JP5021864B2 - Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane - Google Patents

Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane Download PDF

Info

Publication number
JP5021864B2
JP5021864B2 JP2001045615A JP2001045615A JP5021864B2 JP 5021864 B2 JP5021864 B2 JP 5021864B2 JP 2001045615 A JP2001045615 A JP 2001045615A JP 2001045615 A JP2001045615 A JP 2001045615A JP 5021864 B2 JP5021864 B2 JP 5021864B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
membrane
basic compound
polyfunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001045615A
Other languages
Japanese (ja)
Other versions
JP2002246041A (en
JP2002246041A5 (en
Inventor
慎也 古佐小
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001045615A priority Critical patent/JP5021864B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to EP08166886A priority patent/EP2009720B1/en
Priority to US12/006,678 priority patent/USRE41651E1/en
Priority to DE60238802T priority patent/DE60238802D1/en
Priority to US10/240,433 priority patent/US6977234B2/en
Priority to PCT/JP2002/000257 priority patent/WO2002058178A1/en
Priority to EP02715767A priority patent/EP1278260A4/en
Priority to CNB028007484A priority patent/CN100338805C/en
Priority to KR10-2002-7012301A priority patent/KR100531607B1/en
Publication of JP2002246041A publication Critical patent/JP2002246041A/en
Publication of JP2002246041A5 publication Critical patent/JP2002246041A5/ja
Application granted granted Critical
Publication of JP5021864B2 publication Critical patent/JP5021864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池(以下、「PEFC」という。)に使用する固体高分子電解質膜と、これを含む膜・極接合体に関する。
【0002】
【従来の技術】
PEFCは、図3に示すように電解質であるフィルム状の高分子電解質膜31とガス拡散電極36および37との接合体からなり、両者はホットプレスによって接合されている。そして、負極触媒層33では、式(1):
2→2H++2e- (1)
で表される反応が起こっており、正極触媒層35では、式(2):
1/2O2+2H++2e-→H2O (2)
で表される反応が起こっている。そして、上記反応が起こる際、負極で発生したプロトンが高分子電解質膜31を介して正極へ移動する。
このようなPEFCには、高い出力電流密度を出すことが要求されるが、使用する高分子電解質膜としては高いプロトン伝導性を持つこと、すなわち低い内部抵抗を持つことが必要とされる。
【0003】
PEFCの高分子電解質には、通常米国デュポン社製のNafion112に代表されるパーフロオロスルホン酸イオノマーからなる高分子電解質膜が使用されており、約30〜50μmの厚さを有する膜が実用化されている。
また、Nafionより高いプロトン伝導度を持つパーフロオロスルホン酸イオノマーからなる高分子電解質膜としては、例えば旭硝子(株)製のFlemionSH膜や旭化成(株)のAciplex−Sなどがあげられるが、これらはNafion112膜よりスルホン基を多く含むものである。PEFCでは、高い出力電流密度を出させるため、よりプロトン伝導性の大きい、よりスルホン基を多く含む高分子電解質膜の開発が行われている。
【0004】
【発明が解決しようとする課題】
しかし、高いプロトン伝導度を有するパーフロオロスルホン酸イオノマーなどの高分子電解質は、スルホン酸基などの親水基を分子鎖中に多く含むため、水に溶け易くアイオノマーが燃料電池の運転作動中に徐々にカーボンペーパなどのガス拡散層へ流れ出してしまう傾向にあった。そのため、固体高分子電解質膜と電極との界面において、反応ガスの供給路となる細孔と、含水によりプロトン導電性を持った高分子電解質と、電子伝導体の電極材料とが形成する三相界面の反応面積が徐々に狭くなり、出力が低下してしまうという問題があった。
さらに、固体高分子電解質膜と電極との接合体の外側に配置されるガス流路を有する集電体が金属からなる場合、溶け出した酸性イオノマーによりその集電体が徐々に腐食し、燃料電池の信頼性を著しく低下させるという問題もあった。
【0005】
したがって、本発明は、上述のような従来の問題を解決するために、高いプロトン伝導度を有する固体高分子電解質を使用し、耐久性に優れ、高い性能を発揮する固体高分子電解質膜と電極との接合体およびこの接合体を用いて構成した固体高分子電解質型燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、前記電極の前記触媒層のうちの少なくとも一方は、貴金属触媒および炭素粉末からなる触媒体、第1高分子電解質ならびに多官能性塩基性化合物の混合物を含んでおり、前記第1高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、前記多官能性塩基性化合物の主鎖部分は、フッ素置換されている、固体高分子電解質型燃料電池用の膜・電極接合体を提供する。
この接合体において、前記多官能性塩基性化合物は多官能アミンであるのが有効である。
また、前記触媒層が、第1高分子電解質に対して0.1〜10wt%の多官能性塩基性化合物を含むのが有効である。
また、本発明の他の局面は、固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、前記電極の前記触媒層のうちの少なくとも一方は、貴金属触媒および炭素粉末を含む触媒体、第1高分子電解質ならびに多官能性塩基性化合物の混合物を含んでおり、前記第1高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合している、固体高分子電解質型燃料電池用の膜・電極接合体を提供する。
【0008】
さらに、本発明は、固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、前記固体高分子電解質膜は、第2高分子電解質および多官能性塩基性化合物を含んでおり、前記第2高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、前記多官能性塩基性化合物の主鎖部分がフッ素置換されている、固体高分子電解質型燃料電池用の膜・電極接合体を提供する。
この場合も、前記多官能性塩基性化合物が多官能アミンであるのが有効である。
また、前記固体高分子電解質膜が、第2高分子電解質の1〜10wt%の多官能性塩基性化合物を含むのが有効である。
【0009】
【発明の実施の形態】
本発明に係る固体高分子電解質膜とガス拡散電極とからなる固体高分子電解質型燃料電池用の接合体は、多官能性塩基性化合物を含むことに最大の特徴を有する。
この多官能性塩基性化合物は、接合体を構成する固体高分子電解質膜および/または触媒層に含ませることができ、高分子電解質であるイオノマーのスルホン酸基の一部と結合して3次元のネットワークを形成し、イオノマーがドレイン水によってガス拡散層に流れ出にくいようにする
これにより、ガス拡散層はガス透過性を維持し、触媒層および高分子電解質膜はプロトン伝導性を損ないにくくなるという機能を発揮する。
【0010】
実施形態1
本発明に係る固体高分子電解質膜と前記固体高分子電解質膜の両面に配した一対の電極とからなる固体高分子電解質型燃料電池用の膜・電極接合体について説明する。
触媒層に多官能性塩基性化合物を含む場合、本発明の固体高分子電解質型燃料電池用の膜・電極接合体は、固体高分子電解質膜と前記固体高分子電解質膜の両面に配した一対の電極とからなり、少なくとも一方の前記電極を、貴金属触媒と炭素粉末とからなる触媒体、高分子電解質および多官能性塩基性化合物を含む混合物からなる触媒層と、カーボンペーパ、カーボンクロスなどからなるガス拡散層とにより構成する。
図1のように、この多官能性塩基性化合物11がイオノマー12のスルホン酸基の一部と結合して3次元のネットワークを形成し、イオノマーの流出を抑制するという効果を奏する。
【0011】
前記多官能性塩基性化合物は、一つの分子にスルホン基と反応可能な二つ以上の官能基を有するものであればよく、例えばエチレンジアミン、1,2−プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミンなどの2官能アミン、ジエチレントリアミンなどの3官能アミン、ベンゼンジアミン、1,2,3−トリアミノベンゼン、1,2,3,4−テトラアミノベンゼンなどの芳香族多官能アミン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エンなどのアミジノ基を有する化合物、ストレプトマイシンなどのNを含む多糖類、ビタミンB2、ビタミンB12などのビタミン類、キサンプテリン、ロイコプテリン、メトトレキセートなどのアザナフタレン類、キニン、ストリキーネ、ブルシンなどのアルカロイド類、グリシルアラニン、アラニルグリシン、アスパルテーム、グルタチオンなどのポリペプチド類、ピリダジン、ピリミジン、トリアジン類、テトラジン類、シンノリン、キナゾリン、フタラジン、キノキサリン、プテリジン、リゼルギン酸ジエチルアミド、アデニン、ベンゾイミダゾール、プリン、ヒドラジド、ニコチン、テトラヒドロ葉酸、ヘキサメチレンテトラミン、4,4’−ジアミノビフェニルなどがあげられる。
なかでも、比較的マイルドな条件で酸と塩基の化学反応が起こるという観点から、多官能性アミンであるのが好ましい。
【0012】
また、前記多官能性塩基性化合物の骨格部分の水素がフッ素置換されているのが好ましい。フッ素置換されていることで、水素原子引き抜き反応などによる分解を防止でき、高い信頼性を実現できるからである。
前記フッ素置換多官能アミンとしては、テトラフロロ−p−フェニレンジアミン、4,4’−ジアミノオクタフルオロビフェニル、2,4,6−トリス(パーフルオロヘプチル)−1,3,5−トリアジンなどがあげられる。
【0013】
また、前記触媒層における多官能性塩基性化合物は、高分子電解質に対して0.1〜10wt%であるのが好ましい。これは、スルホン酸などの酸基の全数の数%程度の置換率ならば、プロトン伝導度への影響は小さいからである。
つぎに、触媒層に塩基性表面官能基を有する炭素粉末を含む参考形態の場合、固体高分子電解質型燃料電池用の膜・電極接合体は、固体高分子電解質膜と前記固体高分子電解質膜の両側に配した一対の電極とからなり、少なくとも一方の前記電極が、貴金属触媒と塩基性表面官能基を有する炭素粉末とからなる触媒体、および高分子電解質からなる触媒層と、ガス拡散層とにより構成する。
図2のように、触媒層中の前記炭素粉末23の塩基性表面官能基21が、イオノマー24の一部のスルホン酸基と結合してイオノマーの流出を抑制するという効果を奏する。炭素粉末23上の塩基性表面官能基21は、イオノマーとの混合前に、例えば炭素粉末表面にあるカルボキシル基などと置換させておく。塩基性表面官能基としては、比較的マイルドな条件で酸と塩基の化学反応が起こるという観点から、アミン類であるのが好ましい。
また、前記炭素粉末上の塩基性表面官能基の数は、1個でもよい。塩基性物質が単分子の場合は、官能基を2個以上有しないと架橋効果がないので、前記塩基性物質はイオノマーと共に流出してしまう。一方、塩基性物質の基質が炭素粉末の場合、炭素粉末は触媒層中で固定されているため、塩基性官能基が1個でもイオノマーと共に流出することはない。また、上述の作用から鑑みると、全炭素粉末の表面に塩基性官能基が存在する必要もない。また、全イオノマーと表面官能基が結合する必要もない。投錨効果により、一部のイオノマーと結合していれば、流出は充分抑制できるからである。
【0014】
実施形態2
高分子電解質膜に多官能性塩基性化合物を含む場合、本発明に係る固体高分子電解質型燃料電池用膜・電極接合体は、固体高分子電解質膜とこの膜の両面に配した電極とからなる接合体であって、前記固体高分子電解質膜に多官能性塩基性化合物を含む。
ここでも、上述したように、前記高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、多官能性塩基性化合物が多官能性アミンであるのが好ましく、また、多官能性塩基性化合物の固体高分子電解質に対する重量は、1〜10wt%であるのが好ましい。スルホン酸などの酸基の置換率が低ければ、プロトン伝導度への影響も小さいからである。
【0015】
【実施例】
以下、本発明を実施例を用いて詳細に説明するが、本発明はこれらのみに限定されるものではない。
《実施例1》
まず、n−酢酸ブチル(CH3COOCH2(CH22CH3)50.0gに、白金触媒を25重量%担持させた炭素微粉末6.0gを入れ、超音波をかけながらスターラーを使用して10分間攪拌、分散させた。つぎに、上記の分散液に高分子電解質(旭硝子(株)製のFlemion)の9重量%エタノール溶液40.0gを攪拌しながら徐々に加え、高分子電解質のコロイドを触媒を担持した炭素微粉末表面に吸着させた。全ての高分子電解質溶液を添加し終えて1時間後、撹拌を停止すると上澄み液は透明に変化した。この触媒混合液にヘキサメチレンジアミンを0.10g混合し、1時間超音波分散させ、触媒ペーストを得た。
つぎに、フッ素樹脂分散液(ダイキン工業(株)ND−1)に浸した後300℃で焼成した(株)東レ製のカーボンペーパ基板上に、前記触媒ペーストを約30μm塗着した。
さらに、膜厚50μmの固体高分子電解質膜(旭硝子(株)製のFlemionSH50)の両面に上記電極を120〜140℃の温度、50〜70kg/cm2の圧力を加えて10分間ホットプレスし、膜・電極接合体を作製した。
この膜・電極接合体をセパレータで挟み、単電池を組み、電池温度75℃、水素露点70℃、空気露点65℃、水素利用率70%、酸素利用率40%、電流密度0.7A/cm2の条件で250時間運転させたが、電圧の初期0.65Vからの低下は0.03Vであった。
【0016】
《比較例1》
n−酢酸ブチル(CH3COOCH2(CH22CH3)50.0gに、白金触媒を25重量%担持させた炭素微粉末6.0gを入れ、超音波をかけながらスターラーを使用して10分間攪拌、分散させた。つぎに、上記の分散液に高分子電解質(旭硝子(株)製のFlemion)の9重量%エタノール溶液40.0gを攪拌しながら徐々に加え、高分子電解質のコロイドを触媒を担持した炭素微粉末表面に吸着させた。全ての高分子電解質溶液を添加し終えてさらに1時間攪拌し、触媒ペーストを得た。
つぎに、フッ素樹脂分散液(ダイキン工業(株)ND−1)に浸した後300℃で焼成した(株)東レ製のカーボンペーパ基板上に、前記触媒ペーストを約30μm塗着した。
さらに、膜厚50μmの固体高分子電解質膜(旭硝子(株)製のFlemionSH50)の両面に上記電極を120〜140℃の温度、50〜70kg/cm2の圧力を加えて10分間ホットプレスし、膜・電極接合体を作製した。
この電池を実施例1と同様な条件で250時間運転させたところ、初期の電圧0.67Vから0.12Vの低下が見られた。
【0017】
参考
まず、白金触媒を25重量%担持させた炭素微粉末7.0g、エタノール20ml、ヘキサメチレンジアミン1.0gを三口フラスコに入れ、10分間還流煮沸させた。つぎに、この分散液を濾過し、濾紙の上からエタノールと水で充分に洗浄したのち乾燥させ、表面のカルボキシル基の一部をヘキサメチレンジアミンとアミド結合させた白金触媒担持炭素微粉末を得た。
この白金触媒担持炭素微粉末6.0gにn−酢酸ブチル(CH3COOCH2(CH22CH3)50.0gを加え、超音波をかけながらスターラーを使用して10分間攪拌、分散させた。つぎに、上記の分散液に高分子電解質(旭硝子(株)製のFlemion)の9重量%エタノール溶液40.0gを攪拌しながら徐々に加え、高分子電解質のコロイドを触媒を担持した炭素微粉末表面に吸着させた。全ての高分子電解質溶液を添加し終えて1時間さらに攪拌を続け、触媒ペーストを得た。
つぎに、実施例1と同様にフッ素樹脂分散液(ダイキン工業(株)ND−1)に浸した後300℃で焼成した(株)東レ製のカーボンペーパ基板上に、前記触媒ペーストを約30μm塗着した。
さらに、膜厚50μmの固体高分子電解質膜(旭硝子(株)製のFlemionSH50)の両面に上記電極を120〜140℃の温度、50〜70kg/cm2の圧力を加えて10分間ホットプレスし、膜・電極接合体を作製した。
この膜・電極接合体をセパレータで挟み、単電池を組み、実施例1と同様な条件で250時間運転させたところ、電圧の初期0.66Vからの低下は0.04Vであった。
【0018】
参考例2》
高分子電解質(旭硝子(株)製のFlemion)7重量%エタノール溶液40mlに、ヘキサメチレンジアミンを0.05g混合し超音波で攪拌した後直径12cmのシャーレに入れ、一昼夜室温で乾燥させた後、130℃で2時間乾燥させて、50μの厚さの固体高分子電解質キャスト膜を得た。これを、比較例1と全く同様な方法で作製した触媒層付きカーボンペーパに挟んで膜・電極接合体を作製し、単電池を得た。
この膜・電極接合体をセパレータで挟み、単電池を組み、実施例1と同様な条件で250時間運転させたところ、電圧の初期0.63Vからの低下は0.05Vであった。
なお、本実施例、比較例では、触媒ペーストをカーボンペーパ基板の上に塗着しガス拡散電極を作製したが、本発明は触媒層および/または固体高分子電解質膜の組成に特徴があるので、他の作製法、例えば、白金担持炭素微粉末と高分子電解質をエタノールに分散した触媒ペーストをポリプロピレン、テフロン(登録商標)などのフィルムに一度塗ったあと固体高分子電解質膜に熱転写して膜・電極接合体を作製する方法や、直接固体高分子電解質膜に触媒ペーストを塗着する方法でも同様の効果があることは言うまでもない。
【0019】
【発明の効果】
以上のように、本発明によれば、高いプロトン伝導度を有する固体高分子電解質を使用し、耐久性に優れ、かつ高い性能を発揮する固体高分子電解質膜と電極との接合体およびそれを用いて構成した固体高分子型燃料電池を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1に係わる固体高分子電解質型燃料電池用膜・電極接合体の触媒層中のイオノマーと二官能アミンの相互作用を示す模式図
【図2】 参考に係わる固体高分子電解質型燃料電池用膜・電極接合体の触媒層中のイオノマーと炭素微粉末上の塩基性官能基との相互作用を示す模式図
【図3】 比較例1による膜・電極接合体の断面図
[0001]
BACKGROUND OF THE INVENTION
The present invention is a polymer electrolyte fuel cell (hereinafter, referred to as. "PEFC") and the solid polymer electrolyte membrane used in, relates to a membrane-conductive Gokuse' polymer comprising the same.
[0002]
[Prior art]
As shown in FIG. 3, the PEFC is composed of a joined body of a film-like polymer electrolyte membrane 31 that is an electrolyte and gas diffusion electrodes 36 and 37, and both are joined by hot pressing. And in the negative electrode catalyst layer 33, Formula (1):
H 2 → 2H + + 2e (1)
In the positive electrode catalyst layer 35, the reaction represented by formula (2):
1 / 2O 2 + 2H + + 2e → H 2 O (2)
The reaction represented by When the above reaction occurs, protons generated in the negative electrode move to the positive electrode through the polymer electrolyte membrane 31.
Such a PEFC is required to have a high output current density, but the polymer electrolyte membrane to be used is required to have high proton conductivity, that is, low internal resistance.
[0003]
For the polymer electrolyte of PEFC, a polymer electrolyte membrane made of perfluorosulfonic acid ionomer typically represented by Nafion 112 manufactured by DuPont USA is used, and a membrane having a thickness of about 30 to 50 μm has been put into practical use. ing.
Examples of the polymer electrolyte membrane made of perfluorosulfonic acid ionomer having proton conductivity higher than that of Nafion include Flemion SH membrane manufactured by Asahi Glass Co., Ltd. and Aciplex-S manufactured by Asahi Kasei Co., Ltd. It contains more sulfone groups than Nafion 112 membrane. In PEFC, in order to produce a high output current density, a polymer electrolyte membrane having higher proton conductivity and containing more sulfone groups has been developed.
[0004]
[Problems to be solved by the invention]
However, polymer electrolytes such as perfluorosulfonic acid ionomers with high proton conductivity contain many hydrophilic groups such as sulfonic acid groups in the molecular chain, so that they easily dissolve in water, and the ionomer gradually increases during the operation of the fuel cell. However, it tended to flow out to a gas diffusion layer such as carbon paper. Therefore, at the interface between the solid polymer electrolyte membrane and the electrode, a three-phase formed by a pore serving as a reaction gas supply path, a polymer electrolyte having proton conductivity due to water content, and an electrode material of an electron conductor There was a problem that the reaction area at the interface gradually narrowed and the output decreased.
Further, when the current collector having a gas flow path disposed outside the assembly of the solid polymer electrolyte membrane and the electrode is made of metal, the current collector is gradually corroded by the dissolved acidic ionomer, and the fuel There is also a problem that the reliability of the battery is remarkably lowered.
[0005]
Therefore, in order to solve the conventional problems as described above, the present invention uses a solid polymer electrolyte having high proton conductivity, and has excellent durability and high performance. It is an object of the present invention to provide a solid polymer electrolyte fuel cell constituted by using the joined body.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer, At least one of the catalyst layers comprises a mixture of a noble metal catalyst and a carbon powder, a first polymer electrolyte, and a polyfunctional basic compound, wherein the first polymer electrolyte comprises a plurality of A sulfonic acid group, a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded, and a main chain portion of the polyfunctional basic compound is fluorine-substituted. A membrane / electrode assembly for a solid polymer electrolyte fuel cell is provided.
In this joined body, it is effective that the polyfunctional basic compound is a polyfunctional amine.
In addition, it is effective that the catalyst layer contains 0.1 to 10 wt% of a polyfunctional basic compound with respect to the first polymer electrolyte.
Another aspect of the present invention includes a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer. At least one of the catalyst layers includes a catalyst body including a noble metal catalyst and carbon powder, a first polymer electrolyte, and a mixture of a polyfunctional basic compound, and the first polymer electrolyte includes a plurality of sulfonic acids. Provided is a membrane / electrode assembly for a solid polymer electrolyte fuel cell in which a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded.
[0008]
Furthermore, the present invention comprises a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer, the solid polymer electrolyte membrane comprises: A second polyelectrolyte and a polyfunctional basic compound, wherein the second polyelectrolyte has a plurality of sulfonic acid groups, a part of the plurality of sulfonic acid groups and the polyfunctionality Provided is a membrane / electrode assembly for a solid polymer electrolyte fuel cell in which a basic compound is ionically bonded and the main chain portion of the polyfunctional basic compound is substituted with fluorine.
Also in this case, it is effective that the polyfunctional basic compound is a polyfunctional amine.
In addition, it is effective that the solid polymer electrolyte membrane contains 1 to 10 wt% polyfunctional basic compound of the second polymer electrolyte.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Conjugate for a polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane and the gas diffusion electrode according to the present invention has the greatest feature that include a polyfunctional basic compound.
This polyfunctional basic compound can be included in the solid polymer electrolyte membrane and / or catalyst layer constituting the joined body, and is bonded to a part of the sulfonic acid group of the ionomer that is the polymer electrolyte to form a three-dimensional structure. The ionomer is made difficult to flow out to the gas diffusion layer by the drain water .
Thereby, the gas diffusion layer maintains the gas permeability, and the catalyst layer and the polymer electrolyte membrane exhibit the function of making it difficult to impair the proton conductivity.
[0010]
Embodiment 1
A membrane / electrode assembly for a solid polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane according to the present invention and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane will be described.
When the catalyst layer contains a polyfunctional basic compound, the membrane / electrode assembly for a solid polymer electrolyte fuel cell of the present invention is a pair of a polymer electrolyte membrane and a solid polymer electrolyte membrane disposed on both sides of the membrane. And at least one of the electrodes is composed of a catalyst body made of a noble metal catalyst and carbon powder, a catalyst layer made of a mixture containing a polyelectrolyte and a polyfunctional basic compound, carbon paper, carbon cloth, etc. And a gas diffusion layer.
As shown in FIG. 1, the polyfunctional basic compound 11 is bonded to a part of the sulfonic acid group of the ionomer 12 to form a three-dimensional network, and has an effect of suppressing the outflow of the ionomer.
[0011]
The polyfunctional basic compound may be any compound having at least two functional groups capable of reacting with a sulfone group in one molecule, such as ethylenediamine, 1,2-propylenediamine, tetramethylenediamine, hexamethylenediamine. , Bifunctional amines such as heptamethylenediamine, octamethylenediamine, nonamethylenediamine, trifunctional amines such as diethylenetriamine, benzenediamine, 1,2,3-triaminobenzene, 1,2,3,4-tetraaminobenzene, etc. An aromatic polyfunctional amine, a compound having an amidino group such as 1,5-diazabicyclo [4.3.0] non-5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, N-containing polysaccharides such as streptomycin, vitamins such as vitamin B2 and vitamin B12 Azanaphthalenes such as xampterin, leucopterin, methotrexate, alkaloids such as quinine, strikine, brucine, polypeptides such as glycylalanine, alanylglycine, aspartame, glutathione, pyridazine, pyrimidine, triazines, tetrazines, cinnoline Quinazoline, phthalazine, quinoxaline, pteridine, lysergic acid diethylamide, adenine, benzimidazole, purine, hydrazide, nicotine, tetrahydrofolic acid, hexamethylenetetramine, 4,4′-diaminobiphenyl and the like.
Among these, a polyfunctional amine is preferable from the viewpoint that a chemical reaction between an acid and a base occurs under relatively mild conditions.
[0012]
Moreover, it is preferable that hydrogen of the skeleton part of the polyfunctional basic compound is fluorine-substituted. This is because by being substituted with fluorine, decomposition due to a hydrogen atom extraction reaction or the like can be prevented, and high reliability can be realized.
Examples of the fluorine-substituted polyfunctional amine include tetrafluoro-p-phenylenediamine, 4,4′-diaminooctafluorobiphenyl, 2,4,6-tris (perfluoroheptyl) -1,3,5-triazine and the like. .
[0013]
Moreover, it is preferable that the polyfunctional basic compound in the said catalyst layer is 0.1-10 wt% with respect to a polymer electrolyte. This is because if the substitution rate is about several percent of the total number of acid groups such as sulfonic acid, the influence on proton conductivity is small.
Next, the case of the reference embodiment containing carbon powder having a basic surface functional groups to the catalyst layer, membrane-electrode assembly of the solid polymer electrolyte membrane fuel battery, the solid polymer electrolyte membrane a polymer electrolyte membrane A catalyst body made of a noble metal catalyst and a carbon powder having a basic surface functional group, a catalyst layer made of a polymer electrolyte, and a gas diffusion layer. It consists of.
As shown in FIG. 2, the basic surface functional group 21 of the carbon powder 23 in the catalyst layer is bonded to a part of the sulfonic acid group of the ionomer 24, thereby suppressing the outflow of the ionomer. The basic surface functional group 21 on the carbon powder 23 is substituted with, for example, a carboxyl group on the surface of the carbon powder before mixing with the ionomer. The basic surface functional group is preferably an amine from the viewpoint that a chemical reaction between an acid and a base occurs under relatively mild conditions.
The number of basic surface functional groups on the carbon powder may be one. In the case where the basic substance is a single molecule, there is no crosslinking effect unless it has two or more functional groups, so the basic substance flows out together with the ionomer. On the other hand, when the basic substance substrate is carbon powder, since the carbon powder is fixed in the catalyst layer, even one basic functional group does not flow out together with the ionomer. Moreover, in view of the above-mentioned action, there is no need for a basic functional group to be present on the surface of all carbon powder. Further, it is not necessary that all ionomers and surface functional groups are bonded. This is because the outflow can be sufficiently suppressed if it is combined with some ionomers by the anchoring effect.
[0014]
Embodiment 2
When the polyelectrolyte membrane includes a polyfunctional basic compound, the membrane / electrode assembly for a solid polymer electrolyte fuel cell according to the present invention comprises a solid polymer electrolyte membrane and electrodes disposed on both sides of the membrane. The solid polymer electrolyte membrane contains a polyfunctional basic compound.
Here, as described above, the polymer electrolyte has a plurality of sulfonic acid groups, and a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded, The polyfunctional basic compound is preferably a polyfunctional amine, and the weight of the polyfunctional basic compound with respect to the solid polymer electrolyte is preferably 1 to 10 wt%. This is because if the substitution rate of acid groups such as sulfonic acid is low, the influence on proton conductivity is small.
[0015]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited only to these.
Example 1
First, 6.0 g of carbon fine powder carrying 25% by weight of a platinum catalyst is put into 50.0 g of n-butyl acetate (CH 3 COOCH 2 (CH 2 ) 2 CH 3 ), and a stirrer is used while applying ultrasonic waves. And stirred and dispersed for 10 minutes. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) is gradually added to the above dispersion with stirring, and a fine carbon powder carrying a catalyst with a colloid of the polymer electrolyte. Adsorbed on the surface. One hour after the addition of all the polyelectrolyte solution was completed, when the stirring was stopped, the supernatant liquid changed to transparent. 0.10 g of hexamethylene diamine was mixed with this catalyst mixed solution and ultrasonically dispersed for 1 hour to obtain a catalyst paste.
Next, about 30 μm of the catalyst paste was applied onto a carbon paper substrate manufactured by Toray Industries, Inc., which was dipped in a fluororesin dispersion (Daikin Industries, Ltd. ND-1) and then fired at 300 ° C.
Furthermore, the electrode was hot pressed for 10 minutes at a temperature of 120 to 140 ° C. and a pressure of 50 to 70 kg / cm 2 on both sides of a solid polymer electrolyte membrane having a thickness of 50 μm (Flemion SH50 manufactured by Asahi Glass Co., Ltd.) A membrane / electrode assembly was prepared.
This membrane / electrode assembly is sandwiched between separators and assembled into a single cell. The battery temperature is 75 ° C., the hydrogen dew point is 70 ° C., the air dew point is 65 ° C., the hydrogen utilization rate is 70%, the oxygen utilization rate is 40%, and the current density is 0.7 A / cm. The operation was performed for 250 hours under the condition 2 , but the decrease in voltage from the initial 0.65V was 0.03V.
[0016]
<< Comparative Example 1 >>
In 50.0 g of n-butyl acetate (CH 3 COOCH 2 (CH 2 ) 2 CH 3 ), 6.0 g of carbon fine powder carrying 25% by weight of a platinum catalyst was put, and a stirrer was used while applying ultrasonic waves. Stir and disperse for 10 minutes. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) is gradually added to the above dispersion with stirring, and a fine carbon powder carrying a catalyst with a colloid of the polymer electrolyte. Adsorbed on the surface. After adding all the polymer electrolyte solutions, the mixture was further stirred for 1 hour to obtain a catalyst paste.
Next, about 30 μm of the catalyst paste was applied onto a carbon paper substrate manufactured by Toray Industries, Inc., which was dipped in a fluororesin dispersion (Daikin Industries, Ltd. ND-1) and then fired at 300 ° C.
Furthermore, the electrode was hot pressed for 10 minutes at a temperature of 120 to 140 ° C. and a pressure of 50 to 70 kg / cm 2 on both sides of a solid polymer electrolyte membrane having a thickness of 50 μm (Flemion SH50 manufactured by Asahi Glass Co., Ltd.) A membrane / electrode assembly was prepared.
When this battery was operated for 250 hours under the same conditions as in Example 1, a decrease of 0.12 V from the initial voltage of 0.67 V was observed.
[0017]
<< Reference Example 1 >>
First, 7.0 g of carbon fine powder carrying 25% by weight of a platinum catalyst, 20 ml of ethanol, and 1.0 g of hexamethylenediamine were placed in a three-necked flask and boiled at reflux for 10 minutes. Next, the dispersion is filtered, thoroughly washed with ethanol and water on the filter paper, and then dried to obtain a platinum catalyst-carrying carbon fine powder in which a part of the surface carboxyl groups are amide-bonded with hexamethylenediamine. It was.
Add 50.0 g of n-butyl acetate (CH 3 COOCH 2 (CH 2 ) 2 CH 3 ) to 6.0 g of the platinum catalyst-supported carbon fine powder, and stir and disperse for 10 minutes using a stirrer while applying ultrasonic waves. It was. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) is gradually added to the above dispersion with stirring, and a fine carbon powder carrying a catalyst with a colloid of the polymer electrolyte. Adsorbed on the surface. Stirring was further continued for 1 hour after the addition of all the polymer electrolyte solution to obtain a catalyst paste.
Next, the catalyst paste was immersed in a fluororesin dispersion (Daikin Industries, Ltd. ND-1) in the same manner as in Example 1 and then fired at 300 ° C. on a carbon paper substrate manufactured by Toray Industries, Inc. Painted.
Furthermore, the electrode was hot pressed for 10 minutes at a temperature of 120 to 140 ° C. and a pressure of 50 to 70 kg / cm 2 on both sides of a solid polymer electrolyte membrane having a thickness of 50 μm (Flemion SH50 manufactured by Asahi Glass Co., Ltd.) A membrane / electrode assembly was prepared.
When this membrane-electrode assembly was sandwiched between separators, a unit cell was assembled, and operated for 250 hours under the same conditions as in Example 1, the voltage drop from the initial 0.66 V was 0.04 V.
[0018]
<< Reference Example 2 >>
Polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) 7% ethanol solution 40ml It was dried at 130 ° C. for 2 hours to obtain a solid polymer electrolyte cast membrane having a thickness of 50 μm. A membrane / electrode assembly was produced by sandwiching this between carbon paper with a catalyst layer produced in the same manner as in Comparative Example 1, and a single cell was obtained.
When this membrane / electrode assembly was sandwiched between separators, a single cell was assembled and operated for 250 hours under the same conditions as in Example 1, the voltage drop from the initial 0.63 V was 0.05 V.
In this example and comparative example, a catalyst paste was applied onto a carbon paper substrate to produce a gas diffusion electrode. However, the present invention is characterized by the composition of the catalyst layer and / or the solid polymer electrolyte membrane. Other preparation methods, for example, a catalyst paste in which platinum-supported carbon fine powder and polymer electrolyte are dispersed in ethanol is applied once to a film of polypropylene, Teflon (registered trademark), and then thermally transferred to a solid polymer electrolyte membrane. -Needless to say, the same effect can be obtained by a method of producing an electrode assembly or a method of directly applying a catalyst paste to a solid polymer electrolyte membrane.
[0019]
【Effect of the invention】
As described above, according to the present invention, a solid polymer electrolyte membrane having a high proton conductivity, a solid polymer electrolyte membrane and electrode having excellent durability and high performance are obtained. Thus, a polymer electrolyte fuel cell constructed by using it can be obtained.
[Brief description of the drawings]
Schematic diagram illustrating the interaction of ionomer and bifunctional amines of the solid polymer electrolyte fuel catalyst layer of the membrane electrode assembly cell according to Example 1 of the present invention in Figure 2 Reference Example 1 Schematic diagram showing the interaction between the ionomer in the catalyst layer of the solid polymer electrolyte fuel cell membrane-electrode assembly and basic functional groups on the fine carbon powder. [Fig. 3] Membrane-electrode junction according to Comparative Example 1 Body cross section

Claims (9)

固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、
前記電極の前記触媒層のうちの少なくとも一方は、貴金属触媒および炭素粉末を含む触媒体、第1高分子電解質ならびに多官能性塩基性化合物の混合物を含んでおり、
前記第1高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、
前記多官能性塩基性化合物の主鎖部分は、フッ素置換されている、固体高分子電解質型燃料電池用の膜・電極接合体。
A solid polymer electrolyte membrane, and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer,
At least one of the catalyst layers of the electrode includes a mixture of a catalyst body including a noble metal catalyst and carbon powder, a first polymer electrolyte, and a polyfunctional basic compound,
The first polymer electrolyte has a plurality of sulfonic acid groups, and a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded,
A membrane / electrode assembly for a solid polymer electrolyte fuel cell, wherein a main chain portion of the polyfunctional basic compound is substituted with fluorine.
固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、
前記固体高分子電解質膜は、第2高分子電解質および多官能性塩基性化合物を含んでおり、
前記第2高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、
前記多官能性塩基性化合物の主鎖部分は、フッ素置換されている、固体高分子電解質型燃料電池用の膜・電極接合体。
A solid polymer electrolyte membrane, and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer,
The solid polymer electrolyte membrane includes a second polymer electrolyte and a polyfunctional basic compound,
The second polymer electrolyte has a plurality of sulfonic acid groups, and a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded,
A membrane / electrode assembly for a solid polymer electrolyte fuel cell, wherein a main chain portion of the polyfunctional basic compound is substituted with fluorine.
前記多官能性塩基性化合物は、多官能性アミンである、請求項1または2記載の固体高分子電解質型燃料電池用の膜・電極接合体。  The membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the polyfunctional basic compound is a polyfunctional amine. 前記触媒層は、前記第1高分子電解質に対して0.1〜10wt%の前記多官能性塩基性化合物を含んでいる、請求項1記載の固体高分子電解質型燃料電池用の膜・電極接合体。  2. The membrane / electrode for a solid polymer electrolyte fuel cell according to claim 1, wherein the catalyst layer contains 0.1 to 10 wt% of the polyfunctional basic compound with respect to the first polymer electrolyte. Joined body. 前記固体高分子電解質膜は、前記第2高分子電解質に対して1〜10wt%の多官能性塩基性化合物を含んでいる、請求項2記載の固体高分子電解質型燃料電池用の膜・電極接合体。  The membrane / electrode for a solid polymer electrolyte fuel cell according to claim 2, wherein the solid polymer electrolyte membrane contains 1 to 10 wt% of a polyfunctional basic compound with respect to the second polymer electrolyte. Joined body. 高分子電解質および多官能性塩基性化合物を含んでおり、
前記高分子電解質は、複数のスルホン酸基を有しており、前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合しており、
前記多官能性塩基性化合物の主鎖部分は、フッ素置換されている、固体高分子電解質膜。
Containing a polyelectrolyte and a polyfunctional basic compound,
The polyelectrolyte has a plurality of sulfonic acid groups, a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded,
The main chain part of the said polyfunctional basic compound is a solid polymer electrolyte membrane by which fluorine substitution is carried out.
前記多官能性塩基性化合物は、多官能性アミンである、請求項記載の固体高分子電解質膜。The solid polymer electrolyte membrane according to claim 6 , wherein the polyfunctional basic compound is a polyfunctional amine. 前記固体高分子電解質膜は、前記高分子電解質に対して1〜10wt%の多官能性塩基性化合物を含んでいる、請求項記載の固体高分子電解質膜。The solid polymer electrolyte membrane according to claim 6 , wherein the solid polymer electrolyte membrane contains 1 to 10 wt% of a polyfunctional basic compound with respect to the polymer electrolyte. 固体高分子電解質膜と、前記固体高分子電解質膜の両側に配置され、それぞれ触媒層およびガス拡散層を有する一対の電極と、を備え、
前記電極の前記触媒層のうちの少なくとも一方は、貴金属触媒および炭素粉末を含む触媒体、第1高分子電解質ならびに多官能性塩基性化合物の混合物を含んでおり、
前記第1高分子電解質は、複数のスルホン酸基を有しており、
前記複数のスルホン酸基の一部と前記多官能性塩基性化合物とがイオン結合している、固体高分子電解質型燃料電池用の膜・電極接合体。
A solid polymer electrolyte membrane, and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, each having a catalyst layer and a gas diffusion layer,
At least one of the catalyst layers of the electrode includes a mixture of a catalyst body including a noble metal catalyst and carbon powder, a first polymer electrolyte, and a polyfunctional basic compound,
The first polymer electrolyte has a plurality of sulfonic acid groups,
A membrane / electrode assembly for a solid polymer electrolyte fuel cell, wherein a part of the plurality of sulfonic acid groups and the polyfunctional basic compound are ionically bonded.
JP2001045615A 2001-01-19 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane Expired - Fee Related JP5021864B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001045615A JP5021864B2 (en) 2001-02-21 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane
KR10-2002-7012301A KR100531607B1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
DE60238802T DE60238802D1 (en) 2001-01-19 2002-01-16 Membrane electrode assemblies for fuel cell
US10/240,433 US6977234B2 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
PCT/JP2002/000257 WO2002058178A1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell elecrolyte film-electrode bond
EP02715767A EP1278260A4 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell elecrolyte film-electrode bond
EP08166886A EP2009720B1 (en) 2001-01-19 2002-01-16 Electrolyte membrane-electrode assembly for fuel cell
US12/006,678 USRE41651E1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
CNB028007484A CN100338805C (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045615A JP5021864B2 (en) 2001-02-21 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane

Publications (3)

Publication Number Publication Date
JP2002246041A JP2002246041A (en) 2002-08-30
JP2002246041A5 JP2002246041A5 (en) 2008-11-20
JP5021864B2 true JP5021864B2 (en) 2012-09-12

Family

ID=18907378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045615A Expired - Fee Related JP5021864B2 (en) 2001-01-19 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5021864B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022346A (en) * 2002-06-17 2004-01-22 Norio Tsubokawa Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
US7691513B2 (en) 2004-04-13 2010-04-06 Panasonic Corporation Proton conductor, electrolyte membrane, electrode and fuel cell
KR100590555B1 (en) * 2004-07-08 2006-06-19 삼성에스디아이 주식회사 Supported catalyst and fuel cell using the same
JP5017908B2 (en) * 2005-04-05 2012-09-05 住友化学株式会社 Cross-linked polymer electrolyte and method for producing the same
JP5040911B2 (en) 2006-03-27 2012-10-03 株式会社豊田中央研究所 Composite electrolyte membrane having imide network polymer crosslinked with strongly acidic group, method for producing the same, and fuel cell
JP5310334B2 (en) * 2008-07-15 2013-10-09 トヨタ自動車株式会社 Anion conductive electrolyte resin
JP2010244700A (en) * 2009-04-01 2010-10-28 Tokuyama Corp Ionic conductivity imparting agent for electrode catalyst layer
JP2011090987A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Manufacturing method of electrode for fuel cell
JP2014522437A (en) * 2011-06-06 2014-09-04 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Stable ion exchange fluorinated polymers and membranes obtained therefrom
JP6061329B2 (en) * 2012-02-02 2017-01-18 国立大学法人九州大学 Catalyst layer structure and method for preparing the same
EP3411430A4 (en) * 2016-02-03 2019-06-19 Camx Power, L.L.C. Bipolar ionomer membrane
US10749200B2 (en) 2016-04-22 2020-08-18 National University Corporation Nagoya University Non-humidified proton-conductive membrane, method for producing the same, and fuel cell
CN113924673B (en) * 2019-07-08 2024-05-24 可隆工业株式会社 Polymer electrolyte membrane, method for manufacturing the same, and electrochemical device including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG73410A1 (en) * 1992-06-13 2000-06-20 Hoechst Ag Polymer electrolyte membrane and process for the production thereof
CN1439032A (en) * 2000-06-02 2003-08-27 Sri国际公司 Polymer composition

Also Published As

Publication number Publication date
JP2002246041A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
KR100647296B1 (en) Metal catalyst and a fuel cell employing an electrode including the same
US8039414B2 (en) Method for preparing metal catalyst and electrode
JP5021864B2 (en) Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane
JP3608565B2 (en) Fuel cell and manufacturing method thereof
JP4130792B2 (en) Membrane-electrode structure and polymer electrolyte fuel cell using the same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
KR20060001625A (en) Binder solution for fuel cell, membrane electrode assembly(mea) for fuel cell, and method for preparating the membrane electrode assembly
WO2002058178A1 (en) Method for manufacturing fuel cell elecrolyte film-electrode bond
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP2016540355A (en) Method of manufacturing a PBI-based membrane electrode assembly (MEA) with improved fuel cell performance and stability
US20150162619A1 (en) Electrode catalyst, method for preparing same, and membrane electrode assembly and fuel cell including same
JP4896435B2 (en) Electrolyte for electrode of polymer electrolyte fuel cell
JP5233208B2 (en) Cross-linked polymer electrolyte membrane
JP2007329072A (en) Method of manufacturing electrode for fuel cell
JP4311070B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
US20050147868A1 (en) Fuel cell
JP5393984B2 (en) Fuel cell
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP3788491B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2004273255A (en) Method for manufacturing membrane electrode assembly for fuel cell
JP2002015746A (en) Fuel cell and fuel cell electrode member
KR20150047343A (en) Electrode catalyst, method for preparing the same, and membrane electrode assembly and fuel cell including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees