JP3788491B2 - Direct methanol fuel cell with solid polymer electrolyte and method for producing the same - Google Patents

Direct methanol fuel cell with solid polymer electrolyte and method for producing the same Download PDF

Info

Publication number
JP3788491B2
JP3788491B2 JP18431797A JP18431797A JP3788491B2 JP 3788491 B2 JP3788491 B2 JP 3788491B2 JP 18431797 A JP18431797 A JP 18431797A JP 18431797 A JP18431797 A JP 18431797A JP 3788491 B2 JP3788491 B2 JP 3788491B2
Authority
JP
Japan
Prior art keywords
layer
platinum
polymer electrolyte
solid polymer
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18431797A
Other languages
Japanese (ja)
Other versions
JPH1116588A (en
Inventor
哲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP18431797A priority Critical patent/JP3788491B2/en
Publication of JPH1116588A publication Critical patent/JPH1116588A/en
Application granted granted Critical
Publication of JP3788491B2 publication Critical patent/JP3788491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタノールを負極に供給し、負極で直接電気化学反応させて電力を
得る、直接型メタノール燃料電池に関するものである。
【0002】
【従来の技術】
燃料電池は、イオン導電体である電解質の両側に2つの電極を備え、一方の電極に酸素や空気などの酸化ガス(酸化剤)を供給し、他方の電極に水素や炭化水素などの燃料(還元剤)を供給し、電気化学反応を起こさせて電気を発生させる電池である。
【0003】
燃料電池にはいくつもの種類があるが、直接型メタノール燃料電池(DMFCと略す)は、燃料であるメタノールを直接負極に供給するもので、多くの燃料電池が燃料としては水素、あるいは炭化水素を改質した水素を使用しているのと比較して、装置が簡単なだけでなく、燃料そのものの輸送や貯蔵も容易であり、しかも100℃以下の温度で作動できる可能性があるために、小型・可搬用に最も適していると考えられており、将来の自動車用動力源として有力視されている。
【0004】
直接型メタノール燃料電池の電解質としては、初期のアルカリ型から酸型へと変化し、最近では多くの場合固体高分子電解質が使用されている。固体高分子電解質を使用することにより、作動温度を液体電解質の場合よりも高くすることができ、また、電解質層を1mm以下の薄い層とすることができるため、直接型メタノール燃料電池の性能は初期のものよりかなり改善された。
【0005】
固体高分子電解質を使用した直接型メタノール燃料電池(PEM−DMFC)は、Du Pont社製のナフィオンのようなプロトン導電性固体高分子電解質の両側を、触媒を取り付けた2つの多孔性電極ではさんだ構造を持ち、負極にメタノールを直接供給し、正極に酸素または空気を供給するものである。負極では、メタノールと水が反応して二酸化炭素とプロトンと電子が発生し、電子は外部回路を通って仕事をした後正極に達する。また、プロトンは高分子固体電解質中を通って正極に達する。正極では、酸素とプロトンと電子が反応して水が生成する。したがって、直接型メタノール燃料電池の全反応は、メタノールと酸素とから水と二酸化炭素が生成する反応である。これらの反応は電極中の触媒の助けを借りて進行する。この反応の理論電圧は1.18Vであるが、実際の電池においては、IRドロップなどのために、この値よりも低い電圧となる。
【0006】
直接型メタノール燃料電池はその特性はかなり改善されたとはいえ、その他の燃料電池と比較して電池の出力と効率が低い、という欠点をもっている。その原因は、メタノールを酸化する触媒の活性が低いことと、メタノールが電解質中を拡散して陽極に達し、そこで正極の触媒上で酸化剤と直接反応するという短絡現象(この現象は「クロスオーバー」と呼ばれている)の2つであることが明らかになっている[M.P.Hogarth and H.A.Hards Platinum Metals Rev.,40 (4) 150 (1996)]。
【0007】
直接型メタノール燃料電池においては、正極・負極とも触媒が必要であるが、特に負極の触媒が問題である。すなわち、メタノールが白金触媒上で酸化される時、白金に吸着した一酸化炭素が生じ、これが白金を被毒して触媒活性を低下させる[R.Parsons and T.Vandernoot J.Electroanal.Chem.,257 9(1988)]と考えられている。白金の表面から一酸化炭素をすみやかに除去するために、二次金属の添加が検討され、現在では白金−ルテニウム系が最も高活性触媒であることが知られている。
【0008】
負極の触媒層のとりつけ方法としては、白金とルテニウムの金属微粉末の混合物をそのまま、あるいは表面積の大きいカーボン上に担持させ、結着剤および撥水剤としてはたらくポリテトラフルオロエチレンや固体高分子電解質を含むアルコール溶液と混合し、カーボンペーパーなどの多孔性電極上に吹き付け、ホットプレスなどによって固体高分子電解質と接合する方法(USP5,599,638)や、白金とルテニウムあるいはその酸化物の微粉末の混合物を固体高分子電解質を含むアルコール溶液と混合して、この触媒混合溶液をポリテトラフルオロエチレン板上に塗布し、乾燥後ポリテトラフルオロエチレン板から引き剥がして、カーボンペーパーなどの多孔性電極上に転写し、ホットプレスなどによって固体高分子電解質と接合する方法[X.Ren et.al.J.Electrochem.Soc.,143 L12(1996)]などが提案されてきた。
【0009】
【発明が解決しようとする課題】
しかし、これら従来の負極触媒層のとりつけ方法は、触媒混合溶液の作製・吹き付けや塗布・乾燥・ホツトプレスなど、工程がきわめて複雑であり、また、作製した触媒層が厚くなり、反応点は電解質−触媒層の界面あるいはその近傍であるために、全触媒量のうち反応に関与する触媒量は少ない、すなわち触媒利用率が低い、という欠点があった。そこで、作製方法がより簡単で、触媒の利用率の高い負極触媒層が求められていた。
【0010】
【課題を解決するための手段】
本発明は、固体高分子電解質を備えた直接型メタノール燃料電池において、負極触媒層が二層からなり、第一層は固体高分子電解質膜の表面から内部にとりつけた白金層で、第二層は固体高分子電解質膜の表面から外部にとりつけた白金とルテニウムと固体高分子電解質を含む層であり、第一層と第二層は固体高分子電解質表面で接触していることを特徴とするものである。また、負極触媒層に含まれる白金およびルテニウムを無電解メッキでとりつけることを特徴とし、さらに、第二層に含まれる白金とルテニウムが交互に積層した構造とすることもできることを特徴とするものである。
【0011】
【発明の実施の形態】
本発明になる固体高分子電解質を備えた直接型メタノール燃料電池は、プロトン導電性固体高分子電解質の両側に、触媒層をとりつけた多孔性電極を接合し、負極にメタノールと水の混合物を、正極には酸素あるいは空気を供給し、電気を取り出すものである。
【0012】
多孔性電極の基体としては、正・負極とも、カーボンペーパー、カーボンの成形体、カーボンの焼結体、焼結金属、発泡金属などの多孔性基体を撥水処理して使用することができ、撥水剤としてはポリテトラフルオロエチレン等を使用することができる。
【0013】
貴金属触媒としては、正極用には白金、白金合金、金、金合金、パラジウム、パラジウム合金などの貴金属の微粉末あるいは貴金属を担持したカーボン粉末を使用することができ、負極用には白金とルテニウムの混合物が使用できる。
【0014】
正極用の多孔性電極は、撥水処理をした電極の表面に、触媒分散溶液を塗布して作製する。触媒分散溶液は、白金ブラックなどの触媒の微粒子あるいは触媒を担持したカーボン粉末と、ポリテトラフルオロエチレン等の撥水剤と、アルコールなどに溶解した固体高分子電解質を、適当な溶媒中で均一に混合することによつて作製する。
【0015】
固体高分子電解質膜に金属層をとりつける方法としては、スパッタリングなどの物理的方法や無電解メッキ法などがあるが、無電解メッキ法が最も簡単である。
【0016】
固体高分子電解質膜に金属層を無電解メッキでとりつける方法としては、次のような例がある。固体高分子電解質膜としてDu Pont社のナフィオン117膜を使用し、これに白金電極をとりつける場合、ナフィオン膜を〔Pt(NH3 5 Cl〕Cl3 水溶液中に浸漬し、ナフィオン膜のスルフォン酸基のプロトンを〔Pt(NH3 5 Cl〕3+で置換し、これをNaBH4 で還元して、ナフィオン膜の表面近傍に白金粒子を析出させ、さらに水溶液中のH2 PtCl6 をヒドラジンで還元して、白金粒子の上に、さらに白金粒子を成長させる方法がある[Y.Fujita et.al.,J.Appl.Electrochem.,16 935(1986)]。
【0017】
本発明になる直接型メタノール燃料電池においても、負極の触媒層は、この例と同様な方法でとりつける。まず第一層である白金層を固体高分子電解質膜に無電解メッキでとりつける。すなわち、ナフィオン膜のスルフォン酸基のプロトンを〔Pt(NH3 5 Cl〕3+で置換し、これをNaBH4 で還元すると、〔Pt(NH3 5 Cl〕3+はナフィオン膜の内部に存在し、還元剤であるNaBH4 はナフィオン膜の外部の水溶液側から供給されるため、〔Pt(NH3 5 Cl〕3+はナフィオン膜の表面から内部の方向に向かって還元され、その結果、白金粒子はナフィオン膜の表面から内部方向に向かって析出し、第一層である白金層は固体高分子電解質膜の表面から内部方向にとりつけられる。
【0018】
【実施例】
次に、負極触媒層の第二層をとりつける。まず、RuClやNaRu(SOなどの水溶液をNやNaBHで還元して、第一層の白金層の上にルテニウムを析出させると、ルテニウムは白金粒子を核として成長し、固体高分子電解質膜の表面から外部の方向に析出する。つぎに、水溶液中のHPtClをNaBHで還元して、ルテニウムの上にさらに白金を析出させる。なお、ルテニウムの析出と白金の析出を交互に繰り返して、ルテニウムと白金が交互に積層した層とすることもできる。無電解メッキで得られた白金とルテニウムからなる層は多孔性であるので、この層の上に市販のナフィオン溶液(ナフィオン5重量パーセントを含むアルコール溶液)を均一に塗布し、乾燥すれば、白金とルテニウムと固体高分子電解質を含む第二層が得られる。このようにして得られた負極触媒層の第二層は、固体高分子電解質の表面から外部方向にとりつけられ、固体高分子電解質の表面で第一層と接触している。
【0019】
得られた負極触媒層をとりつけた固体高分子電解質膜と、カーボンペーパーなどの多孔性電極を、ホットプレスなどの方法で接合する。なお、正極は、撥水処理をしたカーボンペーパーなどの多孔性電極の表面に触媒層をとりつけた後、固体高分子電解質膜と接合してもよいし、固体高分子電解質膜に無電解メッキであらかじめ触媒層を取り付けた後、多孔性電極と接合してもよい。
【0020】
【実施例】
本発明になる固体高分子電解質を備えた直接型メタノール燃料電池の作製方法と構造およびその特性を、好適な実施例を用いて詳述する。
【0021】
[実施例1]固体高分子電解質としてDu Pont社製のナフィオン117膜を使用した。まず、ナフィオン117膜を直径70mmに切り出し、その中央部の直径36mmの部分のみを露出させて、残りの周辺部分をシリコンゴムパッキングを介してポリプロピレン板で覆う。つぎに、内寸が幅70mm、奥行き20mm、高さ80mmの容器の中央部にナフィオン膜を挟んだポリプロピレン板を取り付け、容器の内部を奥行きが約9mmの2つの部屋に区切り、2つの部屋間の液体の移動はないようにして、片方をA室とし、他方をB室とする。
【0022】
A室はメッキ室とし、この部屋にはPtを2mg/ml含む〔Pt(NH3 5 Cl〕Cl3 の水溶液38mlを入れ、B室には精製水を38ml入れ、全体を40℃に保ち、A室・B室とも空気をバブリングさせて30分保つ。この操作で、ナフィオン膜のスルフォン酸基のH+ を〔Pt(NH3 5 Cl〕3+で置換する。
【0023】
つぎにA室・B室とも、精製水で洗った後、A室に0.5%NaBH4 を含む水溶液38mlを入れ、B室には38mlの精製水を入れ、全体を40℃に保ち、A室・B室とも空気でバブリングさせて1時間保つ。この操作で、ナフィオン膜中の〔Pt(NH3 5 Cl〕3+をNaBH4 で還元して、ナフィオン膜の表面から内部方向に厚み約10μmの白金を析出させ、負極触媒層の第一層を得る。
【0024】
さらに、A室・B室とも精製水で洗った後、A室にNaRu(SOを0.2mol/l含む水溶液20mlと、0.5%NaBH水溶液5mlを入れ、標準緩衝溶液を用いてpHを1.1に調整し、B室には精製水38mlを入れ、全体を40℃に保ち、A室・B室とも空気でバブリングさせて5時間保つと、ナフィオン膜の表面に厚み約1μmのルテニウムがつく。さらに、A室・B室とも精製水で洗った後、A室にpH1.1の標準緩衝溶液30mlと5%のHPtCl水溶液3mlを入れ、さらに5%NaBH水溶液5mlを加え、B室には精製水38mlを入れ、全体を40℃に保ち、A室・B室とも空気でバブリングさせて5時間保つと、ルテニウム層の上に厚み約5μmの白金が析出し、固体電解質表面にルテニウムと白金とからなる多孔性層が形成される。この層の上に市販のナフィオン溶液(ナフィオン5重量パーセントを含むアルコール溶液)を均一に塗布すると、ナフィオン溶液はルテニウムと白金とからなる多孔性層に浸透し、これを乾燥すれば、白金とルテニウムと固体高分子電解質を含む第二層が得られる。このようにして得られた負極触媒層の第二層は、固体高分子電解質の表面から外部方向にとりつけられ、固体高分子電解質の表面で第一層と接触している。
【0025】
図1は、得られた負極触媒層の断面構造を示したもので、図1において、1はナフィオン膜、2は負極触媒層の第一層としての白金層で、ナフィオン膜の表面から内部方向にとりつけられている。3はルテニウムで、ナフィオン膜の表面上で白金層2に接触した状態でとりつけられており、4はナフィオンと白金を含む層で、ルテニウム3とナフィオンと白金を含む層4とはナフィオン膜の外部方向にとりつけられ、負極触媒層の第二層を形成する。また、5はナフィオン膜の触媒が存在しない部分である。
【0026】
多孔性電極としての空隙率75%、厚み0.40mmのカーボンペーパーをディスパージョンポリテトラフルオロエチレン溶液中に浸漬し、表面に0.5mg/cm2 のポリテトラフルオロエチレンをとりつけて撥水処理をし、その上に市販のナフィオン溶液(ナフィオン5重量パーセントを含むアルコール溶液)を均一に塗布し、乾燥後、負極触媒層をとりつけたナフィオン膜とをホットプレスで接合した。
【0027】
さらに、ナフィオン膜の他方の面に、負極に使用したのと同じディスパージョンポリテトラフルオロエチレンで撥水処理をしたカーボンペーパーの表面に、白金担持カーボンとナフィオン溶液とディスパージョンポリテトラフルオロエチレンからなる触媒溶液を塗布し、乾燥して、触媒層をとりつけた正極をホツトプレスで接合し、直接型メタノール燃料電池用電極/電解質膜接合体を作製し、これを用いて本発明になる直接型メタノール燃料電池(電池Aとする)を組み立てた。
【0028】
比較用の直接型メタノール燃料電池としては、負極触媒層として、白金10重量%とルテニウム10重量%を含む白金−ルテニウム担持カーボンと、ナフィオン溶液と、ディスパージョンポリテトラフルオロエチレンの混合物を用い、これを撥水性カーボンペーパーの表面に塗布した後、ナフィオン膜に接合した従来の負極と、電池Aと同様の正極を取り付けた電池(電池B)を使用した。
【0029】
次に、正極に60℃の水蒸気で加湿した空気を2l/minの速度で供給し、負極にメタノールをlmol/l含む60℃の水溶液を供給して、直接型メタノール燃料電池の特性を測定した。図2はi−V特性を示したもので、従来の負極を使用した比較電池Bにくらべ、本発明になる電池Aの特性は優れたものとなった。
【0030】
[実施例2]実施例1と同じナフィオン117膜を使用し、実施例1と同じ手順で負極触媒層の第一層と第二層をとりつけた後、 さらに、実施例1と同じNa4 Ru(SO3 3 水溶液とNaBH4 水溶液を用いてルテニウムをとりつける手順と、H2 PtCl6 水溶液とNaBH4 水溶液を用いて白金をとりつける手順を、それぞれ二回繰り返し、固体電解質表面に白金とルテニウムが3層積層した多孔性層を形成した。この層の上に市販のナフィオン溶液(ナフィオン5重量パーセントを含むアルコール溶液)を均一に塗布すると、ナフィオン溶液はルテニウムと白金とからなる多孔性層に浸透し、これを乾燥すれば、白金とルテニウムが3層積層し、固体高分子電解質を含む第二層が得られる。
【0031】
この負極触媒層を使用し、その他の条件は実施例1と同様の直接型メタノール燃料電池(電池Cとする)を作製し、その特性を実施例1と同様の条件で測定した結果、そのi−V特性は電池Aの特性とほぼ同じであった。
【0032】
【発明の効果】
本発明になる固体高分子電解質を備えた直接型メタノール燃料電池においては、負極触媒層が白金層を含む第一層と、白金とルテニウムと固体高分子電解質を含む第二層からなり、また、負極触媒層を無電解メッキで取り付けることを特徴とするもので、従来の、白金とルテニウムを含む触媒担持カーボンと、ナフィオン溶液と、ディスパージョンポリテトラフルオロエチレンの混合物を用いた負極触媒層と比べ、製造工程がきわめて簡単となる。
【0033】
また、本発明になる触媒層には、触媒層の厚みをきわめて薄くすることができ、反応に関与しないむだな触媒を減少させることができる。
【0034】
さらに本発明になる負極触媒層の第二層は、白金とルテニウムと固体高分子電解質を含み、白金とルテニウムと固体高分子電解質が互いに接触するようにとりつけられているため、負極活物質であるメタノールが触媒である白金に吸着して電気化学反応を行う場合、電子導電体としての白金とプロトン導電体としての固体高分子電解質膜が共存しているので、電子の授受とプロトンの移動が容易に行われる。また、メタノールの反応の途中で生成した白金に吸着した一酸化炭素は、白金の表面に存在するルテニウムによってすみやかに白金表面から取り去られ、白金の触媒能力は常に一定に保たれる。しかも、白金とルテニウムと固体高分子電解質を含む第二層は三次元方向に広がっており、反応点の数はきわめて多くなり、電気化学反応が容易に進むものである。なお、より多量の触媒が必要な場合には、ルテニウムと白金の無電解メッキを交互に行い、固体高分子電解質膜の表面から外部方向に、ルテニウムと白金が交互に積層した構造とし、この層に固体高分子電解質を存在させることにより、反応点の数をさらに増やすことが可能である。
【0035】
また、本発明になる触媒層のとりつけ方法では、触媒層の白金量やルテニウムの量、および白金とルテニウムの混合比率を、無電解メッキの際の試薬の濃度、反応時間、温度などの条件によって、簡単に、任意の値に変えることができる。
【0036】
なお、固体高分子電解質膜としては実施例で述べたDu Pont社のナフィオン以外にも、その他のパーフルオロカーボンスルフォン酸系樹脂やスチレン−ジビニルベンゼン共重合体系樹脂などの各種イオン交換樹脂膜を使用することができる。また、無電解メッキの際の、白金やルテニウムを含む塩としては、実施例で述べた〔Pt(NH3 5 Cl〕Cl3 、H2 PtCl6 やNa4 Ru(SO3 3 以外のあらゆる白金やルテニウム含む塩の使用が可能であり、還元剤としても、、実施例で述べたやNaBH4 以外にも、N2 4 などのその他の還元剤の使用も可能である。
【図面の簡単な説明】
【図1】本発明になる直接型メタノール燃料電池の負極触媒層と固体高分子電解質層の断面構造を示した図
【図2】本発明になる直接型メタノール燃料電池Aと比較電池Bの特性を比較した図
【符号の説明】
1 ナフィオン膜
2 負極触媒層の第一層
3 ルテニウム
4 ナフィオンと白金を含む層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct methanol fuel cell in which methanol is supplied to a negative electrode, and electric power is obtained by an electrochemical reaction directly at the negative electrode.
[0002]
[Prior art]
A fuel cell has two electrodes on both sides of an electrolyte that is an ionic conductor, supplies an oxidizing gas (oxidant) such as oxygen or air to one electrode, and a fuel (such as hydrogen or hydrocarbon) to the other electrode ( This is a battery that generates electricity by supplying a reducing agent) and causing an electrochemical reaction.
[0003]
There are several types of fuel cells, but direct methanol fuel cells (abbreviated as DMFC) supply methanol as a fuel directly to the negative electrode, and many fuel cells use hydrogen or hydrocarbons as fuel. Compared to using reformed hydrogen, not only the equipment is simple, but also the transport and storage of the fuel itself is easy, and there is a possibility that it can operate at a temperature of 100 ° C. or less. It is considered to be most suitable for small size and portable use, and is regarded as a promising future power source for automobiles.
[0004]
As the electrolyte of the direct methanol fuel cell, the initial alkaline type is changed to the acid type, and recently, a solid polymer electrolyte is used in many cases. By using the solid polymer electrolyte, the operating temperature can be made higher than that of the liquid electrolyte, and the electrolyte layer can be a thin layer of 1 mm or less. It was much better than the initial one.
[0005]
A direct methanol fuel cell (PEM-DMFC) using a solid polymer electrolyte is sandwiched between two porous electrodes with a catalyst on both sides of a proton conductive solid polymer electrolyte such as Du Pont Nafion. It has a structure in which methanol is directly supplied to the negative electrode and oxygen or air is supplied to the positive electrode. In the negative electrode, methanol and water react to generate carbon dioxide, protons, and electrons. The electrons work through an external circuit and then reach the positive electrode. Protons reach the positive electrode through the solid polymer electrolyte. At the positive electrode, oxygen, protons, and electrons react to produce water. Therefore, the total reaction of the direct methanol fuel cell is a reaction in which water and carbon dioxide are generated from methanol and oxygen. These reactions proceed with the help of a catalyst in the electrode. The theoretical voltage of this reaction is 1.18 V, but in an actual battery, the voltage is lower than this value due to IR drop or the like.
[0006]
Although the direct methanol fuel cell has considerably improved characteristics, it has a drawback that the output and efficiency of the cell are lower than those of other fuel cells. This is due to the fact that the activity of the catalyst that oxidizes methanol is low and that the methanol diffuses through the electrolyte and reaches the anode, where it reacts directly with the oxidant on the catalyst of the positive electrode (this phenomenon is called “crossover It has become clear that it is called [M. P. Hogarth and H.M. A. Hards Platinum Metals Rev. , 40 (4) 150 (1996)].
[0007]
In a direct methanol fuel cell, a catalyst is required for both the positive electrode and the negative electrode, but the negative electrode catalyst is particularly problematic. That is, when methanol is oxidized on a platinum catalyst, carbon monoxide adsorbed on the platinum is produced, which poisons platinum and lowers the catalytic activity [R. Parsons and T. Vanderroot J. et al. Electroanal. Chem. , 257 9 (1988)]. In order to quickly remove carbon monoxide from the surface of platinum, the addition of a secondary metal has been studied, and at present, it is known that the platinum-ruthenium system is the most active catalyst.
[0008]
As a method for mounting the catalyst layer of the negative electrode, polytetrafluoroethylene or a solid polymer electrolyte that serves as a binder and a water repellent by supporting a mixture of platinum and ruthenium metal fine powder as it is or on a carbon having a large surface area A method of mixing with a solid polymer electrolyte by hot pressing or the like (USP 5,599,638), or a fine powder of platinum and ruthenium or an oxide thereof. Is mixed with an alcohol solution containing a solid polymer electrolyte, the catalyst mixture solution is applied onto a polytetrafluoroethylene plate, dried and then peeled off from the polytetrafluoroethylene plate, and then a porous electrode such as carbon paper. Transfer to top and join with solid polymer electrolyte by hot press etc. That way [X. Ren et. al. J. et al. Electrochem. Soc. , 143 L12 (1996)] and the like have been proposed.
[0009]
[Problems to be solved by the invention]
However, these conventional negative electrode catalyst layer mounting methods are extremely complicated in processes such as preparation, spraying, coating, drying, and hot pressing of a catalyst mixed solution, and the prepared catalyst layer becomes thick, and the reaction point is electrolyte- Since it is at or near the interface of the catalyst layer, the catalyst amount involved in the reaction is small out of the total catalyst amount, that is, the catalyst utilization rate is low. Therefore, there has been a demand for a negative electrode catalyst layer that has a simpler production method and a high utilization factor of the catalyst.
[0010]
[Means for Solving the Problems]
The present invention relates to a direct methanol fuel cell having a solid polymer electrolyte, the negative electrode catalyst layer is composed of two layers, the first layer is a platinum layer attached to the inside from the surface of the solid polymer electrolyte membrane, the second layer and wherein it is a layer containing a solid polymer electrolyte membrane of platinum and ruthenium and the solid polymer electrolyte attached from the surface to the outside of, the first and second layers are in contact with the solid polymer electrolyte surface To do. Further, it is characterized in that platinum and ruthenium contained in the negative electrode catalyst layer are attached by electroless plating, and further, a structure in which platinum and ruthenium contained in the second layer are alternately laminated can be used. is there.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A direct methanol fuel cell having a solid polymer electrolyte according to the present invention has a porous electrode with a catalyst layer attached to both sides of a proton conductive solid polymer electrolyte, and a mixture of methanol and water on the negative electrode. Oxygen or air is supplied to the positive electrode to extract electricity.
[0012]
As the base of the porous electrode, both positive and negative electrodes can be used by subjecting a porous substrate such as carbon paper, carbon molded body, carbon sintered body, sintered metal, foam metal, etc. to water-repellent treatment, As the water repellent, polytetrafluoroethylene or the like can be used.
[0013]
As the noble metal catalyst, fine powder of noble metal such as platinum, platinum alloy, gold, gold alloy, palladium, palladium alloy or carbon powder supporting noble metal can be used for the positive electrode, and platinum and ruthenium for the negative electrode. Can be used.
[0014]
The porous electrode for the positive electrode is produced by applying a catalyst dispersion solution to the surface of the electrode subjected to water repellent treatment. The catalyst dispersion solution is obtained by uniformly mixing fine particles of catalyst such as platinum black or carbon powder supporting the catalyst, a water repellent such as polytetrafluoroethylene, and a solid polymer electrolyte dissolved in alcohol in an appropriate solvent. It is made by mixing.
[0015]
Methods for attaching the metal layer to the solid polymer electrolyte membrane include a physical method such as sputtering and an electroless plating method, but the electroless plating method is the simplest.
[0016]
Examples of methods for attaching a metal layer to a solid polymer electrolyte membrane by electroless plating include the following. When a Nafion 117 membrane manufactured by Du Pont is used as the solid polymer electrolyte membrane and a platinum electrode is attached thereto, the Nafion membrane is immersed in an aqueous solution of [Pt (NH 3 ) 5 Cl] Cl 3 and the sulfonic acid of the Nafion membrane is used. The proton of the group is replaced with [Pt (NH 3 ) 5 Cl] 3+ , which is reduced with NaBH 4 to precipitate platinum particles near the surface of the Nafion membrane, and further, H 2 PtCl 6 in the aqueous solution is replaced with hydrazine. There is a method in which platinum particles are further grown on platinum particles by reduction with [Y. Fujiita et. al. , J .; Appl. Electrochem. , 16 935 (1986)].
[0017]
Also in the direct methanol fuel cell according to the present invention, the catalyst layer of the negative electrode is attached by the same method as this example. First, the platinum layer, which is the first layer, is attached to the solid polymer electrolyte membrane by electroless plating. That is, when the proton of the sulfonic acid group of the Nafion membrane is replaced with [Pt (NH 3 ) 5 Cl] 3+ and this is reduced with NaBH 4 , [Pt (NH 3 ) 5 Cl] 3+ is converted into the interior of the Nafion membrane. Since NaBH 4 which is a reducing agent is supplied from the aqueous solution side outside the Nafion membrane, [Pt (NH 3 ) 5 Cl] 3+ is reduced from the surface of the Nafion membrane toward the inside, As a result, the platinum particles are precipitated from the surface of the Nafion membrane toward the inside, and the platinum layer as the first layer is attached to the inside from the surface of the solid polymer electrolyte membrane.
[0018]
【Example】
Next, the second layer of the negative electrode catalyst layer is attached. First, when an aqueous solution such as RuCl 3 or Na 4 Ru (SO 3 ) 3 is reduced with N 2 H 4 or NaBH 4 to deposit ruthenium on the platinum layer of the first layer, ruthenium nucleates platinum particles. And is deposited in the outward direction from the surface of the solid polymer electrolyte membrane. Next, H 2 PtCl 6 in the aqueous solution is reduced with NaBH 4 to further deposit platinum on the ruthenium. Note that ruthenium deposition and platinum deposition may be alternately repeated to form a layer in which ruthenium and platinum are alternately stacked. Since the layer made of platinum and ruthenium obtained by electroless plating is porous, a commercially available Nafion solution (alcohol solution containing 5% by weight of Nafion) is uniformly applied on this layer and dried to form platinum. second layer comprising ruthenium and a solid polymer electrolyte is obtained as. The thus obtained second layer of the negative electrode catalyst layer is attached to the outside from the surface of the solid polymer electrolyte, and is in contact with the first layer on the surface of the solid polymer electrolyte.
[0019]
The obtained solid polymer electrolyte membrane to which the negative electrode catalyst layer is attached and a porous electrode such as carbon paper are joined by a method such as hot pressing. The positive electrode may be bonded to the solid polymer electrolyte membrane after the catalyst layer is attached to the surface of a water repellent carbon paper or other porous electrode, or the solid polymer electrolyte membrane may be electrolessly plated. After attaching a catalyst layer beforehand, you may join with a porous electrode.
[0020]
【Example】
The production method, structure and characteristics of a direct methanol fuel cell provided with the solid polymer electrolyte according to the present invention will be described in detail with reference to preferred embodiments.
[0021]
Example 1 A Nafion 117 membrane manufactured by Du Pont was used as the solid polymer electrolyte. First, the Nafion 117 membrane is cut out to a diameter of 70 mm, only the portion having a diameter of 36 mm at the center is exposed, and the remaining peripheral portion is covered with a polypropylene plate via a silicone rubber packing. Next, a polypropylene plate with a Nafion membrane sandwiched in the center of a container with an inner dimension of 70 mm in width, 20 mm in depth, and 80 mm in height is attached, and the interior of the container is divided into two rooms with a depth of about 9 mm. The liquid is not moved, and one is designated as the A chamber and the other as the B chamber.
[0022]
Room A is a plating room. This room contains 38 ml of an aqueous solution of [Pt (NH 3 ) 5 Cl] Cl 3 containing 2 mg / ml of Pt, and room B contains 38 ml of purified water, keeping the whole at 40 ° C.・ Bubble air in both room A and room B for 30 minutes. By this operation, H + of the sulfonic acid group of the Nafion membrane is replaced with [Pt (NH 3 ) 5 Cl] 3+ .
[0023]
Next, after washing both room A and room B with purified water, 38 ml of an aqueous solution containing 0.5% NaBH 4 is placed in room A, 38 ml of purified water is placed in room B, and the whole is kept at 40 ° C. Both room A and room B are bubbled with air and kept for 1 hour. By this operation, [Pt (NH 3 ) 5 Cl] 3+ in the Nafion film is reduced with NaBH 4 to deposit platinum having a thickness of about 10 μm inward from the surface of the Nafion film. Get a layer.
[0024]
Further, after washing both room A and room B with purified water, place 20 ml of an aqueous solution containing 0.2 mol / l of Na 4 Ru (SO 3 ) 3 and 5 ml of 0.5% NaBH 4 aqueous solution into the room A. The pH is adjusted to 1.1 using the solution, 38 ml of purified water is put into the B chamber, the whole is kept at 40 ° C., and both the A and B chambers are bubbled with air and kept for 5 hours, the surface of the Nafion membrane Ruthenium with a thickness of about 1 μm is attached. Furthermore, after washing both chamber A and chamber B with purified water, 30 ml of a standard buffer solution of pH 1.1 and 3 ml of 5% H 2 PtCl 6 aqueous solution are added to chamber A, and 5 ml of 5% NaBH 4 aqueous solution is further added. Place 38 ml of purified water in the chamber, keep the whole at 40 ° C., and bubbling with air in both the A and B chambers for 5 hours, and platinum of about 5 μm thickness is deposited on the ruthenium layer, and the solid electrolyte surface A porous layer made of ruthenium and platinum is formed. When a commercially available Nafion solution (alcohol solution containing 5% by weight of Nafion) is uniformly applied on this layer, the Nafion solution penetrates into the porous layer composed of ruthenium and platinum, and when this is dried, platinum and ruthenium are obtained. second layer comprising a solid polymer electrolyte is obtained as. The thus obtained second layer of the negative electrode catalyst layer is attached to the outside from the surface of the solid polymer electrolyte, and is in contact with the first layer on the surface of the solid polymer electrolyte.
[0025]
FIG. 1 shows a cross-sectional structure of the obtained negative electrode catalyst layer. In FIG. 1, 1 is a Nafion film, 2 is a platinum layer as a first layer of the negative electrode catalyst layer, and the inner direction from the surface of the Nafion film. It is attached to. 3 is ruthenium, which is attached in contact with the platinum layer 2 on the surface of the Nafion film, 4 is a layer containing Nafion and platinum , and the layer 4 containing ruthenium 3, Nafion and platinum is a Nafion film. Attached in the external direction, the second layer of the negative electrode catalyst layer is formed. Reference numeral 5 denotes a portion where no Nafion membrane catalyst exists.
[0026]
Carbon paper with a porosity of 75% and a thickness of 0.40 mm as a porous electrode is immersed in a dispersion polytetrafluoroethylene solution, and 0.5 mg / cm 2 of polytetrafluoroethylene is attached to the surface for water repellent treatment. Then, a commercially available Nafion solution (alcohol solution containing 5% by weight of Nafion) was uniformly applied thereon, and after drying, the Nafion membrane with the negative electrode catalyst layer attached thereto was joined by hot pressing.
[0027]
Further, on the other surface of the Nafion film, the surface of the carbon paper treated with the same dispersion polytetrafluoroethylene as that used for the negative electrode is made of platinum-supported carbon, Nafion solution, and dispersion polytetrafluoroethylene. The catalyst solution is applied, dried, and the positive electrode with the catalyst layer attached is joined with a hot press to produce a direct methanol fuel cell electrode / electrolyte membrane assembly, which is used to produce the direct methanol fuel according to the present invention. A battery (referred to as battery A) was assembled.
[0028]
A direct methanol fuel cell for comparison uses a mixture of platinum-ruthenium-supporting carbon containing 10 wt% platinum and 10 wt% ruthenium, a Nafion solution, and a dispersion polytetrafluoroethylene as a negative electrode catalyst layer. Was applied to the surface of the water-repellent carbon paper, and a battery (battery B) equipped with a conventional negative electrode bonded to a Nafion film and a positive electrode similar to battery A was used.
[0029]
Next, air humidified with water vapor at 60 ° C. was supplied to the positive electrode at a rate of 2 l / min, and an aqueous solution at 60 ° C. containing 1 mol / l of methanol was supplied to the negative electrode, and the characteristics of the direct methanol fuel cell were measured. . FIG. 2 shows the i-V characteristics, and the characteristics of the battery A according to the present invention are superior to those of the comparative battery B using the conventional negative electrode.
[0030]
[Example 2] After using the same Nafion 117 membrane as in Example 1 and attaching the first and second layers of the negative electrode catalyst layer in the same procedure as in Example 1, the same Na 4 Ru as in Example 1 was used. The procedure of attaching ruthenium using an aqueous solution of (SO 3 ) 3 and an aqueous solution of NaBH 4 and the procedure of attaching platinum using an aqueous solution of H 2 PtCl 6 and an aqueous solution of NaBH 4 were repeated twice, so that platinum and ruthenium were deposited on the surface of the solid electrolyte. A porous layer in which three layers were laminated was formed. When a commercially available Nafion solution (alcohol solution containing 5% by weight of Nafion) is uniformly applied on this layer, the Nafion solution penetrates into the porous layer composed of ruthenium and platinum, and when this is dried, platinum and ruthenium are obtained. Are stacked to obtain a second layer containing a solid polymer electrolyte.
[0031]
Using this negative electrode catalyst layer, a direct methanol fuel cell (cell C) similar to that in Example 1 was prepared under other conditions, and the characteristics were measured under the same conditions as in Example 1. The -V characteristic was almost the same as that of battery A.
[0032]
【The invention's effect】
In a direct methanol fuel cell having a solid polymer electrolyte according to the present invention, the anode catalyst layer is made from a second layer comprising a first layer comprising a platinum layer, the platinum and ruthenium and the solid polymer electrolyte, also The negative electrode catalyst layer is attached by electroless plating, and includes a conventional negative electrode catalyst layer using a catalyst-supporting carbon containing platinum and ruthenium, a Nafion solution, and a dispersion polytetrafluoroethylene. In comparison, the manufacturing process is very simple.
[0033]
In the catalyst layer according to the present invention, the thickness of the catalyst layer can be made extremely thin, and waste catalysts not involved in the reaction can be reduced.
[0034]
Further second layer of anode catalyst layer according to the present invention comprises platinum and ruthenium and the solid polymer electrolyte, for platinum and ruthenium and the solid polymer electrolyte it is mounted in contact with each other, the negative electrode active material When methanol is adsorbed on platinum as a catalyst to perform an electrochemical reaction, platinum as an electron conductor and a solid polymer electrolyte membrane as a proton conductor coexist, so that electrons are transferred and protons are transferred. Is easily done. In addition, carbon monoxide adsorbed on platinum produced during the methanol reaction is immediately removed from the platinum surface by ruthenium present on the platinum surface, and the catalytic ability of platinum is always kept constant. Moreover, the second layer containing platinum and ruthenium and the solid polymer electrolyte is spread three-dimensional directions, the number of reaction points becomes very large, in which electrochemical reaction progresses easily. When a larger amount of catalyst is required, electroless plating of ruthenium and platinum is performed alternately, and a structure in which ruthenium and platinum are alternately stacked from the surface of the solid polymer electrolyte membrane to the outside is formed. It is possible to further increase the number of reaction points by allowing the solid polymer electrolyte to be present in the catalyst.
[0035]
Further, in the catalyst layer mounting method according to the present invention, the amount of platinum and ruthenium in the catalyst layer, and the mixing ratio of platinum and ruthenium depend on the conditions such as the concentration of the reagent, the reaction time, and the temperature during electroless plating. Can be easily changed to any value.
[0036]
As the solid polymer electrolyte membrane, other ion exchange resin membranes such as other perfluorocarbon sulfonic acid resins and styrene-divinylbenzene copolymer resins are used in addition to the Du Pont Nafion described in the examples. be able to. In addition, as a salt containing platinum or ruthenium at the time of electroless plating, other than [Pt (NH 3 ) 5 Cl] Cl 3 , H 2 PtCl 6 or Na 4 Ru (SO 3 ) 3 described in the examples. Any platinum or ruthenium-containing salt can be used, and as the reducing agent, other reducing agents such as N 2 H 4 can be used in addition to NaBH 4 described in the examples.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of a negative electrode catalyst layer and a solid polymer electrolyte layer of a direct methanol fuel cell according to the present invention. FIG. 2 shows characteristics of a direct methanol fuel cell A and a comparative battery B according to the present invention. [Comparison of symbols]
1 Nafion membrane 2 First layer of negative electrode catalyst layer 3 Ruthenium 4 Layer containing Nafion and platinum

Claims (3)

負極触媒層が二層からなり、第一層は固体高分子電解質膜の表面から内部にとりつけた白金層であり、第二層は固体高分子電解質膜の表面から外部にとりつけた白金とルテニウムと固体高分子電解質を含む層であり、該第一層と該第二層は固体高分子電解質表面で接触していることを特徴とする、固体高分子電解質を備えた直接型メタノール燃料電池。The negative electrode catalyst layer consists of two layers, the first layer is a platinum layer attached from the surface of the solid polymer electrolyte membrane to the inside, and the second layer is platinum and ruthenium attached from the surface of the solid polymer electrolyte membrane to the outside. solid is a layer containing a polymer electrolyte, the said first layer to the second layer, characterized in that in contact with the solid polymer electrolyte surface, direct methanol fuel cell including a solid polymer electrolyte. 請求項1記載の固体高分子電解質を備えた直接型メタノール燃料電池において、負極触媒層に含まれる白金およびルテニウムを無電解メッキでとりつけることを特徴とする、固体高分子電解質を備えた直接型メタノール燃料電池の製造方法。2. A direct methanol fuel cell comprising the solid polymer electrolyte according to claim 1, wherein platinum and ruthenium contained in the negative electrode catalyst layer are attached by electroless plating. Manufacturing method of fuel cell. 負極触媒層の第二層に含まれる白金とルテニウムが、交互に積層した構造であることを特徴とする、請求項1記載の固体高分子電解質を備えた直接型メタノール燃料電池。2. The direct methanol fuel cell with a solid polymer electrolyte according to claim 1, wherein platinum and ruthenium contained in the second layer of the negative electrode catalyst layer are alternately laminated.
JP18431797A 1997-06-25 1997-06-25 Direct methanol fuel cell with solid polymer electrolyte and method for producing the same Expired - Lifetime JP3788491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18431797A JP3788491B2 (en) 1997-06-25 1997-06-25 Direct methanol fuel cell with solid polymer electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18431797A JP3788491B2 (en) 1997-06-25 1997-06-25 Direct methanol fuel cell with solid polymer electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1116588A JPH1116588A (en) 1999-01-22
JP3788491B2 true JP3788491B2 (en) 2006-06-21

Family

ID=16151227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18431797A Expired - Lifetime JP3788491B2 (en) 1997-06-25 1997-06-25 Direct methanol fuel cell with solid polymer electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3788491B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945667C2 (en) * 1999-09-23 2003-06-26 Siemens Ag Fuel cell, method for its operation and associated use
JP3898454B2 (en) 2001-03-06 2007-03-28 シャープ株式会社 Polymer electrolyte fuel cell
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
JP2006351320A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Manufacturing method of fuel cell
JP4860659B2 (en) 2008-05-12 2012-01-25 シャープ株式会社 Hydrogen generating method and hydrogen generating apparatus
KR100941265B1 (en) 2008-05-16 2010-02-11 현대자동차주식회사 Recycling methode of membrane-electrode assembly

Also Published As

Publication number Publication date
JPH1116588A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US6995114B2 (en) Platinum-ruthenium-palladium fuel cell electrocatalyst
KR100696463B1 (en) High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
US5521020A (en) Method for catalyzing a gas diffusion electrode
JP3649009B2 (en) Fuel cell electrode and method of manufacturing the same
KR100590555B1 (en) Supported catalyst and fuel cell using the same
CN105518917B (en) Catalyst and electrode catalyst layer, membrane-electrode assembly and the fuel cell using the catalyst
US20060099482A1 (en) Fuel cell electrode
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP4349368B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
WO2011122399A1 (en) Fuel cell
JP3649061B2 (en) Fuel cell electrode and manufacturing method thereof
JP3788491B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same
JP4311070B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP3788490B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same
JP3844022B2 (en) Direct methanol fuel cell with solid polymer electrolyte
JP2000012041A (en) Fuel cell electrode and its manufacture
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP3774898B2 (en) Direct methanol fuel cell with solid polymer electrolyte
JPH0644984A (en) Electrode for solid high polymer electrolyte fuel cell
WO2000069009A9 (en) Platinum-ruthenium-palladium-osmium alloy for use as a fuel cell catalyst
JP2000215899A (en) Manufacture of fuel cell electrode
JP3603113B2 (en) Platinum-ruthenium electrode catalyst assembly, method for producing the same, and polymer electrolyte fuel cell using platinum-ruthenium electrode catalyst assembly
JP2007141776A (en) Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment
JP2005302554A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2000012040A (en) Fuel cell electrode and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term