WO2018207265A1 - Tire degradation evaluation system, and method and program thereof - Google Patents

Tire degradation evaluation system, and method and program thereof Download PDF

Info

Publication number
WO2018207265A1
WO2018207265A1 PCT/JP2017/017595 JP2017017595W WO2018207265A1 WO 2018207265 A1 WO2018207265 A1 WO 2018207265A1 JP 2017017595 W JP2017017595 W JP 2017017595W WO 2018207265 A1 WO2018207265 A1 WO 2018207265A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
evaluation
tire
image data
groove
Prior art date
Application number
PCT/JP2017/017595
Other languages
French (fr)
Japanese (ja)
Inventor
日男 吉川
田中 賢治
Original Assignee
株式会社シーパーツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーパーツ filed Critical 株式会社シーパーツ
Priority to PCT/JP2017/017595 priority Critical patent/WO2018207265A1/en
Priority to JP2019516778A priority patent/JPWO2018207265A1/en
Priority to JP2017184336A priority patent/JP2020041799A/en
Publication of WO2018207265A1 publication Critical patent/WO2018207265A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the present invention relates to a tire deterioration evaluation system, a method thereof, and a program thereof for evaluating deterioration of a used used tire through measurement of cracks.
  • Patent Document 1 discloses an apparatus that automatically performs from detection of uneven tire wear to determination of countermeasures under the name of “tire uneven wear management method”.
  • the tire shape is read by a scanner, compared with the new tire shape of the same tire, a differential shape is obtained, a partial wear database is searched based on the differential shape, and the presence and type of the partial wear is determined. After investigating the uneven wear, the tire position exchanging method and other countermeasure instructions extracted by searching the countermeasure database are displayed. Therefore, it is possible to reduce labor regardless of the experience and knowledge of the worker.
  • Patent Document 2 under the name of “tire wear monitoring device”, a different color rubber member for wear monitoring of a color different from that of the tread rubber layer is embedded at the bottom of the tread layer of the tire, and the tread surface is worn. By monitoring images, it is possible to monitor tire wear of a running vehicle and to easily grasp the time for tire replacement.
  • Patent Document 3 discloses a technology that can be accurately and efficiently inspected with a name of “tire inspection method and apparatus”, in which a defective portion can be easily and quickly found from a tire image without skill. Has been. When inspecting a tire for good / bad on the basis of a black and white tone image signal obtained by imaging the tire with a laser-type nondestructive inspection machine and a CCD camera, etc., It detects, marks a defective part, and displays an image signal on a monitor.
  • Patent Document 4 discloses an invention for detecting and analyzing a crack generated on a side surface of a tire under the name “APPARATUS AND METHOD FOR TIRE SIDEWALL CRACK ANALYSIS”.
  • the present invention detects cracks generated on the side surface of a tire with an image, converts the image to gray scale, and then binarizes it into a black and white image, such as a jagged shape or a tapered shape in the binarized image. A discontinuous shape is detected, and the size of the crack is measured and evaluated.
  • Patent document 5 is by the applicant of the present application, and discloses an invention for detecting and analyzing cracks generated in a groove portion of a tire under the name of “tire deterioration evaluation device and system, method and program thereof”. Yes.
  • This invention pays attention to the crack generated in the groove which is an area that does not wear due to the use of the tire without directly contacting the road surface, and detects the groove while measuring the displacement of the ground contact surface of the tire and photographs the contact surface. Then, the image is binarized, the cracked portion in the groove is specified, the area of the cracked portion, the other area and the ratio thereof are obtained, and the deterioration of the tire material is evaluated with high accuracy.
  • Patent Document 3 when air is mixed between the top inners of the tires to be examined, when the binarization is performed, the portion becomes a white level, and the portion becomes a defective portion. Although it is easy to detect a defective part by marking as, the test tire is a new tire, and there is a problem that measurement / evaluation regarding deterioration that causes cracks with use or aging cannot be performed.
  • Patent Document 4 and Patent Document 5 a crack is photographed, and the degree of cracking is evaluated after performing monochrome binarization processing by the image processing. In particular, the crack generated in the groove is thin and linear.
  • the present invention has been made in response to such a conventional situation, and is a region where the deterioration of a used used tire is not worn by the use of the tire, i.e., a wear caused by traveling of the vehicle, not a mountain portion of the contact surface.
  • a wear caused by traveling of the vehicle not a mountain portion of the contact surface.
  • An object of the present invention is to provide a tire deterioration evaluation system to be evaluated, its method, and its program.
  • the tire deterioration evaluation system is a displacement measurement that generates a distance data that enables a discrimination between a peak portion and a groove portion of the contact surface by measuring the displacement of the contact surface of the tire.
  • An imaging unit for photographing the ground plane and generating ground plane image data; and an evaluation for detecting cracks from the groove area on the ground plane with reference to the distance data from the ground plane image data An evaluation region extraction unit that extracts a region and generates evaluation region image data; a smoothing processing unit that generates a smoothed image data obtained by smoothing the evaluation region image data to remove noise; and the smoothing An edge detection processing unit that generates edge-processed image data that clarifies the boundary of cracks by edge-processing the processed image data; and the entire boundary of cracks of the edge-processed image data
  • a degradation evaluating portion that generates crack ratio data by calculating the Mel ratio, and has an output section for outputting the crack ratio data.
  • the displacement measuring unit measures the displacement of the ground contact surface of the tire and obtains distance data, thereby having an effect of enabling discrimination between the crest and the groove on the ground contact surface of the tire.
  • the imaging unit has an effect of obtaining the image data by photographing the tire contact surface.
  • the evaluation area extraction unit operates to extract an evaluation area for detecting cracks from the ground plane image data while referring to the distance data.
  • the smoothing processing unit acts to smooth the noise with respect to cracks generated from the deposits on the tire surface and the data related to the surrounding image in advance, and to generate the data after the removal as smoothing processing data.
  • the edge detection processing unit acts to edge-process the smoothed image data to clarify the boundary between cracks, and generate the clarified data as edge-processed image data.
  • a Gaussian filter or the like can be employed as the smoothing process executed by the smoothing processing unit.
  • a Canny method or the like can be adopted as an edge process executed by the edge process detection unit. Since the groove portion does not come into contact with the road surface during normal vehicle travel, there is a high possibility that cracks will appear in that region, which will show aged deterioration that does not depend on the wear of rubber, which is the material of the tire.
  • the ground plane is photographed while measuring the displacement of the ground plane, and distance data and ground plane image data are acquired. Then, an evaluation area is extracted from the groove area using the ground plane image data while referring to the distance data, and noise is first removed from the ground plane image data within the evaluation area by a smoothing process, and then an edge is extracted. Cracks are detected by detection.
  • the groove is not in contact with the road surface and the color of the internal rubber is visible in the cracks that are occurring, so it is usually measured as black.
  • the groove in the portion where no crack is generated is grayed out due to deterioration from the original black color. Therefore, in the tire deterioration evaluation system according to the present invention, the edge detection processing unit detects the boundary between black and gray as an edge, and acts to recognize a portion where the color of the internal rubber is visible as a crack. It is.
  • the displacement measurement unit and the imaging unit are separated.
  • the distance image sensor is a displacement measurement unit. Therefore, even if a distance image sensor is employed, it does not depart from the scope of the present invention.
  • a component including the word “part”, such as a displacement scanning measurement unit is used.
  • the “part” means “element”, “electronic circuit”, or “unit of component”. Or “apparatus in which they are assembled”.
  • the deterioration evaluation unit evaluates the ratio with evaluation threshold data predetermined in order to evaluate deterioration, and evaluation rank data.
  • the output unit outputs the evaluation rank data.
  • the deterioration evaluation unit operates to rank-evaluate the ratio of the entire crack boundary using the evaluation threshold data.
  • the displacement measurement unit calculates the width of the groove portion of the ground contact surface of the tire from the distance data, thereby obtaining groove width data.
  • a groove width calculation unit that generates a groove depth calculation unit that calculates the depth of the groove from the distance data and generates groove depth data, and generates groove number data relating to the number of the groove parts,
  • the output unit outputs at least one of the groove width data, the groove depth data, and the groove number data.
  • the groove width calculation unit operates to calculate the groove width
  • the groove depth calculation unit calculates the groove depth.
  • the displacement measuring unit in combination with the output unit, acts to more specifically grasp the groove structure on the ground contact surface of the tire.
  • the output unit is generated by the data generated by the deterioration evaluation unit and the imaging unit.
  • the ground contact surface image data or the evaluation region image data extracted by the evaluation region extraction unit is output at the same time.
  • the output unit is an evaluation object and data relating to evaluation such as digital values such as numerical values and ranks and characters.
  • a tire deterioration evaluation method comprising: a displacement measuring step of measuring a displacement of a ground contact surface of a tire to generate distance data that enables discrimination between a ridge and a groove of the contact surface; An imaging process for capturing and generating ground plane image data, and extracting an evaluation area for detecting cracks from the groove area on the ground plane with reference to the distance data from the ground plane image data An evaluation area extracting step for generating image data, a smoothing process step for generating smoothed image data obtained by smoothing the evaluation area image data to remove noise, and edge processing for the smoothed image data Edge detection processing step for generating edge-processed image data in which the boundary of cracks is clarified, and the ratio of the edge-processed image data to the entire boundary of cracks is calculated.
  • Such deterioration evaluation step of generating cracks ratio data those having an output step of outputting the crack ratio data.
  • the first invention is regarded as the method invention, and thus the operation thereof is the same as that of the first invention.
  • the deterioration evaluation step in the fifth aspect of the invention, the deterioration evaluation step generates evaluation rank data by evaluating the ratio with evaluation threshold data set in advance in order to evaluate the deterioration. And the said output process outputs the said evaluation rank data, It is characterized by the above-mentioned. Since the tire deterioration evaluation method with the above configuration is based on the second invention as a method invention, its operation is the same as that of the second invention.
  • the displacement measuring step calculates a width of the groove portion of the ground contact surface of the tire from the distance data.
  • the output step at least one of the groove width data, the groove depth data, and the groove number data is output. Since the tire deterioration evaluation method with the above configuration is based on the third invention as a method invention, the operation thereof is the same as that of the third invention.
  • the tire deterioration evaluation method according to an eighth aspect of the present invention is the tire deterioration evaluation method according to any one of the fifth to seventh aspects of the invention, wherein the output step includes data generated in the deterioration evaluation step and the imaging step. The generated ground plane image data or the evaluation area image data extracted in the evaluation area extraction step is simultaneously output.
  • the tire deterioration evaluation system according to claim 4 is an invention that is captured as a method invention, and thus the operation thereof is the same as that of the fourth invention.
  • a tire deterioration evaluation program is a program executed by a computer for tire deterioration evaluation, wherein the displacement of the tire contact surface is measured to discriminate between the peak portion and the groove portion of the contact surface.
  • the tire deterioration evaluation system it is possible to measure the cracks occurring in the groove portion of the tire contact surface, and therefore it is possible to quantitatively evaluate the aging deterioration that does not depend on the wear of the tire rubber. . Also, while measuring the displacement of the ground plane by the displacement measurement unit and obtaining distance data, the image plane also obtains the ground plane image data, so that the groove portion of the ground plane can be detected from these data and cracks generated in the groove portion are obtained. Can be measured with high accuracy. In addition, since the evaluation area is extracted in advance in the groove area and the noise removal process is performed thereafter, it is possible to prevent the occurrence of noise due to tire deposits such as sand and pebbles.
  • the edge detection process since the edge detection process is performed, it is possible to detect a crack in accordance with the substance of the crack portion that is generated at a location that is not in direct contact with the road surface, such as a groove portion of the ground contact surface. Since the edge detection process is performed after the smoothing process and the ratio of the total crack boundary is calculated to generate the crack ratio data, it is suitable for the actual cracks in the groove not installed on the road surface. Thus, the crack ratio can be measured with high accuracy.
  • evaluation rank data is generated. Therefore, it is possible to rank evaluations for tire deterioration and classify into ranks. It is possible. In this way, if classification into ranks is possible, the tires can be ranked according to the deterioration state of the tires, and an effect that the utility value becomes high as a measure of the price in the secondary tire distribution market can be expected. Furthermore, the degree of classification of the rank can be changed according to the degree of subdivision of the evaluation threshold data for the evaluation rank, and the utility value is increased as a maintenance index such as a tire replacement guide in addition to the price in the market. effective. Therefore, it is possible to improve the safety and economy of the tire.
  • At least one data of the groove width, the groove depth, and the number of groove parts is output to the output part. It is possible for the user of this system to obtain specific information regarding the structure of the tire groove that is the object of evaluation.
  • the tire deterioration evaluation system in addition to the effects of any one of the first to third inventions, it is possible to confirm the validity of the evaluation, and the tire surface is represented by numerical values or characters.
  • the user of this system can easily and accurately grasp the deterioration state of the tire from both the text information such as the above and the image information regarding the groove portion to be evaluated.
  • the tire deterioration evaluation method according to the fifth invention is an invention based on the first invention as a method invention, the effect is the same as the effect of the first invention.
  • the tire deterioration evaluation method according to the sixth invention is an invention based on the second invention as a method invention, the effect is the same as the effect of the second invention.
  • the tire deterioration evaluation method according to the seventh invention is an invention based on the third invention as a method invention, the effect is the same as the effect of the third invention.
  • the tire deterioration evaluation method according to the eighth invention is an invention based on the fourth invention as a method invention, the effect is the same as the effect of the fourth invention.
  • the tire deterioration evaluation program according to the ninth invention is an invention in which the fifth invention is regarded as a program invention, the effect is the same as the effect of the fifth invention.
  • FIG. 1 is a block diagram of a tire deterioration evaluation system according to a first embodiment of the present invention. It is a flowchart of the tire deterioration evaluation performed by the tire deterioration evaluation system which concerns on the 1st Embodiment of this invention.
  • (A) is a conceptual diagram of the tire contact surface image data obtained by the imaging unit of the tire deterioration evaluation system according to the first embodiment of the present invention
  • (b) is a symbol A in (a) It is a conceptual diagram of evaluation area image data shown in a black frame
  • (c) is a conceptual diagram of image data when the evaluation area image data of (b) is subjected to monochrome binarization processing
  • (d) is (b) 3 is a conceptual diagram of edge processed image data when edge processing is performed on evaluation area image data of FIG.
  • (A) is an evaluation area image data conceptual diagram of the S rank tire used for evaluating the tire deterioration evaluation system according to the first embodiment of the present invention, and (b) is similarly A rank It is a tire evaluation area image data conceptual diagram, (c) is also a B rank tire evaluation area image data conceptual diagram, (d) is also a C rank tire evaluation area image data conceptual diagram.
  • (E) is an evaluation region image data conceptual diagram of a D rank tire in the same manner. It is a table
  • FIG. 1 It is a figure which shows the correspondence of rank division at the time of using crack ratio data as a deterioration evaluation value, ie, it is also a figure which shows evaluation threshold value data.
  • FIG. 1 is a conceptual diagram which shows the example of the acquisition location of the contact surface image data of the tire degradation evaluation system based on the 1st Embodiment of this invention, respectively. It is a table
  • surface which shows the result of having evaluated a used tire using the tire deterioration evaluation system which concerns on the 1st Embodiment of this invention.
  • (A) And (b) is a conceptual diagram which shows the example of the evaluation result displayed by the output part of the tire degradation evaluation system which concerns on the 1st Embodiment of this invention, respectively.
  • FIG. 1 is a block diagram of a tire deterioration evaluation system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart of tire deterioration evaluation executed by the tire deterioration evaluation system according to the first embodiment of the present invention. This figure also represents the execution process for the tire degradation evaluation method and program of the present invention.
  • Explaining the flow of data processing in the tire degradation assessment system 1 with reference to this figure is a tire degradation assessment. It is synonymous with describing the embodiment of the method and program.
  • FIG. 1 is a block diagram of a tire deterioration evaluation system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart of tire deterioration evaluation executed by the tire deterioration evaluation system according to the first embodiment of the present invention.
  • This figure also represents the execution process for the tire degradation evaluation method and program of the present invention.
  • Explaining the flow of data processing in the tire degradation assessment system 1 with reference to this figure is a tire degradation assessment. It is synonymous with describing
  • the tire deterioration evaluation system 1 includes a processing database 6 and an evaluation database 7 as a displacement scanning measurement unit 4, an imaging unit 5, a processing unit 3, an output unit 2, and a database group.
  • the tire deterioration evaluation system 1 can be assumed to be a portable system that can be evaluated by bringing these components together into a hand and taking it close to the surface of the ground contact surface of a used tire.
  • the output unit 2 may be a small display device or a data transmission unit that transfers data to another device. Alternatively, even if the components shown in FIG.
  • the displacement measuring unit 4 and the imaging unit 5 are separated as sensors and provided separately, and the system transmits data to the processing unit 3 by wire or wirelessly. Is possible. Further, the used tire is transported into a housing having at least a displacement scanning measurement unit 4 and an imaging unit 5 inside to acquire data, and the processing unit 3 evaluates based on the data and outputs the result to the output unit 2. It is possible to envisage a system or the like.
  • the displacement scanning measurement unit 4 of the tire deterioration evaluation system 1 is arranged perpendicular to the ground contact surface on which a so-called tread pattern of the tire is formed, and can distinguish a peak portion and a groove portion of the tread pattern formed on the ground contact surface.
  • the unevenness is measured by scanning the sensor in the width direction of the ground contact surface of the tire. Specifically, it is measured as distance data 14 with respect to the displacement scanning measurement unit 4. Therefore, if the difference between the distance data of the peak portion and the groove portion is taken, it is possible to obtain the depth of the groove portion relative to the peak portion or the height of the peak portion relative to the groove portion. That is, a so-called remaining groove can be obtained.
  • the displacement scanning measurement unit 4 As a sensor used as the displacement scanning measurement unit 4, it is possible to use a sensor that radiates electromagnetic waves such as laser light and infrared rays and ultrasonic waves and detects the reflected waves to measure the distance. Further, since the displacement scanning measurement unit 4 is configured to scan the ground contact surface of the tire, it is possible to perform a distance measurement that makes it possible to discriminate between a peak portion and a groove portion of the tread pattern over the width of the tire. It is the displacement measurement process of step S1 that measures the displacement on the ground contact surface of the tire using the displacement scanning measurement unit 4. The displacement scanning measurement unit 4 stores the distance data 14 in the processing database 6 so that it can be read out.
  • the displacement scanning measurement unit 4 that can be scanned is used as the displacement measurement unit, but the height of the crest and the depth of the groove in the width direction of the tire contact surface can be measured without scanning. It is sufficient if it is possible, and it is not always necessary to be able to scan.
  • the displacement of the tire contact surface is measured not only by quantitatively measuring the depth of the remaining groove (remaining groove), but also by the tread pattern on the tire contact surface. This is for grasping the position of the groove and photographing an image for measuring cracks and cracks in the groove. The reason why the groove portion is thus selected and measured will be described. Unlike used tires, used tires handled by the present invention are worn out by using the ground contact surface. Therefore, cracks due to deterioration over time are unlikely to occur, and on the other hand, sudden damage or chipping may occur at the peak portion of the contact surface with use.
  • the imaging unit 5 captures a tire ground contact surface including a tread pattern, and an already known CCD sensor or CMOS sensor can be used.
  • the imaging unit 5 may also have a scanning function, but since the imaging device can capture an image in a plane, the scanning function is often unnecessary. It is the measurement target imaging process in step S2 that the tire contact surface is photographed using the imaging unit 5.
  • the imaging unit 5 stores the ground plane image data 15 relating to the photographed ground plane in the processing database 6 so as to be readable.
  • the groove width calculation unit 8 of the processing unit 3 reads the distance data 14 obtained by the displacement scanning measurement unit 4 from the processing database 6 and takes the difference in the tire width direction to obtain the groove width data 16 and the groove number data 18.
  • the process is the groove width calculation process in step S3.
  • the groove depth calculation unit 9 of the processing unit 3 reads the distance data 14 obtained by the displacement scanning measurement unit 4 from the processing database 6, and the height direction of the mountain and the depth direction of the valley of the tread pattern of the tire.
  • the groove depth data 17 is generated and stored in the processing database 6 so as to be readable, and this process is the groove depth calculation process in step S4.
  • the groove width calculation unit 8 and the groove depth calculation unit 9 obtain data on the position in the width direction of the tire from the distance data 14, and include the position data, the groove width data 16, the groove depth data 17, and the groove part. Each of the numerical data 18 is generated.
  • the displacement scanning measurement unit 4 the groove width calculation unit 8, and the groove depth calculation unit 9 are provided separately.
  • the displacement scanning measurement unit 4 having all functions may be integrated. In that case, what is necessary is just to combine step S1, step S3, and step S4 into a displacement measurement process (S1).
  • the imaging unit 5 generates the ground plane image data 15 and stores it in the processing database 6 so that it can be read out.
  • This process is the measurement target imaging process in step S2.
  • the actual used tire surface is as shown in FIG. Although it may be difficult to see in this photograph, there is a crack in the groove 26 formed perpendicular to the center. However, since the hill portion of the tire comes into contact with the road surface and friction and wear occur, it seems that cracks and cracks have not occurred, and at the same time, fine scratches caused by the contact with the road surface can be observed. As can be seen from FIG.
  • the cracks in the groove portion 26 that are not in contact with the road can be observed as a thinly connected shape, but the flaws in the mountain portion do not show an elongated shape, and are point-like shapes that are close to a circle or a rectangle. Can be observed.
  • the distance data 14 and the ground plane image data 15 are obtained by using separate sensors such as the displacement scanning measurement unit 4 and the imaging unit 5, but as described above, the distance having these two functions.
  • An image sensor or the like may be provided to obtain the distance data 14 and the ground plane image data 15 from one sensor.
  • the evaluation region extraction unit 10 of the processing unit 3 reads the ground plane image data 15 from the processing database 6, selects a groove portion of the ground plane from the ground plane image data 15, and extracts an evaluation region in the groove portion 26.
  • the process is the evaluation region extraction process in step S5.
  • the evaluation area extraction unit 10 reads the groove width data 16, the groove depth data 17, and the groove number data 18 to determine where the groove 26 exists on the tire contact surface. It is possible to judge about.
  • FIG. 3 (a) conceptually shows a state in which the groove 26 is selected and the evaluation region is extracted, and a black square range indicated by reference numeral A in FIG. 3 (a).
  • the evaluation area extraction unit 10 stores the data related to the evaluation area determined in the ground plane image data 15 as the evaluation area image data 19 so as to be readable in the processing database 6.
  • the smoothing processing unit 11 reads the evaluation area image data 19 from the processing database 6 and performs noise removal by smoothing on the evaluation area image data 19 extracted in the groove portion of the ground plane image data 15.
  • the process is the noise removing process of step S6. Since the object to be measured is a used tire, there are various deposits on the surface. When the color of the deposit is black, cracks generated in the groove 26 are black as shown in FIG. As a result, when processing an image, it rides as noise. Furthermore, in the present embodiment, since the crack detection step S7 by the edge detection processing unit 12 is reserved after the noise removal step S6 by the smoothing processing unit 11, the color of the groove 26 is not limited to black but white.
  • the surrounding pixels for each pixel. It is important to smooth the image in a range including The evaluation area image data 19 from which noise has been removed by the smoothing processing unit 11 is stored as smoothed image data 20 in the processing database 6 so as to be read out.
  • the edge detection processing unit 12 reads the smoothed image data 20 from the processing database 6 and detects a cracked portion by edge detection processing on the smoothed image data 20 from which noise has been removed.
  • the process is the edge detection process in step S7.
  • cracks and cracks generated in the groove portion 26 of the used tire are detected, and the state appears as a long and continuous line as shown in FIG. . Therefore, when trying to quantitatively evaluate the cracks and cracks, it is important to accurately measure the wrinkle portion, that is, the boundary portion, quantitatively and evaluate based on the amount.
  • the inventors convert the image of the cracked state of the groove portion 26 into a monochrome binary image in the patent application shown in Patent Document 5, and perform quantitative evaluation of the crack using the area ratio of the data of the white image and the black image.
  • the inventors have found that there is still room for improvement in accuracy, and have arrived at the present invention.
  • FIG. 3A shows the contact surface image data 15 obtained by photographing the contact surface of the tire by the imaging unit 5
  • FIG. 3B is an evaluation region indicated by a black frame indicated by the symbol A in FIG.
  • FIG. 19 is a conceptual diagram of the image data 19, it is (c) and (d) which processed and compared with this evaluation area image data 19 in two ways.
  • (C) is the conceptual diagram of the image data at the time of carrying out the monochrome binarization process of the evaluation area
  • (d) is the tire degradation evaluation system 1 which concerns on this Embodiment.
  • FIG. 3D is approximated by the evaluation area image data 19 in FIG. Since the crack generated in the groove 26 of the tire is not in contact with the road surface, it is possible to observe pure deterioration of the rubber material due to the aging of the tire itself, and the shape of the crack or crack in that case is elongated and continuous. In order to quantitatively evaluate this, image processing that can be quantified according to the shape is necessary, and the inventors have performed processing by edge detection to detect the boundary of cracks.
  • the smoothed image data 20 edge-processed by the edge detection processing unit 12 is stored in the process database 6 as edge-processed image data 21 so as to be readable.
  • the deterioration evaluation unit 13 reads the edge processing image data 21 obtained as shown in FIG. 3D from the processing database 6, and from the edge processing image data 21, the area of the edge portion expressed in white and the other expressed in black The ratio of the total area including this part is calculated, and the ratio is generated as crack ratio data 22 and stored in the processing database 6.
  • the ratio of the area of the boundary to the entire area is quantified as crack data 22, and the degree of tire deterioration is evaluated by the magnitude of this numerical value. .
  • the crack when the crack is wide and large, it is considered that the evaluation by extracting the boundary portion of the crack does not lead to the evaluation of the entire crack.
  • the cracks are large, it is no longer a stage to evaluate deterioration, but it is a level that requires immediate disposal of the tire and replacing it with a new tire. Therefore, it can be handled as an object of evaluation according to the present invention, and there is no inconvenience in using the present invention.
  • the deterioration evaluation unit 13 reads the evaluation threshold data 23 stored in advance in the evaluation database 7, evaluates the crack ratio data 22 obtained by the deterioration evaluation unit 13, and generates evaluation rank data 24.
  • the evaluation threshold value data 23 includes a threshold value of the crack ratio data 22 with respect to a predetermined rank, and the crack ratio data 22 is evaluated by comparing the threshold value and the crack ratio data 22 and assigning them to ranks. To do.
  • the step of calculating the crack rate data 22 by the deterioration evaluation unit 13 and the step of evaluating the crack rate data 22 as a rank using the evaluation threshold data 23 are step S8.
  • the ranking shown by the deterioration evaluating unit 13 can classify the tires into ranks according to the deterioration state of the tires, and exhibits an effect that it is easy to understand as an index. Therefore, for example, the utility value as a measure of the price in the secondary tire market and the utility value as a measure of tire replacement are increased, and the safety and economy of the used tire can be improved. Since the rank can be changed roughly or in detail as desired by widening or narrowing the interval between the thresholds in the evaluation threshold data 23, it is possible to rank according to the purpose. Note that the rank may be expressed in any of alphabets such as A and B, A and B, kanji such as suitability, and numbers such as 1 and 2.
  • the output unit 2 outputs any data obtained as a result of each processing content executed by each unit included in the processing unit 3 alone or in combination as the direct output data 25, or reads and outputs data from each database.
  • the data 25 is output to the outside, and this process is the output process of step S9.
  • Specific examples of the output unit 2 include a display device such as a CRT, liquid crystal, plasma, or organic EL, an output device such as a printer device, and a transmitter such as a transmitter for transmission to an external device. . Of course, it may be an interface for output for transmission to an external device.
  • the processing database 6 includes distance data 14, ground plane image data 15, groove width data 16, groove depth data 17, groove number data 18, evaluation area image data 19, and smoothed image data 20 processed by the processing unit 3.
  • the evaluation database 7 is a database in which the evaluation threshold data 23 used for the tire deterioration evaluation by the deterioration evaluation unit 13 and the evaluation rank data 24 after the evaluation are stored in a readable manner.
  • the invention has been described as a system.
  • the process of processing data using the system can be considered as a method invention or a program invention for executing a computer. The effect is the same as that of the system invention already described.
  • FIGS. 4A to 4E show evaluation region images of tires of S, A, B, C, and D ranks, respectively, used for evaluating the tire deterioration evaluation system according to the first embodiment. It is a data conceptual diagram.
  • Rank SD for the image shown in FIG. 4 is a cracked state in the groove portion 26 of the ground contact surface of a used tire determined by the applicant as an example.
  • Each rank of tire shown in FIG. It is evaluated and ranked by those who are engaged in tire sorting.
  • FIG. 5 shows the crack ratio data 22 obtained using the prototype system for the tires of the respective ranks shown in FIG.
  • FIG. 6 is a graph of this data.
  • the numbers described below each rank in FIG. 5 and the numbers described on the vertical axis in FIG. 6 indicate the crack ratio data 22 in percentage (%).
  • the numbers described below the graph of FIG. 6 are the same as the numbers indicating the measurement location described at the left end of FIG.
  • a Gaussian filter is used in the smoothing processing in the smoothing processing unit 11
  • the Canny method is used in the edge detection processing in the edge detection processing unit 12.
  • the same processing applies to the image shown in FIG. As shown in FIG. 5, the number of measurements is different for each of the ranks SD, but this does not have a particular purpose.
  • the median is the median value in the measurement value group of each rank, and the average value is also the average value in the measurement value group of each rank. Also, the solid line shown in FIG. 6 connects the median values of the measurement value groups in each rank, and the dotted line expresses the median value of the measurement value groups in each rank as a primary linear format.
  • the crack ratio of rank S is 0.479126 on average, which is higher than the average value of crack ratio of rank A, 0.292188, but the crack ratio gradually increases from rank A to rank D.
  • the reason why the crack ratio of rank S is high is that there is almost no crack in rank S and rank A, and there is almost no difference in the degree of tire deterioration. Is considered to be evaluated.
  • the result is that degradation is smaller in rank A, it can be said that the crack ratio data 22 of rank S and rank A is actually a slight difference because they are values smaller than 0.5%. From the results shown in FIG. 5 and FIG.
  • the inventors have a correlation between the crack ratio data 22 obtained using the tire deterioration evaluation system 1 and the rank of the tire selected by the expert. It was found that by obtaining the crack ratio data 22, it is possible to classify the tires into ranks SD of tires selected by experts.
  • FIG. 7 shows the correspondence of ranking when the crack ratio data 22 obtained as a result of analysis including other test results in addition to FIGS. 5 and 6 is used as the deterioration evaluation value. Therefore, FIG. 7 also shows the contents of the evaluation threshold data 23.
  • the case where the value of the crack ratio data 22 is 0.5 or less is evaluated as the S rank, and is larger than 0.5 and smaller than or equal to 2.0. Cases are evaluated as A ranks, and from B to D ranks in the same manner.
  • the deterioration evaluation unit 13 reads the crack ratio data 22 from the processing database 6 and determines which of the deterioration evaluation value ranges of the evaluation threshold data 23 shown in FIG. The corresponding rank is generated as evaluation rank data 24 and stored in the evaluation database 7 so as to be readable.
  • FIGS. 8A to 8C show an example in which the tire deterioration evaluation system 1 performs measurement. When measurement is performed every 90 ° and four points are measured, measurement is performed every 45 °. In the case where measurement is performed at 8 locations, the measurement is performed every 30 ° and 12 measurements are performed.
  • the portable tire deterioration evaluation system 1 since it is assumed that the measurement person holds the measurement in his hand, it may be difficult to measure at an accurate angular interval as shown in FIG. It is not necessary to carry out at equal intervals, and it is only necessary to improve the accuracy by measuring a plurality of times with one tire.
  • a system in which the displacement scanning measurement unit 4 and the imaging unit 5 of the tire deterioration evaluation system 1 are fixed and the tire itself is automatically rotated by a certain angle to acquire the distance data 14 and the contact surface image data 15. It is good.
  • FIG. 9 is a table in which the tire deterioration evaluation system 1 is used to measure 8 points for every 45 ° shown in FIG.
  • “shot” means a unit in which the distance data 14 and the contact surface image data 15 are acquired, and 1-8 of the measurement points are selected every 45 ° along the circumferential direction of the used tire as described above.
  • the position indicates the distance (mm) from the inside of the tire as the position of the groove 26 to be measured, the size indicates the groove width (mm) multiplied by 10, and the depth indicates the groove depth.
  • the thickness (mm) is indicated by 10 times.
  • the number of grooves is 3 in any of the eight measurement locations. From the above, size corresponds to the groove width data 16 in the system diagram of FIG. 1, depth corresponds to the groove depth data 17, and the number of grooves 3 corresponds to the groove number data 18. Further, in the column of the degradation evaluation value in FIG. 9, the crack ratio data 22 in each groove is displayed as a percentage (%). Since the median value for the crack ratio data 22 at these eight locations is 2.379115 as described in the lower right column of the table, the deterioration evaluation unit 13 of the tire deterioration evaluation system 1 is shown in FIG. The evaluation threshold value data 23 shown is read and used to evaluate the tire rank as B, and is displayed in the lower right column of FIG. The tire rank is stored as evaluation rank data 24 so as to be readable in the evaluation database 7.
  • FIGS. 10A and 10B are conceptual diagrams illustrating examples of evaluation results displayed by the output unit 2.
  • the displayed image displays the ground plane image data 15 on the left side and the evaluation result on the right side.
  • “B565” indicated by the symbol B is “B”.
  • Is the evaluation rank data 24, and “565” indicates that the number of grooves is 3 and the groove depth data 17 is 5 mm, 6 mm, and 5 mm from the inside of the tire.
  • the displayed image is from a display window different from that in FIG. 10A, and what is indicated by the symbol E on the left is the groove width data 16 in units of mm.
  • F is the groove depth data 17 indicated in units of mm
  • the distance data 14 indicating the state in which the entire tire is traced in the width direction is shown on the right side from the center.
  • the symbol G in the figure indicates the distance in the tire width direction from the inner end of the tire in units of mm
  • the symbol H indicates the normal direction with respect to the outer circumference of the tire, that is, the valley height of the tire.
  • the distance in the direction of the groove depth is shown in units of mm.
  • the tire deterioration evaluation system 1 By also displaying the information shown in (b), it is possible to check the groove state of the tire surface over the entire width direction of the tire, and coupled with the evaluation result, the tire deterioration state with higher accuracy. Can be grasped.
  • the amount of information provided to the user is large, and risks such as misidentification and misunderstandings. It is possible to provide a system that can reduce human error and reduce human error.
  • the data shown in FIGS. 10A and 10B are displayed. However, other data stored in the processing database 6 and the evaluation database 7 are appropriately read and output. The display or transmission may be performed by the unit 2. Further, in the present embodiment, the arrangement of the tire grooves is displayed with the left side corresponding to the inner side of the tire grooves, but the order may be reversed and may be changed for convenience during use or design.
  • the invention described in claims 1 to 9 of the present invention can quantitatively evaluate the deterioration of used tires, and the owner can perform tire maintenance or taxi for private cars. It can be widely used by companies and bus companies for maintenance of their own commercial vehicles, maintenance and inspection of customer cars by car dealers and private car factories, and assessment of tire value by used car dealers. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Tires In General (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

According to the present invention, degradation of a material of a used secondhand tire is highly accurately evaluated by measuring a crack generated in a region of the tire, which has not been worn due to use of the tire. The present invention measures a displacement of a ground contacting surface of the tire to generate distance data (14) from which a crest part and a valley part of the ground contacting surface can be determined, captures an image of the ground contacting surface to generate ground contacting surface image data (15), extracts, from a region of the valley part, an evaluation region for detecting a crack to generate evaluation region image data (19), smoothing the resultant data and removes noise to generate smoothened image data (20), performs edge processing and clarifies the boundary part of the crack to generate edge-processed image data (21), calculates the ratio of the crack of the edge-processed image data (21) to the entire boundary part to generate crack ratio data (22), and outputs the crack ratio data (22).

Description

タイヤ劣化評価システムとその方法及びそのプログラムTire deterioration evaluation system, method and program thereof
 本発明は、使用済の中古タイヤの劣化をひび割れの測定を介して評価するタイヤ劣化評価システムとその方法及びそのプログラムに関する。 The present invention relates to a tire deterioration evaluation system, a method thereof, and a program thereof for evaluating deterioration of a used used tire through measurement of cracks.
 今日の自動車リサイクル産業では自動車中古部品市場の縮小が危惧されており、中古部品の利用促進は長年の課題であった。日本国内では新品志向が強く、使い捨ての考えが一般的である。特にタイヤは消耗品であり需要が多い為、新品交換のサイクルが早く、不要になった廃タイヤの発生量は年間約100万トンと言われているが、その中には使用可能なものも多数存在する。処分方法は様々であるが、焼却処分時に発生する内分泌撹乱作用を有すると疑われる化学物質による環境への影響は、人体への影響も懸念されている。
 このような背景には、使用済・中古タイヤに関する定量的な測定に基く明確な評価基準が存在していない為、使用者の独断や、点検作業員の目視による曖昧な判定基準によって、使用可能であるにも関わらず処分する場合が多いということがある。
 従って、明確な品質基準と劣化評価システムを設けることによれば、使用済・中古タイヤの流通サイクルをより延ばすことが可能になると考えられる。
 これまで、タイヤの品質に関する検査や摩耗の評価については、これまでいくつか特許出願がなされている。
In today's auto recycling industry, the shrinking market for used auto parts has been a concern, and promoting the use of used parts has been a challenge for many years. In Japan, the intention of new products is strong, and the idea of disposable is common. In particular, tires are consumables and demand is high, so it is said that the replacement cycle of new tires is fast, and the amount of waste tires that are no longer needed is said to be about 1 million tons per year. There are many. Although there are various disposal methods, there are concerns about the effects on the environment caused by chemical substances suspected of having endocrine disrupting effects that occur during incineration.
In such a background, there is no clear evaluation standard based on quantitative measurement of used and used tires, so it can be used based on the user's discretion and the ambiguous judgment standard by the inspection worker. However, there are many cases of disposal.
Therefore, it is considered that the distribution cycle of used and used tires can be further extended by providing a clear quality standard and deterioration evaluation system.
So far, several patent applications have been filed for tire quality inspection and wear evaluation.
 例えば、特許文献1には、「タイヤ偏摩耗管理方法」という名称で、タイヤの偏摩耗の検出から、対応策の決定までを自動的に行う装置が開示されている。
 この発明では、スキャナによりタイヤ形状を読み込み、同一タイヤの新品時形状と比較をして、差分形状を求め、その差分形状に基づいて偏摩耗データベースを検索し、偏摩耗の有無と種類を判断し、その偏摩耗を調査した後には、対応策データベースを検索することによって抽出されたタイヤ位置交換方法及びその他の対応策の指示が表示される。従って、作業者の経験や知識によらず、しかも労力を軽減することが可能である。
For example, Patent Document 1 discloses an apparatus that automatically performs from detection of uneven tire wear to determination of countermeasures under the name of “tire uneven wear management method”.
In this invention, the tire shape is read by a scanner, compared with the new tire shape of the same tire, a differential shape is obtained, a partial wear database is searched based on the differential shape, and the presence and type of the partial wear is determined. After investigating the uneven wear, the tire position exchanging method and other countermeasure instructions extracted by searching the countermeasure database are displayed. Therefore, it is possible to reduce labor regardless of the experience and knowledge of the worker.
 また、特許文献2には、「タイヤ摩耗監視装置」という名称で、タイヤのトレッド層の底部にトレッドゴム層とは異なる色の摩耗監視用異色ゴム部材を埋設して、そのトレッド面の摩耗を画像監視することで、走行中の車両のタイヤ摩耗の監視を可能とするとともに、タイヤの交換時期を容易に把握することが可能である。 Further, in Patent Document 2, under the name of “tire wear monitoring device”, a different color rubber member for wear monitoring of a color different from that of the tread rubber layer is embedded at the bottom of the tread layer of the tire, and the tread surface is worn. By monitoring images, it is possible to monitor tire wear of a running vehicle and to easily grasp the time for tire replacement.
 さらに、特許文献3には、「タイヤ検査方法および装置」という名称で、タイヤ画像から不良部分を、熟練を有することなく簡単かつ短時間に発見でき、正確かつ効率的に検査可能な技術が開示されている。
 この発明は、タイヤをレーザー式非破壊検査機及びCCDカメラ等でそれぞれ撮像して得られる白黒濃淡基調の画像信号に基づいてタイヤの良・不良を検査するにあたり、画像信号に基づいて不良部分を検出し、不良部分をマーキングして画像信号をモニタに表示するものである。
Furthermore, Patent Document 3 discloses a technology that can be accurately and efficiently inspected with a name of “tire inspection method and apparatus”, in which a defective portion can be easily and quickly found from a tire image without skill. Has been.
When inspecting a tire for good / bad on the basis of a black and white tone image signal obtained by imaging the tire with a laser-type nondestructive inspection machine and a CCD camera, etc., It detects, marks a defective part, and displays an image signal on a monitor.
 特許文献4には、”APPARATUS AND METHOD FOR TIRE SIDEWALL CRACK ANALYSIS”という名称で、タイヤ側面に発生するひびを検出・解析する発明が開示されている。
 この発明は、タイヤの側面に発生するひびを画像で検出し、その画像をグレースケール化し、その後にモノクロ2値化して、その2値化画像でギザギザ状の形状や先細りするような形状等の不連続な形状を検出し、ひびの大きさを測定して評価するものである。
Patent Document 4 discloses an invention for detecting and analyzing a crack generated on a side surface of a tire under the name “APPARATUS AND METHOD FOR TIRE SIDEWALL CRACK ANALYSIS”.
The present invention detects cracks generated on the side surface of a tire with an image, converts the image to gray scale, and then binarizes it into a black and white image, such as a jagged shape or a tapered shape in the binarized image. A discontinuous shape is detected, and the size of the crack is measured and evaluated.
 特許文献5は、本願出願人によるものであるが、「タイヤ劣化評価装置とそのシステム、その方法及びそのプログラム」という名称で、タイヤの溝部に発生するひびを検出・解析する発明が開示されている。
 この発明は、直接路面に接地することなく、タイヤの使用によって摩耗しない領域である溝部に発生するひび割れに着目し、タイヤの接地面の変位を測定しながら溝部を検出すると共に、接地面を撮影してその画像を2値化処理して、溝部におけるひび割れ箇所を特定し、ひび割れ箇所の面積と他の面積及びその比を求めてタイヤの材質に対する劣化を精度高く評価するものである。
Patent document 5 is by the applicant of the present application, and discloses an invention for detecting and analyzing cracks generated in a groove portion of a tire under the name of “tire deterioration evaluation device and system, method and program thereof”. Yes.
This invention pays attention to the crack generated in the groove which is an area that does not wear due to the use of the tire without directly contacting the road surface, and detects the groove while measuring the displacement of the ground contact surface of the tire and photographs the contact surface. Then, the image is binarized, the cracked portion in the groove is specified, the area of the cracked portion, the other area and the ratio thereof are obtained, and the deterioration of the tire material is evaluated with high accuracy.
特開2009-102009号公報JP 2009-102009 A 特開2006-123703号公報JP 2006-123703 A 特開2001-13081号公報JP 2001-13081 A 米国特許出願公開第2015/0139498号明細書US Patent Application Publication No. 2015/0139498 特開2015-161575号公報Japanese Patent Laying-Open No. 2015-161575
 しかしながら、特許文献1に開示される技術では、タイヤの摩耗は測定・評価は可能であるものの中古のタイヤ劣化の現れには摩耗のみならずひび割れがあるが、そのひび割れについては測定・評価ができないという課題があった。
 また、特許文献2に開示される技術でも、トレッド部の摩耗によってその底部に予め埋設された異色のゴム部材を露出させるので、トレッド面の監視画像によって車両が走行中でもタイヤ摩耗を監視可能であるものの、やはり、タイヤのゴム材自身の経年劣化に伴って生じるひび割れについては測定・監視ができないという課題があった。
 さらに、特許文献3に開示される技術では、被検タイヤのトップインナー間にエアーが混入している場合には、2値化された場合にその部分が白レベルになり、その部分を不良部分としてマーキングすることで不良部分の検出が容易であるものの、被検タイヤは新品のタイヤであり、使用や経年に伴うひび割れなどを生じる劣化に関する測定・評価ができないという課題があった。
 特許文献4や特許文献5ではいずれもひび割れを撮影し、その画像処理でモノクロ2値化処理を行った上でひび割れの程度を評価しているが、特に、溝部に発生するひび割れは細く線状に発生していることからひび割れ部分を精度高く求めることにはある程度限界があり、さらに、タイヤの溝部を含めた表面にはタイヤの使用時に砂や小石等のゴミが付着することがあり、これがひび割れの検出の際にはノイズとなってこの点でも精度が低下してしまう原因となっていた。
However, in the technique disclosed in Patent Document 1, although tire wear can be measured and evaluated, the appearance of used tire deterioration includes not only wear but also cracks, but such cracks cannot be measured and evaluated. There was a problem.
Further, even in the technique disclosed in Patent Document 2, since the different colored rubber member embedded in the bottom of the tread portion is exposed by the wear of the tread portion, the tire wear can be monitored even when the vehicle is running by the monitoring image of the tread surface. However, there is still a problem that it is impossible to measure and monitor the cracks that occur with the aging of the rubber material of the tire itself.
Furthermore, in the technique disclosed in Patent Document 3, when air is mixed between the top inners of the tires to be examined, when the binarization is performed, the portion becomes a white level, and the portion becomes a defective portion. Although it is easy to detect a defective part by marking as, the test tire is a new tire, and there is a problem that measurement / evaluation regarding deterioration that causes cracks with use or aging cannot be performed.
In both Patent Document 4 and Patent Document 5, a crack is photographed, and the degree of cracking is evaluated after performing monochrome binarization processing by the image processing. In particular, the crack generated in the groove is thin and linear. Therefore, there is a certain limit to finding the cracked part with high accuracy, and dust such as sand and pebbles may adhere to the surface including the tire groove when using the tire. In the case of detecting a crack, it becomes noise and this causes a decrease in accuracy.
 本発明はかかる従来の事情に対処してなされたものであり、使用済の中古タイヤの劣化をタイヤの使用によって摩耗していない領域、すなわち、接地面の山部ではなく、車両走行による摩耗や損傷による影響を受け難い溝部に生じているひび割れを測定し、さらにひび割れに関する情報を、ノイズを排除しながらよりひび割れ形状に即した形状で捉えて処理することで、タイヤの材質に対する劣化を精度高く評価するタイヤ劣化評価システムとその方法及びそのプログラムを提供することを目的としている。 The present invention has been made in response to such a conventional situation, and is a region where the deterioration of a used used tire is not worn by the use of the tire, i.e., a wear caused by traveling of the vehicle, not a mountain portion of the contact surface. By measuring cracks that occur in grooves that are not easily affected by damage, and processing the information related to cracks in a shape that conforms to the crack shape while eliminating noise, the deterioration of the tire material is highly accurate. An object of the present invention is to provide a tire deterioration evaluation system to be evaluated, its method, and its program.
 上記目的を達成するため、第1の発明であるタイヤ劣化評価システムは、タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定部と、前記接地面を撮影して接地面画像データを生成する撮像部と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出部と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理部と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理部と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価部と、前記ひび割合データを出力する出力部とを有するものである。
 上記構成のタイヤ劣化評価システムでは、変位測定部がタイヤの接地面の変位を測定して距離データを得ることでタイヤの接地面における山部と溝部の判別を可能とする作用を有する。また、撮像部がタイヤの接地面を撮影して画像データを得るという作用を有する。また、評価領域抽出部は、距離データを参照しながら接地面画像データからひび割れを検出するための評価領域を抽出するように作用する。
 平滑化処理部は、タイヤ表面の付着物から生じるひび割れに対するノイズを周囲の画像に関するデータと平滑化して予め除去し、除去後のデータを平滑化処理データとして生成するように作用する。また、エッジ検出処理部は、平滑化処理画像データをエッジ処理してひび割れの境界部を明確化し、明確化したデータをエッジ処理画像データとして生成するように作用する。
 平滑化処理部で実行される平滑化処理としては例えばガウシアンフィルター等が採用され得る。また、エッジ処理検出部で実行されるエッジ処理としてはキャニー法等が採用され得る。
 溝部は通常の車両走行時では道路面に接触しないため、その領域にはタイヤの材質であるゴムの摩耗によらない経年劣化の現れとなるひび割れが生じる可能性が高い。従って、特にこの溝部におけるひび割れを測定するために、接地面の変位を測定しつつ、さらに接地面を撮影して、距離データと接地面画像データを取得する。そして、距離データを参照しながら接地面画像データを用いて溝部領域から評価領域を抽出し、その評価領域の範囲で接地面画像データに対し、まず、平滑化処理によってノイズ除去し、その後にエッジ検出によってひび割れを検出するのである。
 溝部は道路面に接触しておらず、生じているひび割れでは内部のゴムの色が見えているため、通常は黒色として測定される。一方、ひび割れが生じていない部分の溝は当初の黒色から劣化によって灰色化している。従って、本発明のタイヤ劣化評価システムでは、エッジ検出処理部が、黒色と灰色の境界部をエッジとして検出することで、内部のゴムの色が見えている箇所をひび割れとして認識するように作用するのである。
In order to achieve the above object, the tire deterioration evaluation system according to the first aspect of the present invention is a displacement measurement that generates a distance data that enables a discrimination between a peak portion and a groove portion of the contact surface by measuring the displacement of the contact surface of the tire. An imaging unit for photographing the ground plane and generating ground plane image data; and an evaluation for detecting cracks from the groove area on the ground plane with reference to the distance data from the ground plane image data An evaluation region extraction unit that extracts a region and generates evaluation region image data; a smoothing processing unit that generates a smoothed image data obtained by smoothing the evaluation region image data to remove noise; and the smoothing An edge detection processing unit that generates edge-processed image data that clarifies the boundary of cracks by edge-processing the processed image data; and the entire boundary of cracks of the edge-processed image data A degradation evaluating portion that generates crack ratio data by calculating the Mel ratio, and has an output section for outputting the crack ratio data.
In the tire deterioration evaluation system having the above configuration, the displacement measuring unit measures the displacement of the ground contact surface of the tire and obtains distance data, thereby having an effect of enabling discrimination between the crest and the groove on the ground contact surface of the tire. In addition, the imaging unit has an effect of obtaining the image data by photographing the tire contact surface. Further, the evaluation area extraction unit operates to extract an evaluation area for detecting cracks from the ground plane image data while referring to the distance data.
The smoothing processing unit acts to smooth the noise with respect to cracks generated from the deposits on the tire surface and the data related to the surrounding image in advance, and to generate the data after the removal as smoothing processing data. The edge detection processing unit acts to edge-process the smoothed image data to clarify the boundary between cracks, and generate the clarified data as edge-processed image data.
As the smoothing process executed by the smoothing processing unit, for example, a Gaussian filter or the like can be employed. In addition, as an edge process executed by the edge process detection unit, a Canny method or the like can be adopted.
Since the groove portion does not come into contact with the road surface during normal vehicle travel, there is a high possibility that cracks will appear in that region, which will show aged deterioration that does not depend on the wear of rubber, which is the material of the tire. Therefore, in order to measure the crack in the groove portion in particular, the ground plane is photographed while measuring the displacement of the ground plane, and distance data and ground plane image data are acquired. Then, an evaluation area is extracted from the groove area using the ground plane image data while referring to the distance data, and noise is first removed from the ground plane image data within the evaluation area by a smoothing process, and then an edge is extracted. Cracks are detected by detection.
The groove is not in contact with the road surface and the color of the internal rubber is visible in the cracks that are occurring, so it is usually measured as black. On the other hand, the groove in the portion where no crack is generated is grayed out due to deterioration from the original black color. Therefore, in the tire deterioration evaluation system according to the present invention, the edge detection processing unit detects the boundary between black and gray as an edge, and acts to recognize a portion where the color of the internal rubber is visible as a crack. It is.
 また、本発明では変位測定部と撮像部を分けているが、例えば特開2011-179925号公報で開示されているような距離画像センサを採用する場合には、距離画像センサは、変位測定部と撮像部の機能を併せるものであると考えられるので、たとえ距離画像センサを採用しても本発明の範囲から外れるものではない。
 なお、本願発明では、変位走査測定部等、「部」という語を含んだ構成要素を用いているが、この「部」とは「素子」や「電子回路」、あるいは「構成物のユニット」、又は「それらが集合した装置」を概念化して示したものである。
In the present invention, the displacement measurement unit and the imaging unit are separated. However, when a distance image sensor as disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-179925 is employed, the distance image sensor is a displacement measurement unit. Therefore, even if a distance image sensor is employed, it does not depart from the scope of the present invention.
In the present invention, a component including the word “part”, such as a displacement scanning measurement unit, is used. The “part” means “element”, “electronic circuit”, or “unit of component”. Or “apparatus in which they are assembled”.
 また、第2の発明であるタイヤ劣化評価システムは、第1の発明において、前記劣化評価部は、前記割合を、劣化を評価するために予め定められた評価閾値データで評価して評価ランクデータを生成し、前記出力部は前記評価ランクデータを出力することを特徴とするものである。
 上記構成のタイヤ劣化評価システムでは、第1の発明の作用に加えて、劣化評価部が、評価閾値データを用いてひび割れの境界部の全体に占める割合をランク評価するように作用する。
Further, in the tire deterioration evaluation system according to the second invention, in the first invention, the deterioration evaluation unit evaluates the ratio with evaluation threshold data predetermined in order to evaluate deterioration, and evaluation rank data. , And the output unit outputs the evaluation rank data.
In the tire deterioration evaluation system having the above configuration, in addition to the operation of the first invention, the deterioration evaluation unit operates to rank-evaluate the ratio of the entire crack boundary using the evaluation threshold data.
 そして、第3の発明であるタイヤ劣化評価システムは、第1又は第2の発明において、前記変位測定部は、前記距離データから前記タイヤの接地面の前記溝部の幅を演算して溝幅データを生成する溝幅演算部と、前記距離データから前記溝部の深さを演算し溝深さデータを生成する溝深さ演算部とを備え、前記溝部の数に関する溝部数データを生成し、前記出力部は前記溝幅データ、前記溝深さデータ又は前記溝部数データのうち、少なくともいずれか1つのデータを出力することを特徴とするものである。
 上記構成のタイヤ劣化評価システムでは、第1又は第2の発明の作用に加えて、溝幅演算部が溝幅を演算するように作用し、溝深さ演算部が溝深さを演算するように作用し、変位測定部は出力部と相まって、タイヤの接地面における溝の構造をより具体的に把握させるように作用する。
In the tire deterioration evaluation system according to the third aspect of the present invention, in the first or second aspect of the invention, the displacement measurement unit calculates the width of the groove portion of the ground contact surface of the tire from the distance data, thereby obtaining groove width data. A groove width calculation unit that generates a groove depth calculation unit that calculates the depth of the groove from the distance data and generates groove depth data, and generates groove number data relating to the number of the groove parts, The output unit outputs at least one of the groove width data, the groove depth data, and the groove number data.
In the tire deterioration evaluation system having the above configuration, in addition to the operation of the first or second invention, the groove width calculation unit operates to calculate the groove width, and the groove depth calculation unit calculates the groove depth. The displacement measuring unit, in combination with the output unit, acts to more specifically grasp the groove structure on the ground contact surface of the tire.
 さらに、第4の発明であるタイヤ劣化評価システムは、第1乃至第3の発明のいずれか1つの発明において、前記出力部は、前記劣化評価部で生成されたデータと、前記撮像部で生成された接地面画像データ又は前記評価領域抽出部で抽出された前記評価領域画像データを同時に出力することを特徴とするものである。
 上記構成のタイヤ劣化評価システムでは、第1乃至第3の発明のいずれか1つの発明の作用に加えて、出力部は数値やランクといったデジタル値や文字といった評価に関するデータと評価対象となっている元々の接地面画像データ又は評価領域画像データを同時に出力することで、評価の過誤の可能性を含めた妥当性を確認させるように作用する。また、タイヤ表面の状態を数値や文字等のテキスト情報と画像情報の両面から把握させるように作用する。
Furthermore, in the tire deterioration evaluation system according to a fourth aspect of the present invention, in any one of the first to third aspects, the output unit is generated by the data generated by the deterioration evaluation unit and the imaging unit. The ground contact surface image data or the evaluation region image data extracted by the evaluation region extraction unit is output at the same time.
In the tire deterioration evaluation system configured as described above, in addition to the operation of any one of the first to third aspects of the invention, the output unit is an evaluation object and data relating to evaluation such as digital values such as numerical values and ranks and characters. By outputting the original ground plane image data or the evaluation area image data at the same time, the validity including the possibility of the evaluation error is confirmed. Moreover, it acts so that the state of the tire surface can be grasped from both sides of text information such as numerical values and characters and image information.
 第5の発明であるタイヤ劣化評価方法は、タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定工程と、前記接地面を撮影して接地面画像データを生成する撮像工程と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出工程と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理工程と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理工程と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価工程と、前記ひび割合データを出力する出力工程と、を有するものである。
 上記構成のタイヤ劣化評価方法では、第1の発明を方法発明として捉えたものであるので、その作用は第1の発明と同様である。
According to a fifth aspect of the present invention, there is provided a tire deterioration evaluation method, comprising: a displacement measuring step of measuring a displacement of a ground contact surface of a tire to generate distance data that enables discrimination between a ridge and a groove of the contact surface; An imaging process for capturing and generating ground plane image data, and extracting an evaluation area for detecting cracks from the groove area on the ground plane with reference to the distance data from the ground plane image data An evaluation area extracting step for generating image data, a smoothing process step for generating smoothed image data obtained by smoothing the evaluation area image data to remove noise, and edge processing for the smoothed image data Edge detection processing step for generating edge-processed image data in which the boundary of cracks is clarified, and the ratio of the edge-processed image data to the entire boundary of cracks is calculated. Such deterioration evaluation step of generating cracks ratio data, those having an output step of outputting the crack ratio data.
In the tire deterioration evaluation method with the above configuration, the first invention is regarded as the method invention, and thus the operation thereof is the same as that of the first invention.
 第6の発明であるタイヤ劣化評価方法は、第5の発明において、前記劣化評価工程は、前記割合を、劣化を評価するために予め定められた評価閾値データで評価して評価ランクデータを生成し、前記出力工程は前記評価ランクデータを出力することを特徴とするものである。
 上記構成のタイヤ劣化評価方法は、第2の発明を方法発明として捉えたものであるので、その作用は第2の発明と同様である。
In the tire deterioration evaluation method according to a sixth aspect of the present invention, in the fifth aspect of the invention, the deterioration evaluation step generates evaluation rank data by evaluating the ratio with evaluation threshold data set in advance in order to evaluate the deterioration. And the said output process outputs the said evaluation rank data, It is characterized by the above-mentioned.
Since the tire deterioration evaluation method with the above configuration is based on the second invention as a method invention, its operation is the same as that of the second invention.
 そして、第7の発明であるタイヤ劣化評価方法は、第5又は第6の発明において、前記変位測定工程は、前記距離データから前記タイヤの接地面の前記溝部の幅を演算して溝幅データを生成する溝幅演算工程と、前記距離データから前記溝部の深さを演算し溝深さデータを生成する溝深さ演算工程とを備え、前記溝部の数に関する溝部数データを生成し、前記出力工程は前記溝幅データ、前記溝深さデータ又は前記溝部数データのうち、少なくともいずれか1つのデータを出力することを特徴とするものである。
 上記構成のタイヤ劣化評価方法は、第3の発明を方法発明として捉えたものであるので、その作用は第3の発明と同様である。
In the tire deterioration evaluation method according to a seventh aspect of the present invention, in the fifth or sixth aspect of the invention, the displacement measuring step calculates a width of the groove portion of the ground contact surface of the tire from the distance data. A groove width calculation step for generating a groove depth calculation step for calculating the depth of the groove portion from the distance data and generating groove depth data, and generating groove portion number data relating to the number of groove portions, In the output step, at least one of the groove width data, the groove depth data, and the groove number data is output.
Since the tire deterioration evaluation method with the above configuration is based on the third invention as a method invention, the operation thereof is the same as that of the third invention.
 請求項8に記載の発明であるタイヤ劣化評価方法は、第5乃至第7の発明のいずれか1つの発明において、前記出力工程は、前記劣化評価工程で生成されたデータと、前記撮像工程で生成された接地面画像データ又は前記評価領域抽出工程で抽出された前記評価領域画像データを同時に出力するものである。
 上記構成のタイヤ劣化評価方法では、請求項4に記載したタイヤ劣化評価システムを方法発明として捉えた発明であるので、その作用は第4の発明の作用と同様である。
The tire deterioration evaluation method according to an eighth aspect of the present invention is the tire deterioration evaluation method according to any one of the fifth to seventh aspects of the invention, wherein the output step includes data generated in the deterioration evaluation step and the imaging step. The generated ground plane image data or the evaluation area image data extracted in the evaluation area extraction step is simultaneously output.
In the tire deterioration evaluation method having the above-described configuration, the tire deterioration evaluation system according to claim 4 is an invention that is captured as a method invention, and thus the operation thereof is the same as that of the fourth invention.
 第9の発明であるタイヤ劣化評価プログラムは、コンピュータによって、タイヤ劣化評価のために実行されるプログラムであって、タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定工程と、前記接地面を撮影して接地面画像データを生成する撮像工程と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出工程と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理工程と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理工程と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価工程と、前記ひび割合データを出力する出力工程と、を実行させることを特徴とするものである。
 上記構成のタイヤ劣化評価プログラムは、第5の発明をプログラム発明として捉えた発明であるので、その作用は第5の発明の作用と同様である。
A tire deterioration evaluation program according to a ninth aspect of the present invention is a program executed by a computer for tire deterioration evaluation, wherein the displacement of the tire contact surface is measured to discriminate between the peak portion and the groove portion of the contact surface. A displacement measuring step for generating distance data to be enabled; an imaging step for photographing the ground plane to generate ground plane image data; and the groove portion on the ground plane with reference to the distance data from the ground plane image data An evaluation region extraction step for generating an evaluation region image data by extracting an evaluation region for detecting cracks from the region, and smoothing processing image data in which noise is removed by smoothing the evaluation region image data Smoothing processing step, and edge detection for generating edge processed image data in which the boundary portion of the crack is clarified by performing edge processing on the smoothed image data Performing a physical process, a deterioration evaluation process for calculating a ratio of the entire boundary of cracks in the edge-processed image data to generate a crack ratio data, and an output process for outputting the crack ratio data. It is a feature.
Since the tire deterioration evaluation program having the above configuration is an invention in which the fifth aspect of the invention is regarded as a program invention, the action thereof is the same as that of the fifth aspect of the invention.
 第1の発明に係るタイヤ劣化評価システムでは、タイヤの接地面の溝部に発生しているひび割れを測定可能であるため、タイヤゴムの摩耗によらない経年劣化を定量的に評価することが可能である。また、変位測定部によって接地面の変位を測定して距離データを得ながら、撮像部で接地面画像データも得るので、これらのデータから接地面の溝部を検出可能であり、溝部に発生するひび割れを精度良く測定することができる。
 また、溝部の領域で評価領域を予め抽出し、その後にノイズ除去処理を行うので、砂や小石等のタイヤ付着物によるノイズ発生を防止することができる。したがって、劣化度合が少ない中古タイヤで生じやすいノイズによる劣化に対する過大評価を防止することが可能である。
 さらに、エッジ検出処理を行っているので、接地面の溝部という直接路面に接触していない箇所に発生しているひびの部分の実体に即してひび割れを検出することができる。
 平滑化処理した後にエッジ検出処理を実施して、ひび割れの境界部の全体に占める割合を演算してひび割合データを生成しているので、直接路面に設置していない溝部におけるひび割れの実体に即してそのひび割れの割合を精度高く測定することが可能である。
In the tire deterioration evaluation system according to the first invention, it is possible to measure the cracks occurring in the groove portion of the tire contact surface, and therefore it is possible to quantitatively evaluate the aging deterioration that does not depend on the wear of the tire rubber. . Also, while measuring the displacement of the ground plane by the displacement measurement unit and obtaining distance data, the image plane also obtains the ground plane image data, so that the groove portion of the ground plane can be detected from these data and cracks generated in the groove portion are obtained. Can be measured with high accuracy.
In addition, since the evaluation area is extracted in advance in the groove area and the noise removal process is performed thereafter, it is possible to prevent the occurrence of noise due to tire deposits such as sand and pebbles. Therefore, it is possible to prevent overestimation against deterioration due to noise that is likely to occur in a used tire with a low degree of deterioration.
Furthermore, since the edge detection process is performed, it is possible to detect a crack in accordance with the substance of the crack portion that is generated at a location that is not in direct contact with the road surface, such as a groove portion of the ground contact surface.
Since the edge detection process is performed after the smoothing process and the ratio of the total crack boundary is calculated to generate the crack ratio data, it is suitable for the actual cracks in the groove not installed on the road surface. Thus, the crack ratio can be measured with high accuracy.
 第2の発明に係るタイヤ劣化評価システムでは、第1の発明の効果に加えて、評価ランクデータが生成されるため、タイヤの劣化に対する評価をランク付けすることが可能であり、ランクに分別することが可能である。このようにランクに分別可能であれば、タイヤの劣化状態に応じてタイヤをランク分けすることができ、中古タイヤの流通市場における価格の目安として利用価値が高くなるという効果が期待できる。さらに、評価ランクのための評価閾値データの細分化の程度によってランクの分別度合いも変化させることができ、市場における価格の他、タイヤ交換の目安などのメンテナンスの指標としても利用価値が高くなるという効果がある。従って、タイヤの安全性や経済性を高めることが可能である。 In the tire deterioration evaluation system according to the second invention, in addition to the effects of the first invention, evaluation rank data is generated. Therefore, it is possible to rank evaluations for tire deterioration and classify into ranks. It is possible. In this way, if classification into ranks is possible, the tires can be ranked according to the deterioration state of the tires, and an effect that the utility value becomes high as a measure of the price in the secondary tire distribution market can be expected. Furthermore, the degree of classification of the rank can be changed according to the degree of subdivision of the evaluation threshold data for the evaluation rank, and the utility value is increased as a maintenance index such as a tire replacement guide in addition to the price in the market. effective. Therefore, it is possible to improve the safety and economy of the tire.
 第3の発明に係るタイヤ劣化評価システムでは、第1又は第2の発明の効果に加えて、溝幅、溝深さ及び溝部数の少なくともいずれか1つのデータが出力部に出力されるので、本システムの利用者が評価対象となっているタイヤ溝の構造に関する具体的な情報を得ることが可能である。 In the tire deterioration evaluation system according to the third invention, in addition to the effects of the first or second invention, at least one data of the groove width, the groove depth, and the number of groove parts is output to the output part. It is possible for the user of this system to obtain specific information regarding the structure of the tire groove that is the object of evaluation.
 第4の発明に係るタイヤ劣化評価システムでは、第1乃至第3の発明のいずれか1つの効果に加えて、評価の妥当性を確認することが可能であり、また、タイヤ表面を数値や文字等のテキスト情報と評価の対象となった溝部に関する画像情報の両面から本システムの利用者が容易かつ正確にタイヤの劣化状態を把握することができる。 In the tire deterioration evaluation system according to the fourth invention, in addition to the effects of any one of the first to third inventions, it is possible to confirm the validity of the evaluation, and the tire surface is represented by numerical values or characters. The user of this system can easily and accurately grasp the deterioration state of the tire from both the text information such as the above and the image information regarding the groove portion to be evaluated.
 第5の発明に係るタイヤ劣化評価方法は第1の発明を方法発明として捉えた発明であるので、その効果は第1の発明の効果と同様である。 Since the tire deterioration evaluation method according to the fifth invention is an invention based on the first invention as a method invention, the effect is the same as the effect of the first invention.
 第6の発明に係るタイヤ劣化評価方法は第2の発明を方法発明として捉えた発明であるので、その効果は第2の発明の効果と同様である。 Since the tire deterioration evaluation method according to the sixth invention is an invention based on the second invention as a method invention, the effect is the same as the effect of the second invention.
 第7の発明に係るタイヤ劣化評価方法は第3の発明を方法発明として捉えた発明であるので、その効果は第3の発明の効果と同様である。 Since the tire deterioration evaluation method according to the seventh invention is an invention based on the third invention as a method invention, the effect is the same as the effect of the third invention.
 第8の発明に係るタイヤ劣化評価方法は第4の発明を方法発明として捉えた発明であるので、その効果は第4の発明の効果と同様である。 Since the tire deterioration evaluation method according to the eighth invention is an invention based on the fourth invention as a method invention, the effect is the same as the effect of the fourth invention.
 第9の発明に係るタイヤ劣化評価プログラムは第5の発明をプログラム発明として捉えた発明であるので、その効果は第5の発明の効果と同様である。 Since the tire deterioration evaluation program according to the ninth invention is an invention in which the fifth invention is regarded as a program invention, the effect is the same as the effect of the fifth invention.
本発明の第1の実施の形態に係るタイヤ劣化評価システムのブロック図である。1 is a block diagram of a tire deterioration evaluation system according to a first embodiment of the present invention. 本発明の第1の実施の形態に係るタイヤ劣化評価システムによって実行されるタイヤ劣化評価のフロー図である。It is a flowchart of the tire deterioration evaluation performed by the tire deterioration evaluation system which concerns on the 1st Embodiment of this invention. (a)は本発明の第1の実施の形態に係るタイヤ劣化評価システムの撮像部で得られたタイヤの接地面画像データの概念図であり、(b)は(a)中の符号Aの黒枠内で示される評価領域画像データの概念図であり、(c)は(b)の評価領域画像データをモノクロ2値化処理した場合の画像データの概念図であり、(d)は(b)の評価領域画像データをエッジ処理した場合のエッジ処理画像データの概念図である。(A) is a conceptual diagram of the tire contact surface image data obtained by the imaging unit of the tire deterioration evaluation system according to the first embodiment of the present invention, (b) is a symbol A in (a) It is a conceptual diagram of evaluation area image data shown in a black frame, (c) is a conceptual diagram of image data when the evaluation area image data of (b) is subjected to monochrome binarization processing, and (d) is (b) 3 is a conceptual diagram of edge processed image data when edge processing is performed on evaluation area image data of FIG. (a)は本発明の第1の実施の形態に係るタイヤ劣化評価システムを評価するために用いられたSランクのタイヤの評価領域画像データ概念図であり、(b)は同様にAランクのタイヤの評価領域画像データ概念図であり、(c)は同様にBランクのタイヤの評価領域画像データ概念図であり、(d)は同様にCランクのタイヤの評価領域画像データ概念図であり、(e)は同様にDランクのタイヤの評価領域画像データ概念図である。(A) is an evaluation area image data conceptual diagram of the S rank tire used for evaluating the tire deterioration evaluation system according to the first embodiment of the present invention, and (b) is similarly A rank It is a tire evaluation area image data conceptual diagram, (c) is also a B rank tire evaluation area image data conceptual diagram, (d) is also a C rank tire evaluation area image data conceptual diagram. (E) is an evaluation region image data conceptual diagram of a D rank tire in the same manner. 本発明の第1の実施の形態に係るタイヤ劣化評価システムを評価するために用いられたS,A,B,C,Dランクのタイヤそれぞれのひび割合を測定した結果を示す表である。It is a table | surface which shows the result of having measured the crack ratio of each tire of S, A, B, C, D rank used in order to evaluate the tire deterioration evaluation system which concerns on the 1st Embodiment of this invention. 図5の測定結果を示すグラフである。It is a graph which shows the measurement result of FIG. ひび割合データを劣化評価値として用いた場合のランク分けの対応を示す図であり、すなわち評価閾値データを示す図でもある。It is a figure which shows the correspondence of rank division at the time of using crack ratio data as a deterioration evaluation value, ie, it is also a figure which shows evaluation threshold value data. (a)-(c)はそれぞれ本発明の第1の実施の形態に係るタイヤ劣化評価システムの接地面画像データの取得箇所の例を示す概念図である。(A)-(c) is a conceptual diagram which shows the example of the acquisition location of the contact surface image data of the tire degradation evaluation system based on the 1st Embodiment of this invention, respectively. 本発明の第1の実施の形態に係るタイヤ劣化評価システムを用いて中古タイヤを評価した結果を示す表である。It is a table | surface which shows the result of having evaluated a used tire using the tire deterioration evaluation system which concerns on the 1st Embodiment of this invention. (a)及び(b)はそれぞれ本発明の第1の実施の形態に係るタイヤ劣化評価システムの出力部によって表示される評価結果の例を示す概念図である。(A) And (b) is a conceptual diagram which shows the example of the evaluation result displayed by the output part of the tire degradation evaluation system which concerns on the 1st Embodiment of this invention, respectively.
 以下に、本発明の第1の実施の形態に係るタイヤ劣化評価システムについて図1-図10を参照しながら説明する。
 図1は、本発明の第1の実施の形態に係るタイヤ劣化評価システムのブロック図である。図2は本発明の第1の実施の形態に係るタイヤ劣化評価システムによって実行されるタイヤ劣化評価のフロー図である。本図は、本願発明のタイヤ劣化評価方法およびプログラムに対してはその実行工程を表すものでもあり、この図を参照しながらタイヤ劣化評価システム1におけるデータ処理の流れを説明することはタイヤ劣化評価方法およびプログラムの実施の形態について説明することと同義である。なお、図2において、Sで示す工程に関する記載を覆うようにして破線で示しているのは図1に示されるタイヤ劣化評価装置1の構成要素であり、符号を同一としている。
 図1において、タイヤ劣化評価システム1は、変位走査測定部4、撮像部5、処理部3、出力部2及びデータベース群として、処理データベース6と評価データベース7から構成されている。このタイヤ劣化評価システム1は、これらの構成要素を一体にして評価者が手に取って中古タイヤの接地面の表面に近づけることで評価可能な携帯型のシステムを想定することができる。その際の出力部2としては小型のディスプレイ装置やデータ発信部として他の装置へデータを転送するようなものが考えられる。あるいは図1の構成要素が一体でなくとも変位測定部4と撮像部5をセンサとして分離して別体に設けて、有線又は無線でデータを処理部3に送信する場合のようなシステムとしても可能である。さらに、少なくとも変位走査測定部4及び撮像部5を内部に備える筐体内に中古タイヤを搬送してデータを取得し、そのデータをもとに処理部3で評価して結果を出力部2で出力するシステム等を想定することができる。
The tire deterioration evaluation system according to the first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a block diagram of a tire deterioration evaluation system according to a first embodiment of the present invention. FIG. 2 is a flowchart of tire deterioration evaluation executed by the tire deterioration evaluation system according to the first embodiment of the present invention. This figure also represents the execution process for the tire degradation evaluation method and program of the present invention. Explaining the flow of data processing in the tire degradation assessment system 1 with reference to this figure is a tire degradation assessment. It is synonymous with describing the embodiment of the method and program. In FIG. 2, what is indicated by a broken line so as to cover the description about the process indicated by S is a component of the tire deterioration evaluation apparatus 1 shown in FIG.
In FIG. 1, the tire deterioration evaluation system 1 includes a processing database 6 and an evaluation database 7 as a displacement scanning measurement unit 4, an imaging unit 5, a processing unit 3, an output unit 2, and a database group. The tire deterioration evaluation system 1 can be assumed to be a portable system that can be evaluated by bringing these components together into a hand and taking it close to the surface of the ground contact surface of a used tire. In this case, the output unit 2 may be a small display device or a data transmission unit that transfers data to another device. Alternatively, even if the components shown in FIG. 1 are not integrated, the displacement measuring unit 4 and the imaging unit 5 are separated as sensors and provided separately, and the system transmits data to the processing unit 3 by wire or wirelessly. Is possible. Further, the used tire is transported into a housing having at least a displacement scanning measurement unit 4 and an imaging unit 5 inside to acquire data, and the processing unit 3 evaluates based on the data and outputs the result to the output unit 2. It is possible to envisage a system or the like.
 以下、図2及び図3を参照しながら説明する。
 タイヤ劣化評価システム1の変位走査測定部4は、タイヤのいわゆるトレッドパターンが形成されている接地面に対して垂直に配置され、接地面に形成されるトレッドパターンの山部と溝部を判別可能にその凹凸を、タイヤの接地面の幅方向にセンサを走査させて計測するものである。具体的には、変位走査測定部4との間の距離データ14として測定される。従って、山部と溝部のそれぞれの距離データの差分を取れば、山部に対する溝部の深さ、あるいは溝部に対する山部の高さを得ることが可能である。すなわち、いわゆる残溝を得ることができる。変位走査測定部4として用いられるセンサとしては、レーザー光や赤外線等の電磁波や超音波を放射しその反射波を検知して測距するセンサを用いることが可能である。また、変位走査測定部4はタイヤの接地面を走査するように構成されるのでタイヤの幅に亘ってトレッドパターンの山部と溝部の判別を可能とする距離測定を行うことができる。この変位走査測定部4を用いてタイヤの接地面上における変位を測定するのがステップS1の変位測定工程である。
 変位走査測定部4は距離データ14を読み出し可能に処理データベース6に格納する。
 なお、本実施の形態においては変位測定部として走査可能な変位走査測定部4を採用しているが、走査しなくともタイヤの接地面の幅方向における山部の高さや溝部の深さを測定可能なものであればよく、走査可能であることは必ずしも必須ではない。
Hereinafter, a description will be given with reference to FIGS.
The displacement scanning measurement unit 4 of the tire deterioration evaluation system 1 is arranged perpendicular to the ground contact surface on which a so-called tread pattern of the tire is formed, and can distinguish a peak portion and a groove portion of the tread pattern formed on the ground contact surface. The unevenness is measured by scanning the sensor in the width direction of the ground contact surface of the tire. Specifically, it is measured as distance data 14 with respect to the displacement scanning measurement unit 4. Therefore, if the difference between the distance data of the peak portion and the groove portion is taken, it is possible to obtain the depth of the groove portion relative to the peak portion or the height of the peak portion relative to the groove portion. That is, a so-called remaining groove can be obtained. As a sensor used as the displacement scanning measurement unit 4, it is possible to use a sensor that radiates electromagnetic waves such as laser light and infrared rays and ultrasonic waves and detects the reflected waves to measure the distance. Further, since the displacement scanning measurement unit 4 is configured to scan the ground contact surface of the tire, it is possible to perform a distance measurement that makes it possible to discriminate between a peak portion and a groove portion of the tread pattern over the width of the tire. It is the displacement measurement process of step S1 that measures the displacement on the ground contact surface of the tire using the displacement scanning measurement unit 4.
The displacement scanning measurement unit 4 stores the distance data 14 in the processing database 6 so that it can be read out.
In this embodiment, the displacement scanning measurement unit 4 that can be scanned is used as the displacement measurement unit, but the height of the crest and the depth of the groove in the width direction of the tire contact surface can be measured without scanning. It is sufficient if it is possible, and it is not always necessary to be able to scan.
 本実施の形態において、タイヤ接地面の変位測定を行うのは、残っている溝の深さ(残溝)を定量的に測定することはもちろんであるが、タイヤの接地面にあるトレッドパターンの溝部の位置を把握して、その溝部でひび割れや亀裂の測定を行うための画像を撮影するためである。このように溝部を選択して測定を行う理由について説明する。本願発明が取り扱う中古タイヤは新品のタイヤとは異なり、接地面が使用によって摩耗が進行している。従って、経年劣化によるひび割れが生じ難く、その一方で接地面の山部には使用に伴って突発的な傷や欠けが発生することもある。これらの傷や欠けもタイヤの品質に大きく関わるので、その検知はもちろん重要であるが、経年自体によるゴム材料の純粋な劣化に伴うひび割れや亀裂を検知しようとすると誤差を生じ易く、経年劣化評価に対する高い精度を担保することが困難である。
 そこで、通常の使用をしても地面に接することのない接地面の溝部に発生するひび割れや亀裂に着目して、その溝部に発生するひび割れや亀裂で経年劣化を評価することにしたのである。
 その溝部を正確に選択可能とするためにはトレッドパターンの山部と溝部を判別可能に変位を測定する必要がある。
In this embodiment, the displacement of the tire contact surface is measured not only by quantitatively measuring the depth of the remaining groove (remaining groove), but also by the tread pattern on the tire contact surface. This is for grasping the position of the groove and photographing an image for measuring cracks and cracks in the groove. The reason why the groove portion is thus selected and measured will be described. Unlike used tires, used tires handled by the present invention are worn out by using the ground contact surface. Therefore, cracks due to deterioration over time are unlikely to occur, and on the other hand, sudden damage or chipping may occur at the peak portion of the contact surface with use. These scratches and chips are also important for tire quality, so detection is of course important, but if you try to detect cracks and cracks associated with pure deterioration of the rubber material due to aging itself, errors are likely to occur, and aging evaluation It is difficult to ensure high accuracy against
Therefore, focusing on the cracks and cracks generated in the groove portion of the ground contact surface that does not contact the ground even under normal use, it was decided to evaluate the aging deterioration by the cracks and cracks generated in the groove portion.
In order to be able to select the groove portion accurately, it is necessary to measure the displacement so that the peak portion and the groove portion of the tread pattern can be distinguished.
 撮像部5は、タイヤ接地面をトレッドパターンを含めて撮影するものであり、既に周知なCCDセンサやCMOSセンサを用いることが可能である。この撮像部5も走査させる機能を持たせてもよいが、撮像素子は平面的に画像を取り込むことが可能であるので走査させる機能は必要ない場合も多い。この撮像部5を用いてタイヤの接地面を撮影するのが、ステップS2の被測定対象撮像工程である。
 撮像部5は撮影した接地面に関する接地面画像データ15を読み出し可能に処理データベース6に格納する。
 処理部3の溝幅演算部8は、変位走査測定部4で得られた距離データ14を処理データベース6から読み出して、タイヤの幅方向に差分を取ることで溝幅データ16及び溝部数データ18を生成し、読み出し可能に処理データベース6に格納するものであり、その工程がステップS3の溝幅演算工程である。また、処理部3の溝深さ演算部9は、変位走査測定部4で得られた距離データ14を処理データベース6から読み出して、タイヤのトレッドパターンの山の高さ方向と谷の深さ方向に差分を取ることで、溝深さデータ17を生成し、読み出し可能に処理データベース6に格納するものであり、その工程がステップS4の溝深さ演算工程である。
 なお、溝幅演算部8及び溝深さ演算部9は、距離データ14からタイヤの幅方向位置に関するデータを取得して、その位置データを含めて溝幅データ16、溝深さデータ17、溝部数データ18のそれぞれを生成するものである。
 本実施の形態では、変位走査測定部4と溝幅演算部8及び溝深さ演算部9を別に設けたが、これを一体としてすべての機能を備えた変位走査測定部4としてもよい。その場合には、ステップS1とステップS3,ステップS4を併せて変位測定工程(S1)とすればよい。
The imaging unit 5 captures a tire ground contact surface including a tread pattern, and an already known CCD sensor or CMOS sensor can be used. The imaging unit 5 may also have a scanning function, but since the imaging device can capture an image in a plane, the scanning function is often unnecessary. It is the measurement target imaging process in step S2 that the tire contact surface is photographed using the imaging unit 5.
The imaging unit 5 stores the ground plane image data 15 relating to the photographed ground plane in the processing database 6 so as to be readable.
The groove width calculation unit 8 of the processing unit 3 reads the distance data 14 obtained by the displacement scanning measurement unit 4 from the processing database 6 and takes the difference in the tire width direction to obtain the groove width data 16 and the groove number data 18. Is stored in the processing database 6 so as to be readable, and the process is the groove width calculation process in step S3. Further, the groove depth calculation unit 9 of the processing unit 3 reads the distance data 14 obtained by the displacement scanning measurement unit 4 from the processing database 6, and the height direction of the mountain and the depth direction of the valley of the tread pattern of the tire. Thus, the groove depth data 17 is generated and stored in the processing database 6 so as to be readable, and this process is the groove depth calculation process in step S4.
The groove width calculation unit 8 and the groove depth calculation unit 9 obtain data on the position in the width direction of the tire from the distance data 14, and include the position data, the groove width data 16, the groove depth data 17, and the groove part. Each of the numerical data 18 is generated.
In the present embodiment, the displacement scanning measurement unit 4, the groove width calculation unit 8, and the groove depth calculation unit 9 are provided separately. However, the displacement scanning measurement unit 4 having all functions may be integrated. In that case, what is necessary is just to combine step S1, step S3, and step S4 into a displacement measurement process (S1).
 撮像部5は接地面画像データ15を生成し、読み出し可能に処理データベース6に格納するものであり、その工程がステップS2の被測定対象撮像工程である。 実際の中古タイヤの表面は図3(a)に示されるとおりである。この写真では見え難いかもしれないが、中央に垂直に形成される溝部26にひび割れが生じている。しかしながら、タイヤの山部は路面に接地し摩擦と摩耗が発生するためひび割れや亀裂が発生していないように見えると同時に、路面との接地によって生じた細かな傷等が観察できる。この図3(a)から明らかなように道路に接地していない溝部26のひび割れは細く繋がった形状として観察できるが、山部の傷は細長い形状が見られず、円や矩形に近い点状に分散しているのが観察できる。
 なお、本実施の形態では距離データ14と接地面画像データ15を変位走査測定部4と撮像部5という別個のセンサを用いて得たが、前述のとおり、これらの2つの機能を兼ね備えた距離画像センサ等を設けて、1つのセンサから距離データ14と接地面画像データ15のデータを取得するようにしてもよい。
The imaging unit 5 generates the ground plane image data 15 and stores it in the processing database 6 so that it can be read out. This process is the measurement target imaging process in step S2. The actual used tire surface is as shown in FIG. Although it may be difficult to see in this photograph, there is a crack in the groove 26 formed perpendicular to the center. However, since the hill portion of the tire comes into contact with the road surface and friction and wear occur, it seems that cracks and cracks have not occurred, and at the same time, fine scratches caused by the contact with the road surface can be observed. As can be seen from FIG. 3A, the cracks in the groove portion 26 that are not in contact with the road can be observed as a thinly connected shape, but the flaws in the mountain portion do not show an elongated shape, and are point-like shapes that are close to a circle or a rectangle. Can be observed.
In the present embodiment, the distance data 14 and the ground plane image data 15 are obtained by using separate sensors such as the displacement scanning measurement unit 4 and the imaging unit 5, but as described above, the distance having these two functions. An image sensor or the like may be provided to obtain the distance data 14 and the ground plane image data 15 from one sensor.
 処理部3の評価領域抽出部10は、処理データベース6から接地面画像データ15を読み出して、その接地面画像データ15の中から接地面の溝部を選択して、その溝部26において評価領域を抽出して決定するものであり、その工程がステップS5の評価領域抽出工程である。溝部26の選択の際には、評価領域抽出部10は、溝幅データ16、溝深さデータ17及び溝部数データ18を読み出すことでタイヤの接地面上でどの位置に溝部26が存在するかについて判断することが可能である。
 溝部26を選択して評価領域を抽出した状態を概念的に示すのが図3(a)中に符号Aで示す黒色の四角形の範囲であり、その四角形の範囲を抽出したのが図3(b)に示されるものである。
 評価領域抽出部10は接地面画像データ15内で決定した評価領域に関するデータを評価領域画像データ19として処理データベース6に読み出し可能に格納する。
The evaluation region extraction unit 10 of the processing unit 3 reads the ground plane image data 15 from the processing database 6, selects a groove portion of the ground plane from the ground plane image data 15, and extracts an evaluation region in the groove portion 26. The process is the evaluation region extraction process in step S5. When selecting the groove 26, the evaluation area extraction unit 10 reads the groove width data 16, the groove depth data 17, and the groove number data 18 to determine where the groove 26 exists on the tire contact surface. It is possible to judge about.
FIG. 3 (a) conceptually shows a state in which the groove 26 is selected and the evaluation region is extracted, and a black square range indicated by reference numeral A in FIG. 3 (a). b).
The evaluation area extraction unit 10 stores the data related to the evaluation area determined in the ground plane image data 15 as the evaluation area image data 19 so as to be readable in the processing database 6.
 平滑化処理部11は、処理データベース6から評価領域画像データ19を読み出し、接地面画像データ15の溝部において抽出された評価領域画像データ19に対し、平滑化によってノイズ除去を行うものであり、その工程がステップS6のノイズ除去工程である。測定対象が中古タイヤであるため、その表面には様々な付着物があるが、その付着物の色が黒い場合には溝部26において発生するひび割れが図3(a)に示されるように黒色であることから画像を処理する際にはノイズとして乗ってしまう。
 さらに、本実施の形態においては、平滑化処理部11よるノイズ除去工程S6の後段にエッジ検出処理部12によるひび割れ検出の工程S7が控えているので、黒色でなくとも白色でも溝部26の色との差が大きいとエッジとして検出されることから、白色の付着物によるノイズも除去する必要がある。
 そこで、溝部26の平均的な色彩との差が大きな白色や黒色の砂や小石等の付着物によるノイズを排除して劣化測定・評価の精度を向上させるために、画素毎にその周辺の画素を含めた範囲で画像を平滑化することが重要となる。
 平滑化処理部11によってノイズ除去された評価領域画像データ19は平滑化処理画像データ20として処理データベース6に読み出し可能に格納される。
The smoothing processing unit 11 reads the evaluation area image data 19 from the processing database 6 and performs noise removal by smoothing on the evaluation area image data 19 extracted in the groove portion of the ground plane image data 15. The process is the noise removing process of step S6. Since the object to be measured is a used tire, there are various deposits on the surface. When the color of the deposit is black, cracks generated in the groove 26 are black as shown in FIG. As a result, when processing an image, it rides as noise.
Furthermore, in the present embodiment, since the crack detection step S7 by the edge detection processing unit 12 is reserved after the noise removal step S6 by the smoothing processing unit 11, the color of the groove 26 is not limited to black but white. If the difference is large, it is detected as an edge, so it is necessary to remove noise caused by white deposits.
Therefore, in order to eliminate noise caused by deposits such as white sand or black sand or pebbles that have a large difference from the average color of the groove 26 and improve the accuracy of deterioration measurement / evaluation, the surrounding pixels for each pixel. It is important to smooth the image in a range including
The evaluation area image data 19 from which noise has been removed by the smoothing processing unit 11 is stored as smoothed image data 20 in the processing database 6 so as to be read out.
 次に、エッジ検出処理部12は処理データベース6から平滑化処理画像データ20を読み出し、ノイズ除去された平滑化処理画像データ20に対し、エッジ検出処理によってひび割れの箇所を検出するものであり、その工程がステップS7のエッジ検出処理工程である。
 本実施の形態に係るタイヤ劣化評価システム1では、中古タイヤの溝部26に発生するひび割れや亀裂を検出するが、その状態は図3(a)に示されるように細長く続く線状に表れている。したがって、そのひび割れや亀裂を定量的に評価しようとすると、その際(きわ)の部分、すなわち境界部を精度よく定量的に測定し、その量に基づいて評価することが重要である。
 発明者らは特許文献5に示す特許出願で溝部26のひび割れの状態の画像をモノクロ2値化して、その白画像と黒画像のデータの面積比を用いてひび割れの量的な評価を行うことを発明したが、発明者らはそれらでもまだ精度の改善の余地があることを見出して、今回の発明に至ったものである。
Next, the edge detection processing unit 12 reads the smoothed image data 20 from the processing database 6 and detects a cracked portion by edge detection processing on the smoothed image data 20 from which noise has been removed. The process is the edge detection process in step S7.
In the tire deterioration evaluation system 1 according to the present embodiment, cracks and cracks generated in the groove portion 26 of the used tire are detected, and the state appears as a long and continuous line as shown in FIG. . Therefore, when trying to quantitatively evaluate the cracks and cracks, it is important to accurately measure the wrinkle portion, that is, the boundary portion, quantitatively and evaluate based on the amount.
The inventors convert the image of the cracked state of the groove portion 26 into a monochrome binary image in the patent application shown in Patent Document 5, and perform quantitative evaluation of the crack using the area ratio of the data of the white image and the black image. However, the inventors have found that there is still room for improvement in accuracy, and have arrived at the present invention.
 具体的に図3(a)-(d)を参照しながら説明する。
 前述のとおり、図3(a)はタイヤの接地面を撮像部5によって撮影した接地面画像データ15を示しており、(b)は(a)中の符号Aの黒枠内で示される評価領域画像データ19の概念図であるが、この評価領域画像データ19に対して2通りで処理して比較したのが、(c)と(d)である。
 (c)は特許文献5に開示される技術で評価領域画像データ19をモノクロ2値化処理した場合の画像データの概念図であり、(d)は本実施の形態に係るタイヤ劣化評価システム1のエッジ検出処理部12によって評価領域画像データ19をエッジ処理した場合のエッジ処理画像データの概念図となっている。
 図3(c)と(d)を比較すると明らかであるが、(b)の評価領域画像データ19により近似しているのは(d)である。タイヤの溝部26に発生するひび割れは、路面に接地していないため、タイヤの経年自体によるゴム材料の純粋な劣化を観測することが可能であり、その場合のひび割れや亀裂の形状は細長く連続する線状に形成されることから、これを定量的に評価するためには、その形状に即して定量化できる画像処理が必要であり、発明者らはエッジ検出による処理がひび割れの境界部を精度高く検出することから、ひび割れの定量的な評価には適していることを見出して今回の発明に至ったのである。
 (c)では溝部26における2値化処理の閾値をどのように設定するかによって、砂や小石等によるノイズが白色となったり黒色となったり反転するので、タイヤ毎に個別の閾値を定める必要がある可能性もあり、複数の中古タイヤを通して全体的にひび割れの形状を把握することに困難な点もある。したがって、色彩が変化する際(きわ)、すなわち境界部をエッジとして検出するエッジ検出処理部12を備えたタイヤ劣化評価システム1の方がすべてのタイヤに対して一貫して、より精度高く溝部におけるひび割れを検出できるのである。
 エッジ検出処理部12によってエッジ処理された平滑化処理画像データ20はエッジ処理画像データ21として処理データベース6に読み出し可能に格納される。
 劣化評価部13は図3(d)のように得られるエッジ処理画像データ21を処理データベース6から読み出し、そのエッジ処理画像データ21から白色で表されるエッジ部分の面積と黒色で表されるその他の部分を含めた全体の面積の比率を演算し、その比率をひび割合データ22として生成し、処理データベース6に格納する。
 なお、前述のとおり本発明ではひび割れの境界部に着目して、全体の面積に対するその境界部の面積の比率をひび割れデータ22として定量化し、この数値の大小でタイヤ劣化の程度を評価している。したがって、例えば亀裂に幅があって大きい場合には、その亀裂の境界部の抽出による評価が亀裂全体の評価に繋がっていないとも考えられる。しかしながら、亀裂が大きくなっている場合にはもはや劣化を評価するといった段階ではなく、タイヤを廃棄して新しいタイヤへ交換することが早急に必要なレベルであり、しかもそのような場合では目視で簡単に判断できるので、今回の発明による評価の対象外として取り扱うことが可能であり、本発明の利用に全く不都合はない。
This will be specifically described with reference to FIGS. 3 (a) to 3 (d).
As described above, FIG. 3A shows the contact surface image data 15 obtained by photographing the contact surface of the tire by the imaging unit 5, and FIG. 3B is an evaluation region indicated by a black frame indicated by the symbol A in FIG. Although it is a conceptual diagram of the image data 19, it is (c) and (d) which processed and compared with this evaluation area image data 19 in two ways.
(C) is the conceptual diagram of the image data at the time of carrying out the monochrome binarization process of the evaluation area | region image data 19 with the technique disclosed by patent document 5, (d) is the tire degradation evaluation system 1 which concerns on this Embodiment. This is a conceptual diagram of edge-processed image data when edge processing is performed on the evaluation area image data 19 by the edge detection processing unit 12.
As apparent from a comparison between FIGS. 3C and 3D, FIG. 3D is approximated by the evaluation area image data 19 in FIG. Since the crack generated in the groove 26 of the tire is not in contact with the road surface, it is possible to observe pure deterioration of the rubber material due to the aging of the tire itself, and the shape of the crack or crack in that case is elongated and continuous. In order to quantitatively evaluate this, image processing that can be quantified according to the shape is necessary, and the inventors have performed processing by edge detection to detect the boundary of cracks. Since it was detected with high accuracy, it was found that it was suitable for quantitative evaluation of cracks, leading to the present invention.
In (c), depending on how the threshold value of the binarization process in the groove 26 is set, noise due to sand, pebbles, etc. turns white or black, and therefore it is necessary to set an individual threshold value for each tire. In some cases, it is difficult to grasp the overall shape of cracks through multiple used tires. Therefore, when the color changes (wrinkles), that is, the tire deterioration evaluation system 1 including the edge detection processing unit 12 that detects the boundary as an edge is consistently more accurate for all tires in the groove portion. Cracks can be detected.
The smoothed image data 20 edge-processed by the edge detection processing unit 12 is stored in the process database 6 as edge-processed image data 21 so as to be readable.
The deterioration evaluation unit 13 reads the edge processing image data 21 obtained as shown in FIG. 3D from the processing database 6, and from the edge processing image data 21, the area of the edge portion expressed in white and the other expressed in black The ratio of the total area including this part is calculated, and the ratio is generated as crack ratio data 22 and stored in the processing database 6.
As described above, in the present invention, focusing on the boundary of cracks, the ratio of the area of the boundary to the entire area is quantified as crack data 22, and the degree of tire deterioration is evaluated by the magnitude of this numerical value. . Therefore, for example, when the crack is wide and large, it is considered that the evaluation by extracting the boundary portion of the crack does not lead to the evaluation of the entire crack. However, if the cracks are large, it is no longer a stage to evaluate deterioration, but it is a level that requires immediate disposal of the tire and replacing it with a new tire. Therefore, it can be handled as an object of evaluation according to the present invention, and there is no inconvenience in using the present invention.
 さらに、劣化評価部13は、予め評価データベース7に格納されている評価閾値データ23を読み出して、劣化評価部13で得られたひび割合データ22を評価して評価ランクデータ24を生成し、評価データベース7に格納する。
 具体的には、評価閾値データ23は予め所望に定められるランクに対するひび割合データ22の閾値を含んでおり、その閾値とひび割合データ22を比較してランクに振り分けることでひび割合データ22を評価するのである。
 このように劣化評価部13によってひび割合データ22を演算する工程及びそのひび割合データ22を評価閾値データ23でランクとして評価する工程がステップS8である。
 劣化評価部13によって示されるランク付けは、タイヤの劣化状態に応じてタイヤをランクに分別することができ、指標として理解が容易であるという効果を発揮する。従って、例えば中古タイヤの流通市場における価格の目安としての利用価値やタイヤ交換の目安としての利用価値が高くなり、中古タイヤの安全性や経済性を高めることが可能である。評価閾値データ23におけるそれぞれの閾値の間隔を広げたり狭めたりすることでランクを大雑把にも詳細にも所望に変更することができるので、用途に応じたランク付けが可能である。なお、ランクはA、B等のアルファベット、甲や乙、適や否等の漢字、1、2等の数字のいずれでも表現されてもよい。
Further, the deterioration evaluation unit 13 reads the evaluation threshold data 23 stored in advance in the evaluation database 7, evaluates the crack ratio data 22 obtained by the deterioration evaluation unit 13, and generates evaluation rank data 24. Store in database 7.
Specifically, the evaluation threshold value data 23 includes a threshold value of the crack ratio data 22 with respect to a predetermined rank, and the crack ratio data 22 is evaluated by comparing the threshold value and the crack ratio data 22 and assigning them to ranks. To do.
The step of calculating the crack rate data 22 by the deterioration evaluation unit 13 and the step of evaluating the crack rate data 22 as a rank using the evaluation threshold data 23 are step S8.
The ranking shown by the deterioration evaluating unit 13 can classify the tires into ranks according to the deterioration state of the tires, and exhibits an effect that it is easy to understand as an index. Therefore, for example, the utility value as a measure of the price in the secondary tire market and the utility value as a measure of tire replacement are increased, and the safety and economy of the used tire can be improved. Since the rank can be changed roughly or in detail as desired by widening or narrowing the interval between the thresholds in the evaluation threshold data 23, it is possible to rank according to the purpose. Note that the rank may be expressed in any of alphabets such as A and B, A and B, kanji such as suitability, and numbers such as 1 and 2.
 出力部2は、処理部3に含まれる各部で実行されたそれぞれの処理内容の結果得られるいずれかのデータを単独あるいは組合せて直接出力データ25として出力したり、各データベースからデータを読み出して出力データ25として外部へ出力するものであり、その工程がステップS9の出力工程である。出力部2の具体例としては、CRT、液晶、プラズマあるいは有機ELなどによるディスプレイ装置、あるいはプリンタ装置などの出力装置、さらには外部装置への伝送を行うためのトランスミッタなどの発信装置などが考えられる。もちろん、外部装置への伝送のための出力に対するインターフェースのようなものであってもよい。
 処理データベース6は、処理部3によって処理された距離データ14、接地面画像データ15、溝幅データ16、溝深さデータ17、溝部数データ18、評価領域画像データ19、平滑化処理画像データ20、エッジ処理画像データ21及びひび割合データ22を読み出し可能に格納するデータベースである。
 評価データベース7は、劣化評価部13によるタイヤ劣化評価に用いる評価閾値データ23と評価後の評価ランクデータ24を読み出し可能に格納するデータベースである。
 以上説明したとおり、本実施の形態に係るタイヤ劣化評価システム1によれば、タイヤの接地面の山部と溝部26を判別して、タイヤの使用による摩耗の影響を受けない溝部26におけるひび割れや亀裂を高精度で測定することが可能である。従って、経年劣化の影響で生じるひび割れや亀裂のみを測定することができ、高精度で定量的な劣化評価を実施することができる。さらに、劣化評価部13によってランク評価も可能であることは既に述べたとおりである。なお、本実施の形態では発明をシステムとして捉えたもので説明したが、そのシステムを用いてデータを処理する工程は方法発明やコンピュータを実行するためのプログラム発明として捉えることができ、その作用や効果については既に述べたシステム発明と同様である。
The output unit 2 outputs any data obtained as a result of each processing content executed by each unit included in the processing unit 3 alone or in combination as the direct output data 25, or reads and outputs data from each database. The data 25 is output to the outside, and this process is the output process of step S9. Specific examples of the output unit 2 include a display device such as a CRT, liquid crystal, plasma, or organic EL, an output device such as a printer device, and a transmitter such as a transmitter for transmission to an external device. . Of course, it may be an interface for output for transmission to an external device.
The processing database 6 includes distance data 14, ground plane image data 15, groove width data 16, groove depth data 17, groove number data 18, evaluation area image data 19, and smoothed image data 20 processed by the processing unit 3. This is a database that stores the edge-processed image data 21 and the crack ratio data 22 in a readable manner.
The evaluation database 7 is a database in which the evaluation threshold data 23 used for the tire deterioration evaluation by the deterioration evaluation unit 13 and the evaluation rank data 24 after the evaluation are stored in a readable manner.
As described above, according to the tire deterioration evaluation system 1 according to the present embodiment, the crest portion and the groove portion 26 on the ground contact surface of the tire are discriminated, and cracks in the groove portion 26 that are not affected by wear due to use of the tire are detected. It is possible to measure cracks with high accuracy. Therefore, it is possible to measure only cracks and cracks caused by the influence of aging deterioration, and it is possible to perform quantitative deterioration evaluation with high accuracy. Furthermore, as already described, rank evaluation is also possible by the degradation evaluation unit 13. In the present embodiment, the invention has been described as a system. However, the process of processing data using the system can be considered as a method invention or a program invention for executing a computer. The effect is the same as that of the system invention already described.
 次に、本実施の形態に係るタイヤ劣化評価システム1の劣化評価部13によって中古タイヤがどのようにランク付けされるか、試作システムを用いて試験を行ったので、その結果について図4-図6を参照しながら説明を加える。
図4の(a)-(e)は、それぞれ第1の実施の形態に係るタイヤ劣化評価システムを評価するために用いられたそれぞれS、A、B、C、Dランクのタイヤの評価領域画像データ概念図である。
 図4に示される画像に対するランクS-Dは出願人が一例として定めた中古タイヤの接地面の溝部26におけるひび割れの状態であり、図4に示されるそれぞれのランクのタイヤは、専門家として中古タイヤの選別に従事する者によって評価されてランク付けされたものである。
 これらに示されるそれぞれのランクのタイヤに対し、試作システムを用いてひび割合データ22を求めたのが、図5に示されるものであり、これをグラフ化したものが図6である。図5の各ランクの下に記載されている数字及び図6の縦軸に記載されている数字はひび割合データ22を百分率(%)で示したものである。図6のグラフの下方に記載されている数字は図5の左端に記載されている測定箇所を示す数字と同一である。
 なお、本実施の形態においては、平滑化処理部11における平滑化処理ではガウシアンフィルターを用い、エッジ検出処理部12におけるエッジ検出処理におてはキャニー法を用いている。図3(d)に示す画像の際の処理も同様である。
 図5に示されるとおり、ランクS-Dのそれぞれで測定回数が異なっているが、そのことについては特に目的を有しているわけではない。中央値は各ランクの測定値群における中央値であり、平均値も各ランクの測定値群における平均値である。
 また、図6に示される実線は各ランクにおける測定値群の中央値を結んだものであり、点線は各ランクにおける測定値群の中央値を1次の線形式として表現したものである。
Next, a test was performed using a prototype system to determine how used tires were ranked by the degradation evaluation unit 13 of the tire degradation evaluation system 1 according to the present embodiment. A description will be added with reference to FIG.
FIGS. 4A to 4E show evaluation region images of tires of S, A, B, C, and D ranks, respectively, used for evaluating the tire deterioration evaluation system according to the first embodiment. It is a data conceptual diagram.
Rank SD for the image shown in FIG. 4 is a cracked state in the groove portion 26 of the ground contact surface of a used tire determined by the applicant as an example. Each rank of tire shown in FIG. It is evaluated and ranked by those who are engaged in tire sorting.
FIG. 5 shows the crack ratio data 22 obtained using the prototype system for the tires of the respective ranks shown in FIG. 6, and FIG. 6 is a graph of this data. The numbers described below each rank in FIG. 5 and the numbers described on the vertical axis in FIG. 6 indicate the crack ratio data 22 in percentage (%). The numbers described below the graph of FIG. 6 are the same as the numbers indicating the measurement location described at the left end of FIG.
In the present embodiment, a Gaussian filter is used in the smoothing processing in the smoothing processing unit 11, and the Canny method is used in the edge detection processing in the edge detection processing unit 12. The same processing applies to the image shown in FIG.
As shown in FIG. 5, the number of measurements is different for each of the ranks SD, but this does not have a particular purpose. The median is the median value in the measurement value group of each rank, and the average value is also the average value in the measurement value group of each rank.
Also, the solid line shown in FIG. 6 connects the median values of the measurement value groups in each rank, and the dotted line expresses the median value of the measurement value groups in each rank as a primary linear format.
 図5より、ランクSのひび割合が平均値で0.479126となり、ランクAのひび割合の平均値である0.292188よりも高いものの、ランクAからランクDに至っては徐々にひび割合が増加する結果を得た。ランクSのひび割合が高い理由は、元々ランクSとランクAではひび割れがほとんどなく、タイヤ劣化の程度も差がほとんどないので、わずかなノイズが乗るとそれ以上にひび割れとして検出され、その結果劣化が進んでいると評価されるものと考えられる。ランクAの方が劣化が小さいという結果ではあるが、ランクSとランクAのひび割合データ22は、それぞれ0.5%よりも小さな値であることから現実的には微差であると言える。
 図5及び図6に示された結果から発明者らはタイヤ劣化評価システム1を用いて得られるひび割合データ22と専門家が選別したタイヤのランクが相関関係にあり、タイヤ劣化評価システム1によるひび割合データ22を求めることで専門家が選別したタイヤのランクS-Dに分別することが可能であることを見出したのである。
From Fig. 5, the crack ratio of rank S is 0.479126 on average, which is higher than the average value of crack ratio of rank A, 0.292188, but the crack ratio gradually increases from rank A to rank D. To get the result. The reason why the crack ratio of rank S is high is that there is almost no crack in rank S and rank A, and there is almost no difference in the degree of tire deterioration. Is considered to be evaluated. Although the result is that degradation is smaller in rank A, it can be said that the crack ratio data 22 of rank S and rank A is actually a slight difference because they are values smaller than 0.5%.
From the results shown in FIG. 5 and FIG. 6, the inventors have a correlation between the crack ratio data 22 obtained using the tire deterioration evaluation system 1 and the rank of the tire selected by the expert. It was found that by obtaining the crack ratio data 22, it is possible to classify the tires into ranks SD of tires selected by experts.
 図5及び図6の他、他の試験結果も含めて解析した結果として得られた、ひび割合データ22を劣化評価値として用いた場合のランク分けの対応を図7に示す。したがって、図7は評価閾値データ23の内容を示すものでもある。
 図7から明らかなとおり、本実施の形態に係るタイヤ劣化評価システム1では、ひび割合データ22の値が0.5以下の場合をSランクとして評価し、0.5より大きく2.0以下の場合をAランクとして評価し、以下、同様にBからDランクとして評価している。
 前述のとおり、劣化評価部13はひび割合データ22を処理データベース6から読み出して、評価データベース7から読み出した図7に示される評価閾値データ23の劣化評価値幅のいずれに該当するかを判断して、該当するランクを評価ランクデータ24として生成し、評価データベース7に読み出し可能に格納するものである。
FIG. 7 shows the correspondence of ranking when the crack ratio data 22 obtained as a result of analysis including other test results in addition to FIGS. 5 and 6 is used as the deterioration evaluation value. Therefore, FIG. 7 also shows the contents of the evaluation threshold data 23.
As is clear from FIG. 7, in the tire deterioration evaluation system 1 according to the present embodiment, the case where the value of the crack ratio data 22 is 0.5 or less is evaluated as the S rank, and is larger than 0.5 and smaller than or equal to 2.0. Cases are evaluated as A ranks, and from B to D ranks in the same manner.
As described above, the deterioration evaluation unit 13 reads the crack ratio data 22 from the processing database 6 and determines which of the deterioration evaluation value ranges of the evaluation threshold data 23 shown in FIG. The corresponding rank is generated as evaluation rank data 24 and stored in the evaluation database 7 so as to be readable.
 なお、タイヤ劣化評価システム1によるタイヤの接地面の測定はタイヤの周方向で複数箇所実施されるのが望ましい。図8(a)-(c)はタイヤ劣化評価システム1が測定する場合の例を示しており、それぞれ90°毎に測定して4箇所の測定を実施する場合、45°毎に測定して8箇所の測定を実施する場合、30°毎に測定して12箇所の測定を実施する場合を示している。
 携帯型のタイヤ劣化評価システム1では、測定者が手に持って測定を実施することも想定されるので図8に示されるように正確な角度間隔で測定することは困難な可能性もあるが、等間隔で実施しなければならないということではなく、1本のタイヤで複数回測定することで精度を高めることができればよい。
 もちろん、タイヤ劣化評価システム1の変位走査測定部4や撮像部5を固定しておき、タイヤ自身を一定の角度ほど自動で回転させて距離データ14や接地面画像データ15を取得するようなシステムとしてもよい。
In addition, it is desirable that the tire contact surface measurement by the tire deterioration evaluation system 1 is performed at a plurality of locations in the tire circumferential direction. FIGS. 8A to 8C show an example in which the tire deterioration evaluation system 1 performs measurement. When measurement is performed every 90 ° and four points are measured, measurement is performed every 45 °. In the case where measurement is performed at 8 locations, the measurement is performed every 30 ° and 12 measurements are performed.
In the portable tire deterioration evaluation system 1, since it is assumed that the measurement person holds the measurement in his hand, it may be difficult to measure at an accurate angular interval as shown in FIG. It is not necessary to carry out at equal intervals, and it is only necessary to improve the accuracy by measuring a plurality of times with one tire.
Of course, a system in which the displacement scanning measurement unit 4 and the imaging unit 5 of the tire deterioration evaluation system 1 are fixed and the tire itself is automatically rotated by a certain angle to acquire the distance data 14 and the contact surface image data 15. It is good.
 以上説明したタイヤ劣化評価システム1を用いて、実際の中古タイヤを評価した結果について図9を参照しながら説明する。
 図9は、タイヤ劣化評価システム1を用いて、中古タイヤに対し図8(b)に示される45°毎の8箇所測定を実施してその結果をまとめて示す表である。
 図9において、shotとは距離データ14及び接地面画像データ15を取得した単位を意味しており、測定箇所の1-8は前述のとおり中古タイヤの周方向に沿って45°毎に選択された箇所を意味している。また、positionはタイヤの内側から距離(mm)を測定対象となっている溝部26の位置として示すものであり、sizeは溝幅(mm)を10倍して示すものであり、depthは溝深さ(mm)を10倍して示すものである。なお、8箇所の測定箇所のいずれも溝数は3であることがわかる。以上のことから、sizeが図1のシステム図では溝幅データ16に相当し、depthが同じく溝深さデータ17に相当し、溝数の3が溝部数データ18に相当する。
 また、図9の劣化評価値の欄には、それぞれの溝部におけるひび割合データ22が百分率(%)で表示されている。これら8箇所におけるひび割合データ22に対する中央値は表の右下欄に記載されるとおり、2.379115であることから、タイヤ劣化評価システム1の劣化評価部13は、評価データベース7から図7に示される評価閾値データ23を読み出し、これを用いてタイヤランクをBとして評価して、図9の右下欄に表示されている。このタイヤランクは評価ランクデータ24として評価データベース7に読み出し可能に格納される。
The result of evaluating an actual used tire using the tire deterioration evaluation system 1 described above will be described with reference to FIG.
FIG. 9 is a table in which the tire deterioration evaluation system 1 is used to measure 8 points for every 45 ° shown in FIG.
In FIG. 9, “shot” means a unit in which the distance data 14 and the contact surface image data 15 are acquired, and 1-8 of the measurement points are selected every 45 ° along the circumferential direction of the used tire as described above. This means The position indicates the distance (mm) from the inside of the tire as the position of the groove 26 to be measured, the size indicates the groove width (mm) multiplied by 10, and the depth indicates the groove depth. The thickness (mm) is indicated by 10 times. In addition, it turns out that the number of grooves is 3 in any of the eight measurement locations. From the above, size corresponds to the groove width data 16 in the system diagram of FIG. 1, depth corresponds to the groove depth data 17, and the number of grooves 3 corresponds to the groove number data 18.
Further, in the column of the degradation evaluation value in FIG. 9, the crack ratio data 22 in each groove is displayed as a percentage (%). Since the median value for the crack ratio data 22 at these eight locations is 2.379115 as described in the lower right column of the table, the deterioration evaluation unit 13 of the tire deterioration evaluation system 1 is shown in FIG. The evaluation threshold value data 23 shown is read and used to evaluate the tire rank as B, and is displayed in the lower right column of FIG. The tire rank is stored as evaluation rank data 24 so as to be readable in the evaluation database 7.
 最後に、図10を参照しながらタイヤ劣化評価システム1の出力部2からの出力例について説明を加える。図10(a)及び(b)は出力部2によって表示される評価結果の例を示す概念図である。
 図10(a)において、表示されている画像は、左側に接地面画像データ15を表示し、右側に評価結果を示すものであるが、符号Bで示される「B565」とは、「B」が評価ランクデータ24で、「565」は溝数が3でタイヤの内側から溝深さデータ17として5mm、6mm、5mmであることを示している。
 また、符号Cで示されるのは、溝深さデータ17の5mm、6mm、5mmの傾向をグラフ化したものであり、これもタイヤの内側が左側となっている。
 さらに、符号Dで示されるプロット点の集合は図9で示した劣化評価値(ひび割合データ22)を%で表現したものである。
 このように溝数に併せて溝深さのデータが表示されることから、システムの利用者が評価対象となっているタイヤ溝の構造に関する具体的な情報を得ることが可能であり、また、接地面画像データ15を併せて表示することによって溝の状態を画像と測定値や評価ランクと比較しながら観察できるので、タイヤの劣化評価を目視でも行い易く、システムによる評価結果の妥当性を確認することも可能である。
 タイヤ溝の配置に合わせてそのタイヤ溝毎の溝深さデータ17を示すことでタイヤのユーザーの車の乗り方や空気圧の程度等によって発生する偏摩耗の状態を把握することが可能である。
Finally, an example of output from the output unit 2 of the tire deterioration evaluation system 1 will be described with reference to FIG. FIGS. 10A and 10B are conceptual diagrams illustrating examples of evaluation results displayed by the output unit 2.
In FIG. 10A, the displayed image displays the ground plane image data 15 on the left side and the evaluation result on the right side. “B565” indicated by the symbol B is “B”. Is the evaluation rank data 24, and “565” indicates that the number of grooves is 3 and the groove depth data 17 is 5 mm, 6 mm, and 5 mm from the inside of the tire.
In addition, what is indicated by the symbol C is a graph showing the tendency of the groove depth data 17 of 5 mm, 6 mm, and 5 mm, and the inside of the tire is also on the left side.
Furthermore, a set of plot points indicated by reference sign D represents the deterioration evaluation value (crack ratio data 22) shown in FIG.
Thus, since the data of the groove depth is displayed together with the number of grooves, it is possible for the user of the system to obtain specific information on the structure of the tire groove that is the object of evaluation, By displaying the ground contact surface image data 15 together, it is possible to observe the state of the groove while comparing the image with the measured value and the evaluation rank. Therefore, it is easy to visually evaluate the deterioration of the tire, and the validity of the evaluation result by the system is confirmed. It is also possible to do.
By showing the groove depth data 17 for each tire groove in accordance with the arrangement of the tire grooves, it is possible to grasp the state of uneven wear caused by how the tire user rides the vehicle, the degree of air pressure, and the like.
 次に図10(b)において、表示されている画像は、(a)とは別の表示窓によるもので、左側の符号Eで示されるのが単位をmmで示した溝幅データ16であり、符号Fで示されるものが単位をmmで示した溝深さデータ17であり、中央から右側に示されるのがタイヤ全体を幅方向でトレースした状態を示す距離データ14である。
 この距離データ14のうち、図中符号Gはタイヤの内側端からのタイヤの幅方向における距離を単位mmで示すものであり、符号Hはタイヤの外周円に対する法線方向、すなわちタイヤの谷高さ、溝深さの方向の距離を単位mmで示している。
 この(b)に示される情報も併せて表示することで、タイヤ表面の溝状態をタイヤの幅方向全体に亘って確認することが可能であり、評価結果と相まって、より精度高くタイヤの劣化状態を把握することが可能である。
 本実施に形態に係るタイヤ劣化評価システム1では、(a)及び(b)の両方の画面を出力部2として表示するので、利用者に提供される情報量も多く、誤認や勘違い等のリスクを低減して、ヒューマンエラーを防止することが可能なシステムを提供することが可能である。
 なお、本実施の形態においては、図10(a)、(b)に示されるデータを表示することとしているが、処理データベース6や評価データベース7に格納されているその他のデータを適宜読み出して出力部2で表示や送信してもよい。
 また、本実施の形態ではタイヤ溝の配置を左側をタイヤ溝の内側に対応させて表示させているが、その順序は逆でもよく、使用時や設計時の便宜によって変更してもよい。
Next, in FIG. 10B, the displayed image is from a display window different from that in FIG. 10A, and what is indicated by the symbol E on the left is the groove width data 16 in units of mm. , F is the groove depth data 17 indicated in units of mm, and the distance data 14 indicating the state in which the entire tire is traced in the width direction is shown on the right side from the center.
In the distance data 14, the symbol G in the figure indicates the distance in the tire width direction from the inner end of the tire in units of mm, and the symbol H indicates the normal direction with respect to the outer circumference of the tire, that is, the valley height of the tire. The distance in the direction of the groove depth is shown in units of mm.
By also displaying the information shown in (b), it is possible to check the groove state of the tire surface over the entire width direction of the tire, and coupled with the evaluation result, the tire deterioration state with higher accuracy. Can be grasped.
In the tire deterioration evaluation system 1 according to the present embodiment, since both the screens (a) and (b) are displayed as the output unit 2, the amount of information provided to the user is large, and risks such as misidentification and misunderstandings. It is possible to provide a system that can reduce human error and reduce human error.
In the present embodiment, the data shown in FIGS. 10A and 10B are displayed. However, other data stored in the processing database 6 and the evaluation database 7 are appropriately read and output. The display or transmission may be performed by the unit 2.
Further, in the present embodiment, the arrangement of the tire grooves is displayed with the left side corresponding to the inner side of the tire grooves, but the order may be reversed and may be changed for convenience during use or design.
 以上説明したように、本発明の請求項1乃至請求項9に記載された発明は、中古タイヤの劣化評価を定量的に実施することが可能であり、所有者が自家用車のタイヤメンテナンスあるいはタクシー会社やバス会社が自社の業務用車両のメンテナンスに利用したり、また、自動車ディーラーや民間の自動車工場による顧客自動車のメンテナンスや点検、あるいは中古車販売業者によるタイヤ価値の査定等広く利用可能である。 As described above, the invention described in claims 1 to 9 of the present invention can quantitatively evaluate the deterioration of used tires, and the owner can perform tire maintenance or taxi for private cars. It can be widely used by companies and bus companies for maintenance of their own commercial vehicles, maintenance and inspection of customer cars by car dealers and private car factories, and assessment of tire value by used car dealers. .
1 タイヤ劣化評価システム
2 出力部
3 処理部
4 変位走査測定部
5 撮像部
6 処理データベース
7 評価データベース
8 溝幅演算部
9 溝深さ演算部
10 評価領域抽出部
11 平滑化処理部
12 エッジ検出処理部
13 劣化評価部
14 距離データ
15 接地面画像データ
16 溝幅データ
17 溝深さデータ
18 溝部数データ
19 評価領域画像データ
20 平滑化処理画像データ
21 エッジ処理画像データ
22 ひび割合データ
23 評価閾値データ
24 評価ランクデータ
25 出力データ
26 溝部
A 評価領域
B 品質評価値
C 溝深さ表示
D ひび割れ程度
E 溝幅値
F 溝深さ値
G タイヤ幅方向スケール
H 溝深さ方向スケール
DESCRIPTION OF SYMBOLS 1 Tire deterioration evaluation system 2 Output part 3 Processing part 4 Displacement scanning measurement part 5 Imaging part 6 Processing database 7 Evaluation database 8 Groove width calculation part 9 Groove depth calculation part 10 Evaluation area extraction part 11 Smoothing process part 12 Edge detection process Part 13 Degradation evaluation part 14 Distance data 15 Ground plane image data 16 Groove width data 17 Groove depth data 18 Groove number data 19 Evaluation area image data 20 Smoothing process image data 21 Edge process image data 22 Crack ratio data 23 Evaluation threshold data 24 Evaluation Rank Data 25 Output Data 26 Groove A Evaluation Area B Quality Evaluation Value C Groove Depth Display D Crack Degree E Groove Width Value F Groove Depth Value G Tire Width Direction Scale H Groove Depth Direction Scale

Claims (9)

  1.  タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定部と、前記接地面を撮影して接地面画像データを生成する撮像部と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出部と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理部と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理部と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価部と、前記ひび割合データを出力する出力部と、を有することを特徴とするタイヤ劣化評価システム。 A displacement measuring unit that measures the displacement of the ground contact surface of the tire to generate distance data that enables discrimination between the ridge and the groove of the ground contact surface, and an imaging unit that captures the ground contact surface and generates the contact surface image data And an evaluation region extraction unit that generates an evaluation region image data by extracting an evaluation region for detecting a crack from a region of the groove portion on the grounding surface with reference to the distance data from the grounding surface image data, A smoothing processing unit that generates smoothed image data obtained by smoothing the evaluation area image data to remove noise, and an edge processed image in which the boundary portion of the crack is clarified by edge processing of the smoothed image data An edge detection processing unit for generating data, a deterioration evaluation unit for calculating a ratio of the edge-processed image data in the entire boundary part of the crack to generate crack ratio data, and the crack Tire degradation evaluation system and having an output unit for outputting the ratio data.
  2.  前記劣化評価部は、前記割合を、劣化を評価するために予め定められた評価閾値データで評価して評価ランクデータを生成し、前記出力部は前記評価ランクデータを出力することを特徴とする請求項1記載のタイヤ劣化評価システム。 The deterioration evaluation unit generates the evaluation rank data by evaluating the ratio with predetermined evaluation threshold data for evaluating deterioration, and the output unit outputs the evaluation rank data. The tire deterioration evaluation system according to claim 1.
  3.  前記変位測定部は、前記距離データから前記タイヤの接地面の前記溝部の幅を演算して溝幅データを生成する溝幅演算部と、前記距離データから前記溝部の深さを演算し溝深さデータを生成する溝深さ演算部とを備え、前記溝部の数に関する溝部数データを生成し、前記出力部は前記溝幅データ、前記溝深さデータ又は前記溝部数データのうち、少なくともいずれか1つのデータを出力することを特徴とする請求項1又は請求項2に記載のタイヤ劣化評価システム。 The displacement measuring unit calculates a groove width data by calculating a width of the groove portion of the ground contact surface of the tire from the distance data, and calculates a groove depth by calculating a depth of the groove portion from the distance data. A groove depth calculation unit for generating data, and generating groove number data related to the number of the groove portions, and the output unit is at least one of the groove width data, the groove depth data, and the groove number data. The tire deterioration evaluation system according to claim 1 or 2, wherein one piece of data is output.
  4.  前記出力部は、前記劣化評価部で生成されたデータと、前記撮像部で生成された接地面画像データ又は前記評価領域抽出部で抽出された前記評価領域画像データを同時に出力することを特徴とする請求項1乃至請求項3のいずれか1項に記載のタイヤ劣化評価システム。 The output unit simultaneously outputs the data generated by the deterioration evaluation unit and the ground plane image data generated by the imaging unit or the evaluation region image data extracted by the evaluation region extraction unit. The tire deterioration evaluation system according to any one of claims 1 to 3.
  5.  タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定工程と、前記接地面を撮影して接地面画像データを生成する撮像工程と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出工程と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理工程と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理工程と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価工程と、前記ひび割合データを出力する出力工程と、を有することを特徴とするタイヤ劣化評価方法。 Displacement measuring step for measuring the displacement of the ground contact surface of the tire to generate distance data that enables discrimination between the crest and the groove of the ground contact surface, and an imaging step for capturing the ground contact surface and generating the contact surface image data And an evaluation area extracting step of generating an evaluation area image data by extracting an evaluation area for detecting a crack from an area of the groove on the ground plane with reference to the distance data from the ground plane image data, and A smoothing process for smoothing the evaluation area image data to remove the noise and generating a smoothed image data, and an edge-processed image in which the edge of the smoothed image data is processed to clarify the boundary between cracks Edge detection processing step for generating data, and degradation evaluation process for generating crack ratio data by calculating the ratio of the edge processed image data to the entire boundary of cracks When a tire deterioration evaluation method characterized by and an output step of outputting the crack ratio data.
  6.  前記劣化評価工程は、前記割合を、劣化を評価するために予め定められた評価閾値データで評価して評価ランクデータを生成し、前記出力工程は前記評価ランクデータを出力することを特徴とする請求項5記載のタイヤ劣化評価方法。 In the deterioration evaluation step, the ratio is evaluated with evaluation threshold data determined in advance to evaluate deterioration, and evaluation rank data is generated, and the output step outputs the evaluation rank data. The tire deterioration evaluation method according to claim 5.
  7.  前記変位測定工程は、前記距離データから前記タイヤの接地面の前記溝部の幅を演算して溝幅データを生成する溝幅演算工程と、前記距離データから前記溝部の深さを演算し溝深さデータを生成する溝深さ演算工程とを備え、前記溝部の数に関する溝部数データを生成し、前記出力工程は前記溝幅データ、前記溝深さデータ又は前記溝部数データのうち、少なくともいずれか1つのデータを出力することを特徴とする請求項5又は請求項6に記載のタイヤ劣化評価方法。 The displacement measuring step calculates a groove width data by calculating a width of the groove portion of the ground contact surface of the tire from the distance data, and calculates a groove depth by calculating a depth of the groove portion from the distance data. A groove depth calculation step for generating depth data, and generating groove portion number data relating to the number of groove portions, wherein the output step includes at least one of the groove width data, the groove depth data, and the groove portion number data. The tire deterioration evaluation method according to claim 5 or 6, wherein one piece of data is output.
  8.  前記出力工程は、前記劣化評価工程で生成されたデータと、前記撮像工程で生成された接地面画像データ又は前記評価領域抽出工程で抽出された前記評価領域画像データを同時に出力することを特徴とする請求項5乃至請求項7のいずれか1項に記載のタイヤ劣化評価方法。 The output step outputs simultaneously the data generated in the deterioration evaluation step and the ground plane image data generated in the imaging step or the evaluation region image data extracted in the evaluation region extraction step. The tire deterioration evaluation method according to any one of claims 5 to 7.
  9.  コンピュータによって、タイヤ劣化評価のために実行されるプログラムであって、タイヤの接地面の変位を測定して前記接地面の山部と溝部の判別を可能とする距離データを生成する変位測定工程と、前記接地面を撮影して接地面画像データを生成する撮像工程と、前記接地面画像データから前記距離データを参照して前記接地面における前記溝部の領域からひび割れを検出するための評価領域を抽出して評価領域画像データを生成する評価領域抽出工程と、前記評価領域画像データを平滑化処理してノイズを除去した平滑化処理画像データを生成する平滑化処理工程と、前記平滑化処理画像データをエッジ処理してひび割れの境界部を明確化したエッジ処理画像データを生成するエッジ検出処理工程と、前記エッジ処理画像データのひび割れの境界部の全体に占める割合を演算してひび割合データを生成する劣化評価工程と、前記ひび割合データを出力する出力工程と、を実行させることを特徴とするタイヤ劣化評価プログラム。 A displacement measurement step, which is a program executed for tire deterioration evaluation by a computer, and that generates a distance data that enables a discrimination between a peak portion and a groove portion of the contact surface by measuring a displacement of the contact surface of the tire. An imaging step of photographing the ground plane and generating ground plane image data; and an evaluation area for detecting cracks from the groove area on the ground plane with reference to the distance data from the ground plane image data. An evaluation region extraction step for extracting and generating evaluation region image data; a smoothing step for generating smoothed image data obtained by smoothing the evaluation region image data to remove noise; and the smoothed image Edge detection processing step for generating edge-processed image data in which the boundary of cracks is clarified by performing edge processing on the data, and cracks in the edge-processed image data Degradation evaluation step and the tire deterioration evaluation program, characterized in that to execute, an output step of outputting the crack ratio data by calculating the percentage of the total of the boundary of the record to generate a crack ratio data.
PCT/JP2017/017595 2017-05-09 2017-05-09 Tire degradation evaluation system, and method and program thereof WO2018207265A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/017595 WO2018207265A1 (en) 2017-05-09 2017-05-09 Tire degradation evaluation system, and method and program thereof
JP2019516778A JPWO2018207265A1 (en) 2017-05-09 2017-05-09 Tire deterioration evaluation system, method and program
JP2017184336A JP2020041799A (en) 2017-05-09 2017-09-26 Tyre deterioration evaluation system, method and program for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017595 WO2018207265A1 (en) 2017-05-09 2017-05-09 Tire degradation evaluation system, and method and program thereof

Publications (1)

Publication Number Publication Date
WO2018207265A1 true WO2018207265A1 (en) 2018-11-15

Family

ID=64104571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017595 WO2018207265A1 (en) 2017-05-09 2017-05-09 Tire degradation evaluation system, and method and program thereof

Country Status (2)

Country Link
JP (2) JPWO2018207265A1 (en)
WO (1) WO2018207265A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659449B (en) * 2022-03-21 2023-08-04 江苏奔腾橡胶制品有限公司 Tire wear degree detection device and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135007A (en) * 2013-01-11 2014-07-24 Lg Display Co Ltd Flat panel display automatic unevenness detection device and automatic unevenness detection method
JP2015161575A (en) * 2014-02-27 2015-09-07 株式会社シーパーツ Tire deterioration evaluation device, system thereof, method thereof, and program thereof
US20160221404A1 (en) * 2015-01-29 2016-08-04 Dain Co., Ltd. Method and apparatus for measuring tire tread abrasion
JP2016191714A (en) * 2016-06-29 2016-11-10 株式会社キーエンス Measurement microscope device, measurement method using the same, operation program, and computer-readable recording medium
JP2017003404A (en) * 2015-06-10 2017-01-05 株式会社日立製作所 Defect inspection method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707605B2 (en) * 2006-05-16 2011-06-22 三菱電機株式会社 Image inspection method and image inspection apparatus using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135007A (en) * 2013-01-11 2014-07-24 Lg Display Co Ltd Flat panel display automatic unevenness detection device and automatic unevenness detection method
JP2015161575A (en) * 2014-02-27 2015-09-07 株式会社シーパーツ Tire deterioration evaluation device, system thereof, method thereof, and program thereof
US20160221404A1 (en) * 2015-01-29 2016-08-04 Dain Co., Ltd. Method and apparatus for measuring tire tread abrasion
JP2017003404A (en) * 2015-06-10 2017-01-05 株式会社日立製作所 Defect inspection method and device
JP2016191714A (en) * 2016-06-29 2016-11-10 株式会社キーエンス Measurement microscope device, measurement method using the same, operation program, and computer-readable recording medium

Also Published As

Publication number Publication date
JP2020041799A (en) 2020-03-19
JPWO2018207265A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6283534B2 (en) Tire deterioration evaluation apparatus and system, method and program thereof
US7012701B2 (en) Measuring for device for contactless measurement of tires
JP6381094B1 (en) Tire deterioration evaluation system
KR102003781B1 (en) Apparatus for detecting defects on the glass substrate using hyper-spectral imaging
Miao et al. An image processing-based crack detection technique for pressed panel products
JP5706233B2 (en) Steel component identification device and program thereof
JP6403547B2 (en) Steel component identification device and program thereof
US8260004B2 (en) Method and apparatus for the quantitative determination of surface properties
JP5974787B2 (en) Edge defect detection method and edge defect detection apparatus for steel strip coil
CN115803619A (en) Information processing device, determination method, and information processing program
CN112070751A (en) Wood floor defect detection method and device
Barkavi et al. Processing digital image for measurement of crack dimensions in concrete
KR20180115646A (en) Bead recognition apparatus using vision camera and method thereof
KR20130118379A (en) Method and device for inspecting an object for the detection of surface damage
Konovalenko et al. Error analysis of an algorithm for identifying thermal fatigue cracks
WO2018207265A1 (en) Tire degradation evaluation system, and method and program thereof
US20110311106A1 (en) Method for The Identification of Objects
JP5181912B2 (en) Surface defect inspection method, surface defect inspection apparatus, steel sheet manufacturing method, and steel sheet manufacturing apparatus
JP7356010B2 (en) Surface texture inspection device and surface texture inspection method
JP6397292B2 (en) Item identification and image discrimination method by image processing
JPH07333197A (en) Automatic surface flaw detector
TW202007937A (en) Tire deterioration evaluation system and method and program thereof realizing high-precision evaluation for the material deterioration of a tire by measuring the cracks generated in an area not worn by the use of a used tire
Puan et al. Automated pavement imaging program (APIP) for pavement cracks classification and quantification
JP2006226834A (en) Surface inspection device and surface inspection method
Lin et al. Automated inspection of contour faults for convex mirrors using wavelet descriptors and EWMA control scheme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516778

Country of ref document: JP

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909226

Country of ref document: EP

Kind code of ref document: A1