JP5027109B2 - 神経刺激リードの位置および移動を検出するための装置および方法 - Google Patents

神経刺激リードの位置および移動を検出するための装置および方法 Download PDF

Info

Publication number
JP5027109B2
JP5027109B2 JP2008504490A JP2008504490A JP5027109B2 JP 5027109 B2 JP5027109 B2 JP 5027109B2 JP 2008504490 A JP2008504490 A JP 2008504490A JP 2008504490 A JP2008504490 A JP 2008504490A JP 5027109 B2 JP5027109 B2 JP 5027109B2
Authority
JP
Japan
Prior art keywords
lead
subsequent
electrode
electrodes
stimulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008504490A
Other languages
English (en)
Other versions
JP2008534168A (ja
JP2008534168A5 (ja
Inventor
ブラッドリー,ケリー
Original Assignee
ボストン サイエンティフィック ニューロモデュレイション コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボストン サイエンティフィック ニューロモデュレイション コーポレイション filed Critical ボストン サイエンティフィック ニューロモデュレイション コーポレイション
Publication of JP2008534168A publication Critical patent/JP2008534168A/ja
Publication of JP2008534168A5 publication Critical patent/JP2008534168A5/ja
Application granted granted Critical
Publication of JP5027109B2 publication Critical patent/JP5027109B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/3614Control systems using physiological parameters based on impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/36182Direction of the electrical field, e.g. with sleeve around stimulating electrode
    • A61N1/36185Selection of the electrode configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37241Aspects of the external programmer providing test stimulations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes

Description

本発明は一般に神経刺激システムに関する。
発明の背景
神経刺激システム、例えば、脊髄刺激(SCS)システム、深部脳刺激システム、および皮下刺激システムは、刺激標的となる神経要素の近傍に配される電極を含む。この電極は、担体に取り付けられるが、多くの場合、複数の電極が一つの担体に取り付けられる。これらの担体/電極装置は、時に「リード」と呼ばれる。電極の適切な設置は、神経刺激療法の成功にとって鍵となる決定的に重要なものであるから、外科医は、一つ以上のリードを、電極が標的神経要素に隣接するように注意深く設置する。隣接リードの間には通常1から5mmの間隔がある。
電極が標的神経要素を刺激することを確かめるため、設置過程の際および設置後に刺激エネルギーが電極に出力される。刺激エネルギーはまた、もっとも効果的な刺激パターン(または過程)を処方するためにもこの時点で電極に出力される。パターンは、任意の時点において、電極のどちらが、供給または復帰電流パルスであるかのみならず、電流パルスの大きさおよび持続をも指定する。刺激パターンは通常、治療効果(例えば、鎮痛)を挙げるために刺激しなければならない標的組織の全てに対し刺激エネルギーを供給はするものの、刺激される非標的組織の容量を最小とするものである。従って、刺激パターンは、電極を通じて印加される電気刺激によって実現される、所望の「感覚異常」、すなわち、ピリピリ感を達成するのに、リードに繋がる電極全部より少ない数の電極しか必要としないという了解の下に、神経刺激リードは埋設される。
従来から多種多様なリードが紹介されている。一つの一般的なタイプの神経刺激リードは、「インライン」リードである。これは、直径小な担体に複数の互いに隔てられた電極を含む。インラインリードは、比較的設置が容易である。なぜなら、それらは、患者が目覚めていて、応答を返すことができる状態で、小さな局所麻酔された切開口の中の経皮針を通じて脊柱管に挿入することが可能だからである。インラインリードはまた、比較的簡単に取り出すことができる点でも有利である。インラインリードの欠点の一つは、それらが、時間の経過と共に、または、急激な屈曲性運動の結果として硬膜外空間において移動しがちとなることである。
リード移動は、標的神経要素がもはや適切に刺激されなくなり、患者がもはや十分な治療効果を享受することができなくなる原因となることがある。しかしながら、以前には効果的であった神経刺激過程の治療効果が減退し、あるいは単純に消滅するのは、リード移動が唯一の原因なのではない。このことは、診断を難しくする場合がある。さらに、医師が、リード移動が実際に起こったとし、電極の新規位置に対応するようにシステムのプログラムをやり直さなければならないと判断したとしても、従来の神経刺激システムでは、個々のリードの動きに関する情報、例えば、リードが、下部組織に対してどの程度遠ざかったかのような情報が医師に提供されることはない。このためプログラミングの改定が特に困難になる。なぜなら、現在標的神経要素と軸が合っているのはリード電極のどれで、合っていないのはどれかを特定するには、試行錯誤と患者の応答に頼るしかないからである。
また、本発明の発明者らは、埋設時のみならずその後の時点において、2本以上の神経刺激リードの相対位置を検出するための従来法が改善を要するものであると判断した。
発明の開示
本発明の一つによる装置および方法は、埋設リード、例えば、神経刺激リードの移動に関する情報を得るために、該リードの近傍の組織に関するアーチファクトデータを測定する。このアーチファクトデータは、組織インピーダンスデータおよび生理的に誘発される電位データを含む。通常、基礎的アーチファクトデータは、システムが所望の治療効果を発揮し、その後、後続アーチファクトデータが測定される場合に、測定される。この基礎アーチファクトデータからの変動を用いてリードが移動したことを示す。
このような装置および方法は、様々な理由によって有利である。例えば、この装置および方法は、神経刺激システムの、ある一つの特定のリード(または、複数のリード)が移動したことを表す信頼度の高い表示を与える。本発明はまた、移動に関する具体的な情報、例えば、下部組織に対する、相対的移動の大きさおよび方向に関する情報を提供する。これによって、システムのプログラミング改変に伴う困難が緩和される。
本発明の一つによる装置および方法は、各神経刺激リードと、神経刺激リード群に対して隔てられて配置される電極との間の組織のインピーダンスを測定することによって、神経刺激リード同士の相対的位置を決定する。測定値同士は互いに比較されて、神経刺激リード群の内のあるものが、別のあるものよりも、該電極からより遠ざかっているかどうかが決められる。
このような装置および方法は、種々の理由によって便利である。例えば、この装置および方法は、埋設後のプログラミング過程において、複数のリードを互いに区別する都合のよい方法を提供する。
本発明の、前述の特徴、およびその他の多くの特徴は、下記の詳細な説明を付属の図面とつき合わせて参照することによって本発明がよりよく理解されるにつれて、明白となろう。
発明を実施するための最良の形態
本発明の例示の実施態様の詳細な説明を付属の図面を参照しながら行う。
下記は、本発明を実施するための、現在知られるもっとも優れた方式の詳細な説明である。本説明は、限定的意味として捉えてはならず、単に本発明の一般的原理を例示するためになされるものである。本詳細な説明は、下記のように構成される。すなわち、
I.例示の神経刺激システム
II.例示のリード移動検出
III.例示の補正策
本詳細な説明の章節タイトルおよび全体構成は、ただ便宜のために設けられたもので、本発明を限定することを意図するものではない。
I.例示の神経刺激システム
本発明は、広く各種神経刺激システムに適用される。本発明は下記の例に限定されるものではないが、そのようなシステムの例が図1ー5に例示される。先ず、図1および1Aを参照すると、例示の埋設可能な神経刺激システム100は、第1および第2埋設可能リード102および104を含む。例示のリード102および104はインラインリードであり、そのため、該リードは両方とも、屈曲性本体108の上に担持される複数のインライン電極106から成る。図示の実施態様では、リード102の上に8個の電極があり、それらはE1−E8と表示され、リード104の上に8個の電極があり、それらはE9−E16と表示される。もちろんリードおよび電極の実際の数は意図する用途に従って変動するが、本発明は、いずれの特定の数のリードおよび電極にも限定されない。リード102および104は、挿入針を用いて、またはその他の好適な技術を用いて、所望の場所、例えば、患者の脊髄の近傍に埋設されてよい。一旦所定の場所に埋設されたならば、電極106は、標的神経要素、またはその他の標的組織に対して刺激エネルギーを供給するために使用されてよい。
図1および1Aに描かれる例示の神経刺激システム100はさらに、電極106のそれぞれに対し組織刺激エネルギーを向けることが可能な、埋設可能なパルス発生器(IPG)110を含む。そのために、リード102の上の各電極106は、連結される屈曲性本体108を貫通する、または埋設される、それぞれの信号ワイヤー112(その内のいくつかは図示されない)によってIPG110に電気的に接続される。同様に、リード104の上の電極106は、それぞれの信号ワイヤー114(その内のいくつかは図示されない)によってIPG110に電気的に接続される。信号ワイヤー112および114は、インターフェイス115を介してIPG110に接続される。インターフェイス115は、リード102および104が、IPG110に対し、取り外し可能なやり方で、または恒久的に電気的に接続されることを可能にするものであれば任意の適当な装置であってもよい。このようなインターフェイスは、例えば、電気機械的コネクター配列であって、リード102および104の上の、対応するコネクター(コネクター119aのみが図示される)と嵌合するように構成される、IPG110内のリードコネクター117aおよび117bを含むコネクター配列であってもよい。それとは別に、リード102と104は、IPGにおける対応するコネクターと嵌合する単一コネクターを共有してもよい。例示のコネクター配列は、米国特許第6、609、029および6、741、892号に開示される。
例示のIPG110は、伝導性の、生体適合性材料、例えばチタンから形成され、ある場合には、電極としても機能する外部ケース116を含む。IPG110は、通常、外部の(埋設されない)プログラマー118によってプログラムされるか、または調節される。外部プログラマー118は、適切な通信リンクを通じてIPG110に結合される。該通信リンクは、図では、患者の皮膚122を貫通する矢印120によって表される。適切なリンクとしては、高周波(RF)リンク、誘導性リンク、光学的リンク、および磁気リンクが挙げられるが、ただしこれらに限定されない。プログラマー118、または他の外部装置はさらに、IPGを操作するために、または、IPG110内の電源、例えば、充電可能バッテリーを充電するため、電力をIPGに送り込むためにも使用される。一旦、IPG110がプログラムされ、その電源が充電されるか、またはその他のやり方で補給されたならば、IPGは、外部プログラマー118の存在を要することなくプログラム通りに機能してもよい。
例示の神経刺激システム100の操作時に供給される刺激パターンに関しては、刺激エネルギーを受容するように選ばれる電極は、本明細書では「活性化」と呼ばれる。一方、刺激エネルギーを受容するように選ばれない電極は、本明細書では「非活性化」と呼ばれる。電気刺激は、その内の一方はIPGケースであってもよい、二つ(またはそれ以上)の電極の間で行われ、その際、刺激に関連する電流は、陽極として構成される一つ以上の電極から組織を通って、陰極、または帰還電極として構成される一つ以上の電極に至る経路を持つ。帰還電極(単数または複数)は、リード102および104の上の電極106の内の一つ以上であってもよく、あるいは、IPGケース116であってもよい。刺激エネルギーは、単極または双極方式で組織に伝導されてもよい。単極刺激は、リード電極106の内の選ばれた一つが、ケース116と共に活性化される場合に見られるものである。双極刺激は、リード電極106の内の二つが活性化される場合に見られるものである。例えば、リード102上の電極E3が、リード104上の電極E11が陰極として活性化されるのと同時に、陽極として活性化される。リード電極106の内の三つが活性化される場合、三重刺激が見られる。例えば、リード102上の電極E4およびE5が、リード104上の電極E13が陰極として活性化されるのと同時に、陽極として活性化される。一般に、多極刺激は、多数のリード電極106が活性化される時に見られる。
図2に眼を転ずると、例示のIPG110は、複数の二重電流源124を持つ。各二重電流源124は、電流を負荷に「供給する」ための陽極(+I1、+I2、+I3、...、+Iケース)として機能することが可能な陽性電流源の外に、共通ノード126を通じて、負荷から電流を「吸い込む」ための陰極(−I1、−I2、−I3、...、−Iケース)として機能することが可能な電流源とを含む。負荷は、活性化電極106、ワイヤー(および、他の伝導要素)、および、連結電極を二重電流源124の共通ノード126に接続する結合コンデンサー(C1、C2、C3、...、Cケース)の間に存在する組織である。
IPGプログラミングは、任意の特定の時点において、複数の電極、すなわち、リード電極106およびIPGケース116の内のどれが供給源および吸い込み口として作動するのかを指定する。そのため、IPG110には、指定の時点において、指定の振幅を有する電流を供給または吸い込むための陽極または陰極として選ばれた二重の供給源124を動作させる、プログラム可能な電流制御回路128が設けられる。図示の実施態様では、リード102の上に8個の電極106(E1−E8と表示)、リード104の上に8個の電極104(E9−E16)、および、電極として機能することが可能なIPGケース116(Eケースと表示)があり、かつ、17個の個別に動作が可能な二重電流源124がある。通常、プログラマー118から受信され、保存される制御データに従って動作する制御回路128はまた、指定の時点で、選択された二重電流源124を切る。しかしながら、別態様として、電極よりも数の少ない二重電流源を用いてもよい。この場合、二重電流源の内の少なくともいくつかは、適切な多重化回路を通じて1個を超える電極に接続される。さらに別態様として、IPGケースのみが陽極として機能するように、あるいは、IPGケース116のみが陰極として機能するように構成されていてもよい。
さらに、制御回路128は、種々の測定機能を果たすために用いてもよい。例えば、制御回路128は、電極が活性化されるか、非活性化のままであるかを問わず、各二重電流源124の出力ノード126における電極電圧VE1、VE2、VE3、 ...、VE16を測定するために用いてもよい。これによって、電極の電圧を測定することが可能となり、これは次にインピーダンス測定をやり易くする。
制御回路128の動作は、下記の実施例の背景において説明される。図2を参照すると、制御回路128は、時間T1において、リード電極E1およびE2に接続される二重電流源124における陽性電流源を同時にオン(または、動作可能と)するために使用される。また、リード電極E9に接続される二重電流源124の陰性電流源も、時間T1においてオンされる。他の全ての電流源は、時間T1においてオフ(または動作不能と)される。これによって、電極E1およびE2は、電極E9が陰極として活性化されるのと同時に、陽極として活性化される。電流+I1および+I2が、電流−I9が電極E9に吸い込まれるのと同時に、電極E1およびE2から供給される。電流+I1および+I2の振幅は、プログラムされる任意の値であってよいが、電流−I9の振幅は−(I1+I2)に等しくなければならない。すなわち、供給される電流は、吸い込まれる電流と等しい。期間T1後、制御回路128は、通常、第2期間T2において、電極E1、E2、およびE9の極性を、電極E1およびE2が陰極として活性化され、電極E9が陽極として活性化されるように切り替える。
このように制御回路128を操作すると、図3に示す2相性刺激パルス130が得られる。このパルスは、一方の極性を持つ第1相(期間T1)の直後、または短時間後に、反対極性を持つ第2相(期間T2)の出現によって特徴づけられる。刺激の際の電荷バランスを維持するために、第1相と関連する電荷は、第2相と関連する電荷と等しくなければならない。このバランスは、一般に、刺激行程の重要な成分と考えられている。ただし、これは本発明によって要求されてはいない。2相性刺激パルス130の電荷バランスは、第1相および第2相の振幅ばかりでなく、期間T1およびT2を実質的に等しくすることによって達成される。電荷バランスはまた、相持続と振幅の、別の組み合わせによっても実現することが可能である。例えば、第2相の振幅を、第1相の振幅の半分と等しくし、期間T2を期間T1の2倍に等しくしてもよい。
本発明による神経刺激システムはまた、図4に描かれるような、それぞれリード電極E1−E16およびIPGケース電極Ecaseに接続される、複数の二重電圧源124′を含む、別様のIPG110′を用いてもよい。各二重電圧源124′は、オンされると、ノード126′および結合コンデンサー(C1、C2、C3、...、Ccase)を通じて連結電極に対しプログラムされた電圧を印加する。しかしながら、別態様として、電極よりも数の少ない二重電圧源を用いてもよい。この場合、二重電圧源の内の少なくともいくつかは、適切な多重化回路を通じて1個を超える電極に接続される。プログラム可能な電圧制御回路128′が、各二重電圧源124′を制御し、電極に印加される電圧の振幅、極性、および持続を指定する。
二重電圧源124′および制御回路128′は、図5に描かれる2相性刺激パルス130′を生成するように用いられてもよい。このパルスは、任意の二つの電極間に印加される、一方の極性を持つ第1相(期間T1)の直後、または短時間後に、反対極性を持つ第2相(期間T2)の出現によって特徴づけられる。2相性刺激パルス130’の電荷バランスは、第1相および第2相の振幅ばかりでなく、期間T1およびT2を等しくすることによって達成される。電荷バランスはまた、相持続と振幅の、別の組み合わせによっても実現することが可能である。例えば、第2相の振幅を、第1相の振幅の半分と等しくし、期間T2を期間T1の2倍に等しくしてもよい。制御回路128’は、電極が活性化されているか、否かを問わず、各電極へ流れ込む、または各電極から流れ出す電流の外、各非活性化二重電圧源124′の共通ノード126′に出現する電極電圧(Ev1−Ev16)を測定するのに使用されてもよい。これらの電流および電圧測定値はさらにインピーダンス測定をやり易くする。
前述のIPGおよび他のIPGに関するさらなる詳細は、米国特許第6、516、227号、および米国特許出願公報2003/0139781に見出される。また、図2および図4に描かれるブロックダイアグラムは、機能的ダイアグラムであること、および、本発明を、どのようなものであれ、ある特定のIPG回路に限定することを意図するものではないことに注意しなければならない。
II.例示のリード移動検出
前述したように、本発明による神経刺激システムは、リード102および104の埋設後移動(すなわち、下部組織に対するリードの相対的移動)を検出することが可能であり、ある場合には、移動に関する情報を提供することが可能である。一般に、本発明の移動検出過程は、リード102および104の移動を検出するために、アーチファクト性の組織測定、例えば、組織のインピーダンス測定または誘発電位測定を用いる。測定から得られたデータは、IPG制御回路128(または128′)、外部プログラマー118、それらの何らかの組み合わせ等によって保存され、処理されてもよい。さらに、アーチファクト性組織測定(例えば、組織インピーダンス測定および誘発電位測定)は、ある一つの電極の、別の電極に対する相対的移動を検出するのではなく、下部組織に対するリードの相対的移動を個別に検出することを可能とする。従って、本明細書に記載される過程は、単一リードを有する神経刺激システムにも、例えば、複数のリードを有する例示のシステム100のような神経刺激システムにも用いられる。
先ず組織インピーダンスに眼をむけると、リードが移動したという表示を得るためには、リード電極106に近接する組織のインピーダンスが測定、監視される。リード電極106において測定される組織インピーダンスは、隣接リードの電極間に配される全ての組織ではなく、電極近傍の組織(すなわち、電極の約1 mm以内に存在する組織)に依存する。このような組織としては、脂肪、コラーゲン、骨、靭帯、脊髄の白質および灰白質、および硬膜が挙げられる。測定されるインピーダンスは、通常、リードの長さにそって電極から電極へまちまちに変動する。
先ず図6Aを参照すると、リード102および104が、組織Tの中に適切に配置された後(「適切」な配置は患者によって変動する)、電極106それぞれ(個別にE1−E6と特定される)に隣接する組織のインピーダンスが測定される。これは種々のやり方で実行してよい。例えば、インピーダンスは、指定の電圧において、電極Ecaseとして機能する(図2)IPG外部ケース116から電流を供給し、電極E1−E6の内の選ばれた一つにおいて電流を吸い込むことによって定量してもよい。電圧降下の多くは、比較的小さな電極において起こること、リード電極106は、IPG外部ケース116よりもはるかに小さいことが考えられるから、選択されたリード電極と外部ケースの間において測定されたインピーダンスは、主に、選択されたリード電極に隣接する組織のインピーダンスによると仮定することが可能である。インピーダンス測定のために使用される電流は、刺激をもたらすことがない、あるいは、IPGバッテリーの容量をほとんど消費することがない閾下の電流パルス(例えば、1 mAを20 μs)であることに注意しなければならない。この過程を、電極E1−E16のそれぞれについて繰り返してもよい。それとは別に、これらの測定のために、IPG外部ケースの代わりに、患者の体の中の、または体の上の任意の場所に縫いつけられた電極で、好ましくはリード電極よりも大きいものを用いてもよい。
インピーダンスは、リードが埋設され、神経刺激システムのIPG制御回路128(または128′)が、所望の治療効果を発揮するようにプログラムされた直後に測定することが好ましい。本明細書では「基礎インピーダンス測定値」と呼ばれる、このようなインピーダンス測定値は、電極E1−E16における、単一組の測定値、または、電極対電極組み合わせにおいて平均化された、複数組の電極測定値から成る。リード102における各電極E1−E8およびリード104における各電極E9−E16のインピーダンスの例示のプロットが、図7に実線で示される。基礎インピーダンス測定値も、後述するようにその傾向が追跡される。
インピーダンス測定値は、基礎インピーダンス測定値が定められた後も、様々な時点で、電極E1−E16のそれぞれにおいて求められる。例えば、インピーダンス測定値は、定期検診時に採取してもよいし、あるいは、神経刺激システムが、基礎インピーダンス測定値が得られた時同システムが発揮したのと同じレベルの治療効果をもはや発揮しないと患者が表明したのを受け、それに対する反応として採取してもよい。このようなインピーダンス測定値を、本明細書では、「後続インピーダンス測定値」と呼ぶが、電極E1−E16における、単一組の測定値、または、電極対電極組み合わせにおいて平均化された、複数組の電極測定値から成っていてもよい。測定値が変化したどうかを定めるために、後続インピーダンス測定値は基礎インピーダンス測定値と比較される。変化は、関連リードが移動したことを示す。何らかのリード移動が検出されたのであれば、そのリード移動の大きさおよび方向を定めるために、特徴比較分析、例えば、ピーク比較、勾配比較等を用いることも可能である。特徴比較分析を実行するために使用が可能な数学的技術の一つの例は、交差相関関数である。特徴比較分析を実行するために他の好適なアルゴリスムを用いてもよい。
基礎インピーダンス測定値は、基礎インピーダンス値が、時間と共に変化することがない非傾向的基礎インピーダンスと、基礎インピーダンス値が調節される傾向的基礎インピーダンス測定値を含む。後者においては、インピーダンス測定値において急激な変化をもたらす傾向のあるリード移動と比べ、時間と共にインピーダンス測定値をゆっくりと変化させる要因、例えば、組織壊死および線維症に対応して基礎インピーダンス値が調節される。傾向的基礎インピーダンス値は、下記の実施例に従って定められてもよい。ある後続インピーダンス測定値が、基礎インピーダンス測定値に実質的に等しい場合(例えば、特徴比較分析に基づいて)、インピーダンス測定値におけるその差は、リード移動によるものではないことを仮定してよい。次に、この実質的に等しい後続インピーダンス測定値を用いて、新規基礎インピーダンス測定値を定めてもよい。これは、元の基礎インピーダンス測定値を、この実質的に等しい後続インピーダンス測定値によって置換するか、または、この二つの値を平均化することによって実現される。それに加えて、またはそれとは別に、別の複数の後続インピーダンス測定値を時間と共に採取し、その移動平均を取って、傾向的基礎インピーダンス値を定めてもよい。
後続のインピーダンス測定時点におけるリード102および104の例示の位置を図6Bに示し、電極E1−E16のそれぞれにおける後続インピーダンス測定値の対応プロットを図7Bに破線で示す。先ずリード102を参照すると、後続インピーダンス測定値のプロットは、基礎インピーダンス測定値のプロットとは明瞭に異なる。この差から、リード102は、該リードの近傍の組織に対して相対的に移動したことの表示が得られる。移動を確認することが可能な、さらに別の情報が、プロットを、または、各電極E1−E8における組織インピーダンス測定の前後のプロットを互いに比較することによって得られる。図示の例では、電極E2およびE3において採取された、後続組織インピーダンス測定値は、それぞれ、電極E4およびE5において採取された、基礎組織インピーダンス測定値と実質的に同じである。このことから、電極E2およびE3は、それぞれ、元々E4およびE5によって占められていた場所に移動したこと、および、リード102は、二つの電極106に対応する距離だけ移動したことが推定される。もしも例えば、4mmの電極対電極間隔があるとするならば、リード102は8mm動いたと推定することが可能である。
次にリード104に眼を向けると、後続インピーダンス測定値のプロットは、基礎インピーダンス測定値のプロットと事実上同じである。このことから、リード104が、組織に対して相対的に動いていないという表示が得られる。
他の情報もまた、後続インピーダンス測定値と、基礎インピーダンス測定値との比較から得られる。例えば、ある場合には、基礎インピーダンス測定値の最低値、または、全ての基礎インピーダンス測定値の平均値を用いて、「正常インピーダンス値」を定めてもよい。もしも指定のインピーダンス値が、リード102が移動した後で増したならば、リード102とIPG外部ケース116との間の距離が増したことが推定される。同様に、もしも指定のインピーダンス値が、リード102が移動した後で減少したならば、リード102とIPG外部ケース116との間の距離が減少したことが推定される。
プログラミング、またはプログラミング改変前に必要な情報を定めるために、インピーダンス測定値を用いることも可能である。リード102および104のそれぞれの平均インピーダンス(すなわち、リード上の電極106において記録されるインピーダンス測定値それぞれの平均値)は、通常、IPGケース116(または116′)からもっとも大きな距離にあるリードにおいて比較的大きい。従って、IPG110(または110′)に対する、リード102および104の相対的位置を決めるために、インピーダンス測定値の平均値を用いることも可能である。この相対的位置決定は、通常、プログラミング過程を支援するために、先ずリード102および104が患者の体内に埋設される時に行われるが、要すればそれ以外の時点で行われてもよい。
SCS状況では、リード102および104は、例えば、胸髄領域から仙髄町域までの任意の場所に埋設されてよい。複数のリードの配置は、あるリードが一つの領域に、もう一つのリードが異なる領域に、両リードが別々の領域に納まるが、IPGケース116(または116′)からの距離に関しては互いに揃うように配置されてもよいし、あるいは、両リードは同じ領域に配置されるが、IPGケースからの距離に関しては互いに変動するように配置されてもよい。前述したように、最大のインピーダンス平均値を生成するリードは、ケースから最大の距離離れると推定される。例えば、もしもIPG110(または110′)が、臀部の上部領域に埋設され、あるリードが胸部区域に配置され、かつ、もう一つのリードが頸部区域に配置されたならば、比較的大きなインピーダンス平均値を生成するリードは、頸部区域にあることが推定される。もしも両方のリードが、同じ区域(例えば、頸部区域または胸部区域)内に配置されたとすると、インピーダンス平均値が実質的に等しいならば、それらのリードは互いに揃っていることが推定され、あるいは、もしもインピーダンス平均値が実質的に異なっているとすると、リードが変動しており、比較的大きな値を持つリードの方が、IPG110(または110′)からより大きな距離離れることが推定される。
組織インピーダンス測定値はまた、基礎インピーダンス測定値が定められた後、事実上連続的に記録されてもよい。例えば、SCSプログラムにおける治療用パルスは、典型的には、持続が1 msで、50Hzの頻度で与えられる。従って、各治療パルスの間には19 msあるので、この間に、インピーダンス測定目的のために、治療閾値以下のパルスを供給することが可能である。リードが移動したという表示をリアルタイムで得るために、連続記録される、後続インピーダンス測定値を、基礎インピーダンス測定値と比較してもよい。一旦このような決定がなされたならば、下記の第III節で論じられる対応策のような補正策を、自動的に実施させるようにしてもよいし、あるいは、単純に、患者に、その状況について、彼ないし彼女が医師にその情報を連絡するように忠告してもよい。
誘発電位測定値(本明細書では、別に、「生理的誘発電位測定値」とも呼ばれる)は、一つの電極で神経に対して刺激パルスを与え、もう一つの電極で、発生した活動電位を測定することを含むが、これも、リードが、該リードの近傍の下部組織に対して移動したかどうかを決めるのに使用することが可能である。先ず図8Aを参照すると、基礎誘発電位測定値が、埋設可能リード102および104が、適切に組織Tに隣接して配置された後に記録される(「適切な配置」は、患者に従って変動する)。リード102に関しては、刺激パルスが、電極E1によって隣接組織に供給され、それによって生ずる活動電位が、電圧に測定可能な変位を発生させる。この変位を、プログラム可能な制御器128は、測定(または、「読み取り」)可能な有限時間において電極E2において認める。この目的のために適切な刺激は、例えば、4 mA、200 μsである。この刺激は閾上で、制御不能ではないことが好ましい。この過程は一回実行してもよいし、多数回(例えば、100回)実行して平均し、E1「基礎」刺激/E2誘発電位記録データが生成され、測定され、次に、例えば、図9Aに描かれるようにプロットされてもよい(実線に注意されたい)。電極E1における刺激パルスによる誘発電位によってもたらされる電圧変位は次に、電極E3−E8において測定される(1回か、または多数回測定され平均される)。このようにしてさらに新たな基礎データおよびプロットが得られるようにしてもよい。さらに電極E2−E9を用いて刺激パルスを供給し、リード102の、一つを超える別の電極において誘発電位を測定してもよい。
リード104に眼を向けると、刺激パルスを、電極E9から隣接組織に供給し、得られた誘発電位を、電極E10で測定してもよく、かつ、要すれば、電極E11−E16において継時的に測定してもよい。この場合も、この過程は、1回実行してもよいし、あるいは多数回実行して平均してもよい。E10における基礎刺激E9誘発電位データが、図9Bにおいて実線で示される。さらに刺激パルスを供給するために電極E10−E16を用いてもよいし、誘発電位を、リード104の別の電極の内の1個以上において測定してもよい。
誘発電位は、新たな、または別の電極106において、前記に加えて/前記の代わりに測定してもよい。なぜなら、活動電位は、どの神経が刺激されるか、および、神経がどちらに伸びるかに応じて種々の方向に伝播するからである。例えば、誘発電位は、刺激リード上の電極の外に(または、該電極の代わりに)、非刺激リード上の電極106において測定される。さらに新たな基礎データおよびプロットを得るために、リード102の電極106における刺激パルスによる誘発電位によって引き起こされる電圧変位は、例えば、リード104の電極の内の1個以上においても測定が可能である。同様に、さらに新たな基礎データおよびプロットを得るために、リード104の電極106における刺激パルスによる誘発電位によって引き起こされる電圧変位は、リード102の電極の内の1個以上においても測定が可能である(1回、または多数回測定され平均される)。さらに、刺激電極において誘発された電位によって引き起こされる電圧変位を測定することが望ましい場合もある。例えば、電極E1上の刺激パルスによる誘発電位によって引き起こされる電圧変位を電極E1において測定することが可能であり、かつ、電極E9上の刺激パルスによる誘発電位によって引き起こされる電圧変位を電極E9において測定することも可能である。
誘発電位測定も、リード102および104のそれぞれについて基礎の誘発電位測定値が定められた後、様々な時点で記録してもよい。例えば、誘発電位測定値は、定期検診時に採取してもよいし、あるいは、神経刺激システムが、基礎測定値が得られた時同システムが発揮したのと同じレベルの治療効果をもはや発揮しないと患者が表明したのを受け、それに対する反応として採取してもよい。基礎測定の間に組織に供給されたものと同じ刺激パルス(例えば、4mA、200μs)、または、大雑把に等価的強度の刺激作用(患者によって特定されるままの)をもたらすパルスが、同じ電極から供給され、同じ1個の電極(または、複数の電極)において電圧変位が、1回、または複数回測定され平均され、このようにして、後続誘発電位データが生成、測定、およびプロットされるようにする。
例えば、リード102の移動があったかどうかを定めるために、後続刺激E1/誘発電位E2記録データが生成、測定、かつプロットされ、ならびに、リード104の移動があったかどうかを定めるために、後続刺激E9・誘発電位E10記録データが生成、測定、かつプロットされる。もしもデータが同じ誘発電位プロットを生成するならば、あるいは、プロットが、同じプロットのある受容可能な変位範囲内に納まるならば、リードは動いていない(または、受容可能なほど少量しか動いていない)と仮定することが可能である。受容できない変位とは、例えば、基礎誘発電位データからの、急激な、または著明な短期の変化と定義されてもよい。壊死または線維症のような要因による誘発電位データの変化は、比較的ゆっくりと変化するようであるが、一方、移動は、データの突然の変化をより招き易い。従って、基礎誘発電位測定値は、基礎誘発電位測定値が、時間と共に変化することがない非傾向的基礎誘発電位測定値と、基礎誘発電位値が調節される傾向的基礎誘発電位測定値を含む。後者においては、組織壊死および線維症の要因に対応して基礎誘発電位値が調節される。傾向的基礎誘発電位値を定めるために、後続誘発電位測定を、インピーダンス測定値に関連して前述したやり方に従って用いてもよい。
他方でもしも、後続誘発電位データが、リードの一方または両方において異なる場合(例えば、基礎誘発電位データから外れる、急激な、または著明な短期の変化を示す場合)、あるいは、もしも、誘発電位が一方または両方の電極において測定された電極において、測定可能な誘発電位が見られない場合、その異なるデータに関連するリード(または複数のリード)は動いたと仮定することが可能である。例えば、リード102が動いたと仮定した場合、その仮定は、リード102における電極E3−E8における誘発電位を測定することによってチェックすることが可能である(1回、または多数回測定し、平均する)。もしも電極E3−E8における誘発電位に関連する後続プロットが、基礎プロットと同じであるか、または、基礎プロットからの、ある受容可能な変位内に納まるのであれば、リード102は動いていないこと、および、電極E2に状態の変化があったことを仮定してよい。この仮定も、リード102における電極E1、および/またはリード104における電極E9−E16における誘発電位を−もしもこれらの電極が、電極E1における刺激に対して採取される基礎測定値のために使用されるとしたならば−測定することによってチェックすることが可能である(1回、または多数回測定し、平均する)。この場合も、もしも後続プロットが、基礎プロットと同じであるか、または、基礎プロットからの、ある受容可能な変位内に納まるのであれば、リード102は動いていないことを仮定してよい。電極E2に隣接する組織については、リードの移動によらない誘発電位の差は、瘢痕形成、壊死、または脂肪蓄積のせいである可能性がある。それとは別に、電極E2に対する損傷の可能性もある。
リード104に関しても同じ確認手順を実行してよい。具体的に言うと、リード104の電極E9における刺激によって得られる誘発電位を、電極E11−E16において測定してもよい。それに加えて、またはそれとは別に、誘発電位が、基礎測定手順の一部であるなら、誘発電位は、リード104の電極E9、および/またはリード102の電極E1−E8において測定されてよい。
図8B、9Aおよび9Bを参照すると、リード102が、1個の電極に相当する距離移動し、従って、後続刺激E1/誘発電位E2記録データが異なっている。一方、リード104は動いておらず、後続E9刺激E10誘発電位データはほぼ同じである。
誘発電位はまた、移動の方向および大きさを決めるのに使用することも可能である。例えば、どのような移動であれ、その大きさと方向を決めるのに特徴比較分析(例えば、交差相関技術を用いて実行される)を用いることが可能である。この場合、刺激エネルギーは、移動したリード上の元の刺激電極とは別の電極に個別に与えられ、誘発電位が、その別の電極において測定される。この目的は、基礎値測定に使用された電極によって生成されたものと同じ誘発電位データを生成する電極を特定することである。もしもそのような電極が特定されたならば、それが、現在は、基礎データを生成するのに使用された電極の位置を占めていると仮定してよい。リード102の移動に関しては、図8Bおよび9Aに示すように、E2刺激/E3誘発電位記録プロットは、基礎の、E1刺激/E2誘発電位記録プロットに一致する(図9)。なぜなら、電極E2およびE3は、それぞれ、電極E1およびE2によって以前に占められていた位置に配置されているからである。
前述の、二つの方法を要約したフローチャートが図10に示される。ステップ200において、基礎のアーチファクト組織データ、例えば、組織インピーダンスデータまたは誘発電位データを、複数のリードの内の一つによって測定する。次に、ステップ210において、アーチファクト組織データが、同じリードによって1回以上の後続時点において測定される。最後に、ステップ220において、後続アーチファクト組織データを、基礎アーチファクトデータ(非傾向的基礎アーチファクトデータ、および/または傾向的基礎アーチファクトデータを含んでもよい)と比較し、該リードが動いたかどうかを決定する。この過程を、各リード毎に繰り返す。
III.例示の補正策
神経刺激システム(例えば、SCSシステム)の一つ以上のリードが動いたと判断された後取るべき補正行動は、大きく二つのカテゴリーに分けられる。すなわち、(1)外科的除去または配置改変、および(2)プログラミンの改定である。外科的除去は、通常、一つ以上のリードが、有効な代替配置を改めてプログラムで選択することができないほど遠くに移動したと判断された場合、採用される。例えば、治療処方が、電極がリード102の電極E2の基礎位置に配置されることを要求する場合(図6A)、リード102が、図6Bに示す位置に移動したならば該治療処方を実行することは不可能となる。なぜなら、その位置にはもはや全く電極が存在しないからである。一つ以上の電極が損傷されるか、不能となった場合も、外科的除去が必要されることがある。
プログラミング改定に関しては、各リードの実際の移動(または移動の欠如)に関する個別の情報が得られることによって、プログラム改定の任務を負わされた実体(例えば、医師、または神経刺激システム)が、単に、リード同士の相対的位置が変わったのだから、リードの内の少なくとも一つが移動したことを知らされる場合と比べると、プログラミング改定ははるかに効率的に進行する。例えば、図6Aに示されるリード102および104が、リード102の電極E4、E5、およびE6からの供給刺激パルス、およびリード104の電極E13、E14への吸い込み刺激パルスを含む治療処方に用いられると仮定する。リード102が図6Bに示す位置に移動し、本発明によって、リード102のみが移動したこと、リード102は、2個の電極に相当する距離だけIPG110の方に向かって移動したことが決定された後、治療処方は、単に、電極E2、E3、およびE4によって、それぞれ、電極E4、E5、およびE6を置換することによってプログラム改定される。
プログラム改定は、自動的に実行されてもよいし、あるいは臨床家によって実行されてもよい。自動的プログラム改定は、リード移動が連続的に監視される場合は特に有用であるが、真の意味で自動的である(すなわち、患者が知らない内に行われる)ことも可能である。それとは別に、IPG110は、少なくとも一つのリードが移動したことを示す表示を患者に提供し、かつ、自動的プログラム改定刺激処方を試行する選択肢を取るか、または、単にリード移動を臨床家に報告するにとどめるか、の表示を患者に提供するようにすることも可能である。臨床家によるプログラム改定は、それが、IPG110からの告知に対する反応であれ、または、患者の苦情に対する反応であれ、通常、外部プログラマー118に、IPG110からのリード移動データに基づいて治療処方を改定させる(または、単に改定を示唆する)ことを含む。それとは別に、リード配置改変は、臨床家がプログラム改定の際に検閲可能とするように記録される。こうすることによって、治療処方のプログラム改定に要する臨床家の時間量(および出費)が低減されるばかりでなく、高価なX線透視過程が必要とされる確率も低減される。
本明細書に開示される発明が、好ましい実施態様に関連づけられて上に記載されたわけであるが、前述の好ましい実施態様に対しては、数多くの改変および/または追加が、当業者であればすぐに明らかであろう。例示として挙げたのであって、それに限定されるものではないが、本発明は、少なくとも一つの神経刺激リードを含む神経刺激システムを含む。本発明の範囲は、上記のような改変および/または追加の全てに広がること、および本発明の範囲は、ただ頭書の特許請求の範囲によってのみ限定されることが意図される。
図1は、本発明の一つの実施態様による神経刺激システムの側面図である。 図1Aは、本発明の一つの実施態様による埋設可能な、パルス発生器の端面図である。 図2は、本発明の一つの実施態様による埋設可能な、パルス発生器の機能的ブロックダイアグラムである。 図3は、図2に描かれる埋設可能パルス発生器によって生成される刺激パルスの描画である。 図4は、本発明の一つの実施態様による埋設可能パルス発生器の機能的ブロックダイアグラムである。 図5は、図4に描かれる埋設可能パルス発生器によって生成される刺激パルスの描画である。 図6A−6Bは、基礎位置および後続位置における例示の埋設可能リードを示す平面図である。 図7は、埋設可能リードが図6Aおよび6Bにおいて描かれる位置にある時に得られるインピーダンス測定値を示すグラフである。 図8A−8Bは、基礎位置および後続位置における例示の埋設可能リードを示す平面図である。 図9Aは、埋設可能リードの内の一つが図8Aおよび8B描かれる位置にある時、該リードにおいて記録される誘発電位測定値を示すグラフである。 図9Bは、埋設可能リードの内の他方が図8Aおよび8B描かれる位置にある時、該リードにおいて記録される誘発電位測定値を示すグラフである。 図10は、本発明による種々の過程を要約するフローチャートである。

Claims (13)

  1. 少なくとも一つのリード電極を含む埋設可能なリードと共に使用される神経刺激システムであって、
    リードコネクターを含むパルス発生器と;
    該リードコネクターに動作可能に接続され、少なくとも一つのリード電極の近傍のアーチファクトデータを測定して、基礎アーチファクトデータ値を定め、かつ、第1の後続の時点において、前記少なくとも一つのリード電極の近傍の組織のアーチファクトデータを測定して、第1の後続アーチファクトデータ値を定め、第2の後続の時点において、第2の後続アーチファクトデータ値を定める回路と;
    前記第1の後続アーチファクトデータ値を前記基礎アーチファクトデータ値と比較することによって、前記埋設可能なリードが移動したかどうかを決定し、かつ、前記基礎アーチファクトデータ値に基づいて傾向的基礎アーチファクトデータ値を生成し、かつ、前記第2の後続アーチファクトデータ値を前記傾向的基礎アーチファクトデータ値と比較することによって、前記埋設可能なリードが移動したかどうかを決定する回路と、
    を具えることを特徴とする神経刺激システム。
  2. 前記アーチファクトデータは、インピーダンスであることを特徴とする請求項1に記載の神経刺激システム。
  3. 前記少なくとも一つのリード電極が複数のリード電極を具え;
    前記測定する回路が、前記複数のリード電極の近傍の組織のインピーダンスを測定して、それぞれの基礎インピーダンス値を定め、かつ、前記第1の後続の時点において、前記複数のリード電極それぞれの近傍の組織のインピーダンスを測定して、第1の後続インピーダンス値を定め、前記第2の後続の時点において、第2の後続インピーダンス値を定める回路を具え;
    前記決定する回路が、前記第1の後続インピーダンス値を前記基礎インピーダンス値と比較することによって、前記埋設可能なリードが移動したかどうかを決定し、前記基礎インピーダンス値に基づいて傾向的基礎インピーダンス値を生成し、かつ、前記第2の後続インピーダンス値を前記傾向的基礎インピーダンス値と比較することによって、前記埋設可能なリードが移動したかどうかを決定するための回路を具えることを特徴とする請求項2に記載の神経刺激システム。
  4. 前記アーチファクトデータは、誘発電位であることを特徴とする請求項1に記載の神経刺激システム。
  5. 前記測定する回路は、埋設可能なリードの第1電極と、第2及び第3電極と関連する基礎誘発電位測定値を得、かつ、前記第1の後続の時点において、第1、第2および第3電極と関連する第1の後続誘発電位測定値を得、前記第2の後続の時点において、第1、第2および第3電極と関連する第2の後続誘発電位測定値を得る回路を有し、
    決定する回路は、埋設可能リードが、前記第1の後続誘発電位測定値を基礎誘発電位測定値に対して比較することによって移動したかどうかを決定し、前記基礎誘発電位測定値に基づいて傾向的基礎誘発電位測定値を生成し、かつ、前記第2の誘発電位測定値を前記傾向的基礎誘発電位測定値と比較することによって、前記埋設可能なリードが移動したかどうかを決定する回路を有することを特徴とする請求項4に記載の神経刺激システム。
  6. 前記決定する回路が、移動の方向および大きさを決定する回路を具えることを特徴とする請求項1に記載の神経刺激システム。
  7. プログラムされた治療処方に従って治療パルスを供給し、前記埋設可能なリードが移動したという決定に応じて該プログラムされた治療処方を調整するための回路をさらに具えることを特徴とする請求項1に記載の神経刺激システム。
  8. 前記少なくとも一つのリード電極が複数のリード電極を具え、
    該複数のリード電極の内のどれが、前記埋設可能なリードが移動したという決定に応じて治療パルスを受容するのかを調整するための回路をさらに具えることを特徴とする請求項7に記載の神経刺激システム。
  9. 傾向的基礎アーチファクトデータ値は、基礎アーチファクトデータ値と、前記第1の続アーチファクトデータ値との間の差に基づくことを特徴とする請求項1に記載の神経刺激システム。
  10. 傾向的基礎アーチファクトデータ値は、前記差が比較的小さい場合には、基礎アーチファクトデータ値を新たな基礎アーチファクトデータ値で置き換えることによって、また、前記差が比較的大きい場合には、基礎アーチファクトデータ値を維持することによって生成されることを特徴とする請求項9に記載の神経刺激システム。
  11. 新たな基礎アーチファクトデータ値は、前記第1の続アーチファクトデータ値であることを特徴とする請求項10に記載の神経刺激システム。
  12. 新たな基礎アーチファクトデータ値は、基礎アーチファクトデータ値と前記第1の続アーチファクトデータ値との平均値であることを特徴とする請求項10に記載の神経刺激システム。
  13. 傾向基礎アーチファクトデータ値は、基礎アーチファクトデータ値と前記第1の続アーチファクトデータ値を含む移動平均であることを特徴とする請求項1記載の神経刺激システム。
JP2008504490A 2005-04-01 2006-03-31 神経刺激リードの位置および移動を検出するための装置および方法 Expired - Fee Related JP5027109B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11/096,662 2005-04-01
US11/096,483 US8131357B2 (en) 2005-04-01 2005-04-01 Apparatus and methods for detecting migration of neurostimulation leads
US11/096,483 2005-04-01
US11/096,662 US8401665B2 (en) 2005-04-01 2005-04-01 Apparatus and methods for detecting position and migration of neurostimulation leads
PCT/US2006/012258 WO2006107848A2 (en) 2005-04-01 2006-03-31 Apparatus and methods for detecting position and migration of neurostimulation leads

Publications (3)

Publication Number Publication Date
JP2008534168A JP2008534168A (ja) 2008-08-28
JP2008534168A5 JP2008534168A5 (ja) 2009-05-21
JP5027109B2 true JP5027109B2 (ja) 2012-09-19

Family

ID=36930271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008504490A Expired - Fee Related JP5027109B2 (ja) 2005-04-01 2006-03-31 神経刺激リードの位置および移動を検出するための装置および方法

Country Status (5)

Country Link
US (5) US8401665B2 (ja)
EP (1) EP1868680B1 (ja)
JP (1) JP5027109B2 (ja)
CA (1) CA2602807C (ja)
WO (1) WO2006107848A2 (ja)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
WO2006011307A1 (ja) * 2004-07-23 2006-02-02 Matsushita Electric Industrial Co., Ltd. 3次元形状描画装置及び3次元形状描画方法
US7660628B2 (en) * 2005-03-23 2010-02-09 Cardiac Pacemakers, Inc. System to provide myocardial and neural stimulation
US8401665B2 (en) 2005-04-01 2013-03-19 Boston Scientific Neuromodulation Corporation Apparatus and methods for detecting position and migration of neurostimulation leads
US8457734B2 (en) * 2006-08-29 2013-06-04 Cardiac Pacemakers, Inc. System and method for neural stimulation
US8892206B1 (en) * 2006-10-25 2014-11-18 Advanced Neuromodulation Systems, Inc. Closed-loop deep brain stimulation system adapted to accommodate glial scarring and method of operation
US8594794B2 (en) 2007-07-24 2013-11-26 Cvrx, Inc. Baroreflex activation therapy with incrementally changing intensity
US8260425B2 (en) 2007-10-12 2012-09-04 Intelect Medical, Inc. Deep brain stimulation system with inputs
US9026206B2 (en) * 2008-10-31 2015-05-05 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US9289613B2 (en) * 2008-10-31 2016-03-22 Medtronic, Inc. Interdevice impedance
US8311639B2 (en) * 2009-07-08 2012-11-13 Nevro Corporation Systems and methods for adjusting electrical therapy based on impedance changes
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
JP2012508611A (ja) 2008-11-13 2012-04-12 プロテウス バイオメディカル インコーポレイテッド 遮蔽された刺激および検出のシステムならびに方法
JP2012508624A (ja) 2008-11-13 2012-04-12 プロテウス バイオメディカル インコーポレイテッド 多重化複数電極神経刺激装置
WO2010056501A1 (en) * 2008-11-14 2010-05-20 Boston Scientific Neuromodulation Corporation Implantable medical device that uses electrical current steering by means of output impedance modulation
EP2403589B1 (en) 2009-02-10 2014-01-22 Nevro Corporation Systems for delivering neural therapy correlated with patient status
EP2756864B1 (en) 2009-04-22 2023-03-15 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
DE202010018338U1 (de) 2009-04-22 2015-10-12 Nevro Corporation Rückenmarksmodulationsystem zur Linderung chronischer Schmerzen
US9399132B2 (en) 2009-06-30 2016-07-26 Boston Scientific Neuromodulation Corporation Method and device for acquiring physiological data during tissue stimulation procedure
US9345878B2 (en) * 2009-06-30 2016-05-24 Boston Scientific Neuromodulation Corporation System and method for compensating for shifting of neurostimulation leads in a patient
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US8233992B2 (en) * 2009-08-28 2012-07-31 Boston Scientific Neuromodulation Corporation Method and apparatus for determining relative positioning between neurostimulation leads
US8676308B2 (en) 2009-11-03 2014-03-18 Boston Scientific Neuromodulation Corporation System and method for mapping arbitrary electric fields to pre-existing lead electrodes
US8412345B2 (en) * 2009-11-03 2013-04-02 Boston Scientific Neuromodulation Corporation System and method for mapping arbitrary electric fields to pre-existing lead electrodes
US20110125224A1 (en) * 2009-11-23 2011-05-26 Boston Scientific Neuromodulation Corporation Neurostimulation system and method for combining current using reconfigurable current sources
US9446231B2 (en) * 2009-11-23 2016-09-20 Boston Scientific Neuromodulation Corporation Neurostimulation system and method for compounding current to minimize current sources
US8099170B2 (en) * 2010-03-19 2012-01-17 Medtronic, Inc. Electrical stimulation based on phase response mapping
US20110257709A1 (en) * 2010-04-20 2011-10-20 Boston Scientific Neuromodulation Corporation Method and apparatus for modifying neurostimulation linear lead shape to correct lead migration
EP2587992A2 (en) * 2010-06-29 2013-05-08 Cardiac Pacemakers, Inc. Lead motion sensing via cable microphonics
US8374692B2 (en) 2010-06-30 2013-02-12 Medtronic, Inc. Identifying a lead related condition based on motion-based lead impedance fluctuations
US8805519B2 (en) 2010-09-30 2014-08-12 Nevro Corporation Systems and methods for detecting intrathecal penetration
US8965482B2 (en) 2010-09-30 2015-02-24 Nevro Corporation Systems and methods for positioning implanted devices in a patient
US8933944B2 (en) 2010-10-13 2015-01-13 Boston Scientific Neuromodulation Corporation External controller for an implantable medical device with dual microcontrollers for improved graphics rendering
AU2011318500B2 (en) * 2010-10-21 2016-03-24 Boston Scientific Neuromodulation Corporation System and method for introducing tissue stimulation lead into patient using real-time coupling efficiency measurements
US9713721B2 (en) 2010-11-10 2017-07-25 Boston Scientific Neuromodulation Corporation System and method for storing application specific and lead configuration information in neurostimulation device
WO2012075198A2 (en) 2010-11-30 2012-06-07 Nevro Corporation Extended pain relief via high frequency spinal cord modulation, and associated systems and methods
AU2012304370B2 (en) 2011-09-08 2016-01-28 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
EP2763743A4 (en) 2011-10-04 2015-08-05 Nevro Corp MODELING POSITIONS OF DEVICES IMPLEMENTED IN A PATIENT
US9814884B2 (en) 2011-11-04 2017-11-14 Nevro Corp. Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes
US20130150918A1 (en) 2011-12-08 2013-06-13 Boston Scientific Neuromodulation Corporation System and method for automatically training a neurostimulation system
WO2013138305A2 (en) 2012-03-16 2013-09-19 Boston Scientific Neuromodulation Corporation System and method for estimating location and depth of stimulation leads
US8676331B2 (en) 2012-04-02 2014-03-18 Nevro Corporation Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection
CN104684614B (zh) 2012-06-21 2017-10-17 西蒙·弗雷泽大学 经血管的膈膜起搏系统及使用方法
US9833614B1 (en) 2012-06-22 2017-12-05 Nevro Corp. Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods
EP2866888B1 (en) * 2012-06-30 2018-11-07 Boston Scientific Neuromodulation Corporation System for compounding low-frequency sources for high-frequency neuromodulation
US9572990B2 (en) 2012-07-11 2017-02-21 Medtronic, Inc. System and method for identifying lead dislodgement
EP2877240B1 (en) 2012-07-25 2016-05-18 Cardiac Pacemakers, Inc. Electrode displacement detection
JP6001174B2 (ja) 2012-07-27 2016-10-05 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Mri前と後の電極条件及び電極周囲組織導電性の変化を電子的に評価する技術
CN104582790B (zh) * 2012-08-16 2016-12-07 心脏起搏器股份公司 用于可植入医疗装置的治疗递送体系架构
US9089705B2 (en) * 2012-12-07 2015-07-28 Boston Scientific Neuromodulation Corporation Neurostimulation system with three-dimensional lead migration detection and automatic neurostimulation correction
US9895538B1 (en) 2013-01-22 2018-02-20 Nevro Corp. Systems and methods for deploying patient therapy devices
US9295840B1 (en) 2013-01-22 2016-03-29 Nevro Corporation Systems and methods for automatically programming patient therapy devices
US9731133B1 (en) 2013-01-22 2017-08-15 Nevro Corp. Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices
US11207522B2 (en) 2013-01-25 2021-12-28 Medtronic, Inc. Notification indicative of a change in efficacy of therapy
US9533148B2 (en) * 2013-02-22 2017-01-03 Boston Scientific Neuromodulation Corporation Neurostimulation system and method for automatically adjusting stimulation and reducing energy requirements using evoked action potential
US9895539B1 (en) 2013-06-10 2018-02-20 Nevro Corp. Methods and systems for disease treatment using electrical stimulation
WO2015049966A1 (ja) * 2013-10-02 2015-04-09 オリンパス株式会社 神経刺激電極の移動検知方法、神経刺激電極、および神経刺激システム
US10149978B1 (en) 2013-11-07 2018-12-11 Nevro Corp. Spinal cord modulation for inhibiting pain via short pulse width waveforms, and associated systems and methods
EP3566743B1 (en) * 2014-01-21 2021-03-10 Lungpacer Medical Inc. Systems for optimization of multi-electrode nerve pacing
US9421379B2 (en) 2014-02-25 2016-08-23 Boston Scientific Neuromodulation Corporation Neuromodulation system incorporating multivariate sensing, multivariable pattern recognition, and patient specific adaptation
US9381357B2 (en) * 2014-04-14 2016-07-05 Pacesetter, Inc. Methods and systems for monitoring electrical stimulation using paddle lead
AU2015264561B2 (en) 2014-05-20 2020-02-20 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9302112B2 (en) * 2014-06-13 2016-04-05 Pacesetter, Inc. Method and system for non-linear feedback control of spinal cord stimulation
EP3188792B1 (en) 2014-09-02 2021-11-24 Cochlear Limited Intra-cochlear stimulating assembly insertion
WO2016035026A1 (en) 2014-09-02 2016-03-10 Cochlear Limited Event detection in an implantable auditory prosthesis
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
EP3777964A1 (en) 2015-02-16 2021-02-17 Newronika S.p.A. Apparatus for treating neurological disorders
JP6626256B2 (ja) * 2015-02-24 2019-12-25 アドリアカイム株式会社 神経刺激電極の移動検知方法および神経刺激システム
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US10052490B2 (en) 2015-06-09 2018-08-21 Nuvectra Corporation Systems, methods, and devices for performing electronically controlled test stimulation
US9750946B2 (en) 2015-06-09 2017-09-05 Nuvectra Corporation Systems, methods, and devices for evaluating lead placement based on generated visual representations of sacrum and lead
US10076667B2 (en) 2015-06-09 2018-09-18 Nuvectra Corporation System and method of performing computer assisted stimulation programming (CASP) with a non-zero starting value customized to a patient
US9872988B2 (en) * 2015-06-09 2018-01-23 Nuvectra Corporation Systems, methods, and devices for evaluating lead placement based on patient physiological responses
US9669227B2 (en) 2015-06-09 2017-06-06 Nuvectra Corporation Systems, methods, and devices for generating arbitrary stimulation waveforms
JP2018517517A (ja) * 2015-06-16 2018-07-05 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate 涙産生刺激用の鼻涙インプラント及び関連方法
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US10300277B1 (en) 2015-12-14 2019-05-28 Nevro Corp. Variable amplitude signals for neurological therapy, and associated systems and methods
AU2017211121B2 (en) 2016-01-25 2022-02-24 Nevro Corp. Treatment of congestive heart failure with electrical stimulation, and associated systems and methods
US10376702B2 (en) 2016-04-04 2019-08-13 Boston Scientific Neuromodulation Corporation System to estimate the location of a spinal cord physiological midline
US10149979B2 (en) * 2016-04-04 2018-12-11 Boston Scientific Neuromodulation Corporation System to estimate the location of a spinal cord physiological midline
WO2018165391A1 (en) 2017-03-09 2018-09-13 Nevro Corp. Paddle leads and delivery tools, and associated systems and methods
EP3727568A1 (en) * 2017-12-20 2020-10-28 Galvani Bioelectronics Limited Neural interface device for stimulation of a nerve and measuring impedance
EP3737459A4 (en) 2018-01-30 2021-10-20 Nevro Corp. EFFICIENT USE OF AN IMPLANTABLE PULSE GENERATOR BATTERY AND RELATED SYSTEMS AND PROCEDURES
IT201800002962A1 (it) 2018-02-22 2019-08-22 Newronika Srl Apparato per il trattamento di disordini neurologici mediante elettrostimolazione e metodo di elaborazione del segnale neurologico raccolto da detto apparato
EP3758793A4 (en) 2018-03-29 2021-12-08 Nevro Corp. PIPES WITH SIDE PANEL OPENINGS AND ASSOCIATED SYSTEMS AND PROCEDURES
US11058875B1 (en) 2018-09-19 2021-07-13 Nevro Corp. Motor function in spinal cord injury patients via electrical stimulation, and associated systems and methods
US11318309B2 (en) 2018-12-13 2022-05-03 Newronika S.P.A. Method and apparatus for treating Tourette Syndrome by brain stimulation
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
EP3962584A1 (en) * 2019-04-30 2022-03-09 Boston Scientific Neuromodulation Corporation Adjustment of stimulation in response to electrode array movement in a spinal cord stimulator system
US20200368534A1 (en) * 2019-05-23 2020-11-26 Axonics Modulation Technologies, Inc. Low energy implantable devices and methods of use
EP3797823B1 (en) * 2019-09-24 2023-10-25 Imec VZW An electrode arrangement for stimulating and recording electrical signals in biological matter, a neural probe and a micro-electrode array
US11554264B2 (en) 2020-04-24 2023-01-17 Medtronic, Inc. Electrode position detection
US11813458B2 (en) 2021-03-18 2023-11-14 Boston Scientific Neuromodulation Corporation Methods and systems for target localization and DBS therapy

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646940A (en) 1969-07-15 1972-03-07 Univ Minnesota Implantable electronic stimulator electrode and method
US3724467A (en) * 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
US3822708A (en) 1972-12-07 1974-07-09 Clinical Technology Corp Electrical spinal cord stimulating device and method for management of pain
US4552150A (en) 1983-06-14 1985-11-12 Fred Zacouto Method and apparatus to assist cardiac muscle functioning
US4735204A (en) * 1984-09-17 1988-04-05 Cordis Corporation System for controlling an implanted neural stimulator
EP0334675B2 (en) 1988-03-25 2002-03-27 Telectronics N.V. Rate-responsive pacemaker with closed-loop control
US5184624A (en) * 1988-04-15 1993-02-09 The University Of Sheffield Electrical impedance tomography
US4911174A (en) * 1989-02-13 1990-03-27 Cardiac Pacemakers, Inc. Method for matching the sense length of an impedance measuring catheter to a ventricular chamber
US5201865A (en) * 1991-10-28 1993-04-13 Medtronic, Inc. Medical lead impedance measurement system
US5333618A (en) * 1993-06-30 1994-08-02 Gregory Lekhtman Portable self-contained instrument for the measurement of nerve resistance of a patient
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US6913763B2 (en) 1996-11-19 2005-07-05 Intrabrain International Nv Method and device for enhanced delivery of a biologically active agent through the spinal spaces into the central nervous system of a mammal
US5735887A (en) 1996-12-10 1998-04-07 Exonix Corporation Closed-loop, RF-coupled implanted medical device
US5895416A (en) * 1997-03-12 1999-04-20 Medtronic, Inc. Method and apparatus for controlling and steering an electric field
US5814088A (en) 1997-03-26 1998-09-29 Sulzer Intermedics Inc. Cardiac stimulator with lead failure detector and warning system
US6050267A (en) * 1997-04-28 2000-04-18 American Cardiac Ablation Co. Inc. Catheter positioning system
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
WO2000000251A1 (en) 1998-06-26 2000-01-06 Advanced Bionics Corporation Programmable current output stimulus stage for implantable device
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
US6052624A (en) 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6393325B1 (en) * 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6721600B2 (en) 2000-01-19 2004-04-13 Medtronic, Inc. Implantable lead functional status monitor and method
US6353762B1 (en) * 1999-04-30 2002-03-05 Medtronic, Inc. Techniques for selective activation of neurons in the brain, spinal cord parenchyma or peripheral nerve
US6195584B1 (en) 1999-04-30 2001-02-27 Medtronic, Inc. Method and apparatus for determining atrial lead dislocation
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6381496B1 (en) * 1999-10-01 2002-04-30 Advanced Bionics Corporation Parameter context switching for an implanted device
WO2001043818A1 (en) * 1999-12-17 2001-06-21 Advanced Bionics Corporation Magnitude programming for implantable electrical stimulator
US6609029B1 (en) 2000-02-04 2003-08-19 Advanced Bionics Corporation Clip lock mechanism for retaining lead
US6741892B1 (en) * 2000-03-10 2004-05-25 Advanced Bionics Corporation Movable contact locking mechanism for spinal cord stimulator lead connector
US6490486B1 (en) * 2000-04-27 2002-12-03 Pacesetter, Inc. Implantable cardiac stimulation device and method that monitors displacement of an implanted lead
US20010049543A1 (en) 2000-05-15 2001-12-06 Kroll Mark W. Method and apparatus for biventricular stimulation and capture monitoring
ES2318238T3 (es) 2000-07-26 2009-05-01 Boston Scientific Neuromodulation Corporation Sistema de estimulacion.
US6662053B2 (en) * 2000-08-17 2003-12-09 William N. Borkan Multichannel stimulator electronics and methods
US6845267B2 (en) 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US7283874B2 (en) * 2000-10-16 2007-10-16 Remon Medical Technologies Ltd. Acoustically powered implantable stimulating device
US6675049B2 (en) * 2001-07-17 2004-01-06 Medtronic, Inc. Method and apparatus for automatic implantable medical lead recognition and configuration
IL160654A0 (en) 2001-08-28 2004-07-25 Medtronic Inc Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation
US6993384B2 (en) 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US7239920B1 (en) 2002-02-12 2007-07-03 Advanced Bionics Corporation Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes
US20030153959A1 (en) * 2002-02-12 2003-08-14 Thacker James R. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed coupling efficiency
US7047083B2 (en) * 2002-09-30 2006-05-16 Medtronic, Inc. Method and apparatus for identifying lead-related conditions using lead impedance measurements
WO2004052451A1 (en) * 2002-12-06 2004-06-24 Advanced Bionics Corporation Method for determining stimulation parameters
WO2005007238A1 (en) 2003-07-18 2005-01-27 Campbell James N Treatment of pain
US7582062B2 (en) * 2003-09-12 2009-09-01 Medical Research Council Methods of neural centre location and electrode placement in the central nervous system
US7412287B2 (en) 2003-12-22 2008-08-12 Cardiac Pacemakers, Inc. Automatic sensing vector selection for morphology-based capture verification
US7664550B2 (en) * 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US8401665B2 (en) 2005-04-01 2013-03-19 Boston Scientific Neuromodulation Corporation Apparatus and methods for detecting position and migration of neurostimulation leads
US7479511B2 (en) 2005-04-12 2009-01-20 Sun Chemical Corporation Water based energy curable hybrid systems with improved properties

Also Published As

Publication number Publication date
EP1868680A2 (en) 2007-12-26
CA2602807A1 (en) 2006-10-12
WO2006107848A3 (en) 2006-12-21
US9067075B2 (en) 2015-06-30
US8131357B2 (en) 2012-03-06
EP1868680B1 (en) 2018-12-26
US8718757B2 (en) 2014-05-06
CA2602807C (en) 2014-03-18
JP2008534168A (ja) 2008-08-28
US20060224187A1 (en) 2006-10-05
US8972023B2 (en) 2015-03-03
US20060224222A1 (en) 2006-10-05
US8401665B2 (en) 2013-03-19
US20120136411A1 (en) 2012-05-31
WO2006107848A2 (en) 2006-10-12
US20140214131A1 (en) 2014-07-31
US20130184798A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5027109B2 (ja) 神経刺激リードの位置および移動を検出するための装置および方法
US11951300B2 (en) Automatic lead identification using electric field fingerprinting
US10420940B2 (en) System and method for computationally determining migration of neurostimulation leads
US9713720B2 (en) Neurostimulation system with three-dimensional lead migration detection and automatic neurostimulation correction
US8594785B2 (en) Neurostimulation system and method for measuring patient activity
US7853330B2 (en) Apparatus and method for determining the relative position and orientation of neurostimulation leads
JP5663021B2 (ja) 神経刺激リード間の相対的位置決めを判断する方法及び装置
US9421379B2 (en) Neuromodulation system incorporating multivariate sensing, multivariable pattern recognition, and patient specific adaptation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees