JP5024518B2 - Actuator device, liquid jet head, and image recording apparatus - Google Patents

Actuator device, liquid jet head, and image recording apparatus Download PDF

Info

Publication number
JP5024518B2
JP5024518B2 JP2006256203A JP2006256203A JP5024518B2 JP 5024518 B2 JP5024518 B2 JP 5024518B2 JP 2006256203 A JP2006256203 A JP 2006256203A JP 2006256203 A JP2006256203 A JP 2006256203A JP 5024518 B2 JP5024518 B2 JP 5024518B2
Authority
JP
Japan
Prior art keywords
layer
film
piezoelectric
lower electrode
elastic adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006256203A
Other languages
Japanese (ja)
Other versions
JP2008078408A (en
JP2008078408A5 (en
Inventor
宏行 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006256203A priority Critical patent/JP5024518B2/en
Publication of JP2008078408A publication Critical patent/JP2008078408A/en
Publication of JP2008078408A5 publication Critical patent/JP2008078408A5/ja
Application granted granted Critical
Publication of JP5024518B2 publication Critical patent/JP5024518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、振動板上に、下電極、圧電材料からなる圧電体層及び上電極で構成される圧電素子を有するアクチュエータ装置及び液体噴射ヘッドに関する。   The present invention relates to an actuator device having a piezoelectric element composed of a lower electrode, a piezoelectric layer made of a piezoelectric material, and an upper electrode on a vibration plate, and a liquid ejecting head.

アクチュエータ装置に用いられる圧電素子としては、電気機械変換機能を呈する圧電材料、例えば、結晶化した圧電性セラミックス等からなる圧電体層を、下電極と上電極との2つの電極で挟んで構成されたものがある。このようなアクチュエータ装置は、一般的に、撓み振動モードのアクチュエータ装置と呼ばれ、例えば、液体噴射ヘッド等に搭載されて使用されている。なお、液体噴射ヘッドの代表例としては、例えば、インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板を圧電素子により変形させて圧力発生室のインクを加圧してノズル開口からインク滴を吐出させるインクジェット式記録ヘッド等がある。また、インクジェット式記録ヘッドに搭載されるアクチュエータ装置としては、例えば、下電極が設けられた基板上に成膜技術により圧電体膜及び上電極膜を全面に亘って形成し、この圧電体層及び上電極膜をリソグラフィ法により圧力発生室に対応する形状に切り分けて圧力発生室毎に独立するように圧電素子を形成したものがある。   The piezoelectric element used in the actuator device is configured by sandwiching a piezoelectric layer made of a piezoelectric material exhibiting an electromechanical conversion function, for example, crystallized piezoelectric ceramics, between two electrodes, a lower electrode and an upper electrode. There is something. Such an actuator device is generally called a flexural vibration mode actuator device, and is used by being mounted on, for example, a liquid ejecting head or the like. As a typical example of the liquid ejecting head, for example, a part of the pressure generating chamber communicating with the nozzle opening for ejecting ink droplets is configured by a diaphragm, and the diaphragm is deformed by a piezoelectric element to There are ink jet recording heads that pressurize ink and eject ink droplets from nozzle openings. As an actuator device mounted on an ink jet recording head, for example, a piezoelectric film and an upper electrode film are formed over the entire surface by a film forming technique on a substrate provided with a lower electrode. In some cases, the upper electrode film is cut into a shape corresponding to the pressure generation chamber by a lithography method and a piezoelectric element is formed so as to be independent for each pressure generation chamber.

このようなアクチュエータ装置の下電極の電極材料として、白金(Pt)やイリジウム(Ir)が一般的に使用されているが、PtやIrはヤング率が高く硬いが密度が高く重い。下電極も振動板として作用するため、密度が高く重いPtやIrを下電極の電極材料として用いると、振動の応答性が低下するという問題がある。   Platinum (Pt) and iridium (Ir) are generally used as the electrode material of the lower electrode of such an actuator device, but Pt and Ir have a high Young's modulus and are hard, but have a high density and are heavy. Since the lower electrode also functions as a diaphragm, there is a problem that vibration responsiveness is lowered when Pt or Ir having a high density and heavy are used as the electrode material of the lower electrode.

ここで、白金を多く含む上層とチタン(Ti)と白金との合金からなる下層を有する下電極を具備する圧電素子が開示されている(特許文献1参照)。この文献に記載された下電極は、チタンを用いており白金単独で構成された下電極より軽くなるため、振動の応答性が良好になることが期待できる。   Here, a piezoelectric element including an upper layer containing a large amount of platinum and a lower electrode having a lower layer made of an alloy of titanium (Ti) and platinum is disclosed (see Patent Document 1). Since the lower electrode described in this document uses titanium and becomes lighter than the lower electrode made of platinum alone, it can be expected that the vibration response is improved.

特開2000−252544号公報(特許請求の範囲、段落[0018]等)JP 2000-252544 A (claims, paragraph [0018], etc.)

しかしながら、チタンは軟らかいので下電極の剛性が低下して耐久性が低下するという問題が生じる。勿論、このような問題は、インクジェット式記録ヘッド等の液体噴射ヘッドに搭載されるアクチュエータ装置だけでなく、他の装置に搭載されるアクチュエータ装置においても同様に存在する。   However, since titanium is soft, there arises a problem that the rigidity of the lower electrode is lowered and the durability is lowered. Of course, such a problem exists not only in an actuator device mounted on a liquid ejecting head such as an ink jet recording head but also in an actuator device mounted on another device.

本発明はこのような事情に鑑み、振動の応答性及び耐久性に優れたアクチュエータ装置及び液体噴射ヘッドを提供することを課題とする。   In view of such circumstances, it is an object of the present invention to provide an actuator device and a liquid jet head that are excellent in vibration response and durability.

上記課題を解決する本発明の第1の態様は、基板の一方面側に設けられた下電極と、前記下電極上に設けられた圧電体層と、前記圧電体層上に設けられた上電極と、を有する圧電素子を備え、前記下電極が、PtとTiO(0.1≦x≦2)との合金からなる密度弾性調整層を有し、前記下電極を厚さ方向に二次イオン質量分析装置(SIMS)により測定した際に、前記密度弾性調整層中でPtイオンが最も弱く検出される部分は、前記密度弾性調整層の厚さ方向中心よりも前記圧電体層側であり、前記密度弾性調整層の前記基板側の境界で検出されるPtイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのPtイオンの強度Zとの比Z/Zが0.05〜0.3、前記密度弾性調整層の前記基板側の境界で検出されるTiイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのTiイオンの強度Zとの比Z/Zが0.6〜1.0、前記密度弾性調整層の前記基板側の境界で検出されるOイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのOイオンの強度Zとの比Z/Zが1.5〜4.0の範囲内であることを特徴とするアクチュエータ装置にある。
かかる第1の態様では、電極材料よりも密度が低くヤング率が高い密度弾性調整材料との合金からなる密度弾性調整層を有するため、電極材料のみからなる下電極を有するアクチュエータ装置よりも、振動の応答性及び耐久性が確実に向上する。また、密度弾性調整層をSIMS測定した際に基板側の境界とPtイオンが最も弱く検出される部分での各イオンの強度比が上記所定の範囲内なので、密度弾性調整層の圧電体層側でTiOが多くなりPt量が少なくなるため、下電極膜の剛性が高くなり、振動板の耐久性が良好になる。
A first aspect of the present invention for solving the aforementioned problems is, a lower electrode provided on one surface of the substrate, a piezoelectric layer provided on the lower electrode, on which is provided on the piezoelectric layer comprising a piezoelectric element having electrodes, the two-the lower electrode, have a density elastic adjustment layer made of an alloy of Pt and TiO X (0.1 ≦ x ≦ 2 ), the lower electrode in the thickness direction When measured by a secondary ion mass spectrometer (SIMS), the portion where the Pt ions are detected weakest in the density elastic adjustment layer is closer to the piezoelectric layer side than the center in the thickness direction of the density elastic adjustment layer. The intensity Z 1 of Pt ions detected at the substrate-side boundary of the density elastic adjustment layer and the intensity Z 2 of Pt ions at the portion where the Pt ions are detected weakest in the density elasticity adjustment layer. The ratio Z 2 / Z 1 is 0.05 to 0.3, and the density elasticity adjusting layer The ratio Z 4 / Z 3 between the Ti ion intensity Z 3 detected at the substrate-side boundary and the Ti ion intensity Z 4 at the portion where the Pt ion is detected weakest in the density elasticity adjusting layer is 0. 6 to 1.0, O ion intensity Z 5 detected at the substrate-side boundary of the density elastic adjustment layer and O ion intensity at the portion where the Pt ion is detected weakest in the density elastic adjustment layer in an actuator device, wherein the ratio Z 6 / Z 5 and Z 6 is 1.5 to 4.0, in the range of.
In the first aspect, since the density elastic adjustment layer is made of an alloy with the density elastic adjustment material having a lower density and a higher Young's modulus than the electrode material, the vibration is higher than that of the actuator device having the lower electrode made only of the electrode material. Responsiveness and durability are reliably improved. In addition, since the intensity ratio of each ion at the boundary where the Pt ions are detected weakest when the density elastic adjustment layer is measured by SIMS is within the predetermined range, the density elastic adjustment layer has a piezoelectric layer side. Since TiO X increases and the amount of Pt decreases, the rigidity of the lower electrode film increases and the durability of the diaphragm improves.

本発明の第2の態様は、前記密度弾性調整層は、前記基板側よりも前記圧電体層側のヤング率が高いことを特徴とする第1の態様のアクチュエータ装置にある。
かかる第2の態様では、圧電体層側のヤング率が高いため、下電極の剛性が高くなり、耐久性がより良好になる。
According to a second aspect of the present invention, in the actuator device according to the first aspect, the density elasticity adjusting layer has a higher Young's modulus on the piezoelectric layer side than on the substrate side.
In the second aspect, since the Young's modulus on the piezoelectric layer side is high, the rigidity of the lower electrode is increased and the durability is further improved.

本発明の第3の態様は、前記下電極が、前記基板側から順に、PtとTiとの合金からなるPt−Ti層と、TiOとPtとの合金からなる密度弾性調整層と、PtからなるPt層と、IrからなるIr層と、を具備することを特徴とする第1又は2の態様のアクチュエータ装置にある。
かかる第3の態様では、Pt−Ti層と、TiOとPtとの合金からなる密度弾性調整層と、Pt層と、Ir層を積層した構成の下電極を有し、振動板の応答性及び耐久性に優れたアクチュエータ装置となる。
According to a third aspect of the present invention, the lower electrode includes, in order from the substrate side, a Pt—Ti layer made of an alloy of Pt and Ti, a density elastic adjustment layer made of an alloy of TiO X and Pt, and Pt a Pt layer consisting in an actuator device of the first or second aspect, characterized by comprising the Ir layer made of Ir, a.
In the third aspect, the Pt—Ti layer, the density elastic adjustment layer made of an alloy of TiO X and Pt, the lower electrode having a structure in which the Pt layer and the Ir layer are laminated, and the response of the diaphragm In addition, the actuator device is excellent in durability.

本発明の第の態様は、第1〜の何れかの態様のアクチュエータ装置を具備することを特徴とする液体噴射ヘッドにある。
かかる第の態様では、圧電特性及び耐久性に優れた液体噴射ヘッドを実現できる。
本発明の第5の態様は、第4の態様に記載の液体噴射ヘッドを具備することを特徴とする画像記録装置にある。
According to a fourth aspect of the present invention, there is provided a liquid ejecting head including the actuator device according to any one of the first to third aspects.
In the fourth aspect, a liquid ejecting head having excellent piezoelectric characteristics and durability can be realized.
According to a fifth aspect of the present invention, there is provided an image recording apparatus comprising the liquid jet head according to the fourth aspect.

以下に本発明を実施形態に基づいて詳細に説明する。
(実施形態1)
図1は、本発明の実施形態1に係るアクチュエータ装置を有する液体噴射ヘッドの一例であるインクジェット式記録ヘッドの概略構成を示す分解斜視図であり、図2は、インクジェット式記録ヘッドの要部平面図であり、図3は、図2のA−A′断面図及びその要部拡大断面図である。
Hereinafter, the present invention will be described in detail based on embodiments.
(Embodiment 1)
FIG. 1 is an exploded perspective view showing a schematic configuration of an ink jet recording head which is an example of a liquid ejecting head having an actuator device according to Embodiment 1 of the present invention. FIG. 2 is a plan view of a main part of the ink jet recording head. FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2 and an enlarged cross-sectional view thereof.

図示するように、流路形成基板10は、本実施形態ではシリコン単結晶基板からなり、その一方の面には予め熱酸化により形成した二酸化シリコンからなる、厚さ0.5〜2μmの弾性膜50が形成されている。流路形成基板10には、隔壁11によって区画された複数の圧力発生室12がその幅方向(短手方向)に並設されている。また、流路形成基板10の圧力発生室12の長手方向一端部側には、インク供給路14と連通路15とが隔壁11によって区画されている。また、連通路15の一端には、各圧力発生室12の共通のインク室(液体室)となるリザーバ100の一部を構成する連通部13が形成されている。すなわち、流路形成基板10には、圧力発生室12、連通部13、インク供給路14及び連通路15からなる液体流路が設けられている。   As shown in the figure, the flow path forming substrate 10 is made of a silicon single crystal substrate in the present embodiment, and one surface thereof is made of silicon dioxide previously formed by thermal oxidation, and is an elastic film having a thickness of 0.5 to 2 μm. 50 is formed. In the flow path forming substrate 10, a plurality of pressure generating chambers 12 partitioned by a partition wall 11 are arranged in parallel in the width direction (short direction). In addition, an ink supply path 14 and a communication path 15 are partitioned by a partition wall 11 on one end side in the longitudinal direction of the pressure generating chamber 12 of the flow path forming substrate 10. In addition, a communication portion 13 constituting a part of the reservoir 100 serving as an ink chamber (liquid chamber) common to the pressure generation chambers 12 is formed at one end of the communication passage 15. That is, the flow path forming substrate 10 is provided with a liquid flow path including a pressure generation chamber 12, a communication portion 13, an ink supply path 14, and a communication path 15.

インク供給路14は、圧力発生室12の長手方向一端部側に連通し且つ圧力発生室12より小さい断面積を有する。例えば、本実施形態では、インク供給路14は、リザーバ100と各圧力発生室12との間の圧力発生室12側の流路を幅方向に絞ることで、圧力発生室12の幅より小さい幅で形成されている。なお、このように、本実施形態では、流路の幅を片側から絞ることでインク供給路14を形成したが、流路の幅を両側から絞ることでインク供給路を形成してもよい。また、流路の幅を絞るのではなく、厚さ方向から絞ることでインク供給路を形成してもよい。さらに、各連通路15は、インク供給路14の圧力発生室12とは反対側に連通し、インク供給路14の幅方向(短手方向)より大きい断面積を有する。本実施形態では、連通路15を圧力発生室12と同じ断面積で形成した。   The ink supply path 14 communicates with one end side in the longitudinal direction of the pressure generation chamber 12 and has a smaller cross-sectional area than the pressure generation chamber 12. For example, in the present embodiment, the ink supply path 14 has a width smaller than the width of the pressure generation chamber 12 by narrowing the flow path on the pressure generation chamber 12 side between the reservoir 100 and each pressure generation chamber 12 in the width direction. It is formed with. As described above, in this embodiment, the ink supply path 14 is formed by narrowing the width of the flow path from one side. However, the ink supply path may be formed by narrowing the width of the flow path from both sides. Further, the ink supply path may be formed by narrowing from the thickness direction instead of narrowing the width of the flow path. Further, each communication path 15 communicates with the side of the ink supply path 14 opposite to the pressure generation chamber 12 and has a larger cross-sectional area than the width direction (short direction) of the ink supply path 14. In the present embodiment, the communication passage 15 is formed with the same cross-sectional area as the pressure generation chamber 12.

すなわち、流路形成基板10には、圧力発生室12と、圧力発生室12の短手方向の断面積より小さい断面積を有するインク供給路14と、このインク供給路14に連通すると共にインク供給路14の短手方向の断面積よりも大きく圧力発生室12と同等の断面積を有する連通路15とが複数の隔壁11により区画されて設けられている。   In other words, the flow path forming substrate 10 is connected to the pressure generation chamber 12, the ink supply path 14 having a smaller cross-sectional area in the short direction of the pressure generation chamber 12, the ink supply path 14, and the ink supply. A communication passage 15 having a cross-sectional area larger than the cross-sectional area in the short direction of the passage 14 and having the same cross-sectional area as the pressure generation chamber 12 is provided by being partitioned by a plurality of partition walls 11.

また、流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が接着剤や熱溶着フィルム等によって固着されている。なお、ノズルプレート20は、厚さが例えば、0.01〜1mmで、線膨張係数が300℃以下で、例えば2.5〜4.5[×10-6/℃]であるガラスセラミックス、シリコン単結晶基板又はステンレス鋼などからなる。 Further, on the opening surface side of the flow path forming substrate 10, a nozzle plate 20 having a nozzle opening 21 communicating with the vicinity of the end portion of each pressure generating chamber 12 on the side opposite to the ink supply path 14 is provided with an adhesive or It is fixed by a heat welding film or the like. The nozzle plate 20 has a thickness of, for example, 0.01 to 1 mm, a linear expansion coefficient of 300 ° C. or less, for example, 2.5 to 4.5 [× 10 −6 / ° C.], glass ceramics, silicon It consists of a single crystal substrate or stainless steel.

一方、流路形成基板10の開口面とは反対側には、上述したように、二酸化シリコンからなり厚さが例えば、約1.0μmの弾性膜50が形成され、この弾性膜50上には、例えば、酸化ジルコニウム(ZrO)からなり厚さが例えば、約0.3〜0.4μmの絶縁体膜55が積層形成されている。なお、本実施形態では、流路形成基板10上に、二酸化シリコン(SiO)からなる弾性膜50及び酸化ジルコニウム(ZrO)からなる絶縁体膜55を設けたが、流路形成基板10に設ける膜の種類は特に限定されず、例えば、SiO層、ZrO層又はZr1−X(0.01≦X≦0.15、Y=2.0±α、αは化学量論的に許容される値、Mは周期表のIIA族元素、IIIA族元素、又はIIIB族元素であり、好ましくは、MはY及びCaから選択される少なくとも一種である。)層の1層でもよく、また、これらの層を積層したものでもよい。絶縁体膜55としてZrO層を設ける場合は、平均結晶粒径20〜100nmの柱状結晶で(−111)面が優先配向していることが好ましい。ZrO層の品質が良好で、ZrO層の表面が平滑となり、ZrO層の下層及び上層との密着性が良好になるため、アクチュエータの変位が大きくても剥れることなく耐久性に優れたアクチュエータ装置となる。ZrO層の表面は粗面であるよりも平滑である方がその面と接する層との密着性を向上させることができる。なお、本明細書において、平均結晶粒径とは、電極膜に平行な面方向における柱状結晶の結晶粒径のことであって、SEMやAFMで得られた像の画像処理によって求めた値である。 On the other hand, an elastic film 50 made of silicon dioxide and having a thickness of, for example, about 1.0 μm is formed on the side opposite to the opening surface of the flow path forming substrate 10. For example, an insulator film 55 made of zirconium oxide (ZrO 2 ) and having a thickness of, for example, about 0.3 to 0.4 μm is laminated. In the present embodiment, the elastic film 50 made of silicon dioxide (SiO 2 ) and the insulator film 55 made of zirconium oxide (ZrO 2 ) are provided on the flow path forming substrate 10. The type of film to be provided is not particularly limited. For example, SiO 2 layer, ZrO 2 layer, or Zr 1-X M X O Y (0.01 ≦ X ≦ 0.15, Y = 2.0 ± α, α is chemical A stoichiometrically acceptable value, M is a group IIA element, group IIIA element, or group IIIB element of the periodic table, and preferably M is at least one selected from Y and Ca). A layer may be sufficient and what laminated these layers may be sufficient. When a ZrO 2 layer is provided as the insulator film 55, it is preferable that the (−111) plane is preferentially oriented in a columnar crystal having an average crystal grain size of 20 to 100 nm. The quality of the ZrO 2 layer is good, the surface of the ZrO 2 layer is smooth, and the adhesion with the lower layer and the upper layer of the ZrO 2 layer is improved. Actuator device. When the surface of the ZrO 2 layer is smoother than the rough surface, the adhesion with the layer in contact with the surface can be improved. In this specification, the average crystal grain size is the crystal grain size of the columnar crystal in the plane direction parallel to the electrode film, and is a value obtained by image processing of an image obtained by SEM or AFM. is there.

また、絶縁体膜55上には、厚さが例えば約0.1〜0.3μmの下電極膜60と、厚さが例えば約0.5〜5μmのチタン酸ジルコン酸鉛(PZT)からなる圧電体層70と、厚さが例えば約10〜200nmの上電極膜80とからなる圧電素子300が形成されている。   On the insulator film 55, the lower electrode film 60 having a thickness of, for example, about 0.1 to 0.3 μm and lead zirconate titanate (PZT) having a thickness of, for example, about 0.5 to 5 μm are formed. A piezoelectric element 300 including the piezoelectric layer 70 and the upper electrode film 80 having a thickness of, for example, about 10 to 200 nm is formed.

ここで、圧電素子300は、下電極膜60、圧電体層70及び上電極膜80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。そして、ここではパターニングされた何れか一方の電極及び圧電体層70から構成され、両電極への電圧の印加により圧電歪みが生じる部分を圧電体能動部320という。本実施形態では、下電極膜60を圧電素子300の共通電極とし、上電極膜80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。何れの場合においても、各圧力発生室12毎に圧電体能動部320が形成されていることになる。なお、本実施形態では、下電極膜60、圧電体層70及び上電極膜80が、図3(a)に示すように、上電極膜80側の幅が狭くなるようにパターニングされ、その側面は傾斜面となっている。また、ここでは、圧電素子300と当該圧電素子300の駆動により変位が生じる振動板とを合わせてアクチュエータ装置と称する。上述した例では、弾性膜50、絶縁体膜55及び下電極膜60が振動板として作用するが、勿論これに限定されるものではなく、例えば、弾性膜50、絶縁体膜55を設けずに、下電極膜60のみが振動板として作用するようにしてもよい。   Here, the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. In general, one electrode of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each pressure generating chamber 12. In this case, a portion that is configured by any one of the patterned electrodes and the piezoelectric layer 70 and in which piezoelectric distortion is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion 320. In the present embodiment, the lower electrode film 60 is used as a common electrode of the piezoelectric element 300 and the upper electrode film 80 is used as an individual electrode of the piezoelectric element 300. However, there is no problem even if this is reversed for convenience of a drive circuit and wiring. In any case, the piezoelectric active part 320 is formed for each pressure generating chamber 12. In the present embodiment, the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80 are patterned so that the width on the upper electrode film 80 side becomes narrow as shown in FIG. Has an inclined surface. In addition, here, the piezoelectric element 300 and the diaphragm that is displaced by driving the piezoelectric element 300 are collectively referred to as an actuator device. In the above-described example, the elastic film 50, the insulator film 55, and the lower electrode film 60 function as a diaphragm, but of course not limited to this. For example, the elastic film 50 and the insulator film 55 are not provided. Only the lower electrode film 60 may act as a diaphragm.

図3(b)に示すように、下電極膜60は、絶縁体膜55側から順に、PtとTiとの合金からなるPt−Ti層500と、TiO(0.1≦x≦2)とPtとの合金からなるTiO−Pt層(密度弾性調整層)501と、PtからなるPt層502と、イリジウム(Ir)からなるIr層503を積層した構造である。本実施形態では、下電極膜60が、下電極膜60の電極材料、即ち、下電極の主成分としてPtを有し、PtとPtよりも密度が低いTiO(0.1≦x≦2)との合金からなる密度弾性調整層501を有するので、Ptのみからなる下電極膜60よりも密度が低下して軽量になるため、振動の応答性が良好になり、アクチュエータ装置の変位特性が向上する。また、Ptよりもヤング率が高いTiOとの合金からなる密度弾性調整層501を有するので、Ptのみからなる下電極膜60よりも、平均ヤング率が高くなり硬いものとなるため、下電極膜60の耐久性に優れたアクチュエータ装置となる。 As shown in FIG. 3B, the lower electrode film 60 includes, in order from the insulator film 55 side, a Pt—Ti layer 500 made of an alloy of Pt and Ti, and TiO X (0.1 ≦ x ≦ 2). In this structure, a TiO X -Pt layer (density elasticity adjusting layer) 501 made of an alloy of Pt and Pt, a Pt layer 502 made of Pt, and an Ir layer 503 made of iridium (Ir) are laminated. In the present embodiment, the lower electrode film 60 has an electrode material of the lower electrode film 60, that is, TiO X (0.1 ≦ x ≦ 2) having Pt as a main component of the lower electrode and having a lower density than Pt and Pt. ), The density is lower and lighter than the lower electrode film 60 made only of Pt, so that the vibration responsiveness is improved and the displacement characteristics of the actuator device are improved. improves. Further, since the density elastic adjustment layer 501 made of an alloy with TiO X having a Young's modulus higher than that of Pt is provided, the average Young's modulus becomes higher and harder than the lower electrode film 60 made only of Pt. The actuator device is excellent in durability of the film 60.

さらに、下電極膜60を厚さ方向に二次イオン質量分析装置(SIMS)により測定した際に、図9に示すように、PtイオンとTiイオンとOイオンが検出されるが、密度弾性調整層501の絶縁体膜55側の境界(図9中、矢印(1)で示された垂直線部分)と、密度弾性調整層501中でPtイオンが最も弱く検出される部分(図9中、矢印(2)で示された垂直線部分)でのこれらのイオンのそれぞれの強度比が所定範囲内である。具体的には、密度弾性調整層501の絶縁体膜55側の境界で検出されるPtイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分でのPtイオンの強度Zとの比Z/Zが0.05〜0.3、密度弾性調整層501の絶縁体膜55側の境界で検出されるTiイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分でのTiイオンの強度Zとの比Z/Zが0.6〜1.0、密度弾性調整層501の絶縁体膜55側の境界で検出されるOイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分でのOイオンの強度Zとの比Z/Zが1.5〜4.0の範囲内である。なお、密度弾性調整層501中でPtイオンが最も弱く検出される部分は、密度弾性調整層501の厚さ方向の中心よりも圧電体層70側であり、Irイオンが実質的に検出されはじめる。また、密度弾性調整層501の絶縁体膜55側の境界、すなわち本実施形態ではPt−Ti層500とTiO−Pt層(密度弾性調整層501)との境界は、SIMS測定で得られたチャートから判断でき、この境界部分ではTiイオンもOイオンもPtイオンも変曲点を有する。 Furthermore, when the lower electrode film 60 is measured in the thickness direction by a secondary ion mass spectrometer (SIMS), Pt ions, Ti ions, and O ions are detected as shown in FIG. The boundary of the layer 501 on the insulator film 55 side (vertical line portion indicated by the arrow (1) in FIG. 9) and the portion where the Pt ion is detected weakest in the density elastic adjustment layer 501 (in FIG. 9, The intensity ratio of each of these ions at the vertical line portion indicated by arrow (2) is within a predetermined range. Specifically, the strength Z 1 of Pt ions detected at the boundary of the density elastic adjustment layer 501 on the insulator film 55 side and the Pt ion in the portion where the density elastic adjustment layer 501 detects the weakest Pt ion. The ratio Z 2 / Z 1 to the strength Z 2 is 0.05 to 0.3, and the Ti ion strength Z 3 detected at the boundary of the density elastic adjustment layer 501 on the insulator film 55 side and the density elastic adjustment layer 501 The ratio Z 4 / Z 3 to the Ti ion intensity Z 4 at the portion where Pt ions are detected most weakly is 0.6 to 1.0, and is detected at the boundary of the density elastic adjustment layer 501 on the insulator film 55 side. The ratio Z 6 / Z 5 of the intensity Z 5 of the O ion to the intensity Z 6 of the O ion in the portion where the Pt ion is detected weakest in the density elasticity adjusting layer 501 is 1.5 to 4.0 Within range. The portion where the Pt ions are detected weakest in the density elastic adjustment layer 501 is closer to the piezoelectric layer 70 than the center of the density elastic adjustment layer 501 in the thickness direction, and Ir ions begin to be substantially detected. . Further, the boundary of the density elastic adjustment layer 501 on the insulator film 55 side, that is, the boundary between the Pt—Ti layer 500 and the TiO X —Pt layer (density elastic adjustment layer 501) in this embodiment was obtained by SIMS measurement. It can be judged from the chart, and Ti, O, and Pt ions have inflection points at this boundary portion.

各値が上記範囲内であれば、TiOは絶縁体膜55側よりも圧電体層70側に多く含まれ、Ptは圧電体層70側よりも絶縁体膜55側に多く含まれる。このように、密度弾性調整層501の圧電体層70側のTiOが多くなりPt量が少なくなるため、下電極膜60の剛性が高くなり、下電極膜60の耐久性が良好になる。なお、この密度弾性調整層501が下電極膜60に占める厚さの割合は、60〜70%程度であり、厚さは例えば130〜180nm程度である。 If each value is within the above range, TiO X is contained more on the piezoelectric layer 70 side than the insulator film 55 side, and Pt is contained more on the insulator film 55 side than the piezoelectric layer 70 side. Thus, since the TiO X on the piezoelectric layer 70 side of the density elasticity adjusting layer 501 increases and the amount of Pt decreases, the rigidity of the lower electrode film 60 increases and the durability of the lower electrode film 60 improves. In addition, the ratio of the thickness which this density elasticity adjustment layer 501 occupies for the lower electrode film 60 is about 60 to 70%, and the thickness is about 130 to 180 nm, for example.

また、本実施形態の下電極膜60へは圧電体層70から鉛(Pb)が拡散しないため、下電極膜60はPbを実質的に含有せず、例えば、下電極膜60のPbの含有量を測定すると、0.1質量%以下である。密度が比較的高く重い元素であるPbを実質的に含有しないため、下電極膜60がPbを含有するアクチュエータ装置よりも振動の応答性が良好になる。なお、下電極膜60は実質的に鉛を含有しないため、鉛を含有する電気絶縁層、例えば、酸化チタンと酸化鉛からなる層も有さず、下電極膜60の導電性も優れている。   Further, since lead (Pb) does not diffuse from the piezoelectric layer 70 into the lower electrode film 60 of the present embodiment, the lower electrode film 60 does not substantially contain Pb. For example, the lower electrode film 60 contains Pb. When the amount is measured, it is 0.1% by mass or less. Since Pb, which is a relatively high and heavy element, does not substantially contain Pb, the lower electrode film 60 has better vibration response than an actuator device containing Pb. Since the lower electrode film 60 does not substantially contain lead, there is no electrical insulating layer containing lead, for example, a layer made of titanium oxide and lead oxide, and the conductivity of the lower electrode film 60 is excellent. .

また、本実施形態では圧電素子300を構成する圧電体層70の材料(圧電材料)として、チタン酸ジルコン酸鉛(PZT)を用いたが、PZTに限定されず、その他の強誘電性圧電性材料や、これにニオブ、ニッケル、マグネシウム、ビスマス又はイットリウム等の金属を添加したリラクサ強誘電体等が用いられる。その組成としては、例えば、PbTiO(PT)、PbZrO(PZ)、Pb(ZrTi1−x)O(PZT)、Pb(Mg1/3Nb2/3)O−PbTiO(PMN−PT)、Pb(Zn1/3Nb2/3)O−PbTiO(PZN−PT)、Pb(Ni1/3Nb2/3)O−PbTiO(PNN−PT)、Pb(In1/2Nb1/2)O−PbTiO(PIN−PT)、Pb(Sc1/2Ta1/2)O−PbTiO(PST−PT)、Pb(Sc1/2Nb1/2)O−PbTiO(PSN−PT)、BiScO−PbTiO(BS−PT)、BiYbO−PbTiO(BY−PT)等が挙げられる。 In the present embodiment, lead zirconate titanate (PZT) is used as the material (piezoelectric material) of the piezoelectric layer 70 constituting the piezoelectric element 300, but is not limited to PZT, and other ferroelectric piezoelectric properties. A material, or a relaxor ferroelectric material to which a metal such as niobium, nickel, magnesium, bismuth, or yttrium is added is used. As the composition, for example, PbTiO 3 (PT), PbZrO 3 (PZ), Pb (Zr x Ti 1-x ) O 3 (PZT), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Pb (Zn 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PZN-PT), Pb (Ni 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PNN-PT), Pb (In 1/2 Nb 1/2) O 3 -PbTiO 3 (PIN-PT), Pb (Sc 1/2 Ta 1/2) O 3 -PbTiO 3 (PST-PT), Pb (Sc 1/2 nb 1/2) O 3 -PbTiO 3 ( PSN-PT), biScO 3 -PbTiO 3 (BS-PT), BiYbO 3 -PbTiO 3 (BY-PT) and the like.

また、上電極膜80としては、Ir層が設けられている。なお、上電極膜80はIrに限定されず、Ir,Pt,W,Ta,Mo等の各種金属の何れでもよく、また、これらの合金や、酸化イリジウム等の金属酸化物が挙げられる。   Further, as the upper electrode film 80, an Ir layer is provided. Note that the upper electrode film 80 is not limited to Ir, and may be any of various metals such as Ir, Pt, W, Ta, and Mo, and alloys thereof and metal oxides such as iridium oxide.

そして、圧電素子300の個別電極である各上電極膜80には、インク供給路14側の端部近傍から引き出され、絶縁体膜55上にまで延設される、例えば、金(Au)等からなるリード電極90が接続されている。   Each upper electrode film 80 which is an individual electrode of the piezoelectric element 300 is drawn from the vicinity of the end on the ink supply path 14 side and extended to the insulator film 55, for example, gold (Au) or the like. The lead electrode 90 which consists of is connected.

さらに、圧電素子300が形成された流路形成基板10上には、圧電素子300に対向する領域に、圧電素子300の運動を阻害しない程度の空間を有する圧電素子保持部32を有する保護基板30が、接着剤35によって接合されている。なお、圧電素子保持部32は、圧電素子300の運動を阻害しない程度の空間を有していればよく、当該空間は密封されていても、密封されていなくてもよい。   Furthermore, on the flow path forming substrate 10 on which the piezoelectric element 300 is formed, the protective substrate 30 having the piezoelectric element holding portion 32 having a space that does not hinder the movement of the piezoelectric element 300 in a region facing the piezoelectric element 300. Are joined by an adhesive 35. In addition, the piezoelectric element holding part 32 should just have a space of the grade which does not inhibit the motion of the piezoelectric element 300, and the said space may be sealed or may not be sealed.

また、保護基板30には、連通部13に対向する領域にリザーバ部31が設けられており、このリザーバ部31は、上述したように、流路形成基板10の連通部13と連通されて各圧力発生室12の共通のインク室となるリザーバ100を構成している。また、保護基板30の圧電素子保持部32とリザーバ部31との間の領域には、保護基板30を厚さ方向に貫通する貫通孔33が設けられ、この貫通孔33内に下電極膜60の一部及びリード電極90の先端部が露出されている。   Further, the protective substrate 30 is provided with a reservoir portion 31 in a region facing the communication portion 13, and the reservoir portion 31 is communicated with the communication portion 13 of the flow path forming substrate 10 as described above. A reservoir 100 serving as an ink chamber common to the pressure generation chamber 12 is configured. Further, a through hole 33 that penetrates the protective substrate 30 in the thickness direction is provided in a region between the piezoelectric element holding portion 32 and the reservoir portion 31 of the protective substrate 30, and the lower electrode film 60 is provided in the through hole 33. And the tip of the lead electrode 90 are exposed.

また、保護基板30上には、圧電素子300を駆動するための図示しない駆動回路が固定されており、駆動回路とリード電極90とはボンディングワイヤ等の導電性ワイヤからなる接続配線を介して電気的に接続されている。   In addition, a drive circuit (not shown) for driving the piezoelectric element 300 is fixed on the protective substrate 30, and the drive circuit and the lead electrode 90 are electrically connected via a connection wiring made of a conductive wire such as a bonding wire. Connected.

保護基板30としては、流路形成基板10の熱膨張率と略同一の材料、例えば、ガラス、セラミック材料等を用いることが好ましく、本実施形態では、流路形成基板10と同一材料のシリコン単結晶基板を用いて形成した。   As the protective substrate 30, it is preferable to use a material substantially the same as the coefficient of thermal expansion of the flow path forming substrate 10, for example, glass or ceramic material. It formed using the crystal substrate.

保護基板30上には、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。ここで、封止膜41は、剛性が低く可撓性を有する材料(例えば、厚さが6μmのポリフェニレンサルファイド(PPS)フィルム)からなり、この封止膜41によってリザーバ部31の一方面が封止されている。また、固定板42は、金属等の硬質の材料(例えば、厚さが30μmのステンレス鋼(SUS)等)で形成される。この固定板42のリザーバ100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、リザーバ100の一方面は可撓性を有する封止膜41のみで封止されている。   On the protective substrate 30, a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is bonded. Here, the sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 μm), and the sealing film 41 seals one surface of the reservoir portion 31. It has been stopped. The fixing plate 42 is made of a hard material such as metal (for example, stainless steel (SUS) having a thickness of 30 μm). Since the region of the fixing plate 42 facing the reservoir 100 is an opening 43 that is completely removed in the thickness direction, one surface of the reservoir 100 is sealed only with a flexible sealing film 41. Has been.

このような本実施形態のインクジェット式記録ヘッドでは、図示しない外部インク供給手段からインクを取り込み、リザーバ100からノズル開口21に至るまで内部をインクで満たした後、駆動回路からの記録信号に従い、圧力発生室12に対応するそれぞれの下電極膜60と上電極膜80との間に電圧を印加し、弾性膜50、絶縁体膜55、下電極膜60及び圧電体層70をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。   In such an ink jet recording head of this embodiment, after taking ink from an external ink supply means (not shown) and filling the interior from the reservoir 100 to the nozzle opening 21, the pressure is applied according to the recording signal from the drive circuit. By applying a voltage between each of the lower electrode film 60 and the upper electrode film 80 corresponding to the generation chamber 12, the elastic film 50, the insulator film 55, the lower electrode film 60, and the piezoelectric layer 70 are bent and deformed. The pressure in each pressure generating chamber 12 is increased, and ink droplets are ejected from the nozzle openings 21.

ここで、インクジェット式記録ヘッドの製造方法について、図4〜図8を参照して説明する。なお、図4〜図8は、圧力発生室の長手方向の断面図である。まず、図4(a)に示すように、シリコンウェハである流路形成基板用ウェハ110を約1100℃の拡散炉で熱酸化し、その表面に弾性膜50を構成する二酸化シリコン膜51を形成する。なお、本実施形態では、流路形成基板用ウェハ110として、膜厚が約625μmと比較的厚く剛性の高いシリコンウェハを用いている。   Here, a method of manufacturing the ink jet recording head will be described with reference to FIGS. 4 to 8 are cross-sectional views in the longitudinal direction of the pressure generating chamber. First, as shown in FIG. 4A, a channel forming substrate wafer 110, which is a silicon wafer, is thermally oxidized in a diffusion furnace at about 1100 ° C. to form a silicon dioxide film 51 constituting an elastic film 50 on the surface thereof. To do. In this embodiment, a silicon wafer having a relatively thick film thickness of about 625 μm and a high rigidity is used as the flow path forming substrate wafer 110.

次に、図4(b)に示すように、弾性膜50(二酸化シリコン膜51)上に、酸化ジルコニウムからなる絶縁体膜55を形成する。具体的には、弾性膜50(二酸化シリコン膜51)上に、例えば、スパッタリング法等によりジルコニウム(Zr)層を形成後、このジルコニウム層を、例えば、500〜1200℃の拡散炉で熱酸化することにより酸化ジルコニウム(ZrO2)からなる絶縁体膜55を形成する。 Next, as shown in FIG. 4B, an insulator film 55 made of zirconium oxide is formed on the elastic film 50 (silicon dioxide film 51). Specifically, after a zirconium (Zr) layer is formed on the elastic film 50 (silicon dioxide film 51) by, for example, sputtering, this zirconium layer is thermally oxidized in a diffusion furnace at 500 to 1200 ° C., for example. Thus, the insulator film 55 made of zirconium oxide (ZrO 2 ) is formed.

次に、図5(a)に示すように、Ti膜61、Pt膜62及びIr膜63からなる下電極膜60を、DCマグネトロンスパッタリング法等により形成する。具体的には、まず、絶縁体膜55上に、TiからなるTi膜61を形成した後、Ti膜61上にPtからなるPt膜62を形成する。そして、Pt膜62上にIrからなるIr膜63を形成する。なお、Ir膜63を設けることにより、後の工程で圧電体層70を焼成して結晶化させて形成する際に、Ti膜61のTiが圧電体層70に拡散するのを防止すると共に圧電体層70の成分が弾性膜50側に拡散するのを抑制することができる。このIr膜63の代わりに、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)及びオスミウム(Os)からなる群から選択される少なくとも一つの元素を主成分とするものを設けてもよい。なお、この下電極膜60を形成するための金属膜の種類や比率、後述する加熱条件を適宜調整することにより、SIMS測定の強度比が所定範囲である密度弾性調整層501を形成することができる。   Next, as shown in FIG. 5A, a lower electrode film 60 composed of a Ti film 61, a Pt film 62, and an Ir film 63 is formed by a DC magnetron sputtering method or the like. Specifically, first, a Ti film 61 made of Ti is formed on the insulator film 55, and then a Pt film 62 made of Pt is formed on the Ti film 61. Then, an Ir film 63 made of Ir is formed on the Pt film 62. By providing the Ir film 63, the Ti of the Ti film 61 is prevented from diffusing into the piezoelectric layer 70 when the piezoelectric layer 70 is baked and crystallized in a later step, and the piezoelectric layer 70 is piezoelectric. The components of the body layer 70 can be prevented from diffusing toward the elastic film 50 side. Instead of the Ir film 63, a film containing at least one element selected from the group consisting of palladium (Pd), rhodium (Rh), ruthenium (Ru), and osmium (Os) as a main component may be provided. The density elasticity adjusting layer 501 having a SIMS measurement strength ratio within a predetermined range can be formed by appropriately adjusting the type and ratio of the metal film for forming the lower electrode film 60 and the heating conditions described later. it can.

次に、下電極膜60上に、チタン(Ti)をスパッタリング法、例えば、DCスパッタリング法で1回以上、本実施形態では2回塗布することにより所定の厚さの種チタン層(図示なし)を形成する。この種チタン層は、種チタン層上に形成され圧電体層70となる圧電体膜の配向を制御する配向制御層となる。このように、種チタン等の配向制御層を設けると、チタン結晶を核として圧電体膜72の結晶が成長するので圧電体膜72の配向度等の結晶性が大幅に向上する。なお、圧電体層70の結晶性に特に支障がなければ、この配向制御層は設けなくても良い。配向制御層を設けた場合は、製造されるアクチュエータ装置の下電極膜60と圧電体層70との間には、配向制御層を構成する物質を含む層が残存する場合がある。例えば、配向制御層として下電極膜60上に種チタン層を設けた場合、酸化チタンからなる層が若干残存する。   Next, on the lower electrode film 60, titanium (Ti) is applied by a sputtering method, for example, a DC sputtering method at least once, in this embodiment, twice, in this embodiment, a seed titanium layer (not shown) having a predetermined thickness. Form. This seed titanium layer serves as an orientation control layer that controls the orientation of the piezoelectric film that is formed on the seed titanium layer and becomes the piezoelectric layer 70. As described above, when the orientation control layer such as seed titanium is provided, the crystal of the piezoelectric film 72 grows with the titanium crystal as a nucleus, so that the crystallinity such as the orientation degree of the piezoelectric film 72 is greatly improved. Note that this orientation control layer may not be provided if there is no particular problem with the crystallinity of the piezoelectric layer 70. When the orientation control layer is provided, a layer containing a substance constituting the orientation control layer may remain between the lower electrode film 60 and the piezoelectric layer 70 of the manufactured actuator device. For example, when a seed titanium layer is provided on the lower electrode film 60 as an orientation control layer, a layer made of titanium oxide remains slightly.

次に、このように形成した種チタン層上に、チタン酸ジルコン酸鉛(PZT)からなる圧電体層70を形成する。ここで、本実施形態では、金属有機物を溶媒に溶解・分散したいわゆるゾルを塗布乾燥してゲル化して圧電体前駆体膜71を形成し、さらに高温で焼成することで金属酸化物からなる圧電体層70を得る、いわゆるゾル−ゲル法を用いて圧電体層70を形成している。また、ゾル−ゲル法に限定されず、例えば、MOD(Metal-Organic Decomposition)法やスパッタリング法等を用いてもよい。薄膜の圧電体前駆体膜を焼成して結晶化させる方法であれば、圧電体層70を製造する方法は限定されない。   Next, a piezoelectric layer 70 made of lead zirconate titanate (PZT) is formed on the seed titanium layer thus formed. Here, in this embodiment, a so-called sol in which a metal organic material is dissolved and dispersed in a solvent is applied, dried, and gelled to form a piezoelectric precursor film 71, which is further baked at a high temperature, thereby forming a piezoelectric film made of a metal oxide. The piezoelectric layer 70 is formed using a so-called sol-gel method for obtaining the body layer 70. Moreover, it is not limited to the sol-gel method, For example, you may use the MOD (Metal-Organic Decomposition) method, sputtering method, etc. The method for manufacturing the piezoelectric layer 70 is not limited as long as it is a method of firing and crystallizing a thin film piezoelectric precursor film.

圧電体層70の具体的な形成手順としては、まず、図5(b)に示すように、下電極膜60上にPZT前駆体膜である圧電体前駆体膜71を成膜する。すなわち、下電極膜60が形成された流路形成基板10上に金属有機化合物(チタン酸ジルコン酸鉛)を含むゾル(溶液)を塗布して例えば膜厚が0.1μm程度の圧電体前駆体膜71を形成する(塗布工程)。次いで、この圧電体前駆体膜71を所定温度に加熱して一定時間乾燥させる(乾燥工程)。次に、乾燥した圧電体前駆体膜71を所定温度に加熱して一定時間保持することによって脱脂する(脱脂工程)。なお、ここで言う脱脂とは、圧電体前駆体膜71に含まれる有機成分を、例えば、NO2、CO2、H2O等として離脱させることである。 As a specific procedure for forming the piezoelectric layer 70, first, as shown in FIG. 5B, a piezoelectric precursor film 71 that is a PZT precursor film is formed on the lower electrode film 60. That is, a sol (solution) containing a metal organic compound (lead zirconate titanate) is applied onto the flow path forming substrate 10 on which the lower electrode film 60 is formed, and a piezoelectric precursor having a film thickness of about 0.1 μm, for example. A film 71 is formed (application process). Next, the piezoelectric precursor film 71 is heated to a predetermined temperature and dried for a predetermined time (drying step). Next, the dried piezoelectric precursor film 71 is degreased by heating it to a predetermined temperature and holding it for a predetermined time (degreasing step). The degreasing referred to here is to release the organic component contained in the piezoelectric precursor film 71 as, for example, NO 2 , CO 2 , H 2 O or the like.

次に、図5(c)に示すように、圧電体前駆体膜71を所定温度に加熱して一定時間保持することによって結晶化させ、圧電体膜72を形成する(焼成工程)。なお、乾燥工程、脱脂工程及び焼成工程で用いられる加熱装置としては、例えば、赤外線ランプの照射により加熱するRTA(Rapid Thermal Annealing)装置やホットプレート等が挙げられる。   Next, as shown in FIG. 5C, the piezoelectric precursor film 71 is crystallized by being heated to a predetermined temperature and held for a predetermined time to form a piezoelectric film 72 (firing step). Examples of the heating apparatus used in the drying process, the degreasing process, and the baking process include an RTA (Rapid Thermal Annealing) apparatus and a hot plate that are heated by irradiation with an infrared lamp.

次に、図6(a)に示すように、圧電体膜72上に所定形状のレジスト400を形成する。次に、図6(b)に示すように、レジスト400をマスクとして下電極膜60及び圧電体膜72の1層目をそれらの側面が傾斜するように同時にパターニングする。   Next, as illustrated in FIG. 6A, a resist 400 having a predetermined shape is formed on the piezoelectric film 72. Next, as shown in FIG. 6B, the first layer of the lower electrode film 60 and the piezoelectric film 72 is simultaneously patterned using the resist 400 as a mask so that the side surfaces thereof are inclined.

次いで、レジスト400を剥離した後、上述した塗布工程、乾燥工程、脱脂工程及び焼成工程からなる圧電体膜形成工程を複数回繰り返して複数の圧電体膜72からなる圧電体層70を形成することで、図6(c)に示すように複数層の圧電体膜72からなる所定厚さの圧電体層70を形成する。例えば、ゾルの1回あたりの膜厚が0.1μm程度の場合には、例えば、10層の圧電体膜72からなる圧電体層70全体の膜厚は約1.1μm程度となる。なお、本実施形態では、圧電体膜72を積層して設けたが、1層のみでもよい。   Next, after the resist 400 is peeled off, the piezoelectric film forming process including the coating process, the drying process, the degreasing process, and the baking process described above is repeated a plurality of times to form the piezoelectric layer 70 including the plurality of piezoelectric films 72. Then, as shown in FIG. 6C, a piezoelectric layer 70 having a predetermined thickness composed of a plurality of layers of piezoelectric films 72 is formed. For example, when the film thickness per sol is about 0.1 μm, the entire film thickness of the piezoelectric layer 70 composed of ten piezoelectric films 72 is about 1.1 μm, for example. In the present embodiment, the piezoelectric film 72 is provided by being laminated, but only one layer may be provided.

このように圧電体層70を形成する工程でTi膜61、Pt膜62及びIr膜63も加熱され、合金化された下電極膜60が形成される。そして、TiOとPtとの合金からなる密度弾性調整層501が下電極膜60中に形成され、下電極膜60の構成は、絶縁体膜55側から順に、PtとTiとの合金からなるPt−Ti層500と、TiOとPtとの合金からなる密度弾性調整層501と、PtからなるPt層502と、IrからなるIr層503となる。なお、この製造方法で得られた下電極膜60はPbを実質的に含有していない。圧電体層70の圧電材料(PZT)由来のPbが下電極膜60に拡散しないためである。 In this way, in the process of forming the piezoelectric layer 70, the Ti film 61, the Pt film 62, and the Ir film 63 are also heated, and the alloyed lower electrode film 60 is formed. A density elasticity adjusting layer 501 made of an alloy of TiO X and Pt is formed in the lower electrode film 60, and the structure of the lower electrode film 60 is made of an alloy of Pt and Ti in order from the insulator film 55 side. A Pt—Ti layer 500, a density elastic adjustment layer 501 made of an alloy of TiO X and Pt, a Pt layer 502 made of Pt, and an Ir layer 503 made of Ir. The lower electrode film 60 obtained by this manufacturing method does not substantially contain Pb. This is because Pb derived from the piezoelectric material (PZT) of the piezoelectric layer 70 does not diffuse into the lower electrode film 60.

このように圧電体層70を形成した後は、図7(a)に示すように、圧電体層70上の全面に亘ってイリジウム(Ir)からなる上電極膜80をスパッタリング法等で形成し、各圧力発生室12に対向する領域にパターニングして、下電極膜60と圧電体層70と上電極膜80からなる圧電素子300を形成する。なお、圧電体層70と上電極膜80とのパターニングでは、所定形状に形成したレジスト(図示なし)を介してドライエッチングすることにより一括して行うことができる。そして、このようなドライエッチングでは、レジストの側面を予め傾斜させておくと、圧電体層70及び上電極膜80が、上電極膜80側の幅が狭くなるようにパターニングされ、その側面が傾斜面となる。   After the piezoelectric layer 70 is formed in this way, as shown in FIG. 7A, an upper electrode film 80 made of iridium (Ir) is formed over the entire surface of the piezoelectric layer 70 by a sputtering method or the like. Then, patterning is performed in a region facing each pressure generation chamber 12 to form the piezoelectric element 300 including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. The patterning of the piezoelectric layer 70 and the upper electrode film 80 can be performed collectively by dry etching via a resist (not shown) formed in a predetermined shape. In such dry etching, when the side surfaces of the resist are inclined in advance, the piezoelectric layer 70 and the upper electrode film 80 are patterned so that the width on the upper electrode film 80 side is narrow, and the side surfaces are inclined. It becomes a surface.

次に、図7(b)に示すように、流路形成基板用ウェハ110の全面に亘って、例えば、金(Au)等からなるリード電極90を形成後、例えば、レジスト等からなるマスクパターン(図示なし)を介して各圧電素子300毎にパターニングする。   Next, as shown in FIG. 7B, a lead electrode 90 made of, for example, gold (Au) or the like is formed over the entire surface of the flow path forming substrate wafer 110, and then a mask pattern made of, for example, a resist or the like. Patterning is performed for each piezoelectric element 300 via (not shown).

次に、図7(c)に示すように、流路形成基板用ウェハ110の圧電素子300側に、シリコンウェハであり複数の保護基板30となる保護基板用ウェハ130を接着剤35を介して接合する。なお、この保護基板用ウェハ130は、例えば、400μm程度の厚さを有するため、保護基板用ウェハ130を接合することによって流路形成基板用ウェハ110の剛性は著しく向上することになる。ここでは、流路形成基板用ウェハ110に保護基板用ウェハ130を接合した後に、流路形成基板用ウェハ110を所定の厚さに薄くする。   Next, as shown in FIG. 7C, a protective substrate wafer 130 that is a silicon wafer and serves as a plurality of protective substrates 30 is placed on the flow path forming substrate wafer 110 on the piezoelectric element 300 side via an adhesive 35. Join. Since the protective substrate wafer 130 has a thickness of, for example, about 400 μm, the rigidity of the flow path forming substrate wafer 110 is remarkably improved by bonding the protective substrate wafer 130. Here, after the protective substrate wafer 130 is bonded to the flow path forming substrate wafer 110, the flow path forming substrate wafer 110 is thinned to a predetermined thickness.

次に、図8(a)に示すように、流路形成基板用ウェハ110をある程度の厚さとなるまで薄くする。また、流路形成基板用ウェハ110上に、マスク膜52を新たに形成し、所定形状にパターニングする。   Next, as shown in FIG. 8A, the flow path forming substrate wafer 110 is thinned to a certain thickness. Further, a mask film 52 is newly formed on the flow path forming substrate wafer 110 and patterned into a predetermined shape.

そして、図8(b)に示すように、流路形成基板用ウェハ110をマスク膜52を介してKOH等のアルカリ溶液を用いた異方性エッチング(ウェットエッチング)することにより、圧電素子300に対応する圧力発生室12、連通部13、インク供給路14及び連通路15等を形成する。   Then, as shown in FIG. 8B, anisotropic etching (wet etching) using an alkali solution such as KOH is performed on the flow path forming substrate wafer 110 through the mask film 52, whereby the piezoelectric element 300 is formed. Corresponding pressure generating chambers 12, communication portions 13, ink supply passages 14, communication passages 15 and the like are formed.

その後は、流路形成基板用ウェハ110及び保護基板用ウェハ130の外周縁部の不要部分を、例えば、ダイシング等により切断することによって除去する。そして、流路形成基板用ウェハ110の保護基板用ウェハ130とは反対側の面の二酸化シリコン膜51を除去した後にノズル開口21が穿設されたノズルプレート20を接合すると共に、保護基板用ウェハ130にコンプライアンス基板40を接合し、流路形成基板用ウェハ110等を図1に示すような一つのチップサイズの流路形成基板10等に分割することによって、本実施形態のインクジェット式記録ヘッドとする。   Thereafter, unnecessary portions of the outer peripheral edge portions of the flow path forming substrate wafer 110 and the protective substrate wafer 130 are removed by cutting, for example, by dicing. Then, after removing the silicon dioxide film 51 on the surface of the flow path forming substrate wafer 110 opposite to the protective substrate wafer 130, the nozzle plate 20 having the nozzle openings 21 formed therein is bonded, and the protective substrate wafer is also formed. The compliance substrate 40 is bonded to 130, and the flow path forming substrate wafer 110 and the like are divided into a single chip size flow path forming substrate 10 as shown in FIG. To do.

以下、実施例及び比較例に基づいてさらに詳細に説明する。
(実施例1)
上記実施形態に基づき、アクチュエータ装置を製造した。詳述すると、表1中、PZT成膜前構造に示すように、厚さ625μmのシリコン基板に、厚さ1μmのSiO膜及び厚さ400nmのZrO膜を順に設け、その上に、厚さ70nmのTi膜、厚さ80nmのPt膜、厚さ10nmのIr膜をスパッタリング法で形成した。その後、PZT組成がPb/(Zr+Ti)=1.18、Zr/(Zr+Ti)=0.517のゾルを用いて、下電極膜上に配向制御層を介してPZTからなる圧電体層を形成した。なお、圧電体層は、当該ゾルを用いて形成した1層目の圧電体前駆体膜を焼成した後、その上に圧電体前駆体膜を3層形成する毎に焼成する工程を3回行って、厚さ1.1μmの圧電体層を作成した。この時の焼成条件は、4回とも700℃で5分とした。その後、圧電体層上に厚さ50nmのIrからなる上電極を設けて、アクチュエータ装置を製造した。製造されたアクチュエータ装置の構成を表1に示す。
Hereinafter, it demonstrates further in detail based on an Example and a comparative example.
Example 1
Based on the above embodiment, an actuator device was manufactured. Specifically, as shown in the structure before film formation in PZT in Table 1, a SiO 2 film having a thickness of 1 μm and a ZrO 2 film having a thickness of 400 nm are sequentially provided on a silicon substrate having a thickness of 625 μm. A 70 nm thick Ti film, a 80 nm thick Pt film, and a 10 nm thick Ir film were formed by sputtering. Thereafter, using a sol having a PZT composition of Pb / (Zr + Ti) = 1.18 and Zr / (Zr + Ti) = 0.517, a piezoelectric layer made of PZT was formed on the lower electrode film via an orientation control layer. . For the piezoelectric layer, the first piezoelectric precursor film formed using the sol is fired, and then the firing process is performed three times each time three piezoelectric precursor films are formed on the piezoelectric precursor film. Thus, a piezoelectric layer having a thickness of 1.1 μm was prepared. The firing conditions at this time were set to 700 ° C. for 5 minutes for all four times. Thereafter, an upper electrode made of Ir having a thickness of 50 nm was provided on the piezoelectric layer to manufacture an actuator device. Table 1 shows the structure of the manufactured actuator device.

(実施例2)
Ti膜の膜厚を50nmとして、アクチュエータ装置を作製した。
(Example 2)
The actuator device was manufactured by setting the thickness of the Ti film to 50 nm.

(比較例1)
Ti膜の膜厚を20nmとして、アクチュエータ装置を作製した。
(Comparative Example 1)
The actuator device was manufactured by setting the thickness of the Ti film to 20 nm.

(試験例1)
実施例1〜2及び比較例1で製造されたアクチュエータ装置から圧電体層及びZrO膜を剥がした状態のアクチュエータ装置について、厚さ方向に亘って二次イオン質量分析装置(SIMS)により測定した。結果を実施例1は図9に、実施例2は図10に、比較例1は図11に示す。なお、各図の左側が絶縁体膜(ZrO)55側、右側が圧電体層70側である。図中、図9及び図10の一番短い垂直線(矢印(2)で示された垂直線)以外の垂直線は下電極膜60を構成する層の境界を表す。
(Test Example 1)
An actuator apparatus that is peeled off the piezoelectric layer and the ZrO 2 film from the actuator device prepared in Examples 1-2 and Comparative Example 1 were measured by a secondary ion mass spectrometer over the thickness direction (SIMS) . The results are shown in FIG. 9 for Example 1, FIG. 10 for Example 2, and FIG. 11 for Comparative Example 1. In each figure, the left side is the insulator film (ZrO 2 ) 55 side, and the right side is the piezoelectric layer 70 side. In the figure, vertical lines other than the shortest vertical line (the vertical line indicated by the arrow (2)) in FIGS. 9 and 10 represent the boundaries of the layers constituting the lower electrode film 60.

図9及び図10に示すように、実施例1及び実施例2では、下電極膜60は、ZrO膜側から順に、PtとTiとの合金からなるPt−Ti層500、TiO(X=0.1〜2)とPtとの合金からなるTiO−Pt層(密度弾性調整層)501、PtからなるPt層502、IrからなるIr層503が積層された状態であった。電極材料であるPtと、Ptよりも密度が低くヤング率が高い材料であるTiOからなる密度弾性調整層501を有するため、Ptのみからなる下電極膜60よりも、密度が低下して軽量になり、また、平均ヤング率が高くなり硬いものとなるため、振動の応答性及び耐久性に優れたアクチュエータ装置であった。 As shown in FIGS. 9 and 10, in Example 1 and Example 2, the lower electrode film 60 includes, in order from the ZrO 2 film side, a Pt—Ti layer 500 made of an alloy of Pt and Ti, TiO X (X = 0.1 to 2) and a TiO x -Pt layer (density elastic adjustment layer) 501 made of an alloy of Pt, a Pt layer 502 made of Pt, and an Ir layer 503 made of Ir. Since it has the density elastic adjustment layer 501 made of Pt, which is an electrode material, and TiO X, which is a material having a lower density and higher Young's modulus than Pt, the density is lower and lighter than the lower electrode film 60 made only of Pt. In addition, since the average Young's modulus becomes high and hard, the actuator device was excellent in vibration response and durability.

一方、比較例1では、図11に示すように、ZrO膜側から順に、PtとTiとの合金からなるPt−Ti層、PtとTiO(X=0.1〜2)とIrとPbO(X=0.1〜2)との合金からなるPt−TiO−Ir−PbO層、TiO(X=0.1〜2)とPbO(X=0.1〜2)との合金からなるTiO−PbO層、IrとPbO(X=0.1〜2)との合金からなるIr−PbO層が積層された状態であった。このように、Pbが下電極膜中に拡散しており、また、電気絶縁層(TiO−PbO層)が形成されていた。 On the other hand, in Comparative Example 1, as shown in FIG. 11, in order from the ZrO 2 film side, a Pt—Ti layer made of an alloy of Pt and Ti, Pt, TiO X (X = 0.1-2), and Ir Pt—TiO X —Ir—PbO X layer made of an alloy with PbO X (X = 0.1-2), TiO X (X = 0.1-2) and PbO X (X = 0.1-2) TiO X -PbO X layer made of an alloy with Ir, and Ir-PbO X layer made of an alloy of Ir and PbO X (X = 0.1-2). Thus, Pb was diffused into the lower electrode film, and an electrical insulating layer (TiO X -PbO X layer) was formed.

(試験例2)
実施例1及び実施例2について、図9及び図10から、密度弾性調整層501の絶縁体膜55側の境界(矢印(1)で示された垂直線部分)で検出されるPtイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分(矢印(2)で示された垂直線部分)でのPtイオンの強度Zとの比Z/Zと、密度弾性調整層501の絶縁体膜55側の境界で検出されるTiイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分でのTiイオンの強度Zとの比Z/Zと、密度弾性調整層501の絶縁体膜55側の境界で検出されるOイオンの強度Zと密度弾性調整層501中でPtイオンが最も弱く検出される部分でのOイオンの強度Zとの比Z/Zを求めた。結果を表1に示す。
(Test Example 2)
For Example 1 and Example 2, from FIGS. 9 and 10, the intensity of Pt ions detected at the boundary (the vertical line portion indicated by arrow (1)) of the density elastic adjustment layer 501 on the insulator film 55 side. the ratio Z 2 / Z 1 between the intensity Z 2 of Pt ions in Z 1 and part density elastic adjustment layer 501 Pt ions in is weakest detected (arrow (indicated vertical line part 2)), The Ti ion intensity Z 3 detected at the boundary of the density elastic adjustment layer 501 on the insulator film 55 side and the Ti ion intensity Z 4 at the portion where the Pt ion is detected weakest in the density elastic adjustment layer 501 The ratio Z 4 / Z 3 , the intensity Z 5 of O ions detected at the boundary of the density elastic adjustment layer 501 on the insulator film 55 side, and the portion where Pt ions are detected weakest in the density elastic adjustment layer 501 A ratio Z 6 / Z 5 with the intensity Z 6 of O ions was determined. The results are shown in Table 1.

この結果、実施例1及び実施例2では、密度弾性調整層501の圧電体層70側のTiOが多くなりPt量が少なくなっているため、下電極膜60の剛性が高くなり、下電極膜60の耐久性が良好なアクチュエータ装置となった。 As a result, in Example 1 and Example 2, since the TiO X on the piezoelectric layer 70 side of the density elastic adjustment layer 501 increases and the Pt amount decreases, the rigidity of the lower electrode film 60 increases, and the lower electrode An actuator device having excellent durability of the film 60 was obtained.

Figure 0005024518
Figure 0005024518

尚、上記実施例1及び2に示したPZT成膜前膜構造のシリコン基板、SiO膜、ZrO膜、Ti膜、Pt膜、Ir膜、配向制御層、圧電体層の厚みやPZT組成などは、あくまでも一例に過ぎず、特許請求の範囲の構造はこの実施例1及び実施例2に限定されないことを付言する。 It should be noted that the silicon substrate, the SiO 2 film, the ZrO 2 film, the Ti film, the Pt film, the Ir film, the orientation control layer, the thickness of the piezoelectric layer, the PZT composition, etc. These are merely examples, and it is added that the structure of the claims is not limited to the first and second embodiments.

(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明の基本的構成は上述した実施形態1に限定されるものではない。例えば、実施形態1では、下電極膜60を絶縁体膜55側から順に、PtとTiとの合金からなるPt−Ti層500と、TiOとPtとの合金からなるTiO−Pt層(密度弾性調整層501)と、PtからなるPt層502と、イリジウムからなるIr層503を積層した構造としたが、下電極膜60は密度弾性調整層501を有し、その密度弾性調整層501をSIMS測定した際に検出される各イオンの比が所定範囲内であればよく、密度弾性調整層501の位置や、その他の層の組成は特に限定されない。
(Other embodiments)
Although one embodiment of the present invention has been described above, the basic configuration of the present invention is not limited to the above-described first embodiment. For example, in the first embodiment, in order to lower electrode film 60 from the insulating layer 55 side, and Pt-Ti layer 500 made of an alloy of Pt and Ti, TiO X -Synthesis of Pt layer of an alloy of TiO X and Pt ( The density elastic adjustment layer 501), the Pt layer 502 made of Pt, and the Ir layer 503 made of iridium are stacked. However, the lower electrode film 60 includes the density elastic adjustment layer 501, and the density elastic adjustment layer 501. As long as the ratio of each ion detected when SIMS is measured is within a predetermined range, the position of the density elastic adjustment layer 501 and the composition of other layers are not particularly limited.

また、上述した実施形態1では、液体噴射ヘッドの一例としてインクジェット式記録ヘッドを挙げて説明したが、本発明は広く液体噴射ヘッド全般を対象としたものであり、インク以外の液体を噴射する液体噴射ヘッドにも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンタ等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレー等のカラーフィルタの製造に用いられる色材噴射ヘッド、有機ELディスプレー、FED(電界放出ディスプレー)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられる。なお、本発明は、液体噴射ヘッド(インクジェット式記録ヘッド等)に搭載されるアクチュエータ装置だけでなく、あらゆる装置に搭載されるアクチュエータ装置に適用できることは言うまでもない。   In the first embodiment described above, the ink jet recording head has been described as an example of the liquid ejecting head. However, the present invention is widely intended for all liquid ejecting heads, and is a liquid ejecting liquid other than ink. Of course, the present invention can also be applied to an ejection head. Other liquid ejecting heads include, for example, various recording heads used in image recording apparatuses such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (field emission displays). Examples thereof include an electrode material ejection head used for electrode formation, a bioorganic matter ejection head used for biochip production, and the like. Needless to say, the present invention can be applied not only to an actuator device mounted on a liquid jet head (such as an ink jet recording head) but also to an actuator device mounted on any device.

実施形態1に係る記録ヘッドの概略構成を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating a schematic configuration of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの要部平面図である。FIG. 3 is a plan view of a main part of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施例1の下電極膜のSIMS測定結果を示す図である。FIG. 4 is a diagram showing the SIMS measurement result of the lower electrode film in Example 1. 実施例2の下電極膜のSIMS測定結果を示す図である。FIG. 6 is a diagram showing the SIMS measurement result of the lower electrode film in Example 2. 比較例1の下電極膜のSIMS測定結果を示す図である。6 is a diagram showing SIMS measurement results of a lower electrode film in Comparative Example 1. FIG.

符号の説明Explanation of symbols

10 流路形成基板、 12 圧力発生室、 13 連通部、 14 インク供給路、 20 ノズルプレート、 21 ノズル開口、 30 保護基板、 31 リザーバ部、 32 圧電素子保持部、 40 コンプライアンス基板、 60 下電極膜、 70 圧電体層、 71 圧電体前駆体膜、 72 圧電体膜、 80 上電極膜、 90 リード電極、 100 リザーバ、 300 圧電素子、 320 圧電体能動部、 500 Pt−Ti層、 501 TiO−Pt層(密度弾性調整層)、 502 Pt層、 503 Ir層 DESCRIPTION OF SYMBOLS 10 Flow path formation board | substrate, 12 Pressure generation chamber, 13 Communication part, 14 Ink supply path, 20 Nozzle plate, 21 Nozzle opening, 30 Protection board, 31 Reservoir part, 32 Piezoelectric element holding part, 40 Compliance board, 60 Lower electrode film 70 Piezoelectric layer, 71 Piezoelectric precursor film, 72 Piezoelectric film, 80 Upper electrode film, 90 Lead electrode, 100 Reservoir, 300 Piezoelectric element, 320 Piezoelectric active part, 500 Pt-Ti layer, 501 TiO X − Pt layer (density elastic adjustment layer), 502 Pt layer, 503 Ir layer

Claims (5)

基板の一方面側に設けられた下電極と、前記下電極上に設けられた圧電体層と、前記圧電体層上に設けられた上電極と、を有する圧電素子を備え
前記下電極が、PtとTiO(0.1≦x≦2)との合金からなる密度弾性調整層を有し、
前記下電極を厚さ方向に二次イオン質量分析装置(SIMS)により測定した際に、前記密度弾性調整層中でPtイオンが最も弱く検出される部分は、前記密度弾性調整層の厚さ方向中心よりも前記圧電体層側であり、
前記密度弾性調整層の前記基板側の境界で検出されるPtイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのPtイオンの強度Zとの比Z/Zが0.05〜0.3、
前記密度弾性調整層の前記基板側の境界で検出されるTiイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのTiイオンの強度Zとの比Z/Zが0.6〜1.0、
前記密度弾性調整層の前記基板側の境界で検出されるOイオンの強度Zと前記密度弾性調整層中でPtイオンが最も弱く検出される部分でのOイオンの強度Zとの比Z/Zが1.5〜4.0の範囲内であることを特徴とするアクチュエータ装置。
Comprising a lower electrode provided on one surface of the substrate, and the lower piezoelectric body provided on the electrode layer, the piezoelectric element having an electrode on which is provided on the piezoelectric layer,
The lower electrode, have a density elastic adjustment layer made of an alloy of Pt and TiO X (0.1 ≦ x ≦ 2 ),
When the lower electrode is measured by a secondary ion mass spectrometer (SIMS) in the thickness direction, the portion where the Pt ion is detected weakest in the density elastic adjustment layer is the thickness direction of the density elastic adjustment layer. It is on the piezoelectric layer side from the center,
A ratio Z between the intensity Z 1 of Pt ions detected at the boundary of the density elastic adjustment layer on the substrate side and the intensity Z 2 of Pt ions in the portion where the Pt ions are detected weakest in the density elastic adjustment layer 2 / Z 1 is 0.05 to 0.3,
Ratio Z of Ti ion intensity Z 3 detected at the substrate-side boundary of the density elastic adjustment layer and Ti ion intensity Z 4 at a portion where Pt ions are detected weakest in the density elastic adjustment layer Z 4 / Z 3 is 0.6 to 1.0,
The ratio Z between the O ion intensity Z 5 detected at the substrate-side boundary of the density elastic adjustment layer and the O ion intensity Z 6 at the portion where the Pt ion is detected weakest in the density elastic adjustment layer 6 / Z 5 is in the range of 1.5 to 4.0.
前記密度弾性調整層は、前記基板側よりも前記圧電体層側のヤング率が高いことを特徴とする請求項1に記載のアクチュエータ装置。   2. The actuator device according to claim 1, wherein the density elasticity adjusting layer has a Young's modulus on the piezoelectric layer side higher than that on the substrate side. 前記下電極が、前記基板側から順に、PtとTiとの合金からなるPt−Ti層と、TiOとPtとの合金からなる密度弾性調整層と、PtからなるPt層と、IrからなるIr層と、を具備することを特徴とする請求項1又は2に記載のアクチュエータ装置。 The lower electrode is made of, in order from the substrate side, a Pt—Ti layer made of an alloy of Pt and Ti, a density elastic adjustment layer made of an alloy of TiO X and Pt, a Pt layer made of Pt, and Ir. the actuator device according to claim 1 or 2, characterized by comprising the Ir layer. 請求項1〜の何れか一項に記載のアクチュエータ装置を具備することを特徴とする液体噴射ヘッド。 Liquid jet head characterized by including the actuator device according to any one of claims 1-3. 請求項4に記載の液体噴射ヘッドを具備することを特徴とする画像記録装置 An image recording apparatus comprising the liquid jet head according to claim 4 .
JP2006256203A 2006-09-21 2006-09-21 Actuator device, liquid jet head, and image recording apparatus Expired - Fee Related JP5024518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006256203A JP5024518B2 (en) 2006-09-21 2006-09-21 Actuator device, liquid jet head, and image recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006256203A JP5024518B2 (en) 2006-09-21 2006-09-21 Actuator device, liquid jet head, and image recording apparatus

Publications (3)

Publication Number Publication Date
JP2008078408A JP2008078408A (en) 2008-04-03
JP2008078408A5 JP2008078408A5 (en) 2009-09-10
JP5024518B2 true JP5024518B2 (en) 2012-09-12

Family

ID=39350160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006256203A Expired - Fee Related JP5024518B2 (en) 2006-09-21 2006-09-21 Actuator device, liquid jet head, and image recording apparatus

Country Status (1)

Country Link
JP (1) JP5024518B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083496B2 (en) * 2006-09-21 2012-11-28 セイコーエプソン株式会社 Actuator device, liquid jet head, and image recording apparatus
JP5527527B2 (en) * 2010-03-12 2014-06-18 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus
JP5849407B2 (en) * 2011-02-28 2016-01-27 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus
JP2013161800A (en) * 2012-02-01 2013-08-19 Seiko Epson Corp Piezoelectric actuator, liquid ejection head, and liquid ejector
JP5729507B2 (en) * 2014-04-08 2015-06-03 セイコーエプソン株式会社 Piezoelectric element and ultrasonic device
JP6504336B2 (en) * 2014-10-17 2019-04-24 セイコーエプソン株式会社 Piezoelectric element, method of manufacturing the same, and piezoelectric element applied device
JP7275743B2 (en) * 2019-03-27 2023-05-18 セイコーエプソン株式会社 Liquid ejection head and printer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890634B2 (en) * 1995-09-19 2007-03-07 セイコーエプソン株式会社 Piezoelectric thin film element and ink jet recording head
JPH11205898A (en) * 1998-01-16 1999-07-30 Mitsubishi Electric Corp Electrode for dielectric thin-film element, its manufacture and ultrasonic oscillator using the electrode
JP2001203401A (en) * 2000-01-18 2001-07-27 Seiko Epson Corp Piezoelectric element, method of manufacturing the same, ink-jet recording head, and ink-jet printer
JP2003133604A (en) * 2001-10-26 2003-05-09 Seiko Epson Corp Piezo-electric thin film element and manufacturing method thereof as well as ink jet recording head and ink jet printer employing the element
JP2005245247A (en) * 2004-03-02 2005-09-15 Kanazawa Univ Tlo Inc ASSESSMENT SYSTEM USING Herp-NULL CELL
JP2005249645A (en) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd Angular velocity sensor and its manufacturing method
JP4811556B2 (en) * 2004-04-23 2011-11-09 セイコーエプソン株式会社 Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus
JP2006093312A (en) * 2004-09-22 2006-04-06 Seiko Epson Corp Piezoelectric element, liquid injection head, and their manufacturing methods
JP4367654B2 (en) * 2006-08-30 2009-11-18 セイコーエプソン株式会社 Piezoelectric element and liquid jet head
JP4501917B2 (en) * 2006-09-21 2010-07-14 セイコーエプソン株式会社 Actuator device and liquid jet head
JP5083496B2 (en) * 2006-09-21 2012-11-28 セイコーエプソン株式会社 Actuator device, liquid jet head, and image recording apparatus

Also Published As

Publication number Publication date
JP2008078408A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4296441B2 (en) Method for manufacturing actuator device
JP4367654B2 (en) Piezoelectric element and liquid jet head
JP5251031B2 (en) Piezoelectric element, liquid ejecting head, liquid ejecting apparatus, sensor
JP5083496B2 (en) Actuator device, liquid jet head, and image recording apparatus
JP4737375B2 (en) Method for manufacturing actuator device, method for manufacturing liquid jet head, and method for manufacturing liquid jet device
JP4501917B2 (en) Actuator device and liquid jet head
JP5024518B2 (en) Actuator device, liquid jet head, and image recording apparatus
JP2007281032A (en) Actuator device, liquid discharge head and liquid discharge device
JP2007073931A (en) Actuator equipment, manufacturing method thereof, and liquid injection head and liquid injection equipment
JP5105040B2 (en) Method for manufacturing piezoelectric element and method for manufacturing liquid jet head
JP4811598B2 (en) Actuator device, manufacturing method thereof, and liquid jet head
JP4877451B2 (en) Piezoelectric element manufacturing method and liquid jet head
JP2009190351A (en) Manufacturing method of liquid jet head and manufacturing method of piezoelectric element
JP2007173691A (en) Method of manufacturing piezoelectric element, actuator device and liquid jetting head
JP2008078328A (en) Actuator device, manufacturing method thereof, and liquid jetting head
JP2007173605A (en) Method of manufacturing piezoelectric element and method of manufacturing liquid jetting head
JP5099303B2 (en) Liquid ejecting head and manufacturing method thereof
JP2007035883A (en) Actuator device, its manufacturing method, and head and device for liquid injection
JP2009208411A (en) Method for manufacturing liquid injection head
JP2008053395A (en) Manufacturing method of multilayer film, actuator device, and liquid injection head, and actuator device
JP5024564B2 (en) Actuator device and liquid jet head
JP2008066414A (en) Method for manufacturing actuator apparatus and method for manufacturing liquid jet head
JP2007152912A (en) Manufacturing method for piezoelectric element, piezoelectric element and liquid jet head
JP2005209912A (en) Piezoelectric element, and liquid injection head, as well as manufacturing method of piezoelectric element
JP2008001038A (en) Manufacturing method of actuator, and manufacturing method of liquid injection head

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees