JP5025965B2 - Inertial sensor element - Google Patents

Inertial sensor element Download PDF

Info

Publication number
JP5025965B2
JP5025965B2 JP2006047906A JP2006047906A JP5025965B2 JP 5025965 B2 JP5025965 B2 JP 5025965B2 JP 2006047906 A JP2006047906 A JP 2006047906A JP 2006047906 A JP2006047906 A JP 2006047906A JP 5025965 B2 JP5025965 B2 JP 5025965B2
Authority
JP
Japan
Prior art keywords
leg
axis
sensor element
inertial sensor
tuning fork
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006047906A
Other languages
Japanese (ja)
Other versions
JP2006267094A (en
Inventor
元康 判治
良太 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006047906A priority Critical patent/JP5025965B2/en
Publication of JP2006267094A publication Critical patent/JP2006267094A/en
Application granted granted Critical
Publication of JP5025965B2 publication Critical patent/JP5025965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、航空機、船舶、自動車などの姿勢制御や位置検出、カメラの手振れ補正などに用いる慣性センサに関するものである。   The present invention relates to an inertial sensor used for attitude control, position detection, camera shake correction, and the like of an aircraft, a ship, an automobile, and the like.

慣性センサには様々な種類があるが、組み込むために薄く小型にし、且つ軽量にするという要求を満たすものとして、振動型の角速度センサがある。従来よりある振動型の慣性センサは、四角柱を振動させて回転に伴って働くコリオリの力を検出するものである。   There are various types of inertial sensors, but there is a vibration type angular velocity sensor that satisfies the requirement of being thin, small and lightweight for incorporation. A conventional vibration type inertial sensor detects a Coriolis force that works with rotation by vibrating a quadrangular prism.

このような従来の慣性センサの一例として、音叉型振動素子を用いたものがある(特許文献1又は2を参照)。また、回転軸に対して交差する面内に延在する複数の支持部と、核支持部の先端に支持された複数の屈曲振動片とを備えた振動素子も提案されている(特許文献3を参照)。特許文献2に開示の振動素子によれば、上記面内の回転速度が検出でき、ジャイロスコープの低背化を可能としている。   As an example of such a conventional inertial sensor, there is one using a tuning fork type vibration element (see Patent Document 1 or 2). There has also been proposed a vibration element including a plurality of support portions extending in a plane intersecting the rotation axis and a plurality of flexural vibration pieces supported at the tips of the nuclear support portions (Patent Document 3). See). According to the vibration element disclosed in Patent Document 2, the in-plane rotation speed can be detected, and the gyroscope can be made low-profile.

一方、検出すべき運動の自由度に多軸化が求められるようになり、直交する2軸または3軸の各成分(角速度)を検出する角速度センサが提案されている。例えば、振動素子により3軸化を図ろうとする場合、角速度の検出原理であるコリオリの力を3軸のすべてについて発生させることになるため、素子は、駆動変位として少なくとも直交する2方向成分を有する必要がある。これを実現する技術として、1つの慣性体要素を直交した2相駆動により円運動させる方式が提案されている(非特許文献1参照)。   On the other hand, multi-axiality is required for the degree of freedom of motion to be detected, and an angular velocity sensor that detects each component (angular velocity) of two or three axes that are orthogonal has been proposed. For example, when three axes are to be achieved by a vibration element, Coriolis force, which is an angular velocity detection principle, is generated for all three axes, so the element has at least two orthogonal components as drive displacements. There is a need. As a technique for realizing this, a method in which one inertial body element is circularly moved by orthogonal two-phase driving has been proposed (see Non-Patent Document 1).

上記のような慣性センサ素子については、以下のような先行技術文献情報が開示されている。
特開平8−128833号公報 特開平10−047970号公報 特開平11−281372号公報 田村英樹、市村敏也、富川義朗 「2相駆動による3軸角速度検出ジャイロセンサ」、超音波TECHNO、2002.1−2、p.6−13、(2002−01)
Regarding the inertial sensor element as described above, the following prior art document information is disclosed.
JP-A-8-128833 JP-A-10-047970 JP-A-11-281372 Hideki Tamura, Toshiya Ichimura, Yoshiro Tomikawa “3-axis angular velocity detection gyro sensor by two-phase drive”, ultrasonic TECHNO, 2002.1-2, p. 6-13, (2002-01)

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。   The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.

以上に説明したように、従来では、複数の振動素子を組み合わせることで、直交する空間軸の内の2軸(例えば2次元のX軸及びY軸)あるいは3軸(例えば3次元のX軸、Y軸及びZ軸)の各成分を検出するようにしているため、多軸角速度センサの構成が複雑化し、素子を作成することが煩雑になるという問題があった。また1つの慣性体要素を直交した2相駆動により円運動させる方式では、圧電振動材料の板(振動素子)に均整な円運動を与えることが困難であり、他軸信号との直交性が乱れ、異なる成分の信号の分離が容易ではないという問題があった。   As described above, conventionally, by combining a plurality of vibration elements, two of the orthogonal space axes (for example, the two-dimensional X axis and the Y axis) or three axes (for example, the three-dimensional X axis, Since each component of the Y axis and the Z axis) is detected, there is a problem that the configuration of the multi-axis angular velocity sensor is complicated and it is complicated to create an element. In addition, in the method in which one inertial body element is circularly moved by orthogonal two-phase driving, it is difficult to give a uniform circular motion to the plate (vibrating element) of the piezoelectric vibration material, and the orthogonality with other axis signals is disturbed. There is a problem that separation of signals of different components is not easy.

本発明は、以上のような問題点を解消するためになされたものであり、簡易に形成可能な形状の慣性センサ素子により、空間軸方向の内2軸以上の方向の角速度が検出できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an inertial sensor element having a shape that can be easily formed can detect angular velocities in two or more of the spatial axis directions. The purpose is to do.

上記課題を解決するために本発明に係る慣性センサ素子は、、基部と、この基部の一辺より延設された角柱状の第1脚部及び第2脚部を有する第1の音叉振動部と、この第1の音叉振動部に対し基部を挟んで180°対向する基部の一辺より延設された角柱状の第3脚部及び第4脚部を有する第2の音叉振動部と、第1の音叉振動部に対し基部を挟んで90°の位置の基部の一辺より延設された角柱状の第5脚部及び第6脚部とを有する第3の音叉振動部と、この第3の音叉振動部に対し基部を挟んで180°対向する基部の一辺より延設された角柱状の第7脚部及び第8脚部を有する第4の音叉振動部から構成され、基部,第1の音叉振動部,第2の音叉振動部,第3の音叉振動部及び第4の音叉振動部が圧電材により一体で形成されており、第1脚部及び第2脚部に各々設けられた第1の励振電極と、第3脚部及び第4脚部に各々設けられた第1の励振電極による屈曲振動が駆動されている状態で第3脚部及び第4脚部が延在する方向のY軸を中心とした慣性センサ素子の回転により起こる第1振動を検出するための第1の検出電極と、第5脚部及び第6脚部に各々設けられた第2の励振電極と、第7脚部及び第8脚部に各々設けられて第2の励振電極による屈曲振動が駆動されている状態で第7脚部及び第8脚部が配設された平面のX軸を中心とした慣性センサ素子の回転により起こる第2振動を検出するための第2の検出電極とを備えていることを特徴とする上記記載の慣性センサ素子でもある。 In order to solve the above-described problems, an inertial sensor element according to the present invention includes: a base; a first tuning fork vibration part having a prismatic first leg part and a second leg part extending from one side of the base part; A second tuning fork vibrating part having a prismatic third leg part and a fourth leg part extending from one side of the base part opposed to the first tuning fork vibrating part by 180 ° across the base part; A third tuning fork vibration part having a prismatic fifth leg part and a sixth leg part extending from one side of the base part at a position of 90 ° across the base part with respect to the tuning fork vibration part, The tuning fork vibrating portion is composed of a fourth tuning fork vibrating portion having a prismatic seventh leg portion and an eighth leg portion extending from one side of the base portion that is 180 ° opposite to the tuning fork vibrating portion. The tuning fork vibration part, the second tuning fork vibration part, the third tuning fork vibration part, and the fourth tuning fork vibration part are integrally formed of a piezoelectric material. The bending vibration is driven by the first excitation electrodes provided on the first leg and the second leg and the first excitation electrodes provided on the third leg and the fourth leg, respectively. The first detection electrode for detecting the first vibration caused by the rotation of the inertial sensor element around the Y axis in the direction in which the third leg portion and the fourth leg portion extend, the fifth leg portion, A second excitation electrode provided on each of the six legs, and a seventh leg and an eighth in a state where bending vibration is driven by the second excitation electrode provided on each of the seventh and eighth legs. And a second detection electrode for detecting a second vibration caused by the rotation of the inertial sensor element about the X axis of the plane on which the eight legs are disposed. It is also a sensor element.

、上記記載の慣性センサ素子において、第1脚部、第2脚部、第5脚部及び第6脚部には脚部長さ方向に延びるX軸方向の主面間を貫通する貫通穴を有しており、この貫通穴の穴内の長さ方向の2つの側面には、電気的極性が同極となる電極が各々形成され、且つ貫通穴内の各々の側面と対向するよう形成した各々の脚部外側面の電極が、貫通穴内の各々の側面に形成した電極と電気的極性が異なる電極が形成されていることを特徴とする慣性センサ素子でもある。 In the inertial sensor element described above, the first leg, the second leg, the fifth leg, and the sixth leg are provided with through-holes passing through the principal surfaces in the X-axis direction extending in the leg length direction. The electrodes having the same electrical polarity are formed on the two side surfaces in the length direction of the through hole, and each of the electrodes formed so as to face each side surface in the through hole. The electrode on the outer side of the leg is also an inertial sensor element characterized in that an electrode having an electrical polarity different from that of the electrode formed on each side surface in the through hole is formed.

以上説明したように、本発明の慣性センサ素子により、2軸以上の空間軸方向の角速度が、作成が簡易な形状の一素子で検出できるようになるという優れた効果が得られる。   As described above, the inertial sensor element of the present invention provides an excellent effect that the angular velocity in the spatial axis direction of two or more axes can be detected with one element having a simple shape.

以下、本発明の実施の形態について各図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明おける慣性センサ素子を、慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。図2は、図1に示した各仮想切断線で切断した場合の断面図を各々示し、図2(a)は仮想切断線a−a′,図2(b)は仮想切断線b−b′,図2(c)は仮想切断線c−c′及び図2(d)は仮想切断線d−d′に各々対応している。尚、図面の各図は、説明を明りょうにするため部品又は構成体の一部を図示していない。特に図1,図4及び図6には慣性センサ素子の外観形状を明りょうに図示するため慣性センサ素子表面に形成してある電極を図示していない。又、図面内の各寸法も一部誇張して図示しており、各図において同一の符号は同様の対象を示すものとする。   FIG. 1 is a perspective view illustrating an example of an external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 2A and 2B are cross-sectional views taken along the virtual cutting lines shown in FIG. 1, respectively. FIG. 2A shows a virtual cutting line aa ′ and FIG. 2B shows a virtual cutting line bb. 2 (c) corresponds to the virtual cutting line cc 'and FIG. 2 (d) corresponds to the virtual cutting line dd'. In addition, each figure of drawing does not show a part of components or a structure for clarity of explanation. In particular, FIGS. 1, 4 and 6 do not show the electrodes formed on the surface of the inertial sensor element in order to clearly show the appearance of the inertial sensor element. In addition, each dimension in the drawings is partially exaggerated, and the same reference numerals denote the same objects in each figure.

図1に示す慣性センサ素子100は、構成部材として水晶からなり、基部101より一方に延在(図8中のYl方向に延在)して配設された第1脚部102及び第2脚部103から構成される第1の音叉振動部110と、基部101を挟んで110は反対の方向に基部101より延在(図8中のY′1方向に延在)して配設された第3脚部104及び第4脚部105から構成される第2の音叉振動部111とを備え、更に慣性センサ素子100の同一主面内で、110及び第2の音叉振動部111が設けられた基部101の2側面と垂直に交わる2面の一方に、第5脚部106(図8中のY′3方向に延在)及び第6脚部107(図8中のY2方向に延在)から構成される第3の音叉振動部112を、もう一方の側面に第7脚部108(図8中のY′2方向に延在)及び第8脚部109(図8中のY3方向に延在)から構成される第4の音叉振動部113から構成されている。各々の脚部は、角柱状に形成されている。また、慣性センサ素子100は、基部101の側面部で外部のパッケージなどに固定(支持)される。また、素子の構成部材としては実施例の水晶に限らず他の圧電材料から慣性センサ素子を構成してもよい。   The inertial sensor element 100 shown in FIG. 1 is made of quartz as a constituent member, and extends from the base 101 to one side (extends in the Yl direction in FIG. 8) and is arranged with a first leg 102 and a second leg. The first tuning fork vibrating part 110 composed of the part 103 and the base part 101 are disposed so as to extend from the base part 101 in the opposite direction (extending in the Y′1 direction in FIG. 8). A second tuning fork vibrating portion 111 composed of a third leg portion 104 and a fourth leg portion 105, and 110 and a second tuning fork vibrating portion 111 are provided in the same main surface of the inertial sensor element 100. The fifth leg 106 (extending in the Y'3 direction in FIG. 8) and the sixth leg 107 (extending in the Y2 direction in FIG. 8) are provided on one of the two surfaces perpendicular to the two side surfaces of the base 101. The third tuning fork vibrating part 112 constituted by the seventh leg 108 (see FIG. 8) on the other side surface. And a fourth fork vibrating unit 113 consists Y'2 direction extending) and eighth leg 109 (extending in the Y3 direction in FIG. 8) of the. Each leg is formed in a prismatic shape. The inertial sensor element 100 is fixed (supported) to an external package or the like on the side surface of the base 101. Further, the component member of the element is not limited to the quartz crystal of the embodiment, and the inertial sensor element may be composed of other piezoelectric materials.

慣性センサ素子100は、水晶結晶軸の電気軸、機械軸に対してそれぞれ0°乃至15°回転し、光軸を法線とする水晶板から切り出すことで形成する。各図中の方位線X1は、電気軸より所定角度回転した軸であり、方位線Y1は、機械軸より所定角度回転した軸であり、方位線Zは光軸とほぼ一致した軸である。   The inertial sensor element 100 is formed by rotating from 0 ° to 15 ° with respect to the electrical axis and mechanical axis of the crystal crystal axis and cutting out from the crystal plate having the optical axis as a normal line. The azimuth line X1 in each figure is an axis rotated by a predetermined angle from the electrical axis, the azimuth line Y1 is an axis rotated by a predetermined angle from the mechanical axis, and the azimuth line Z is an axis substantially coincident with the optical axis.

慣性センサ素子100は水晶から構成されており、水晶は光軸に対して3回対称構造であるので、第5脚部106(Y′3方向),第6脚部107(Y2方向),第7脚部108(Y′2方向)及び第8脚部109(Y3方向)は、第1脚部102,第2脚部103,第3脚部104及び第4脚部105が延在している方向Y1−Y′1軸から、120゜回転した方向(Y2−Y′2)と、−120度回転した方向(Y3−Y′3)に延在している。更に第5脚部106,第6脚部107,第7脚部108及び第8脚部109の各々の先端部は、X1軸と平行な方向に更に延長している。   The inertial sensor element 100 is made of quartz, and the quartz has a three-fold symmetry structure with respect to the optical axis, so that the fifth leg 106 (Y′3 direction), the sixth leg 107 (Y2 direction), the first The seventh leg 108 (Y′2 direction) and the eighth leg 109 (Y3 direction) are formed by extending the first leg 102, the second leg 103, the third leg 104, and the fourth leg 105. The direction Y1-Y′1 extends in the direction rotated by 120 ° (Y2-Y′2) and the direction rotated by −120 degrees (Y3-Y′3). Further, the distal end portions of the fifth leg portion 106, the sixth leg portion 107, the seventh leg portion 108, and the eighth leg portion 109 further extend in a direction parallel to the X1 axis.

即ち、慣性センサ素子100において、第5脚部106,第6脚部107,第7脚部108及び第8脚部109は、慣性センサ素子100を形成する圧電材料の結晶軸の対称性に依存しており、厚み方向の軸に対して3回対称の結晶材料の場合であると、第5脚部106及び第8脚部109は、第1脚部102,第2脚部103,第3脚部104及び第4脚部105とは時計廻りに120度回転した軸上に延在しており、第6脚部107及び第7脚部108は、第1脚部102,第2脚部103,第3脚部104及び第4脚部105とは反時計廻りに120度回転した軸上に延在している。また、慣性センサ素子100を形成する圧電材料が厚み方向の軸に対して4回対称の結晶材料の場合であると、第5脚部106,第6脚部107,第7脚部108及び第8脚部109は、第1脚部102,第2脚部103,第3脚部104及び第4脚部105とは垂直となる方向に延在している。   That is, in the inertial sensor element 100, the fifth leg 106, the sixth leg 107, the seventh leg 108 and the eighth leg 109 depend on the symmetry of the crystal axis of the piezoelectric material forming the inertial sensor element 100. In the case of a crystal material that is three times symmetrical with respect to the axis in the thickness direction, the fifth leg portion 106 and the eighth leg portion 109 are the first leg portion 102, the second leg portion 103, the third leg portion, The leg 104 and the fourth leg 105 extend on a shaft rotated 120 degrees clockwise, and the sixth leg 107 and the seventh leg 108 are the first leg 102 and the second leg, respectively. 103, the third leg 104, and the fourth leg 105 extend on a shaft rotated 120 degrees counterclockwise. In addition, when the piezoelectric material forming the inertial sensor element 100 is a crystal material that is four times symmetrical with respect to the axis in the thickness direction, the fifth leg portion 106, the sixth leg portion 107, the seventh leg portion 108, and the The eight legs 109 extend in a direction perpendicular to the first leg 102, the second leg 103, the third leg 104, and the fourth leg 105.

又、第1脚部102の延在方向の中心軸と第3脚部104の延在方向の中心軸は一致し、第2脚部103の延在方向の中心軸と第4脚部105の延在方向の中心軸は一致する。このように構成された各脚部において、まず、第1脚部102にはY軸励振電極121,122,123及び124が設けられ、第2脚部103にはY軸励振電極131,132,133及び134が設けられている。また、第3脚部104にはY軸検出電極141,142,143及び144が設けられ、第4脚部105にはY軸検出電極151,152,153及び154が設けられている。加えて、第5脚部106にはX軸励振電極161,162,163及び164が設けられ、第6脚部107にはX軸励振電極171,172,173及び174が設けられている。また、第7脚部108にはX軸検出電極181,182,183及び184が設けられ、第8脚部109にはX軸検出電極191,192,193及び194が設けられている。   In addition, the central axis in the extending direction of the first leg portion 102 and the central axis in the extending direction of the third leg portion 104 coincide with each other, and the central axis in the extending direction of the second leg portion 103 and the fourth leg portion 105. The central axes in the extending direction coincide. In each leg portion configured in this manner, first, the first leg portion 102 is provided with Y-axis excitation electrodes 121, 122, 123, and 124, and the second leg portion 103 is provided with Y-axis excitation electrodes 131, 132, 133 and 134 are provided. The third leg 104 is provided with Y-axis detection electrodes 141, 142, 143, and 144, and the fourth leg 105 is provided with Y-axis detection electrodes 151, 152, 153, and 154. In addition, the fifth leg portion 106 is provided with X-axis excitation electrodes 161, 162, 163, and 164, and the sixth leg portion 107 is provided with X-axis excitation electrodes 171, 172, 173, and 174. The seventh leg portion 108 is provided with X-axis detection electrodes 181, 182, 183 and 184, and the eighth leg portion 109 is provided with X-axis detection electrodes 191, 192, 193 and 194.

第1脚部102及び第2脚部103において、Y軸の励振電極121,123,132及び134は同じ電気的極性(以下、同極という)とし、Y軸励振端子E11に接続され、Y軸の励振電極122,124,131及び133は同極とし、Y軸励振端子E12に接続される。第3脚部104及び第4脚部105において、Y軸の検出電極141,144,152及び153は同極とし、Y軸検出端子E13に接続され、Y軸の検出電極142,143,151及び154は同極とし、Y軸検出端子E14に接続される。第5脚部106及び第6脚部107において、X軸の励振電極161,163,171及び173は同極とし、X軸励振端子E15に接続され、X軸の励振電極162,164,172及び174は同極とし、X軸励振端子E16に接続される。第7脚部108及び第8脚部109において、X軸の検出電極181,184,191及び194は同極とし、X軸検出端子E17に接続され、X軸の検出電極182,183,192及び193は同極とし、X軸検出端子E18に接続される。   In the first leg 102 and the second leg 103, the Y-axis excitation electrodes 121, 123, 132, and 134 have the same electrical polarity (hereinafter referred to as the same polarity) and are connected to the Y-axis excitation terminal E11. The excitation electrodes 122, 124, 131 and 133 have the same polarity and are connected to the Y-axis excitation terminal E12. In the third leg 104 and the fourth leg 105, the Y-axis detection electrodes 141, 144, 152, and 153 have the same polarity and are connected to the Y-axis detection terminal E13, and the Y-axis detection electrodes 142, 143, 151, and 154 has the same polarity and is connected to the Y-axis detection terminal E14. In the fifth leg 106 and the sixth leg 107, the X-axis excitation electrodes 161, 163, 171 and 173 have the same polarity and are connected to the X-axis excitation terminal E15, and the X-axis excitation electrodes 162, 164, 172 and 174 has the same polarity and is connected to the X-axis excitation terminal E16. In the seventh leg portion 108 and the eighth leg portion 109, the X-axis detection electrodes 181, 184, 191 and 194 have the same polarity and are connected to the X-axis detection terminal E17, and the X-axis detection electrodes 182, 183, 192 and 193 has the same polarity and is connected to the X-axis detection terminal E18.

このような電極構成の慣性センサ素子では、例えば、図3に示すように、Y軸励振端子E11及びY軸励振端子E12は、発振回路301に接続し、発振回路301により第1脚部102及び第2脚部103に屈曲振動が駆動される。また、Y軸検出端子E13及びY軸検出端子E14は、差動増幅回路302に接続されている。また、発振回路301の駆動周波数に基づいた基準位相信号が、位相回路303から出力される。   In the inertial sensor element having such an electrode configuration, for example, as shown in FIG. 3, the Y-axis excitation terminal E11 and the Y-axis excitation terminal E12 are connected to the oscillation circuit 301. Bending vibration is driven by the second leg portion 103. The Y-axis detection terminal E13 and the Y-axis detection terminal E14 are connected to the differential amplifier circuit 302. A reference phase signal based on the drive frequency of the oscillation circuit 301 is output from the phase circuit 303.

差動増幅回路302には、測定すべき角速度に基づいて発生した検出信号が各々入力される。入力された検出信号は、差動増幅回路302により増幅されて同期検波回路304に出力される。同期検波回路304は、位相回路303の出力信号を基準とし、差動増幅回路302により入力した検出信号を同期検波し、角速度信号として出力する。   Detection signals generated based on the angular velocity to be measured are input to the differential amplifier circuit 302, respectively. The input detection signal is amplified by the differential amplifier circuit 302 and output to the synchronous detection circuit 304. The synchronous detection circuit 304 uses the output signal of the phase circuit 303 as a reference, synchronously detects the detection signal input by the differential amplifier circuit 302, and outputs it as an angular velocity signal.

図1に示す慣性センサ素子において、Y軸の励振電極121,122,123,124,131,132,133及び134により第1脚部102及び第2脚部103に対して励振信号を印加すると、逆圧電効果により、第1脚部102及び第2脚部103はX−Y平面内で屈曲振動(励振)を起こす。ここで、第1脚部102及び第2脚部103が屈曲振動を起こしても、第3脚部104及び第4脚部105は屈曲振動を起こさない。このように励振している状態で、Y軸を回転軸とする回転運動のコリオリの力による歪みが図1の慣性センサ素子100に加わると、第3脚部104及び第4脚部105はY−Z平面内で屈曲振動を起こすようになり、この屈曲振動の歪み(角速度)の大きさに比例した電荷が、Y軸の検出電極141,142,143,144,151,152,153及び154に発生する(圧電効果)。   In the inertial sensor element shown in FIG. 1, when excitation signals are applied to the first leg 102 and the second leg 103 by the Y-axis excitation electrodes 121, 122, 123, 124, 131, 132, 133 and 134, Due to the inverse piezoelectric effect, the first leg 102 and the second leg 103 cause bending vibration (excitation) in the XY plane. Here, even if the first leg 102 and the second leg 103 cause bending vibration, the third leg 104 and the fourth leg 105 do not cause bending vibration. In this state of excitation, if distortion due to the Coriolis force of rotational movement about the Y axis is applied to the inertial sensor element 100 of FIG. 1, the third leg 104 and the fourth leg 105 are Y The bending vibration is caused in the −Z plane, and the charges proportional to the distortion (angular velocity) of the bending vibration are detected by the Y-axis detection electrodes 141, 142, 143, 144, 151, 152, 153 and 154. (Piezoelectric effect).

従って、Y軸の検出電極141,142,143,144,151,152,153及び154により検出される電気信号を図3に示すような回路により処理して角速度信号として検出すれば、Y軸を回転軸とする回転運動の角速度の大きさを求めることができる。また、検出される電荷の極性と励振信号との位相を比較することで、角速度の発生している方向も検知することが可能となる。   Therefore, if the electric signals detected by the Y-axis detection electrodes 141, 142, 143, 144, 151, 152, 153 and 154 are processed by a circuit as shown in FIG. It is possible to obtain the magnitude of the angular velocity of the rotational motion with the rotation axis. Further, the direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal.

同様に、X軸の励振電極161,162,163,164,171,172,173及び174により、第5脚部106及び第6脚部107に対して励振信号を印加すると、第5脚部106及び第6脚部107は、X−Y平面内で屈曲振動(励振)を起こす。ここで、第5脚部106及び第6脚部107が屈曲振動を起こしても、第7脚部108及び第8脚部109は屈曲振動を起こさない。このように励振している状態で、X軸を回転軸とする回転運動のコリオリの力による歪みが図1の慣性センサ素子100に加わると、第7脚部108及び第8脚部109はX−Z平面内で屈曲振動を起こすようになり、この屈曲振動の歪み(角速度)の大きさに比例した電荷が、X軸の検出電極181,182,183,184,191,192,193及び194に発生する(圧電効果)。   Similarly, when an excitation signal is applied to the fifth leg 106 and the sixth leg 107 by the X-axis excitation electrodes 161, 162, 163, 164, 171, 172, 173 and 174, the fifth leg 106 The sixth leg 107 causes bending vibration (excitation) in the XY plane. Here, even if the fifth leg portion 106 and the sixth leg portion 107 cause bending vibration, the seventh leg portion 108 and the eighth leg portion 109 do not cause bending vibration. In this state of excitation, when distortion due to the Coriolis force of the rotational motion about the X axis is applied to the inertial sensor element 100 of FIG. 1, the seventh leg 108 and the eighth leg 109 are X The bending vibration is caused in the −Z plane, and the charges proportional to the distortion (angular velocity) of the bending vibration are detected by the X-axis detection electrodes 181, 182, 183, 184, 191, 192, 193 and 194. (Piezoelectric effect).

従って、X軸の検出電極181,182,183,184,191,192,193及び194により検出される電気信号を図3に示すような回路により処理して角速度信号として検出すれば、X軸を回転軸とする回転運動の角速度の大きさを求めることができる。また、検出される電荷の極性と励振信号との位相を比較することで、角速度の発生している方向も検地することが可能となる。以上に説明したように、図1に示す慣性センサ素子100によれば、Y軸とX軸との2軸の方向の角速度が検出できるようになる。   Therefore, if the electric signals detected by the X-axis detection electrodes 181, 182, 183, 184, 191, 192, 193 and 194 are processed by a circuit as shown in FIG. It is possible to obtain the magnitude of the angular velocity of the rotational motion with the rotation axis. Further, the direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal. As described above, according to the inertial sensor element 100 shown in FIG. 1, the angular velocity in the two-axis directions of the Y-axis and the X-axis can be detected.

また、図1に示す慣性センサ素子100では、第1脚部102及び第2脚部103の外形寸法と、第3脚部104及び第4脚部105の外形寸法、又は、第5脚部106及び第6脚部107の外形寸法と、第7脚部108及び第8脚部109との外形寸法が各々異なる状態とした。加えて、Y軸の励振電極121,122,123,124,131,132,133及び134による第1脚部102及び第2脚部103に印加する励振信号の周波数と、X軸の励振電極161,162,163,164,171,172,173及び174による第5脚部106及び第6脚部107に印加する励振信号の周波数とを異なる状態とした。各脚部に印加する励振信号の周波数Fsは、「Fs=kf×λ2×(脚部の幅)÷(脚部の長さ)2」(kfは周波数定数、λは境界条件)の式により決定すればよい。このように、脚部の寸法を異なる状態とし、異なる軸方向に対応する異なる励振電極により異なる周波数の励振信号が励振対象の脚部に印加されることで、各々の軸方向における各該励振電極を形成した各脚部より構成される励振用音叉振動部と、この励振用音叉振動部と組を成す各検出電極を形成した各該脚部より構成される検出用音叉振動部との間の共振周波数が、各々の軸方向毎に異なることとなり、異なる軸を中心とした回転により起こる各々の振動が、より精度よく区別された状態で検出できるようになる。 Further, in the inertial sensor element 100 shown in FIG. 1, the outer dimensions of the first leg portion 102 and the second leg portion 103, the outer dimensions of the third leg portion 104 and the fourth leg portion 105, or the fifth leg portion 106. The outer dimensions of the sixth leg 107 and the outer dimensions of the seventh leg 108 and the eighth leg 109 are different from each other. In addition, the frequency of the excitation signal applied to the first leg 102 and the second leg 103 by the Y-axis excitation electrodes 121, 122, 123, 124, 131, 132, 133 and 134, and the X-axis excitation electrode 161 , 162, 163, 164, 171, 172, 173 and 174, the frequencies of the excitation signals applied to the fifth leg 106 and the sixth leg 107 are different. The frequency Fs of the excitation signal applied to each leg is expressed by the following equation: “Fs = kf × λ2 × (leg width) ÷ (leg length) 2” (kf is a frequency constant, λ is a boundary condition) Just decide. In this way, the dimensions of the legs are in different states, and excitation signals of different frequencies are applied to the legs to be excited by different excitation electrodes corresponding to different axial directions, so that each excitation electrode in each axial direction Between the excitation tuning fork vibrating part constituted by each leg formed with each of the legs and the detection tuning fork vibrating part constituted by each said leg formed with each detection electrode forming a pair with this excitation tuning fork vibrating part . The resonance frequency is different for each axial direction, and each vibration caused by the rotation about the different axis can be detected in a more accurately distinguished state.

次に、本発明おける慣性センサ素子の他の実態の形態について説明する。図4は、本発明おける慣性センサ素子を慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。図5は、図4に示した各仮想切断線で切断した場合の断面図を各々示し、図5(a)は仮想切断線e−e′,図2(b)は仮想切断線f−f′,図2(c)は仮想切断線g−g′及び図2(d)は仮想切断線h−h′に各々対応している。図4に示す慣性センサ素子400は、構成部材として水晶からなり、基部401より一方に延在(図8中のYl方向に延在)して配設された第1脚部402及び第2脚部403から構成される411と、基部401を挟んで411とは反対の方向に基部101より延在(図8中のY′1方向に延在)して配設された第3脚部404及び第4脚部405、更に第3脚部404と第4脚部との間に第3脚部404と第4脚部405と平行に延在した第9脚部406から構成される第2の音叉振動部412とを備え、更に慣性センサ素子400の同一主面内で、411及び第2の音叉振動部412が設けられた基部401の2側面と垂直に交わる2面の一方に、第5脚部407(図8中のY′3方向に延在)及び第6脚部408(図8中のY2方向に延在)から構成される第3の音叉振動部413を、もう一方の側面に第7脚部409(図8中のY′2方向に延在)及び第8脚部410(図8中のY3方向に延在)から構成される第4の音叉振動部414から構成されている。各々の脚部は、角柱状に形成されている。   Next, another embodiment of the inertial sensor element according to the present invention will be described. FIG. 4 is a perspective view illustrating an example of the external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 5A and 5B are cross-sectional views taken along the virtual cutting lines shown in FIG. 4. FIG. 5A is a virtual cutting line ee ′, and FIG. 2B is a virtual cutting line ff. 2 (c) corresponds to the virtual cutting line gg 'and FIG. 2 (d) corresponds to the virtual cutting line hh'. The inertial sensor element 400 shown in FIG. 4 is made of quartz as a constituent member, and extends from the base 401 to one side (extends in the Yl direction in FIG. 8) and is arranged with a first leg 402 and a second leg. 411 composed of a portion 403 and a third leg portion 404 arranged to extend from the base 101 in the direction opposite to 411 across the base 401 (extend in the Y′1 direction in FIG. 8). And a fourth leg 405, and a second leg constituted by a third leg 404 and a ninth leg 406 extending in parallel with the fourth leg 405 between the third leg 404 and the fourth leg. The tuning fork vibrating part 412 is provided on the same main surface of the inertial sensor element 400, and one of two surfaces perpendicular to the two side surfaces of the base 401 provided with the 411 and the second tuning fork vibrating part 412 is provided on the first surface. 5 leg portions 407 (extending in Y′3 direction in FIG. 8) and 6 leg portions 408 (Y2 direction in FIG. 8) The third tuning fork vibrating part 413 composed of an extension) has a seventh leg 409 (extending in the direction Y'2 in FIG. 8) and an eighth leg 410 (in FIG. 8) on the other side. And a fourth tuning fork vibrating portion 414 configured to extend in the Y3 direction). Each leg is formed in a prismatic shape.

慣性センサ素子400は、水晶結晶軸の電気軸、機械軸に対してそれぞれ0°乃至15°回転し、光軸を法線とする水晶板から切り出すことで形成する。各図中の方位線X1は、電気軸より所定角度回転した軸であり、方位線Y1は、機械軸より所定角度回転した軸であり、方位線Zは光軸とほぼ一致した軸である。   The inertial sensor element 400 is formed by rotating from 0 ° to 15 ° with respect to the electrical axis and mechanical axis of the crystal crystal axis and cutting out from the crystal plate having the optical axis as a normal line. The azimuth line X1 in each figure is an axis rotated by a predetermined angle from the electrical axis, the azimuth line Y1 is an axis rotated by a predetermined angle from the mechanical axis, and the azimuth line Z is an axis substantially coincident with the optical axis.

上記慣性センサ素子において、第5脚部407,第6脚部408,第7脚部409及び第8脚部410は慣性センサ素子を形成する圧電材料の結晶軸の対称性に依存しており、厚み方向の軸に対して3回対称の結晶材料の場合であると、第5脚部407及び第8脚部410は、第1脚部402,第2脚部403,第3脚部404,第4脚部405及び第9脚部406とは時計廻りに120度回転した軸上に延在しており、第6脚部408及び第7脚部409は、第1脚部402,第2脚部403,第3脚部404,第4脚部405及び第9脚部406とは反時計廻りに120度回転した軸上に延在している。また、慣性センサ素子を形成する圧電材料が厚み方向の軸に対して4回対称の結晶材料の場合であると、第5〜第8脚部は第1脚部402,第2脚部403,第3脚部404,第4脚部405及び第9脚部406とは垂直となる方向に延在している。   In the inertial sensor element, the fifth leg 407, the sixth leg 408, the seventh leg 409, and the eighth leg 410 depend on the symmetry of the crystal axis of the piezoelectric material forming the inertial sensor element, In the case of a crystal material that is three-fold symmetric with respect to the axis in the thickness direction, the fifth leg 407 and the eighth leg 410 have a first leg 402, a second leg 403, a third leg 404, The fourth leg portion 405 and the ninth leg portion 406 extend on an axis rotated clockwise by 120 degrees, and the sixth leg portion 408 and the seventh leg portion 409 are the first leg portion 402 and the second leg portion 409, respectively. The leg portion 403, the third leg portion 404, the fourth leg portion 405, and the ninth leg portion 406 extend on an axis rotated 120 degrees counterclockwise. If the piezoelectric material forming the inertial sensor element is a crystal material that is four times symmetrical with respect to the axis in the thickness direction, the fifth to eighth legs are the first leg 402, the second leg 403, The third leg portion 404, the fourth leg portion 405, and the ninth leg portion 406 extend in a perpendicular direction.

第1脚部402の延在方向の中心軸と第3脚部404の延在方向の中心軸は一致し、第2脚部403の延在方向の中心軸と第4脚部405の延在方向の中心軸は一致する。また、第9脚部406は第3脚部404と第5脚部405との間の中心部に配設されている。このように構成された各脚部において、図4に示す慣性センサ素子では、まず、第1脚部402にはY軸の励振電極421,422,423及び424が設けられ、第2脚部403にはY軸の検出電極431,432,433及び434が設けられている。また、第3脚部404にはZ軸の励振電極441,442,443及び444が、第4脚部405にはZ軸の励振電極451,452,453,454が設けられ、第9脚部406にはZ軸の検出電極461,462,463及び464が設けられ、第5脚部407にはX軸の励振電極471,472,473及び474が、第6脚部408にはX軸の励振電極481,482,483及び484が設けられ、第7脚部409にはX軸の検出電極491,492,493及び494が、第8脚部410にはX軸の検出電極411,412,413及び414が設けられている。   The central axis of the extending direction of the first leg 402 and the central axis of the extending direction of the third leg 404 coincide with each other, and the central axis of the extending direction of the second leg 403 and the extending of the fourth leg 405 are aligned. The central axes of direction coincide. The ninth leg 406 is disposed at the center between the third leg 404 and the fifth leg 405. In each of the legs configured as described above, in the inertial sensor element shown in FIG. 4, first, the first leg 402 is provided with Y-axis excitation electrodes 421, 422, 423, and 424, and the second leg 403. Are provided with Y-axis detection electrodes 431, 432, 433 and 434. The third leg 404 is provided with Z-axis excitation electrodes 441, 442, 443 and 444, and the fourth leg 405 is provided with Z-axis excitation electrodes 451, 452, 453 and 454. 406 includes Z-axis detection electrodes 461, 462, 463, and 464, the fifth leg 407 includes X-axis excitation electrodes 471, 472, 473, and 474, and the sixth leg 408 includes X-axis detection electrodes. Excitation electrodes 481, 482, 483 and 484 are provided, the seventh leg 409 has X-axis detection electrodes 491, 492, 493 and 494, and the eighth leg 410 has X-axis detection electrodes 411, 412, and 494. 413 and 414 are provided.

第1脚部402において、Y軸の励振電極421及び423は同極とされ、Y軸の励振電極422及び424は同極とされている。一方、第2脚部403において、Y軸の検出電極431及び434は同極とされ、Y軸の検出電極432及び433は同極とされている。また、第3脚部404及び第4脚部405においてZ軸の励振電極441,443,452及び454は同極とされ、Z軸の励振電極442,444,451及び453は同極とされている。一方、第9脚部406においてZ軸の検出電極461及び463は同極とされ、Z軸の検出電極463及び464は同極とされている。また、第5脚部407及び第6脚部408において、X軸の励振電極471,473,481及び483は同極とされ、X軸の励振電極472,474,482及び484は同極とされている。一方、第7脚部409及び第8脚部410において、X軸の検出電極491,494,415,418は同極とされ、X軸の検出電極492,493,416,417は同極となっている。   In the first leg 402, the Y-axis excitation electrodes 421 and 423 have the same polarity, and the Y-axis excitation electrodes 422 and 424 have the same polarity. On the other hand, in the second leg 403, the Y-axis detection electrodes 431 and 434 have the same polarity, and the Y-axis detection electrodes 432 and 433 have the same polarity. In the third leg 404 and the fourth leg 405, the Z-axis excitation electrodes 441, 443, 452, and 454 have the same polarity, and the Z-axis excitation electrodes 442, 444, 451, and 453 have the same polarity. Yes. On the other hand, in the ninth leg 406, the Z-axis detection electrodes 461 and 463 have the same polarity, and the Z-axis detection electrodes 463 and 464 have the same polarity. In the fifth leg 407 and the sixth leg 408, the X-axis excitation electrodes 471, 473, 481, and 483 have the same polarity, and the X-axis excitation electrodes 472, 474, 482, and 484 have the same polarity. ing. On the other hand, in the seventh leg portion 409 and the eighth leg portion 410, the X-axis detection electrodes 491, 494, 415, 418 have the same polarity, and the X-axis detection electrodes 492, 493, 416, 417 have the same polarity. ing.

図4に示す慣性センサ素子400では、Y軸の励振電極421,422,423及び424に対して励振信号を印加し、第1脚部402及び第2脚部403を励振させる。この状態で、Y軸の検出電極431,432,433及び434により検出される電気信号を角速度信号として検出すれば、Y軸を回転軸とする回転運動の角速度の大きさを求めることができる。また、検出される電荷の極性と励振信号との位相を比較することで、角速度が発生している方向も検知することが可能となる。   In the inertial sensor element 400 shown in FIG. 4, excitation signals are applied to the Y-axis excitation electrodes 421, 422, 423, and 424 to excite the first leg portion 402 and the second leg portion 403. In this state, if the electric signals detected by the Y-axis detection electrodes 431, 432, 433, and 434 are detected as angular velocity signals, the magnitude of the angular velocity of the rotational motion with the Y axis as the rotation axis can be obtained. Further, the direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal.

また、Z軸の励振電極441,442,443,444,451,452,453及び454に対して励振信号を印加し、第3脚部404及び第4脚部405を励振させる。この状態で、Z軸の検出電極461,462,463,464により検出される電気信号を角速度信号として検出すれば、Z軸を回転軸とする回転運動の角速度の大きさを求めることができる。検出される電荷の極性と励振信号との位相を比較することで、角速度の発生している方向も検知することが可能である。   Further, excitation signals are applied to the Z-axis excitation electrodes 441, 442, 443, 444, 451, 452, 453, and 454 to excite the third leg 404 and the fourth leg 405. In this state, if the electrical signals detected by the Z-axis detection electrodes 461, 462, 463, and 464 are detected as angular velocity signals, the magnitude of the angular velocity of the rotational motion with the Z axis as the rotation axis can be obtained. The direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal.

また、X軸の励振電極471,472,473,474,481,482,483及び484に対して励振信号を印加し、第5脚部407及び第6脚部408を励振させる。この状態で、X軸の検出電極491,492,493,494,415,416,417及び418により検出される電気信号を角速度信号として検出すれば、X軸を回転軸とする回転運動の角速度の大きさを求めることができる。検出される電荷の極性と励振信号との位相を比較することで、角速度の発生している方向も検知することが可能である。図4に示す慣性センサ素子400によれば、X軸、Y軸、及びZ軸の3軸の方向の角速度が検出できるようになる。   Further, excitation signals are applied to the X-axis excitation electrodes 471, 472, 473, 474, 481, 482, 483, and 484 to excite the fifth leg 407 and the sixth leg 408. In this state, if the electrical signals detected by the X-axis detection electrodes 491, 492, 493, 494, 415, 416, 417 and 418 are detected as angular velocity signals, the angular velocity of the rotational motion with the X axis as the rotational axis can be detected. The size can be determined. The direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal. According to the inertial sensor element 400 shown in FIG. 4, the angular velocities in the directions of the three axes of the X axis, the Y axis, and the Z axis can be detected.

次に、本発明の他の実施の形態について説明する。図6は、本発明おける慣性センサ素子を慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。図7は、図6に示した各仮想切断線で切断した場合の断面図を各々示し、図7(a)は仮想切断線i−i′,図2(b)は仮想切断線j−j′,図2(c)は仮想切断線k−k′及び図2(d)は仮想切断線m−m′に各々対応している。図6に示す慣性センサ素子600は、図1に示した慣性センサ素子100の脚部102,103,106,107の各脚部付け根の根元部分に脚部の長さ方向に伸び且つ素子の表裏両主面間を貫通する穴を設けた構造である。慣性センサ素子600は水晶から構成されており、基部601より一方に延在(図8中のYl方向に延在)して配設された第1脚部602及び第2脚部603から構成される614と、基部601を挟んで614は反対の方向に基部601より延在(図8中のY′1方向に延在)して配設された第3脚部604及び第4脚部605から構成される第2の音叉振動部615とを備え、更に慣性センサ素子600の同一主面内で、614及び第2の音叉振動部615が設けられた基部601の2側面と垂直に交わる他の2側面の一方に、第5脚部606(図8中のY′3方向に延在)及び第6脚部607(図8中のY2方向に延在)から構成される第3の音叉振動部616を、もう一方の側面に第7脚部608(図8中のY′2方向に延在)及び第8脚部609(図8中のY3方向に延在)から構成される第4の音叉振動部617から構成されている。各々の脚部は、角柱状に形成されており、第1脚部602の根元部分には貫通穴610を、第2脚部603の根元部分には貫通穴611を、第5脚部606の根元部分には貫通穴612を、第6脚部607の根元部分には貫通穴613を備えた構造となっている。   Next, another embodiment of the present invention will be described. FIG. 6 is a perspective view illustrating an example of an external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 7A and 7B are cross-sectional views taken along the virtual cutting lines shown in FIG. 6, respectively. FIG. 7A shows a virtual cutting line ii ′, and FIG. 2B shows a virtual cutting line j-j. 2 (c) corresponds to the virtual cutting line kk ′ and FIG. 2 (d) corresponds to the virtual cutting line mm ′. An inertial sensor element 600 shown in FIG. 6 extends in the length direction of the leg at the base of each leg 102, 103, 106, 107 of the inertial sensor element 100 shown in FIG. It is a structure provided with a hole penetrating between both main surfaces. The inertial sensor element 600 is made of quartz and is made up of a first leg 602 and a second leg 603 arranged to extend from the base 601 to one side (extend in the Yl direction in FIG. 8). 614 and the third leg portion 604 and the fourth leg portion 605 disposed so as to extend from the base portion 601 in the opposite direction (extending in the Y′1 direction in FIG. 8) across the base portion 601. And a second tuning fork vibrating part 615 composed of the following, and in the same main surface of the inertial sensor element 600, and perpendicularly intersects two side surfaces of the base 601 provided with the 614 and the second tuning fork vibrating part 615. A third tuning fork comprising a fifth leg 606 (extending in the Y′3 direction in FIG. 8) and a sixth leg 607 (extending in the Y2 direction in FIG. 8) on one of the two side surfaces of The vibrating portion 616 is arranged on the other side with a seventh leg portion 608 (extending in the Y′2 direction in FIG. 8) and And a fourth fork vibrating portion 617 consists of 8 legs 609 (extending in the Y3 direction in FIG. 8). Each leg portion is formed in a prismatic shape. A through hole 610 is formed at the root portion of the first leg portion 602, a through hole 611 is formed at the root portion of the second leg portion 603, and the fifth leg portion 606 is formed. The base portion has a through hole 612 and the sixth leg portion 607 has a structure having a through hole 613 at the root portion.

このように構成された各脚部において、Y軸の励振電極621,622,633及び634は同極とされ、Y軸の励振電極623,624,631及び632は同極とされている。Y軸の検出電極641,644,652及び653は同極とされ、Y軸の検出電極642,643,651及び654は同極とされている。X軸の励振電極661,662,671及び672は同極とされ、X軸の励振電極663,664,673及び674は同極とされている。又、X軸の検出電極681,684,691及び694は同極とされ、X軸の検出電極682,683,692及び693は同極とされている。   In each leg portion configured as described above, the Y-axis excitation electrodes 621, 622, 633, and 634 have the same polarity, and the Y-axis excitation electrodes 623, 624, 631, and 632 have the same polarity. The Y-axis detection electrodes 641, 644, 652, and 653 have the same polarity, and the Y-axis detection electrodes 642, 643, 651, and 654 have the same polarity. The X-axis excitation electrodes 661, 662, 671, and 672 have the same polarity, and the X-axis excitation electrodes 663, 664, 673, and 674 have the same polarity. The X-axis detection electrodes 681, 684, 691 and 694 have the same polarity, and the X-axis detection electrodes 682, 683, 692 and 693 have the same polarity.

図6に示す慣性センサ素子600では、Y軸の励振電極621,622,623,624,631,632,633及び634に対して励振信号を印加し、第1脚部602及び第2脚部603を励振させる。第1脚部602及び第2脚部603の根元部分に貫通穴610及び611を設け、上記及び図7(a)に示したように電極を構成することで、電気軸方向に平行に電界をかけることが可能であり、且つ励振脚部全範囲に電界を分布することができるので、効率良く電界をかけることができるため、等価直列抵抗Rlが小さく、Q値が高く、大きい角速度検出感度の慣性センサ素子を得られる。この状態で、Y軸の検出電極641,642,643,644,651,652,653及び654により検出される電気信号を角速度信号として検出すれば、Y軸を回転軸とする回転運動の角速度の大きさを求めることができる。また、検出される電荷の極性と励振信号との位相を比較することで、角速度が発生している方向も検知することが可能となる。   In the inertial sensor element 600 shown in FIG. 6, excitation signals are applied to the Y-axis excitation electrodes 621, 622, 623, 624, 631, 632, 633 and 634, and the first leg 602 and the second leg 603 are applied. Exciting. By providing through holes 610 and 611 at the base portions of the first leg 602 and the second leg 603 and configuring the electrodes as described above and shown in FIG. 7A, an electric field is generated in parallel with the electric axis direction. Since the electric field can be distributed over the entire range of the excitation legs, the electric field can be efficiently applied. Therefore, the equivalent series resistance Rl is small, the Q value is high, and the angular velocity detection sensitivity is high. An inertial sensor element can be obtained. In this state, if the electrical signals detected by the Y-axis detection electrodes 641, 642, 643, 644, 651, 652, 653 and 654 are detected as angular velocity signals, the angular velocity of the rotational motion with the Y axis as the rotational axis can be detected. The size can be determined. Further, the direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal.

また、X軸の励振電極661,662,663,664,671,672,673及び674に対して励振信号を印加し、第5脚部606及び第6脚部607を励振させる。この場合においても、同様に第5脚部606及び第6脚部607の根元部分に貫通穴612及び613を設けることで、上記第1脚部602及び第2脚部603と同様な作用を奏し、等価直列抵抗Rlが小さく、Q値が高く、大きい角速度検出感度の慣性センサ素子を得られる。X軸の検出電極681,682,683,684,691,692,693及び694により検出される電気信号を角速度信号として検出すれば、X軸を回転軸とする回転運動の角速度の大きさを求めることができる。検出される電荷の極性と励振信号との位相を比較することで、角速度の発生している方向も検知することが可能である。図6に示す慣性センサ素子によれば、X軸及びY軸の2つの空間軸方向の角速度が検出できるようになる。   Further, an excitation signal is applied to the X-axis excitation electrodes 661, 662, 663, 664, 671, 672, 673, and 674, and the fifth leg 606 and the sixth leg 607 are excited. Also in this case, similarly, by providing the through holes 612 and 613 in the root portions of the fifth leg portion 606 and the sixth leg portion 607, the same action as the first leg portion 602 and the second leg portion 603 is achieved. Thus, an inertial sensor element having a small equivalent series resistance Rl, a high Q value, and a large angular velocity detection sensitivity can be obtained. If the electrical signals detected by the X-axis detection electrodes 681, 682, 683, 684, 691, 692, 693, and 694 are detected as angular velocity signals, the magnitude of the angular velocity of the rotational motion with the X axis as the rotational axis is obtained. be able to. The direction in which the angular velocity is generated can be detected by comparing the polarity of the detected charge with the phase of the excitation signal. According to the inertial sensor element shown in FIG. 6, the angular velocities in the two spatial axis directions of the X axis and the Y axis can be detected.

尚、上述した各実施例では、X軸及びY軸の2つの空間軸方向の慣性力(角速度)が検出できる慣性センサ素子の形態を開示したが、本発明は上記実施例に開示の形態に限定されるものではなく、X軸、Y軸及びZ軸の3つの空間軸方向の慣性力(角速度)を検出できる形態の慣性センサ素子も含まれることは自明である。又、本発明の要旨を逸脱しない範囲において種々の変更、改良等は可能である。   In each of the embodiments described above, the form of the inertial sensor element that can detect the inertial forces (angular velocities) in the two spatial axis directions of the X axis and the Y axis has been disclosed. However, the present invention is disclosed in the form disclosed in the above examples. It is obvious that the present invention includes an inertial sensor element that can detect inertial forces (angular velocities) in the three spatial axis directions of the X axis, the Y axis, and the Z axis. Various changes and improvements can be made without departing from the scope of the present invention.

図1は、本発明おける慣性センサ素子を慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of an external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 図2は、図1に示した各仮想切断線で切断した場合の断面図を各々示し、図2(a)は仮想切断線a−a′に、図2(b)は仮想切断線b−b′に、図2(c)は仮想切断線c−c′に、及び図2(d)は仮想切断線d−d′に各々対応している。2A and 2B are cross-sectional views taken along the virtual cutting lines shown in FIG. 1, respectively. FIG. 2A shows a virtual cutting line aa ′ and FIG. 2B shows a virtual cutting line b-. FIG. 2C corresponds to the virtual cutting line cc ′, and FIG. 2D corresponds to the virtual cutting line dd ′. 図3は、本発明における慣性センサ素子において、角速度検出のための回路構成例を示すブロック図である。FIG. 3 is a block diagram showing a circuit configuration example for angular velocity detection in the inertial sensor element according to the present invention. 図4は、本発明おける慣性センサ素子を、慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。FIG. 4 is a perspective view illustrating an example of an external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 図5は、図4に示した各仮想切断線で切断した場合の断面図を各々示し、図5(a)は仮想切断線e−e′に、図2(b)は仮想切断線f−f′に、図2(c)は仮想切断線g−g′に、及び図2(d)は仮想切断線h−h′に各々対応している。5A and 5B are cross-sectional views taken along the virtual cutting lines shown in FIG. 4. FIG. 5A shows a virtual cutting line ee ′, and FIG. 2B shows a virtual cutting line f−. 2 (c) corresponds to the virtual cutting line gg ', and FIG. 2 (d) corresponds to the virtual cutting line hh'. 図6は、本発明おける慣性センサ素子を慣性センサ素子の一つである角速度センサ素子を例示して外観構成の一例を示す斜視図である。FIG. 6 is a perspective view illustrating an example of an external configuration of an inertial sensor element according to the present invention, illustrating an angular velocity sensor element that is one of the inertial sensor elements. 図7は、図6に示した各仮想切断線で切断した場合の断面図を各々示し、図7(a)は仮想切断線i−i′に、図2(b)は仮想切断線j−j′に、図2(c)は仮想切断線k−k′に、及び図2(d)は仮想切断線m−m′に各々対応している。7A and 7B are cross-sectional views taken along the virtual cutting lines shown in FIG. 6, respectively. FIG. 7A shows a virtual cutting line ii ′ and FIG. 2B shows a virtual cutting line j-. FIG. 2C corresponds to the virtual cutting line kk ′, and FIG. 2D corresponds to the virtual cutting line mm ′. 図8は、本実施例の慣性センサ素子における水晶の光軸に垂直な面の結晶の対称性を示す結晶方位図である。FIG. 8 is a crystal orientation diagram showing the symmetry of the crystal in the plane perpendicular to the optical axis of the crystal in the inertial sensor element of this example.

符号の説明Explanation of symbols

100,400,600・・・慣性センサ素子
101,401,601・・・基部
102,402,602・・・第1脚部
103,403,603・・・第2脚部
104,404,604・・・第3脚部
105,405,605・・・第4脚部
106,407,606・・・第5脚部
107,408,607・・・第6脚部
108,409,608・・・第7脚部
109,410,609・・・第8脚部
406・・・第9脚部
110,411,614・・・第1の音叉振動部
111,412,615・・・第2の音叉振動部
112,413,616・・・第3の音叉振動部
113,414,617・・・第4の音叉振動部
121,122,123,124,131,132,133,134,421,422,423,424,441,442,443,444,451,452,453,454,471,472,473,474,481,482,483,484,621,622,623,624,631,632,633,634,661,662,663,664,671,672,673,674・・・励振電極
141,142,143,144,151,152,153,154,431,432,433,434,461,462,463,464,491,492,493,494,415,416,417,418,641,642,643,644,651,652,653,654,681,682,683,684,691,692,693,694・・・検出電極
610,611,612,613・・・貫通穴
100, 400, 600 ... inertial sensor elements 101, 401, 601 ... base 102, 402, 602 ... first leg 103, 403, 603 ... second leg 104, 404, 604 .. Third leg 105, 405, 605 ... Fourth leg 106, 407, 606 ... Fifth leg 107, 408, 607 ... Sixth leg 108, 409, 608 ... 7th leg 109, 410, 609 ... 8th leg 406 ... 9th leg 110, 411, 614 ... 1st tuning fork vibrating part 111, 412, 615 ... 2nd tuning fork Vibration part 112,413,616 ... 3rd tuning fork vibration part 113,414,617 ... 4th tuning fork vibration part 121,122,123,124,131,132,133,134,421,422 423,424,4 1,442,443,444,451,452,453,454,471,472,473,474,481,482,483,484,621,622,623,624,631,632,633,634,661 662,663,664,671,672,673,674 ... Excitation electrode 141,142,143,144,151,152,153,154,431,432,433,434,461,462,463,464 491,492,493,494,415,416,417,418,641,642,643,644,651,652,653,654,681,682,683,684,691,692,693,694 ... Detection electrode 610, 611, 612, 613 ... through hole

Claims (2)

基部と、該基部の一辺より延設された角柱状の第1脚部及び第2脚部を有する第1の音叉振動部と、該第1の音叉振動部に対し該基部を挟んで180°対向する該基部の一辺より延設された角柱状の第3脚部及び第4脚部を有する第2音叉振動部と、該第1の音叉振動部に対し該基部を挟んで90°の位置の該基部の一辺より延設された角柱状の第5脚部及び第6脚部とを有する第3の音叉振動部と、該第3の音叉振動部に対し該基部を挟んで180°対向する該基部の一辺より延設された角柱状の第7脚部及び第8脚部を有する第4の音叉振動部から構成され、該基部,該第1の音叉振動部,第2音叉振動部,第3音叉振動部及び第4音叉振動部が圧電材により一体で形成されており、
該第1脚部及び該第2脚部に各々設けられた第1の励振電極と、該第3脚部及び該第4脚部に各々設けられた該第1の励振電極による屈曲振動が駆動されている状態で該第3脚部及び該第4脚部が延在する方向のY軸を中心とした該慣性センサ素子の回転により起こる第1振動を検出するための第1の検出電極と、該第5脚部及び該第6脚部に各々設けられた第2の励振電極と、該第7脚部及び第8脚部に各々設けられて該第2の励振電極による屈曲振動が駆動されている状態で該第7脚部及び該第8脚部が配設された平面のX軸を中心とした該慣性センサ素子の回転により起こる第2振動を検出するための第2の検出電極とを備えていることを特徴とする慣性センサ素子。
A base, a first tuning fork vibrating part having a prismatic first leg and a second leg extending from one side of the base, and a 180 ° sandwiching the base with respect to the first tuning fork vibrating part A second tuning-fork vibration part having a prismatic third leg part and a fourth leg part extending from one side of the base part facing each other, and a 90 ° position with the base part sandwiched between the first tuning-fork vibration part; A third tuning fork vibrating portion having a prismatic fifth leg portion and a sixth leg portion extending from one side of the base portion, and opposite to the third tuning fork vibrating portion by 180 ° across the base portion And a fourth tuning fork vibrating portion having a prismatic seventh leg portion and an eighth leg portion extending from one side of the base portion, the base portion, the first tuning fork vibrating portion, and the second tuning fork vibrating portion. , The third tuning fork vibrating part and the fourth tuning fork vibrating part are integrally formed of a piezoelectric material,
Bending vibration is driven by the first excitation electrodes provided on the first leg and the second leg, respectively, and the first excitation electrodes provided on the third leg and the fourth leg, respectively. A first detection electrode for detecting a first vibration caused by rotation of the inertial sensor element about the Y axis in a direction in which the third leg and the fourth leg extend in a state where the third leg and the fourth leg extend. A second excitation electrode provided on each of the fifth leg portion and the sixth leg portion; and a flexural vibration driven by the second excitation electrode provided on the seventh leg portion and the eighth leg portion, respectively. A second detection electrode for detecting a second vibration caused by rotation of the inertial sensor element about the X axis of the plane on which the seventh leg portion and the eighth leg portion are disposed inertial sensor element characterized that you have provided and.
請求項記載の慣性センサ素子において、該第1脚部、該第2脚部、該第5脚部及び該第6脚部には脚部長さ方向に延びるX軸方向の主面間を貫通する貫通穴を有しており、該貫通穴の穴内の長さ方向の2つの側面には、電気的極性が同極となる電極が各々形成され、且つ該貫通穴内の各々の側面と対向するよう形成した各々の脚部外側面の電極が、該貫通穴内の各々の側面に形成した電極と電気的極性が異なる電極が形成されていることを特徴とする慣性センサ素子。 2. The inertial sensor element according to claim 1 , wherein the first leg, the second leg, the fifth leg, and the sixth leg penetrate through the main surface in the X-axis direction extending in the leg length direction. Electrodes having the same electric polarity are formed on two side surfaces in the longitudinal direction in the through hole, and are opposed to the respective side surfaces in the through hole. An inertial sensor element , wherein the electrodes on the outer side surfaces of the legs formed in this way are formed with electrodes having different electrical polarities from the electrodes formed on the side surfaces in the through holes .
JP2006047906A 2005-02-25 2006-02-24 Inertial sensor element Expired - Fee Related JP5025965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047906A JP5025965B2 (en) 2005-02-25 2006-02-24 Inertial sensor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005050711 2005-02-25
JP2005050711 2005-02-25
JP2006047906A JP5025965B2 (en) 2005-02-25 2006-02-24 Inertial sensor element

Publications (2)

Publication Number Publication Date
JP2006267094A JP2006267094A (en) 2006-10-05
JP5025965B2 true JP5025965B2 (en) 2012-09-12

Family

ID=37203217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047906A Expired - Fee Related JP5025965B2 (en) 2005-02-25 2006-02-24 Inertial sensor element

Country Status (1)

Country Link
JP (1) JP5025965B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796790B2 (en) * 2005-05-31 2011-10-19 京セラキンセキ株式会社 Inertial sensor element
JP2007033371A (en) * 2005-07-29 2007-02-08 Kyocera Kinseki Corp Inertial sensor element
US7401517B2 (en) * 2006-08-18 2008-07-22 Robert Bosch Gmbh Dual-axis yaw rate sensing unit having a tuning fork gyroscope arrangement
JP5870532B2 (en) 2011-08-09 2016-03-01 セイコーエプソン株式会社 Physical quantity detection element, physical quantity detection device, and electronic apparatus
WO2013140488A1 (en) * 2012-03-19 2013-09-26 日立オートモティブシステムズ株式会社 Angular velocity sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294654A (en) * 1993-04-08 1994-10-21 Towa Electron Kk Oscillation gyro
JPH09210690A (en) * 1996-01-30 1997-08-12 Kinseki Ltd Angular velocity detecting sensor
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP3885944B2 (en) * 2002-04-19 2007-02-28 日本碍子株式会社 Oscillator and vibratory gyroscope
JP2005077266A (en) * 2003-09-01 2005-03-24 Seiko Epson Corp Oscillator and electronic apparatus

Also Published As

Publication number Publication date
JP2006267094A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
CN100538272C (en) Piezoelectric gyro element and piezoelectric gyroscope
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
US8833163B2 (en) Angular velocity sensor
JPH07332988A (en) Vibration gyro
JP5025965B2 (en) Inertial sensor element
WO1985004722A1 (en) Acceleration sensor
US8869615B2 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
JP4911690B2 (en) Vibrating gyro vibrator
JP2004301734A (en) Inertia sensor
EP1962055A2 (en) Angular velocity sensor and method for fabricating the same
EP3751232A1 (en) In-plane non-degenerate coriolis vibratory gyroscope
JP2012149961A (en) Vibration gyro
JP4514115B2 (en) Angular velocity sensor
JP6146592B2 (en) Physical quantity sensor, electronic equipment
JP4777806B2 (en) Quartz crystal oscillator and angular velocity sensor
JP2005291937A (en) Inertia sensor element
JP3355993B2 (en) Vibrating gyro
JP2012112819A (en) Vibration gyro
JP3301403B2 (en) Vibrating gyro
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP4667858B2 (en) Inertial sensor element
JP2009192403A (en) Angular velocity and acceleration detector
JP2006125917A (en) Angular velocity sensor
JP2004125458A (en) Tuning-fork piezoelectric vibration reed and piezoelectric vibration gyro
JP4796790B2 (en) Inertial sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees