JP2002246041A - Membrane-electrode joining body for solid polymer electrolyte fuel cell - Google Patents

Membrane-electrode joining body for solid polymer electrolyte fuel cell

Info

Publication number
JP2002246041A
JP2002246041A JP2001045615A JP2001045615A JP2002246041A JP 2002246041 A JP2002246041 A JP 2002246041A JP 2001045615 A JP2001045615 A JP 2001045615A JP 2001045615 A JP2001045615 A JP 2001045615A JP 2002246041 A JP2002246041 A JP 2002246041A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
membrane
fuel cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001045615A
Other languages
Japanese (ja)
Other versions
JP2002246041A5 (en
JP5021864B2 (en
Inventor
Shinya Kosako
慎也 古佐小
Masato Hosaka
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001045615A priority Critical patent/JP5021864B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP08166886A priority patent/EP2009720B1/en
Priority to EP02715767A priority patent/EP1278260A4/en
Priority to US10/240,433 priority patent/US6977234B2/en
Priority to PCT/JP2002/000257 priority patent/WO2002058178A1/en
Priority to US12/006,678 priority patent/USRE41651E1/en
Priority to DE60238802T priority patent/DE60238802D1/en
Priority to KR10-2002-7012301A priority patent/KR100531607B1/en
Priority to CNB028007484A priority patent/CN100338805C/en
Publication of JP2002246041A publication Critical patent/JP2002246041A/en
Publication of JP2002246041A5 publication Critical patent/JP2002246041A5/ja
Application granted granted Critical
Publication of JP5021864B2 publication Critical patent/JP5021864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas diffusion electrode joining body and a solid polymer fuel cell, enabling the sue of a perfluorosulfonic ionomer having high proton conductivity and superior performance in a gas diffusion electrode joint producing method for the polymer fuel cell, having high reliability, lower internal resistance, low-humidification or non-humidification operating adaptability and high output. SOLUTION: A multiple functional base compound is added to a catalyst layer or a solid polymer electrolytic membrane of a gas diffusion electrode by giving network crosslinking to the ionomer, thereby preventing the flow of the ionomer out of the layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池(以下、「PEFC」という。)に使用する固体高
分子電解質膜と電極との接合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembly of a polymer electrolyte membrane and an electrode used in a polymer electrolyte fuel cell (hereinafter referred to as "PEFC").

【0002】[0002]

【従来の技術】PEFCは、図3に示すように電解質で
あるフィルム状の高分子電解質膜31とガス拡散電極3
6および37との接合体からなり、両者はホットプレス
によって接合されている。そして、負極触媒層33で
は、式(1): H2→2H++2e- (1) で表される反応が起こっており、正極触媒層35では、
式(2): 1/2O2+2H++2e-→H2O (2) で表される反応が起こっている。そして、上記反応が起
こる際、負極で発生したプロトンが高分子電解質膜31
を介して正極へ移動する。このようなPEFCには、高
い出力電流密度を出すことが要求されるが、使用する高
分子電解質膜としては高いプロトン伝導性を持つこと、
すなわち低い内部抵抗を持つことが必要とされる。
2. Description of the Related Art As shown in FIG. 3, a PEFC has a film-like polymer electrolyte membrane 31 as an electrolyte and a gas diffusion electrode 3 as an electrolyte.
6 and 37, both of which are joined by hot pressing. In the negative electrode catalyst layer 33, a reaction represented by the following formula (1): H 2 → 2H + + 2e (1) occurs.
The reaction represented by the formula (2): 1 / 2O 2 + 2H + + 2e → H 2 O (2) is occurring. When the above reaction occurs, protons generated at the negative electrode are converted into polymer electrolyte membrane 31.
Move to the positive electrode through. Such a PEFC is required to have a high output current density, but has high proton conductivity as a polymer electrolyte membrane to be used,
That is, it is required to have a low internal resistance.

【0003】PEFCの高分子電解質には、通常米国デ
ュポン社製のNafion112に代表されるパーフロ
オロスルホン酸イオノマーからなる高分子電解質膜が使
用されており、約30〜50μmの厚さを有する膜が実
用化されている。また、Nafionより高いプロトン
伝導度を持つパーフロオロスルホン酸イオノマーからな
る高分子電解質膜としては、例えば旭硝子(株)製のF
lemionSH膜や旭化成(株)のAciplex−
Sなどがあげられるが、これらはNafion112膜
よりスルホン基を多く含むものである。PEFCでは、
高い出力電流密度を出させるため、よりプロトン伝導性
の大きい、よりスルホン基を多く含む高分子電解質膜の
開発が行われている。
As a polymer electrolyte of PEFC, a polymer electrolyte membrane composed of a perfluorosulfonic acid ionomer represented by Nafion 112 manufactured by DuPont of the United States is used, and a membrane having a thickness of about 30 to 50 μm is used. Has been put to practical use. As a polymer electrolyte membrane composed of a perfluorosulfonic acid ionomer having a proton conductivity higher than that of Nafion, for example, a polymer electrolyte membrane manufactured by Asahi Glass Co., Ltd.
Remion SH membrane and Asahi Kasei Corporation's Aciplex-
S, etc., which contain more sulfone groups than the Nafion 112 membrane. At PEFC,
In order to obtain a high output current density, a polymer electrolyte membrane having higher proton conductivity and containing more sulfone groups has been developed.

【0004】[0004]

【発明が解決しようとする課題】しかし、高いプロトン
伝導度を有するパーフロオロスルホン酸イオノマーなど
の高分子電解質は、スルホン酸基などの親水基を分子鎖
中に多く含むため、水に溶け易くアイオノマーが燃料電
池の運転作動中に徐々にカーボンペーパなどのガス拡散
層へ流れ出してしまう傾向にあった。そのため、固体高
分子電解質膜と電極との界面において、反応ガスの供給
路となる細孔と、含水によりプロトン導電性を持った高
分子電解質と、電子伝導体の電極材料とが形成する三相
界面の反応面積が徐々に狭くなり、出力が低下してしま
うという問題があった。さらに、固体高分子電解質膜と
電極との接合体の外側に配置されるガス流路を有する集
電体が金属からなる場合、溶け出した酸性イオノマーに
よりその集電体が徐々に腐食し、燃料電池の信頼性を著
しく低下させるという問題もあった。
However, a polymer electrolyte such as a perfluorosulfonic acid ionomer having a high proton conductivity contains a large number of hydrophilic groups such as a sulfonic acid group in a molecular chain, so that it is easily dissolved in water and is easily ionomerized. Tended to gradually flow out to a gas diffusion layer such as carbon paper during the operation of the fuel cell. Therefore, at the interface between the solid polymer electrolyte membrane and the electrode, the three phases formed by the pores serving as the supply path of the reaction gas, the polymer electrolyte having proton conductivity due to water content, and the electrode material of the electron conductor There has been a problem that the reaction area of the interface gradually narrows and the output decreases. Furthermore, when the current collector having a gas flow path disposed outside the joined body of the solid polymer electrolyte membrane and the electrode is made of metal, the current collector gradually corrodes due to the dissolved acidic ionomer, and the fuel There is also a problem that the reliability of the battery is significantly reduced.

【0005】したがって、本発明は、上述のような従来
の問題を解決するために、高いプロトン伝導度を有する
固体高分子電解質を使用し、耐久性に優れ、高い性能を
発揮する固体高分子電解質膜と電極との接合体およびこ
の接合体を用いて構成した固体高分子電解質型燃料電池
を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned conventional problems by using a solid polymer electrolyte having a high proton conductivity, and having excellent durability and high performance. An object of the present invention is to provide a joined body of a membrane and an electrode and a solid polymer electrolyte fuel cell constituted by using the joined body.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、固体高分子電解質膜と前記固体高分子電
解質膜の両側に配した一対の電極とからなり、少なくと
も一方の前記電極が、貴金属触媒および炭素粉末からな
る触媒体、高分子電解質ならびに多官能性塩基性化合物
を含む混合物からなる触媒層と、ガス拡散層とにより構
成されていることを特徴とする固体高分子電解質型燃料
電池用の膜・電極接合体を提供する。この接合体におい
て、前記多官能性塩基性化合物は多官能アミンであるの
が有効である。また、前記触媒層が、高分子電解質に対
して0.1〜10wt%の多官能性塩基性化合物を含む
のが有効である。
In order to solve the above problems, the present invention provides a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, wherein at least one of the electrodes is provided. Is a solid polymer electrolyte type characterized by comprising a catalyst body composed of a noble metal catalyst and a carbon powder, a catalyst layer composed of a mixture containing a polymer electrolyte and a polyfunctional basic compound, and a gas diffusion layer. Provided is a membrane / electrode assembly for a fuel cell. In this conjugate, it is effective that the polyfunctional basic compound is a polyfunctional amine. Further, it is effective that the catalyst layer contains 0.1 to 10 wt% of a polyfunctional basic compound with respect to the polymer electrolyte.

【0007】さらに本発明は、固体高分子電解質膜と前
記固体高分子電解質膜の両側に配した一対の電極とから
なり、少なくとも一方の前記電極が、貴金属触媒および
塩基性表面官能基を有する炭素粉末からなる触媒体なら
びに高分子電解質からなる触媒層と、ガス拡散層とによ
り構成されていることを特徴とする固体高分子電解質型
燃料電池用の膜・電極接合体をも提供する。この接合体
において、前記塩基性表面官能基がアミンであるのが有
効である。
Further, the present invention comprises a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, wherein at least one of the electrodes has a noble metal catalyst and a carbon having a basic surface functional group. Also provided is a membrane / electrode assembly for a solid polymer electrolyte fuel cell, comprising a catalyst body composed of a powder, a catalyst layer composed of a polymer electrolyte, and a gas diffusion layer. In this conjugate, it is effective that the basic surface functional group is an amine.

【0008】さらに、本発明は、固体高分子電解質膜と
前記固体高分子電解質膜の両側に配した一対の電極とか
らなり、前記固体高分子電解質膜が多官能性塩基性化合
物を含むことを特徴とする固体高分子電解質膜とガス拡
散電極とからなる固体高分子電解質型燃料電池用の膜・
電極接合体を提供する。この場合も、前記多官能性塩基
性化合物が多官能アミンであるのが有効である。また、
前記固体高分子電解質膜が、高分子電解質の1〜10w
t%の多官能性塩基性化合物を含むのが有効である。前
記多官能性塩基性化合物の主鎖部分がフッ素置換されて
いるのも有効である。
Further, the present invention comprises a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane contains a polyfunctional basic compound. A membrane for solid polymer electrolyte fuel cells consisting of a solid polymer electrolyte membrane and a gas diffusion electrode.
An electrode assembly is provided. Also in this case, it is effective that the polyfunctional basic compound is a polyfunctional amine. Also,
The solid polymer electrolyte membrane is 1 to 10 watts of the polymer electrolyte.
It is effective to include t% of the polyfunctional basic compound. It is also effective that the main chain of the polyfunctional basic compound is substituted with fluorine.

【0009】[0009]

【発明の実施の形態】本発明に係る固体高分子電解質膜
とガス拡散電極とからなる固体高分子電解質型燃料電池
用の接合体は、多官能性塩基性化合物または塩基性表面
官能基を有する炭素粉末を含むことに最大の特徴を有す
る。この多官能性塩基性化合物は、接合体を構成する固
体高分子電解質膜および/または触媒層に含ませること
ができ、高分子電解質であるイオノマーのスルホン酸基
の一部と結合して3次元のネットワークを形成し、イオ
ノマーがドレイン水によってガス拡散層に流れ出にくい
ようにする。また、塩基性表面官能基を有する炭素粉末
は、膜・電極接合体を構成する触媒層に含ませることが
でき、高分子電解質のイオノマーのスルホン酸基の一部
と結合し、イオノマーがドレイン水に溶けて流出するの
を防ぐ。これにより、ガス拡散層はガス透過性を維持
し、触媒層および高分子電解質膜はプロトン伝導性を損
ないにくくなるという機能を発揮する。
BEST MODE FOR CARRYING OUT THE INVENTION A solid polymer electrolyte fuel cell assembly comprising a solid polymer electrolyte membrane and a gas diffusion electrode according to the present invention has a polyfunctional basic compound or a basic surface functional group. The greatest feature is that it contains carbon powder. This polyfunctional basic compound can be contained in the solid polymer electrolyte membrane and / or the catalyst layer constituting the conjugate, and is bonded to a part of the sulfonic acid groups of the ionomer, which is a polymer electrolyte, to form a three-dimensional polymer. To make it difficult for the ionomer to flow out into the gas diffusion layer due to the drain water. In addition, the carbon powder having a basic surface functional group can be included in the catalyst layer constituting the membrane / electrode assembly, and binds to a part of the sulfonic acid groups of the ionomer of the polymer electrolyte, and the ionomer is drained. To prevent it from melting and spilling. Thereby, the gas diffusion layer maintains the gas permeability, and the catalyst layer and the polymer electrolyte membrane exhibit the function of hardly impairing the proton conductivity.

【0010】本発明に係る固体高分子電解質膜と前記固
体高分子電解質膜の両面に配した一対の電極とからなる
固体高分子電解質型燃料電池用の膜・電極接合体につい
て説明する。触媒層に多官能性塩基性化合物を含む場
合、本発明の固体高分子電解質型燃料電池用の膜・電極
接合体は、固体高分子電解質膜と前記固体高分子電解質
膜の両面に配した一対の電極とからなり、少なくとも一
方の前記電極を、貴金属触媒と炭素粉末とからなる触媒
体、高分子電解質および多官能性塩基性化合物を含む混
合物からなる触媒層と、カーボンペーパ、カーボンクロ
スなどからなるガス拡散層とにより構成する。図1のよ
うに、この多官能性塩基性化合物11がイオノマー12
のスルホン酸基の一部と結合して3次元のネットワーク
を形成し、イオノマーの流出を抑制するという効果を奏
する。
A membrane-electrode assembly for a solid polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane according to the present invention and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane will be described. When the catalyst layer contains a polyfunctional basic compound, the membrane / electrode assembly for a solid polymer electrolyte fuel cell of the present invention comprises a solid polymer electrolyte membrane and a pair of solid polymer electrolyte membranes disposed on both sides of the solid polymer electrolyte membrane. At least one of the electrodes, a catalyst body composed of a noble metal catalyst and carbon powder, a catalyst layer composed of a mixture containing a polymer electrolyte and a polyfunctional basic compound, and carbon paper, carbon cloth, etc. And a gas diffusion layer. As shown in FIG. 1, this polyfunctional basic compound 11 is an ionomer 12
To form part of a three-dimensional network by combining with a part of the sulfonic acid group of the formula (1), and has an effect of suppressing the outflow of the ionomer.

【0011】前記多官能性塩基性化合物は、一つの分子
にスルホン基と反応可能な二つ以上の官能基を有するも
のであればよく、例えばエチレンジアミン、1,2−プ
ロピレンジアミン、テトラメチレンジアミン、ヘキサメ
チレンジアミン、ヘプタメチレンジアミン、オクタメチ
レンジアミン、ノナメチレンジアミンなどの2官能アミ
ン、ジエチレントリアミンなどの3官能アミン、ベンゼ
ンジアミン、1,2,3−トリアミノベンゼン、1,
2,3,4−テトラアミノベンゼンなどの芳香族多官能
アミン、1,5−ジアザビシクロ[4.3.0]ノナ−
5−エン、1,8−ジアザビシクロ[5.4.0]ウン
デカ−7−エンなどのアミジノ基を有する化合物、スト
レプトマイシンなどのNを含む多糖類、ビタミンB2、
ビタミンB12などのビタミン類、キサンプテリン、ロ
イコプテリン、メトトレキセートなどのアザナフタレン
類、キニン、ストリキーネ、ブルシンなどのアルカロイ
ド類、グリシルアラニン、アラニルグリシン、アスパル
テーム、グルタチオンなどのポリペプチド類、ピリダジ
ン、ピリミジン、トリアジン類、テトラジン類、シンノ
リン、キナゾリン、フタラジン、キノキサリン、プテリ
ジン、リゼルギン酸ジエチルアミド、アデニン、ベンゾ
イミダゾール、プリン、ヒドラジド、ニコチン、テトラ
ヒドロ葉酸、ヘキサメチレンテトラミン、4,4’−ジ
アミノビフェニルなどがあげられる。なかでも、比較的
マイルドな条件で酸と塩基の化学反応が起こるという観
点から、多官能性アミンであるのが好ましい。
The polyfunctional basic compound may be any compound having two or more functional groups capable of reacting with a sulfone group in one molecule, such as ethylenediamine, 1,2-propylenediamine, tetramethylenediamine, and the like. Bifunctional amines such as hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, trifunctional amines such as diethylenetriamine, benzenediamine, 1,2,3-triaminobenzene, 1,
Aromatic polyfunctional amines such as 2,3,4-tetraaminobenzene, 1,5-diazabicyclo [4.3.0] nona-
Compounds having an amidino group such as 5-ene and 1,8-diazabicyclo [5.4.0] undec-7-ene; N-containing polysaccharides such as streptomycin; vitamin B2;
Vitamins such as vitamin B12, xanthapterins, leucopterins, azanaphthalenes such as methotrexate, alkaloids such as quinine, strikine, brucine, glycylanine, alanylglycine, aspartame, polypeptides such as glutathione, pyridazine, pyrimidine, Triazines, tetrazines, cinnoline, quinazoline, phthalazine, quinoxaline, pteridine, lysergic acid diethylamide, adenine, benzimidazole, purine, hydrazide, nicotine, tetrahydrofolate, hexamethylenetetramine, 4,4′-diaminobiphenyl and the like. Among them, from the viewpoint that a chemical reaction between an acid and a base occurs under relatively mild conditions, a polyfunctional amine is preferable.

【0012】また、前記多官能性塩基性化合物の骨格部
分の水素がフッ素置換されているのが好ましい。フッ素
置換されていることで、水素原子引き抜き反応などによ
る分解を防止でき、高い信頼性を実現できるからであ
る。前記フッ素置換多官能アミンとしては、テトラフロ
ロ−p−フェニレンジアミン、4,4’−ジアミノオク
タフルオロビフェニル、2,4,6−トリス(パーフル
オロヘプチル)−1,3,5−トリアジンなどがあげら
れる。
It is preferable that the hydrogen of the skeleton portion of the polyfunctional basic compound is substituted with fluorine. This is because, by the substitution with fluorine, decomposition due to a hydrogen atom abstraction reaction or the like can be prevented, and high reliability can be realized. Examples of the fluorine-substituted polyfunctional amine include tetrafluoro-p-phenylenediamine, 4,4′-diaminooctafluorobiphenyl, 2,4,6-tris (perfluoroheptyl) -1,3,5-triazine and the like. .

【0013】また、前記触媒層における多官能性塩基性
化合物は、高分子電解質に対して0.1〜10wt%で
あるのが好ましい。これは、スルホン酸などの酸基の全
数の数%程度の置換率ならば、プロトン伝導度への影響
は小さいからである。つぎに、触媒層に塩基性表面官能
基を有する炭素粉末を含む場合、本発明に係わる固体高
分子電解質型燃料電池用の膜・電極接合体は、固体高分
子電解質膜と前記固体高分子電解質膜の両側に配した一
対の電極とからなり、少なくとも一方の前記電極が、貴
金属触媒と塩基性表面官能基を有する炭素粉末とからな
る触媒体、および高分子電解質からなる触媒層と、ガス
拡散層とにより構成する。図2のように、触媒層中の前
記炭素粉末23の塩基性表面官能基21が、イオノマー
24の一部のスルホン酸基と結合してイオノマーの流出
を抑制するという効果を奏する。炭素粉末23上の塩基
性表面官能基21は、イオノマーとの混合前に、例えば
炭素粉末表面にあるカルボキシル基などと置換させてお
く。塩基性表面官能基としては、比較的マイルドな条件
で酸と塩基の化学反応が起こるという観点から、アミン
類であるのが好ましい。また、前記炭素粉末上の塩基性
表面官能基の数は、1個でもよい。塩基性物質が単分子
の場合は、官能基を2個以上有しないと架橋効果がない
ので、前記塩基性物質はイオノマーと共に流出してしま
う。一方、塩基性物質の基質が炭素粉末の場合、炭素粉
末は触媒層中で固定されているため、塩基性官能基が1
個でもイオノマーと共に流出することはない。また、上
述の作用から鑑みると、全炭素粉末の表面に塩基性官能
基が存在する必要もない。また、全イオノマーと表面官
能基が結合する必要もない。投錨効果により、一部のイ
オノマーと結合していれば、流出は充分抑制できるから
である。
It is preferable that the content of the polyfunctional basic compound in the catalyst layer is 0.1 to 10% by weight based on the polymer electrolyte. This is because if the substitution rate is about several percent of the total number of acid groups such as sulfonic acid, the effect on proton conductivity is small. Next, when the catalyst layer contains carbon powder having a basic surface functional group, the membrane / electrode assembly for a solid polymer electrolyte fuel cell according to the present invention comprises a solid polymer electrolyte membrane and the solid polymer electrolyte. A catalyst comprising a noble metal catalyst and a carbon powder having a basic surface functional group, and a catalyst layer comprising a polymer electrolyte, comprising a pair of electrodes disposed on both sides of the membrane, and a gas diffusion layer. And a layer. As shown in FIG. 2, the basic surface functional group 21 of the carbon powder 23 in the catalyst layer has an effect of binding to a part of the sulfonic acid groups of the ionomer 24 to suppress the outflow of the ionomer. Before mixing with the ionomer, the basic surface functional group 21 on the carbon powder 23 is replaced with, for example, a carboxyl group on the surface of the carbon powder. The basic surface functional group is preferably an amine from the viewpoint that a chemical reaction between an acid and a base occurs under relatively mild conditions. Further, the number of basic surface functional groups on the carbon powder may be one. In the case where the basic substance is a single molecule, since there is no crosslinking effect unless the basic substance has two or more functional groups, the basic substance flows out together with the ionomer. On the other hand, when the substrate of the basic substance is carbon powder, since the carbon powder is fixed in the catalyst layer, the basic functional group is 1
Neither does it escape with the ionomer. Further, in view of the above-mentioned effects, it is not necessary that a basic functional group is present on the surface of the entire carbon powder. Also, it is not necessary that all ionomers and surface functional groups be bonded. This is because the outflow can be sufficiently suppressed if it is bound to some ionomers by the anchoring effect.

【0014】さらに、高分子電解質膜に多官能性塩基性
化合物を含む場合、本発明に係る固体高分子電解質型燃
料電池用膜・電極接合体は、固体高分子電解質膜とこの
膜の両面に配した電極とからなる接合体であって、前記
固体高分子電解質膜に多官能性塩基性化合物を含む。こ
こでも、上述したように、多官能性塩基性化合物が多官
能性アミンであるのが好ましく、また、多官能性塩基性
化合物の固体高分子電解質に対する重量は、1〜10w
t%であるのが好ましい。スルホン酸などの酸基の置換
率が低ければ、プロトン伝導度への影響も小さいからで
ある。
Further, when the polymer electrolyte membrane contains a polyfunctional basic compound, the membrane / electrode assembly for a solid polymer electrolyte fuel cell according to the present invention comprises a solid polymer electrolyte membrane and both surfaces of the membrane. The solid polymer electrolyte membrane contains a polyfunctional basic compound. Here, as described above, the polyfunctional basic compound is preferably a polyfunctional amine, and the weight of the polyfunctional basic compound with respect to the solid polymer electrolyte is 1 to 10 w.
It is preferably t%. This is because if the substitution rate of an acid group such as sulfonic acid is low, the effect on proton conductivity is small.

【0015】[0015]

【実施例】以下、本発明を実施例を用いて詳細に説明す
るが、本発明はこれらのみに限定されるものではない。 《実施例1》まず、n−酢酸ブチル(CH3COOCH2
(CH22CH3)50.0gに、白金触媒を25重量
%担持させた炭素微粉末6.0gを入れ、超音波をかけ
ながらスターラーを使用して10分間攪拌、分散させ
た。つぎに、上記の分散液に高分子電解質(旭硝子
(株)製のFlemion)の9重量%エタノール溶液
40.0gを攪拌しながら徐々に加え、高分子電解質の
コロイドを触媒を担持した炭素微粉末表面に吸着させ
た。全ての高分子電解質溶液を添加し終えて1時間後、
撹拌を停止すると上澄み液は透明に変化した。この触媒
混合液にヘキサメチレンジアミンを0.10g混合し、
1時間超音波分散させ、触媒ペーストを得た。つぎに、
フッ素樹脂分散液(ダイキン工業(株)ND−1)に浸
した後300℃で焼成した(株)東レ製のカーボンペー
パ基板上に、前記触媒ペーストを約30μm塗着した。
さらに、膜厚50μmの固体高分子電解質膜(旭硝子
(株)製のFlemionSH50)の両面に上記電極
を120〜140℃の温度、50〜70kg/cm2
圧力を加えて10分間ホットプレスし、膜・電極接合体
を作製した。この膜・電極接合体をセパレータで挟み、
単電池を組み、電池温度75℃、水素露点70℃、空気
露点65℃、水素利用率70%、酸素利用率40%、電
流密度0.7A/cm2の条件で250時間運転させた
が、電圧の初期0.65Vからの低下は0.03Vであ
った。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 First, n-butyl acetate (CH 3 COOCH 2
To 50.0 g of (CH 2 ) 2 CH 3 ), 6.0 g of fine carbon powder carrying 25% by weight of a platinum catalyst was added, and the mixture was stirred and dispersed for 10 minutes using a stirrer while applying ultrasonic waves. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) was gradually added to the above dispersion with stirring, and a colloid of the polymer electrolyte was added to a catalyst-supported carbon fine powder. Adsorbed on the surface. One hour after all polymer electrolyte solutions have been added,
When the stirring was stopped, the supernatant liquid turned transparent. 0.10 g of hexamethylenediamine is mixed with the catalyst mixture,
Ultrasonic dispersion was performed for one hour to obtain a catalyst paste. Next,
The catalyst paste was applied to a carbon paper substrate manufactured by Toray Industries, Inc., which was immersed in a fluororesin dispersion liquid (ND-1 manufactured by Daikin Industries, Ltd.) and then fired at 300 ° C., and the above-mentioned catalyst paste was applied to a thickness of about 30 μm.
Further, the electrodes were hot-pressed on both surfaces of a 50 μm-thick solid polymer electrolyte membrane (Flemion SH50 manufactured by Asahi Glass Co., Ltd.) at a temperature of 120 to 140 ° C. and a pressure of 50 to 70 kg / cm 2 for 10 minutes. A membrane-electrode assembly was produced. This membrane / electrode assembly is sandwiched between separators,
A single cell was assembled and operated for 250 hours under the conditions of a battery temperature of 75 ° C., a hydrogen dew point of 70 ° C., an air dew point of 65 ° C., a hydrogen utilization rate of 70%, an oxygen utilization rate of 40%, and a current density of 0.7 A / cm 2 . The voltage drop from the initial 0.65 V was 0.03 V.

【0016】《比較例1》n−酢酸ブチル(CH3CO
OCH2(CH22CH3)50.0gに、白金触媒を2
5重量%担持させた炭素微粉末6.0gを入れ、超音波
をかけながらスターラーを使用して10分間攪拌、分散
させた。つぎに、上記の分散液に高分子電解質(旭硝子
(株)製のFlemion)の9重量%エタノール溶液
40.0gを攪拌しながら徐々に加え、高分子電解質の
コロイドを触媒を担持した炭素微粉末表面に吸着させ
た。全ての高分子電解質溶液を添加し終えてさらに1時
間攪拌し、触媒ペーストを得た。つぎに、フッ素樹脂分
散液(ダイキン工業(株)ND−1)に浸した後300
℃で焼成した(株)東レ製のカーボンペーパ基板上に、
前記触媒ペーストを約30μm塗着した。さらに、膜厚
50μmの固体高分子電解質膜(旭硝子(株)製のFl
emionSH50)の両面に上記電極を120〜14
0℃の温度、50〜70kg/cm2の圧力を加えて1
0分間ホットプレスし、膜・電極接合体を作製した。こ
の電池を実施例1と同様な条件で250時間運転させた
ところ、初期の電圧0.67Vから0.12Vの低下が
見られた。
Comparative Example 1 n-butyl acetate (CH 3 CO
To 50.0 g of OCH 2 (CH 2 ) 2 CH 3 ), a platinum catalyst was added.
6.0 g of carbon fine powder loaded with 5% by weight was added, and the mixture was stirred and dispersed for 10 minutes using a stirrer while applying ultrasonic waves. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) was gradually added to the above dispersion with stirring, and a colloid of the polymer electrolyte was added to a catalyst-supported carbon fine powder. Adsorbed on the surface. After the addition of all the polymer electrolyte solutions, the mixture was further stirred for 1 hour to obtain a catalyst paste. Next, after immersing in a fluororesin dispersion (ND-1 of Daikin Industries, Ltd.),
On a carbon paper substrate manufactured by Toray Co., Ltd.
About 30 μm of the catalyst paste was applied. Further, a 50 μm-thick solid polymer electrolyte membrane (Fl manufactured by Asahi Glass Co., Ltd.)
emion SH50) on both sides of the electrode
0 ℃ temperature, by applying a pressure of 50~70kg / cm 2 1
Hot pressing was performed for 0 minutes to produce a membrane-electrode assembly. When this battery was operated under the same conditions as in Example 1 for 250 hours, a decrease of 0.12 V from the initial voltage of 0.67 V was observed.

【0017】《実施例2》まず、白金触媒を25重量%
担持させた炭素微粉末7.0g、エタノール20ml、
ヘキサメチレンジアミン1.0gを三口フラスコに入
れ、10分間還流煮沸させた。つぎに、この分散液を濾
過し、濾紙の上からエタノールと水で充分に洗浄したの
ち乾燥させ、表面のカルボキシル基の一部をヘキサメチ
レンジアミンとアミド結合させた白金触媒担持炭素微粉
末を得た。この白金触媒担持炭素微粉末6.0gにn−
酢酸ブチル(CH3COOCH2(CH22CH3)5
0.0gを加え、超音波をかけながらスターラーを使用
して10分間攪拌、分散させた。つぎに、上記の分散液
に高分子電解質(旭硝子(株)製のFlemion)の
9重量%エタノール溶液40.0gを攪拌しながら徐々
に加え、高分子電解質のコロイドを触媒を担持した炭素
微粉末表面に吸着させた。全ての高分子電解質溶液を添
加し終えて1時間さらに攪拌を続け、触媒ペーストを得
た。つぎに、実施例1と同様にフッ素樹脂分散液(ダイ
キン工業(株)ND−1)に浸した後300℃で焼成し
た(株)東レ製のカーボンペーパ基板上に、前記触媒ペ
ーストを約30μm塗着した。さらに、膜厚50μmの
固体高分子電解質膜(旭硝子(株)製のFlemion
SH50)の両面に上記電極を120〜140℃の温
度、50〜70kg/cm2の圧力を加えて10分間ホ
ットプレスし、膜・電極接合体を作製した。この膜・電
極接合体をセパレータで挟み、単電池を組み、実施例1
と同様な条件で250時間運転させたところ、電圧の初
期0.66Vからの低下は0.04Vであった。
Example 2 First, a platinum catalyst was added at 25% by weight.
7.0 g of the supported carbon fine powder, 20 ml of ethanol,
Hexamethylenediamine (1.0 g) was put in a three-necked flask and boiled under reflux for 10 minutes. Next, this dispersion was filtered, thoroughly washed with ethanol and water from the top of the filter paper, and dried to obtain a platinum catalyst-carrying carbon fine powder in which a part of the carboxyl group on the surface was amide-bonded with hexamethylenediamine. Was. 6.0 g of this platinum catalyst-supported carbon fine powder was added with n-
Butyl acetate (CH 3 COOCH 2 (CH 2 ) 2 CH 3 ) 5
0.0 g was added, and the mixture was stirred and dispersed for 10 minutes using a stirrer while applying ultrasonic waves. Next, 40.0 g of a 9 wt% ethanol solution of a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) was gradually added to the above dispersion with stirring, and a colloid of the polymer electrolyte was added to a catalyst-supported carbon fine powder. Adsorbed on the surface. After the addition of all the polymer electrolyte solutions, stirring was further continued for 1 hour to obtain a catalyst paste. Next, the catalyst paste was immersed in a fluororesin dispersion liquid (ND-1 manufactured by Daikin Industries, Ltd.) and baked at 300 ° C. in the same manner as in Example 1. I painted it. Furthermore, a 50 μm-thick solid polymer electrolyte membrane (Flemion manufactured by Asahi Glass Co., Ltd.)
SH50) was hot-pressed for 10 minutes at both a temperature of 120 to 140 ° C. and a pressure of 50 to 70 kg / cm 2 to produce a membrane-electrode assembly. This membrane / electrode assembly was sandwiched between separators, and a unit cell was assembled.
After operating for 250 hours under the same conditions as described above, the decrease in voltage from the initial 0.66 V was 0.04 V.

【0018】《実施例3》高分子電解質(旭硝子(株)
製のFlemion)7重量%エタノール溶液40ml
に、ヘキサメチレンジアミンを0.05g混合し超音波
で攪拌した後直径12cmのシャーレに入れ、一昼夜室
温で乾燥させた後、130℃で2時間乾燥させて、50
μの厚さの固体高分子電解質キャスト膜を得た。これ
を、比較例1と全く同様な方法で作製した触媒層付きカ
ーボンペーパに挟んで膜・電極接合体を作製し、単電池
を得た。この膜・電極接合体をセパレータで挟み、単電
池を組み、実施例1と同様な条件で250時間運転させ
たところ、電圧の初期0.63Vからの低下は0.05
Vであった。なお、本実施例、比較例では、触媒ペース
トをカーボンペーパ基板の上に塗着しガス拡散電極を作
製したが、本発明は触媒層および/または固体高分子電
解質膜の組成に特徴があるので、他の作製法、例えば、
白金担持炭素微粉末と高分子電解質をエタノールに分散
した触媒ペーストをポリプロピレン、テフロン(登録商
標)などのフィルムに一度塗ったあと固体高分子電解質
膜に熱転写して膜・電極接合体を作製する方法や、直接
固体高分子電解質膜に触媒ペーストを塗着する方法でも
同様の効果があることは言うまでもない。
Example 3 Polymer electrolyte (Asahi Glass Co., Ltd.)
40 ml of 7% by weight ethanol solution
Was mixed with 0.05 g of hexamethylenediamine, stirred by ultrasonic waves, put in a petri dish having a diameter of 12 cm, dried at room temperature for 24 hours, and then dried at 130 ° C. for 2 hours.
A μ-thick solid polymer electrolyte cast membrane was obtained. This was sandwiched between carbon papers with a catalyst layer produced in exactly the same manner as in Comparative Example 1 to produce a membrane / electrode assembly, and a unit cell was obtained. This membrane / electrode assembly was sandwiched between separators, assembled into a single cell, and operated under the same conditions as in Example 1 for 250 hours.
V. In this example and the comparative example, the catalyst paste was applied on the carbon paper substrate to prepare the gas diffusion electrode. However, the present invention is characterized by the composition of the catalyst layer and / or the solid polymer electrolyte membrane. , Other fabrication methods, for example,
A method of producing a membrane-electrode assembly by applying a catalyst paste in which platinum-supported carbon fine powder and a polymer electrolyte are dispersed in ethanol once onto a film such as polypropylene or Teflon (registered trademark) and then thermally transferring the film to a solid polymer electrolyte membrane. It is needless to say that a similar effect can be obtained by directly applying the catalyst paste to the solid polymer electrolyte membrane.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、高いプ
ロトン伝導度を有する固体高分子電解質を使用し、耐久
性に優れ、かつ高い性能を発揮する固体高分子電解質膜
と電極との接合体およびそれを用いて構成した固体高分
子型燃料電池を得ることができる。
As described above, according to the present invention, a solid polymer electrolyte membrane having high durability and high performance is used by using a solid polymer electrolyte having high proton conductivity. It is possible to obtain a joined body and a polymer electrolyte fuel cell constituted by using the joined body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係わる固体高分子電解質型
燃料電池用膜・電極接合体の触媒層中のイオノマーと二
官能アミンの相互作用を示す模式図
FIG. 1 is a schematic view showing the interaction between an ionomer and a bifunctional amine in a catalyst layer of a membrane / electrode assembly for a polymer electrolyte fuel cell according to Example 1 of the present invention.

【図2】本発明の実施例2に係わる固体高分子電解質型
燃料電池用膜・電極接合体の触媒層中のイオノマーと炭
素微粉末上の塩基性官能基との相互作用を示す模式図
FIG. 2 is a schematic view showing an interaction between an ionomer in a catalyst layer of a membrane / electrode assembly for a polymer electrolyte fuel cell and a basic functional group on carbon fine powder according to Example 2 of the present invention.

【図3】比較例1による膜・電極接合体の断面図FIG. 3 is a sectional view of a membrane-electrode assembly according to Comparative Example 1.

【符号の説明】[Explanation of symbols]

11 二官能性アミン 12 イオノマー 21 塩基性表面官能基 22 白金触媒 23 炭素微粉末 24 イオノマー 31 高分子電解質フィルム 32、34 カーボンペーパ 33、35 触媒層 36、37 ガス拡散電極 DESCRIPTION OF SYMBOLS 11 Bifunctional amine 12 Ionomer 21 Basic surface functional group 22 Platinum catalyst 23 Carbon fine powder 24 Ionomer 31 Polymer electrolyte film 32, 34 Carbon paper 33, 35 Catalyst layer 36, 37 Gas diffusion electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜と前記固体高分子電
解質膜の両側に配した一対の電極とからなり、 少なくとも一方の前記電極が、貴金属触媒および炭素粉
末からなる触媒体、高分子電解質ならびに多官能性塩基
性化合物を含む混合物からなる触媒層と、ガス拡散層と
により構成されていることを特徴とする固体高分子電解
質型燃料電池用の膜・電極接合体。
1. A solid polymer electrolyte membrane and a pair of electrodes arranged on both sides of the solid polymer electrolyte membrane, wherein at least one of the electrodes is a catalyst body comprising a noble metal catalyst and carbon powder, a polymer electrolyte, and A membrane / electrode assembly for a solid polymer electrolyte fuel cell, comprising: a catalyst layer comprising a mixture containing a polyfunctional basic compound; and a gas diffusion layer.
【請求項2】 固体高分子電解質膜と前記固体高分子電
解質膜の両側に配した一対の電極とからなり、 少なくとも一方の前記電極が、貴金属触媒および塩基性
表面官能基を有する炭素粉末からなる触媒体ならびに高
分子電解質からなる触媒層と、ガス拡散層とにより構成
されていることを特徴とする固体高分子電解質型燃料電
池用の膜・電極接合体。
2. A solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, wherein at least one of the electrodes is made of a noble metal catalyst and a carbon powder having a basic surface functional group. A membrane / electrode assembly for a solid polymer electrolyte fuel cell, comprising: a catalyst layer comprising a catalyst body and a polymer electrolyte; and a gas diffusion layer.
【請求項3】 固体高分子電解質膜と前記固体高分子電
解質膜の両側に配した一対の電極とからなり、 前記固体高分子電解質膜が多官能性塩基性化合物を含む
ことを特徴とする固体高分子電解質膜とガス拡散電極と
からなる固体高分子電解質型燃料電池用の膜・電極接合
体。
3. A solid comprising a solid polymer electrolyte membrane and a pair of electrodes disposed on both sides of the solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane contains a polyfunctional basic compound. A membrane / electrode assembly for a solid polymer electrolyte fuel cell comprising a polymer electrolyte membrane and a gas diffusion electrode.
JP2001045615A 2001-01-19 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane Expired - Fee Related JP5021864B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001045615A JP5021864B2 (en) 2001-02-21 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane
CNB028007484A CN100338805C (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
US10/240,433 US6977234B2 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
PCT/JP2002/000257 WO2002058178A1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell elecrolyte film-electrode bond
US12/006,678 USRE41651E1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond
DE60238802T DE60238802D1 (en) 2001-01-19 2002-01-16 Membrane electrode assemblies for fuel cell
EP08166886A EP2009720B1 (en) 2001-01-19 2002-01-16 Electrolyte membrane-electrode assembly for fuel cell
EP02715767A EP1278260A4 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell elecrolyte film-electrode bond
KR10-2002-7012301A KR100531607B1 (en) 2001-01-19 2002-01-16 Method for manufacturing fuel cell electrolyte film-electrode bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045615A JP5021864B2 (en) 2001-02-21 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane

Publications (3)

Publication Number Publication Date
JP2002246041A true JP2002246041A (en) 2002-08-30
JP2002246041A5 JP2002246041A5 (en) 2008-11-20
JP5021864B2 JP5021864B2 (en) 2012-09-12

Family

ID=18907378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045615A Expired - Fee Related JP5021864B2 (en) 2001-01-19 2001-02-21 Membrane / electrode assembly for solid polymer electrolyte fuel cell and solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5021864B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022346A (en) * 2002-06-17 2004-01-22 Norio Tsubokawa Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
WO2005101428A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Proton conductor, electrolyte film, electrode, and fuel cell
EP1615279A2 (en) * 2004-07-08 2006-01-11 Samsung SDI Co., Ltd. Supported catalyst and fuel cell using the same
JP2006313740A (en) * 2005-04-05 2006-11-16 Sumitomo Chemical Co Ltd Cross-linked polymer electrolyte and its manufacturing method
WO2007114406A1 (en) 2006-03-27 2007-10-11 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane comprising imide network polymer crosslinked with strongly acidic group, method for manufacturing the composite electrolyte membrane, and fuel cell
WO2010008013A1 (en) * 2008-07-15 2010-01-21 トヨタ自動車株式会社 Anionically conductive electrolyte resin and process for production of same
JP2010244700A (en) * 2009-04-01 2010-10-28 Tokuyama Corp Ionic conductivity imparting agent for electrode catalyst layer
JP2011090987A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Manufacturing method of electrode for fuel cell
WO2013114957A1 (en) * 2012-02-02 2013-08-08 国立大学法人九州大学 Catalyst layer constituting body and method for preparing catalyst layer constituting body
JP2014522437A (en) * 2011-06-06 2014-09-04 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Stable ion exchange fluorinated polymers and membranes obtained therefrom
WO2017183397A1 (en) * 2016-04-22 2017-10-26 国立大学法人名古屋大学 Non-humidified proton conduction membrane, production method therefor, and fuel cell
JP2019507006A (en) * 2016-02-03 2019-03-14 カムエクス パワー エルエルシーCAMX Power LLC Dipolar ionomer membrane
JP2022535462A (en) * 2019-07-08 2022-08-08 コーロン インダストリーズ インク Polymer electrolyte membrane, manufacturing method thereof, and electrochemical device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022346A (en) * 2002-06-17 2004-01-22 Norio Tsubokawa Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
WO2005101428A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Proton conductor, electrolyte film, electrode, and fuel cell
US7691513B2 (en) 2004-04-13 2010-04-06 Panasonic Corporation Proton conductor, electrolyte membrane, electrode and fuel cell
EP1615279A2 (en) * 2004-07-08 2006-01-11 Samsung SDI Co., Ltd. Supported catalyst and fuel cell using the same
EP1615279A3 (en) * 2004-07-08 2008-04-23 Samsung SDI Co., Ltd. Supported catalyst and fuel cell using the same
JP2006313740A (en) * 2005-04-05 2006-11-16 Sumitomo Chemical Co Ltd Cross-linked polymer electrolyte and its manufacturing method
WO2007114406A1 (en) 2006-03-27 2007-10-11 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane comprising imide network polymer crosslinked with strongly acidic group, method for manufacturing the composite electrolyte membrane, and fuel cell
WO2010008013A1 (en) * 2008-07-15 2010-01-21 トヨタ自動車株式会社 Anionically conductive electrolyte resin and process for production of same
JP2010045024A (en) * 2008-07-15 2010-02-25 Kyoto Univ Anion conductivity electrolyte resin and its manufacturing method
JP2010244700A (en) * 2009-04-01 2010-10-28 Tokuyama Corp Ionic conductivity imparting agent for electrode catalyst layer
JP2011090987A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Manufacturing method of electrode for fuel cell
JP2014522437A (en) * 2011-06-06 2014-09-04 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Stable ion exchange fluorinated polymers and membranes obtained therefrom
WO2013114957A1 (en) * 2012-02-02 2013-08-08 国立大学法人九州大学 Catalyst layer constituting body and method for preparing catalyst layer constituting body
JP2013179030A (en) * 2012-02-02 2013-09-09 Kyushu Univ Catalyst layer constituting body and method for preparing the catalyst layer constituting body
JP2019507006A (en) * 2016-02-03 2019-03-14 カムエクス パワー エルエルシーCAMX Power LLC Dipolar ionomer membrane
US11417904B2 (en) 2016-02-03 2022-08-16 Camx Power Llc Bipolar ionomer membrane
JP7411328B2 (en) 2016-02-03 2024-01-11 カムエクス パワー エルエルシー Bipolar ionomer membrane
WO2017183397A1 (en) * 2016-04-22 2017-10-26 国立大学法人名古屋大学 Non-humidified proton conduction membrane, production method therefor, and fuel cell
JPWO2017183397A1 (en) * 2016-04-22 2019-02-28 国立大学法人名古屋大学 Non-humidified proton conductive membrane, its production method and fuel cell
US10749200B2 (en) 2016-04-22 2020-08-18 National University Corporation Nagoya University Non-humidified proton-conductive membrane, method for producing the same, and fuel cell
JP2022535462A (en) * 2019-07-08 2022-08-08 コーロン インダストリーズ インク Polymer electrolyte membrane, manufacturing method thereof, and electrochemical device including the same
JP7271729B2 (en) 2019-07-08 2023-05-11 コーロン インダストリーズ インク Polymer electrolyte membrane, manufacturing method thereof, and electrochemical device including the same
US11817608B2 (en) 2019-07-08 2023-11-14 Kolon Industries, Inc. Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same

Also Published As

Publication number Publication date
JP5021864B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US8039414B2 (en) Method for preparing metal catalyst and electrode
KR100647296B1 (en) Metal catalyst and a fuel cell employing an electrode including the same
JP3608565B2 (en) Fuel cell and manufacturing method thereof
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP4130792B2 (en) Membrane-electrode structure and polymer electrolyte fuel cell using the same
JP2002246041A (en) Membrane-electrode joining body for solid polymer electrolyte fuel cell
JP2000268828A (en) Solid highpolymer type fuel cell
JP2006344440A (en) Membrane-electrode assembly for polymer electrolyte fuel cell
JPH0888007A (en) Solid polymer fuel cell and its electrode
JP5650403B2 (en) Sulfonyl grafted heterocyclic materials for proton conducting electrolytes
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
JP4919005B2 (en) Method for producing electrode for fuel cell
US20050053821A1 (en) Self-moisturizing proton exchange membrane, membrane-electrode assembly and fuel cell
JP2006344482A (en) Electrode electrolyte for polymer electrolyte fuel cell
JP5393984B2 (en) Fuel cell
JP2008300135A (en) Complex electrolyte membrane for fuel cell, manufacturing method thereof, membrane electrode assembly, and fuel cell
JPWO2006085619A1 (en) Fuel cell
JPH1116588A (en) Direct methanol fuel cell having solid high polymer electrolyte and its manufacture
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2005203125A (en) Fuel cell
JPH04132168A (en) Electrode for liquid fuel battery and liquid fuel battery using same
TWI231620B (en) Fuel cell, electrodes for fuel cell and their manufacturing methods
JPH1116587A (en) Direct methanol fuel cell having solid high polymer electrolyte and its manufacture
JP2006127895A (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees