determine the difference of moving averages for each adjacent read data interval and to determine the wavelength peak for each difference. From the figure, M4 having a difference in moving average of short wavelength components has a peak around 10 mm, and M1 having a difference in moving average of long wavelength components has a peak around 50 to 70 mm. In FIG. 6, four wavelength regions are separated, and M3 and M4 can be used for the short wavelength side unevenness characteristic value, and M2 and M1 can be used for the long wavelength side unevenness characteristic value.

図7は、各読み込み間隔ごとに2回の移動平均(重み付け移動平均)の測定波形を図示したものであり、波形の振幅は、平均値を1に正規化した場合の標準偏差の値で示している。   FIG. 7 illustrates a measurement waveform of a moving average (weighted moving average) twice at each reading interval, and the amplitude of the waveform is represented by a standard deviation value when the average value is normalized to 1. ing.

図中、ハイライトとは受光データそのものであり、読み込み間隔が大きくなるにつれて波長が長くなるとともに標準偏差の値が小さくなってくることが分かる。   In the figure, the highlight is the received light data itself, and it can be seen that the wavelength becomes longer and the standard deviation value becomes smaller as the reading interval increases.

図8は、長波長側ムラ特性値と短波長側ムラ特性値からなる座標系を示した図であって各座標軸はともに標準偏差を1000倍した数値で表わされており、ムラ有り領域、ムラ無し領域、評価困難領域が設定されている図である。同図において、A領域は塗装ムラがない領域であり、C領域は塗装ムラがある領域であり、B領域は塗装ムラの有無の評価が困難な領域である。   FIG. 8 is a diagram showing a coordinate system composed of a long wavelength side unevenness characteristic value and a short wavelength side unevenness characteristic value. Each coordinate axis is represented by a numerical value obtained by multiplying the standard deviation by 1000. It is a figure in which a non-uniformity area and a difficult evaluation area are set. In the figure, the A area is an area where there is no coating unevenness, the C area is an area where there is uneven coating, and the B area is an area where it is difficult to evaluate the presence or absence of coating unevenness.

本発明者等の検証によれば、塗装ムラがない場合は、塗装面からの反射光の短波長成分が卓越すること、逆に塗装ムラがある場合は、反射光の長波長成分が卓越することが分かっており、図8はこのことを明確に反映している。   According to the verification by the present inventors, when there is no coating unevenness, the short wavelength component of the reflected light from the coating surface is superior, and conversely, when there is coating unevenness, the long wavelength component of the reflected light is excellent. This is clearly shown in FIG.

なお、図8における各領域の境界ラインの設定は、統計学における公知の判別分析手法にて設定することができる。   Note that the boundary line of each region in FIG. 8 can be set by a known discriminant analysis method in statistics.

本発明の簡易な演算アルゴリズムを有するコンパクトな塗装ムラ評価装置を使用して塗装ムラを評価することにより、評価精度が高く、かつ、短時間でムラの有無に関する評価結果を得ることが可能となり、車両の量産ラインへの適用に特に好適である。   By evaluating the coating unevenness using a compact coating unevenness evaluation apparatus having a simple arithmetic algorithm of the present invention, it becomes possible to obtain an evaluation result with high evaluation accuracy and the presence or absence of unevenness in a short time, It is particularly suitable for application to a mass production line of vehicles.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

本発明の塗装ムラ評価装置の外観斜視図である。It is an external appearance perspective view of the coating nonuniformity evaluation apparatus of this invention. 本発明の塗装ムラ評価装置の内部構成を示した構成図である。It is the block diagram which showed the internal structure of the coating nonuniformity evaluation apparatus of this invention. 演算手段の内部を示したブロック図である。It is the block diagram which showed the inside of a calculating means. 塗装ムラ評価装置によるムラ評価方法のフロー図である。It is a flowchart of the nonuniformity evaluation method by a coating nonuniformity evaluation apparatus. 反射光の読み込みデータ間隔ごとの移動平均の振幅収縮率が異なることを示したグラフである。It is the graph which showed that the amplitude shrinkage rate of the moving average for every reading data interval of reflected light was different. 相隣る読み込みデータ間隔ごとの移動平均の差分を求め、該差分ごとに波長ピークを求めたグラフである。It is the graph which calculated | required the difference of the moving average for every adjacent reading data interval, and calculated | required the wavelength peak for every difference. 反射光の読み込みデータ間隔ごとの測定データ波形であって波形の振幅を標準偏差で表した図である。FIG. 7 is a measurement data waveform for each reflected light reading data interval, in which the amplitude of the waveform is represented by a standard deviation. 長波長側ムラ特性値と短波長側ムラ特性値からなる座標系を示した図であって、ムラ有り領域、ムラ無し領域、評価困難領域が設定されている図である。FIG. 7 is a diagram showing a coordinate system composed of long wavelength side unevenness characteristic values and short wavelength side unevenness characteristic values, and is a view in which unevenness areas, unevenness areas, and difficult evaluation areas are set.

符号の説明Explanation of symbols

1…ボディ、2…発光素子、3…受光素子、4…車輪、5…ロータリエンコーダ、6…演算部(演算手段)、7…液晶画面(表示手段)、10…塗装ムラ評価装置   DESCRIPTION OF SYMBOLS 1 ... Body, 2 ... Light emitting element, 3 ... Light receiving element, 4 ... Wheel, 5 ... Rotary encoder, 6 ... Calculation part (calculation means), 7 ... Liquid crystal screen (display means), 10 ... Paint unevenness evaluation apparatus

Claims (2)

ワークの塗装ムラを評価する塗装ムラ評価装置であって、
前記塗装ムラ評価装置は、ワークの塗装面に光を照射する発光手段と、反射光を受光する受光手段と、受光手段にて受光された受光データを使用して演算を実行する演算手段と、演算手段による演算結果を表示する表示手段と、を車輪付きのボディに内蔵したものであり、
前記演算手段では、塗装ムラ評価装置を塗装面上の一つの移動ライン人手にて所定距離移動させた際の所定間隔の受光データを読み込むとともに、この人手による所定距離の移動を複数回実行した際の第1の移動平均値を求め、前記一つの移動ラインで前記間隔を変化させて該変化した間隔にて塗装ムラ評価装置を複数回移動させて受光データを読み込むとともに、この人手による所定距離の移動を複数回実行して第2の移動平均値を求め、前記一つの移動ラインでさらに前記間隔を変化させて該変化した間隔にて塗装ムラ評価装置を複数回移動させて受光データを読み込むとともに、この人手による所定距離の移動を複数回実行して第n−1、第nの移動平均値を求める第1ステップと、
第nの移動平均値と第n−1の移動平均値の差分を求めて移動平均値の差分値n−1を求めるとともに、順次、差分値n−2、・・・・、1を求め、各移動平均値の差分値の標準偏差を求める第2ステップと、
前記第1のステップと第2のステップを移動ラインを変化させて複数の移動ラインごとに実行し、それぞれの移動ラインにおいて所定間隔ごとの移動平均値の差分値を求め、さらに各移動平均値の差分値の標準偏差を求め、移動ラインごとに求められた複数の標準偏差の中から任意に2つの標準偏差を取り出して長波長側のムラ特性値および短波長側のムラ特性値とし、この2種類のムラ特性値で塗装ムラの有無領域をそれぞれ求める第3ステップと、を実行するものである、塗装ムラ評価装置。
A coating unevenness evaluation device that evaluates the unevenness of coating of a workpiece,
The coating unevenness evaluation apparatus includes: a light emitting unit that irradiates light on a painted surface of a workpiece; a light receiving unit that receives reflected light; a calculation unit that performs calculation using light reception data received by the light receiving unit; The display means for displaying the calculation result by the calculation means, and the body with wheels are built in,
In the calculating means, reads in the received light data of a predetermined interval of time obtained by predetermined distance at hand in a single movement lines on the painted surface coating unevenness evaluation device, a plurality of times perform the movement of a predetermined distance by the manual together with first obtains a moving average value of the time was, by changing the interval at said one mobile line is moved several times uneven paint evaluation device at said change intervals and to read received data, according to the manual The second moving average value is obtained by executing a predetermined distance of movement a plurality of times , and the interval is further changed in the one movement line, and the coating unevenness evaluation device is moved a plurality of times at the changed interval to receive light data. And a first step of obtaining the n−1th and nth moving average values by performing a plurality of manual movements of a predetermined distance a plurality of times ,
The difference between the n-th moving average value and the (n−1) -th moving average value is obtained to obtain the moving average value difference value n−1, and the difference values n−2,. a second step of determining of the standard deviation of the difference value of each moving average value,
The first step and the second step are performed for each of a plurality of moving lines by changing the moving line, and a difference value of the moving average value for each predetermined interval is obtained in each moving line, and each moving average value The standard deviation of the difference value is obtained, and two standard deviations are arbitrarily extracted from the plurality of standard deviations obtained for each moving line to obtain the long wavelength side unevenness characteristic value and the short wavelength side unevenness characteristic value. A coating unevenness evaluation apparatus that executes the third step of obtaining the presence / absence region of unevenness of coating with various types of unevenness characteristic values.
前記発光手段からの発光はワークの塗装面に対する垂線または法線から15度傾斜した角度で実行されるものであり、前記受光手段による受光は前記垂線または法線上で実行される、請求項に記載の塗装ムラ評価装置。 Light emitted from the light emitting means is intended to be performed at an angle inclined 15 degrees from the perpendicular or normal to the coated surface of the workpiece, light receiving by said light receiving means is performed on the perpendicular line or normal, to claim 1 The coating unevenness evaluation device described.
JP2007174243A 2007-07-02 2007-07-02 Coating unevenness evaluation device Expired - Fee Related JP5029173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174243A JP5029173B2 (en) 2007-07-02 2007-07-02 Coating unevenness evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174243A JP5029173B2 (en) 2007-07-02 2007-07-02 Coating unevenness evaluation device

Publications (2)

Publication Number Publication Date
JP2009014399A JP2009014399A (en) 2009-01-22
JP5029173B2 true JP5029173B2 (en) 2012-09-19

Family

ID=40355498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174243A Expired - Fee Related JP5029173B2 (en) 2007-07-02 2007-07-02 Coating unevenness evaluation device

Country Status (1)

Country Link
JP (1) JP5029173B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720854B (en) * 2021-08-20 2023-07-11 东风汽车集团股份有限公司 Appearance detection method for low-glossiness vehicle body paint coating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288690A (en) * 1992-04-10 1993-11-02 Kansai Paint Co Ltd Method for determining painting nonuniformitty of metalic paint film
JPH07200792A (en) * 1993-12-29 1995-08-04 Toppan Printing Co Ltd Printed matter inspection device
JP2000065750A (en) * 1998-06-10 2000-03-03 Kansai Paint Co Ltd Method for quantitatively evaluating brilliant feeling of coating film
DE19846619A1 (en) * 1998-10-09 2000-04-27 Byk Gardner Gmbh Structured surface appearance quality determining equipment, evaluates electrical measurement signal from photosensor array to derive structure code characterizing structure-dependent characteristic of measurement surface
JP3705095B2 (en) * 2000-08-28 2005-10-12 松下電工株式会社 Method and apparatus for evaluating color tone of design pattern colored on object surface
JP4650096B2 (en) * 2005-05-20 2011-03-16 凸版印刷株式会社 Coating unevenness inspection method and program thereof

Also Published As

Publication number Publication date
JP2009014399A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
AU2018208312B2 (en) Mobile and automated apparatus for the detection and classification of damages on the body of a vehicle
JP4991473B2 (en) Object detection system and method
JP5228042B2 (en) Method and apparatus for optical inspection of the surface of an object
JP2015528569A5 (en)
US20050259859A1 (en) Method and Apparatus for Characterizing a Surface, and Method and Apparatus for Determining a Shape Anomaly of a Surface
JP6283534B2 (en) Tire deterioration evaluation apparatus and system, method and program thereof
JP6381094B1 (en) Tire deterioration evaluation system
US10379006B2 (en) Data generation method and data generation apparatus
JPS62232507A (en) Shape measuring device
JP6837081B2 (en) A device for measuring rope parameters
JP5029173B2 (en) Coating unevenness evaluation device
CN109211138A (en) A kind of appearance detection system and method
JP2009300192A (en) Crack detecting device and crack detecting method
JPH10160453A (en) Method and device for judging external shape of tire
JP5812284B2 (en) Belt-like structure detecting device, method and program
JP6394223B2 (en) Tire condition evaluation system and tire condition evaluation method
JP2885422B2 (en) Shape evaluation device and shape evaluation method
JP2010164446A (en) Visual inspection method of item to be inspected and program
JP7146092B2 (en) Inspection device and method, program and recording medium
WO2018207265A1 (en) Tire degradation evaluation system, and method and program thereof
TWI658266B (en) Method and system for evaluating quality of surface of work roll
JP2009198370A (en) Noncontact type position measuring device by image processing
JP3861848B2 (en) Abnormal sound inspection method
CN103700096A (en) Method and system for analyzing images of SPR (Surface Plasmon Resonance) analyzer
CN103679723A (en) Image analyzing method and system of SPR analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5029173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees