JP5021857B2 - Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof - Google Patents

Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof Download PDF

Info

Publication number
JP5021857B2
JP5021857B2 JP2000343516A JP2000343516A JP5021857B2 JP 5021857 B2 JP5021857 B2 JP 5021857B2 JP 2000343516 A JP2000343516 A JP 2000343516A JP 2000343516 A JP2000343516 A JP 2000343516A JP 5021857 B2 JP5021857 B2 JP 5021857B2
Authority
JP
Japan
Prior art keywords
polyethylene resin
weight
expanded particles
less
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000343516A
Other languages
Japanese (ja)
Other versions
JP2002146082A (en
Inventor
友典 岩本
太郎 木口
京一 中村
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2000343516A priority Critical patent/JP5021857B2/en
Publication of JP2002146082A publication Critical patent/JP2002146082A/en
Application granted granted Critical
Publication of JP5021857B2 publication Critical patent/JP5021857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は帯電防止性を有するポリエチレン系樹脂予備発泡粒子およびその型内発泡成形体に関する。
【0002】
【従来の技術】
ポリエチレン系樹脂型内発泡成形体(以下、発泡成形体)は、家電用品などの電気機器部品や一般機器部品などの緩衝包装材として広く用いられている。近年、電化製品のなかでも、液晶やパソコン、半導体部品といったエレクトロニクス関連製品の緩衝包装材としての需要が広がっている。一般にエレクトロニクス関連製品は埃や静電気を嫌うが、ポリエチレン系樹脂それ自体は絶縁体であるため熱や摩擦で帯電しやすく、埃を吸着したり、エレクトロニクス関連製品を静電気により破壊する場合がある。そこで発泡成形体に帯電防止性能を付与する試みがなされている。
【0003】
この問題を解決するために、界面活性剤等の帯電防止剤を塗布したポリエチレン系樹脂予備発泡粒子(以下、予備発泡粒子)を用いて発泡成形体とする方法や発泡成形体に界面活性剤等の帯電防止剤を塗布する方法、帯電防止剤を含浸させた予備発泡粒子を用いて発泡成形体とする方法により、発泡成形体の表面固有抵抗を低下させて帯電を防止する方法が採られている。しかし、これらの方法では使用中の剥離等により帯電防止効果の持続性が乏しかったり、発泡成形体の破断面では帯電防止効果が全く発現しないか著しく低下する。また、工程が煩雑となり製造コストが高くなる問題がある。一方、あらかじめ帯電防止剤を練り込んだ樹脂粒子から予備発泡粒子および発泡成形体を製造する方法も知られている。例えば、特開平3−28239号公報には平均分子量が250〜1000で、HLB値が4〜8の帯電防止能を有するノニオン系界面活性剤を0.1〜5重量%練り込んで使用することが提案されている。
【0004】
また、特開平8−113667号公報には炭素数15〜23の高級脂肪酸と、3〜7個の水酸基を有する多価アルコールとのエステルが0.2〜5.0重量%含有させていることを特徴とする直鎖状低密度ポリエチレン系樹脂発泡成形体が開示されているが、その目的とするところは直鎖状低密度ポリエチレン系樹脂発泡成形体の収縮回復、寸法精度、表面平滑性の改善であって、後述する本発明の目的である光学系部品を汚染することなく、良好な帯電防止性能を有するポリエチレン系樹脂型内発泡成形体の提供に関する記述は一切されていない。
【0005】
【発明が解決しようとする課題】
前記の特開平3−28239号公報に記載の帯電防止剤を用いれば必ず良好な帯電防止性能を有する発泡成形体が得られるわけではなく、使用する帯電防止剤によって帯電防止性能に差があるのが実状である。また、使用する帯電防止剤の種類によっては発泡成形体をコンパクトディスクなどに使用される光学系部品の緩衝包装材、通函に使用した場合、輸送途中に光学系部品中のハーフミラーやミラー、ポリゴンモーター反射鏡などを汚染(表面に白点が多数生じる)し、輸送する製品の機能を著しく低下させることがあり、改善が求められている。かかる汚染は発泡成形体と非接触であるにも関わらず発生する。
【0006】
よって本発明は、光学系部品中のハーフミラーなどを汚染することなく、良好な帯電防止性能(表面固有抵抗が1×1012Ω/□未満)を有するポリエチレン系樹脂型内発泡成形体を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、かかる事情に鑑み鋭意研究の結果、特定の脂肪酸グリセリンエステルを使用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、HLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルを0.3重量%以上3重量%以下含有することを特徴とするポリエチレン系樹脂予備発泡粒(請求項1)、脂肪酸グリセリンエステルがモノステアリン酸グリセリンエステルとジステアリン酸グリセリンエステルの混合物であることを特徴とする、請求項1記載のポリエチレン系樹脂予備発泡粒(請求項2)、および、請求項1または2に記載のポリエチレン系樹脂予備発泡粒子より得られることを特徴とする、ポリエチレン系樹脂型内発泡成形体(請求項3)に関する。
【0009】
【発明の実施の形態】
本発明においては、帯電防止剤としてHLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルを使用する。脂肪酸グリセリンエステルは脂肪酸とグリセリンのエステルである。かかる脂肪酸の例として、カプリル酸、カプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、コハク酸、クエン酸などが挙げられる。脂肪酸グリセリンエステルは、これら脂肪酸が1種以上とグリセリンとのエステルであり、モノエステル、ジエステル、トリエステル或いはそれらの混合物である。それらの中でも工業的に製造され、モノエステルからトリエステルまで容易に入手可能なステアリン酸グリセリンエステルが好ましい。
【0010】
これらの脂肪酸グリセリンエステルを使用することにより光学系部品中のハーフミラーなどの汚染を防止することができる。
【0011】
本発明者らは、帯電防止剤としてアルキルジエタノールアミン等の含窒素化合物を使用した場合に光学系部品の汚染が多く見らることを見出している。これは、光学系部品はチタン、クロム、ニッケル或いはそれらの化合物で表面処理されることが多く、不対電子対を有する含窒素帯電防止剤の場合、該金属或いは金属化合物に配位し易いために汚染が多く見られるものと思われる。つまり、脂肪酸グリセリンエステルの場合、上記金属或いは金属化合物への配位性向が低いために光学系部品を汚染し難いものと考えられる。
【0012】
本発明で使用する帯電防止剤のHLB値は3以上かつ4未満である。ここでHLB値とは、Griffinの方法により、脂肪酸グリセリンエステルのケン化価をS、該脂肪酸グリセリンエステルを構成する脂肪酸の中和価Aを用いて、
HLB値=20(1−S/A)から算出される。脂肪酸グリセリンエステルが同一脂肪酸から構成される場合にはグリセリンへの脂肪酸の結合数が増えるとHLB値は小さくなり、脂肪酸の結合数が同じ場合には脂肪酸のアルキル鎖長が長くなるとHLB値は小さくなる。つまり、脂肪酸グリセリンエステルが同一の脂肪酸から構成される場合であっても、モノエステル、ジエステル、トリエステルの混合比率でHLB値は変化し、脂肪酸の結合数が同じ場合には脂肪酸の種類とその組成比によってHLB値は変化する。
【0013】
HLB値が3未満の場合、ブリードアウトした帯電防止剤が十分な親水性を有していないために良好な帯電防止性能を発揮しない。HLB値が4以上となると帯電防止性能に問題はないが、予備発泡粒子表面の付着分散剤量が多くなる不具合を発生する。一般にポリエチレン系樹脂予備発泡粒子は、密閉容器内で樹脂粒子を水系分散媒中に分散させ、攪拌混合しながら加熱して発泡剤を含浸させた後、該密閉容器内圧より低圧雰囲気下に放出する(予備発泡工程)方法により製造される。上記水系分散媒には樹脂粒子同士の融着を防止するために分散剤として第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム等の難水溶性無機化合物を添加するが、該分散剤が予備発泡粒子表面に多く付着していると後の成形工程において融着不良等の不具合を引き起こす。
【0014】
脂肪酸グリセリンエステルのHLB値は前記のごとく、 Griffinの方法により算出されるが、多くの場合、モノエステルで4〜7、ジエステルで1〜4、トリエステルで0.5〜2程度の値をとる。これらを混合することにより所望のHLB値に調整して使用することができる。
【0015】
また、使用する帯電防止剤のHLB値が3以上4未満であっても十分ではなく、その融点が35℃以上75℃以下、より好ましくは40℃以上70℃以下である必要がある。融点が35℃以下では使用時にベタツキが発生し易く、埃等が発泡成形体表面に付着して外観を損なうばかりでなく、帯電防止性能を低下させる場合がある。融点が75℃を超えると帯電防止性能が著しく低下したり、帯電防止性能発現までに長時間を要する場合がある。これは、発泡成形体は成形後に収縮を回復させるため及び乾燥のために養生されるが、養生温度が70℃より低い温度では収縮の回復に時間が長くかかり、80℃を超えると逆に収縮が大きくなる場合があるために通常70℃〜80℃で養生されており、帯電防止剤はかかる養生工程でブリードアウトし帯電防止性能を発揮するためと考えられる。つまり、帯電防止剤の融点が養生温度より高いと帯電防止性能発揮に必要な帯電防止剤が十分にブリードアウトし得ないためと思われる。
【0016】
ここで帯電防止剤の融点は、示差走査熱量計により5〜10mgの帯電防止剤を0℃から120℃まで昇温速度10℃/minで昇温した時に得られるDSC曲線において、吸熱ピークのピーク温度として測定される。
【0017】
本発明における帯電防止剤の添加量は0.3重量%以上3重量%以下好ましくは0.5重量%以上2重量%以下である。0.3重量%未満では十分な帯電防止性能が発揮されない。3重量%を超えると前記予備発泡工程において分散不良を起こす場合がある事、付着分散剤が多くなる場合がある事から好ましくない。
【0018】
本発明に用いるポリエチレン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体等が挙げられ、これらは単独または2種類以上混合して用いることができる。これらの樹脂の中でも、直鎖状低密度ポリエチレンが好ましく、特に密度が0.920〜0.935g/cm3、メルトインデックスが0.5〜3g/10分、コモノマーがヘキセン、4−メチルペンテン又はオクテンである直鎖状低密度ポリエチレンが良好な成形性を得る上で好ましい。これらポリエチレン系樹脂には、着色顔料、セル造核剤、酸化防止剤、耐候剤、滑剤、結晶核剤などを添加することができる。その添加量は、予備発泡粒子のセル径の微細化、不均一化が起こらないように3重量%以下、より好ましくは1重量%以下とするほうがよい。
【0019】
これらのポリエチレン系樹脂は、あらかじめ押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、円柱状、楕円柱状、球状、立方体状、直方体状等のような所望の粒子形状で、その粒子の粒重量が0.2〜10mg、好ましくは0.5〜6mgの樹脂粒子に加工される。この際、帯電防止剤を添加するが、通常は帯電防止剤濃度が5〜20重量%のマスターバッチを帯電防止剤が所望の濃度となる様に添加する。
【0020】
本発明では、従来から知られている方法、すなわち、密閉容器内に、樹脂粒子、分散剤および分散助剤を含む水系分散媒ならびに揮発性発泡剤を仕込み、攪拌しながら昇温して一定圧力、一定温度として樹脂粒子に発泡剤を含浸させた後、密閉容器内圧より低圧雰囲気下に放出する方法により、予備発泡粒子が製造される(予備発泡工程)。使用する密閉容器には特に限定はなく、予備発泡工程における圧力、温度に耐えられるものであればよいが、例えばオートクレーブ型の耐圧容器が挙げられる。
【0021】
分散剤として例えば第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム等の難水溶性無機化合物、分散助剤としては例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等のアニオン系界面活性剤が使用される。これらの中でも第三リン酸カルシウムとn−パラフィンスルホン酸ソーダの使用が良好な分散性を得る上で好ましい。これら分散剤及び分散助剤の使用量は、その種類や用いるポリエチレン系樹脂の種類・量などによって異なるが、通常、水100重量部に対して無機分散剤0.2〜3重量部、分散助剤0.0005〜0.1重量部である。
【0022】
前記揮発性発泡剤の例としては、たとえばイソブタン、ノルマルブタン、ノルマルペンタン、プロパン、二酸化炭素、窒素などがあげられるが、これらに限定されるものではなく、その使用量としては、通常、樹脂100重量部に対して5〜50重量部である。
【0023】
また、予備発泡工程における温度・圧力は、使用するポリエチレン系樹脂の種類や目的とする発泡倍率によって異なるが、使用するポリエチレン系樹脂の軟化点以上の温度で、通常、100〜130℃、圧力は1〜3MPa程度であり、予備発泡倍率としては5〜40倍程度である。
【0024】
上記のようにして得た予備発泡粒子を型内発泡成形体にするには例えば(イ)予備発泡粒子を無機ガスで加圧処理して予備発泡粒子内に無機ガスを含浸させ所定の内圧を付与した後、金型に充填し、蒸気等で加熱融着させる方法、(ロ)予備発泡粒子をガス圧力で圧縮して金型に充填し予備発泡粒子の回復力を利用して、蒸気等で加熱融着させる方法、(ハ)特に前処理することなく金型に充填し、蒸気等で加熱融着させる方法、等が利用しうるが、特別な設備を必要としない(ハ)の方法が好ましい。
【0025】
本発明の好ましい実施の態様としては、酸化防止剤、セル造核剤を含む直鎖状低密度ポリエチレンと、HLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルのマスターバッチを脂肪酸グリセリンエステルの最終濃度が0.3重量%以上3重量%以下となるよう混合し、押出機よりストランド状に押出し、冷却後このストランドをカットして1〜5mgの円筒状樹脂粒子とする。オートクレーブ型耐圧容器にこの樹脂粒子(融点Tm℃)100重量部に対して、水150〜500重量部、分散剤として第3リン酸カルシウム0.08〜2.5重量部、分散助剤としてn−パラフィンスルフォン酸ソーダ0.0005〜0.01重量部および揮発性発泡剤としてイソブタンを5〜30重量部仕込み、昇温して(Tm−10)〜(Tm+10)℃、1〜3MPaで一定温度、一定圧力として樹脂粒子に発泡剤を含浸させたのち、大気圧下に放出して予備発泡粒子とする。この予備発泡粒子を金型内に充填し、0.09〜0.12MPaの蒸気で加熱融着させ発泡成形体とした後、70〜80℃の乾燥室内で18〜24時間養生する方法が挙げられる。
【0026】
【実施例】
以下に実施例及び比較例をあげて本発明を更に詳しく説明する。
実施例1〜6及び比較例1〜9
メルトフローインデックスが2g/10分、融点が122.4℃、コモノマーが4−メチルペンテンの直鎖状低密度ポリエチレンに対して表1記載のHLB値、融点をもつ帯電防止剤(モノステアリン酸グリセリンエステルとジステアリン酸グリセリンエステルの混合物)を表1記載の濃度となる様にマスターバッチで混合し、押出機で練り込み、一粒の重量が1.3mgのペレットを作製した。容量約0.2m3のオートクレーブ中に、このペレットを100重量部(50Kg)、水300重量部、第三リン酸カルシウム2重量部、n−パラフィンスルフォン酸ソーダ0.001重量部、イソブタン20重量部を仕込み114.0℃まで昇温した後、イソブタンを圧入してオートクレーブ内圧を1.82MPaに10分間保持した後、イソブタン蒸気でオートクレーブ内圧を保持しながら4.0mmのオリフィスを通して大気圧下に放出し予備発泡粒子を得た。得られた予備発泡粒子は発泡直後に濃度30ppmのメタリン酸ソーダ(太平化学工業社製)水溶液で洗浄し、60℃の熱風で乾燥させた。この予備発泡粒子を300×300×60mmのプランク金型に充填し、加熱蒸気圧力0.1MPaで成形し、75℃の雰囲気下で24時間養生した。
予備発泡粒子及び発泡成形体の性状については以下の方法により評価した。結果を表1に示す。
(アグロメ粒子量)予備発泡粒子5Lを目開き4mmのメッシュに篩い分け、メッシュ上に残った予備発泡粒子の重量分率を測定し、以下の基準で評価した。
○:0.2%未満
△:0.2%以上1.0%未満
×:1.0%以上
(付着分散剤)メタバナジン酸アンモニウム0.022重量%、モリブデン酸アンモニウム0.54重量%、硝酸3重量%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子(通常約0.5g)をコニカルビーカーに採り1分間攪拌したのち、10分間放置した。えられた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度Aを測定した。
【0027】
同一の比色液について、予め測定しておいた第3リン酸カルシウムの410nmでの吸光度係数ε(g/L・cm)を用いて、下式より付着分散剤量(ppm)を求め、以下の基準で評価した。
【0028】
【数1】

Figure 0005021857
○:2000ppm未満
×:2000ppm以上
(ベタツキ)前記プランク型成形体を養生終了後、30分間室温下で放置し、触感により、以下の基準で評価した。
○:粘着感、ヌメリ感を感じない
×:粘着感、ヌメリ感がある
(融着性)前記プランク型成形体を養生終了後24時間以上室温下で放置した後、発泡成形体の表面にナイフで約5mmの深さのクラックを入れ、このクラックに沿って成形体を割り、破断面を観察して以下の基準で評価した。
○:粒子が破断している割合が60%以上
×:粒子が破断している割合が60%未満
(表面固有抵抗)前記プランク型成形体を養生終了後、温度23℃、湿度50%RHの恒温恒湿室内に24時間放置した後、超絶縁抵抗計(アドバンテスト社製TR8601)を用いて500V、1分の条件で表面固有抵抗を測定し、以下の基準で評価した。
○:1×1012Ω/□未満
△:1×1012Ω/□以上1×1013Ω/□未満
×:1×1013Ω/□以上
(汚染性)前記プランク型成形体より外寸200mm×200mm×150mm、肉厚15mmの箱及びそのふたを作成した。その箱内部に片面が酸化チタンコートされたハーフミラーをコート面が壁面に接触しないように入れ、ふたをし、恒温恒湿チャンバー内で温度60℃、湿度90%RHの雰囲気に90時間放置した。この汚染テスト前後の酸化チタンコート面を顕微鏡観察し、以下の基準で評価した。
○:目立った付着物は観察されない
△:局所的に小さな斑状の付着物が観察される
×:全面に大きな斑状の付着物が観察される
実施例1〜6に示される通り、帯電防止剤としてHLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルを0.3重量%以上3重量%以下含有させることにより、予備発泡粒子におけるアグロメ粒子及び付着分散剤が少なく、発泡成形体におけるベタツキ及び融着性、表面固有抵抗、汚染性に問題が発生しない、つまり、光学系部品中のハーフミラーなどを汚染することなく、良好な帯電防止性能(表面固有抵抗が1×1012Ω/□未満)を有するポリエチレン系樹脂型内発泡成形体を得ることができる。
【0029】
比較例1〜3のように含窒素帯電防止剤では汚染性に問題が生じやすい。
【0030】
実施例1〜4と比較例4〜7との対比から、同一脂肪酸グリセリンエステルであってもHLB値が3未満(ジエステル或いはトリエステル含量が多い)では良好な帯電防止性能が得られず(比較例4)、HLB値が4を超えると付着分散剤及び融着性に問題を生じる(比較例5)。また、HLB値が望ましい範囲にあっても、添加量が0.3重量%未満では十分な帯電防止性能が得られず(比較例6)、3重量%を超えると予備発泡工程において分散不良に起因するアグロメ粒子が発生した(比較例7)。
【0031】
比較例8〜10に示される通り、帯電防止剤の融点が35℃未満の場合、発泡成形体表面がベタツキつき易く、75℃を超えると十分な帯電防止性能が得られない。
【0032】
【表1】
Figure 0005021857
【0033】
【発明の効果】
帯電防止剤としてHLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルを0.3重量%以上3重量%以下含有させたポリエチレン系樹脂予備発泡粒子を用いると、光学系部品中のハーフミラーなどを汚染することなく、良好な帯電防止性能(表面固有抵抗が1×1012Ω/□未満)を有するポリエチレン系樹脂型内発泡成形体を得ることができる。また上記帯電防止剤を使用すると、予備発泡粒子におけるアグロメ粒子量及び付着分散剤量が少なく、発泡成形体におけるベタツキ及び融着性に問題が発生しない。したがって、本発明の帯電防止性能を有するポリエチレン系樹脂予備発泡粒子より成形した発泡成形体は、電子部品とりわけ光学系部品を内蔵した電子部品の緩衝包装材として好適に使用することができる。特に蒸着やスパッタリングなどの真空処理方法により酸化チタンなどの金属化合物層を有する光学部品あるいはこれを内蔵した電子部品の緩衝包装材として好適に使用することができる。もちろん、CD−ROMドライブ、液晶表示装置、パソコンなどの部品でなく完成品の緩衝包装材としても使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyethylene resin pre-foamed particle having antistatic properties and an in-mold foam molded product thereof.
[0002]
[Prior art]
Polyethylene resin in-mold foam molded products (hereinafter, foam molded products) are widely used as buffer packaging materials for electrical equipment parts such as household appliances and general equipment parts. In recent years, demand for electronic packaging products such as liquid crystals, personal computers, and semiconductor parts as buffer packaging materials has been increasing. In general, electronics-related products dislike dust and static electricity. However, since polyethylene resin itself is an insulator, it is easily charged by heat and friction, and sometimes adsorbs dust and destroys electronics-related products due to static electricity. Therefore, attempts have been made to impart antistatic performance to the foamed molded product.
[0003]
In order to solve this problem, a method of forming a foamed molded article using polyethylene resin pre-expanded particles (hereinafter referred to as pre-expanded particles) coated with an antistatic agent such as a surfactant, a surfactant, etc. A method of reducing the surface specific resistance of the foamed molded product and preventing charging by a method of applying the antistatic agent and a method of forming a foamed molded product using pre-expanded particles impregnated with the antistatic agent. Yes. However, in these methods, the durability of the antistatic effect is poor due to peeling or the like during use, or the antistatic effect is not exhibited at all on the fracture surface of the foamed molded product, or is significantly reduced. In addition, there is a problem that the process becomes complicated and the manufacturing cost increases. On the other hand, a method for producing pre-foamed particles and foamed molded products from resin particles kneaded with an antistatic agent in advance is also known. For example, in JP-A-3-28239, a nonionic surfactant having an average molecular weight of 250 to 1000 and an HLB value of 4 to 8 and having antistatic ability is used by kneading 0.1 to 5% by weight. Has been proposed.
[0004]
Japanese Patent Application Laid-Open No. 8-113667 contains 0.2 to 5.0% by weight of an ester of a higher fatty acid having 15 to 23 carbon atoms and a polyhydric alcohol having 3 to 7 hydroxyl groups. Although a linear low density polyethylene resin foam molded article characterized by the above has been disclosed, its purpose is to restore shrinkage, dimensional accuracy, and surface smoothness of the linear low density polyethylene resin foam molded article. There is no description regarding the provision of an in-mold foam molded body of a polyethylene resin having good antistatic performance without being contaminated with the optical system component which is an object of the present invention which will be described later.
[0005]
[Problems to be solved by the invention]
If the antistatic agent described in JP-A-3-28239 is used, a foamed molded article having good antistatic performance is not necessarily obtained, and there is a difference in antistatic performance depending on the antistatic agent used. Is real. Also, depending on the type of antistatic agent used, when foam molded products are used for cushioning packaging materials for optical parts used for compact discs, etc., half mirrors and mirrors in optical parts during transportation, The polygon motor reflector is contaminated (a lot of white spots are generated on the surface), and the function of the product to be transported may be remarkably deteriorated. Such contamination occurs even though it is not in contact with the foamed molded product.
[0006]
Accordingly, the present invention provides a polyethylene resin in-mold foam molded article having good antistatic performance (surface specific resistance is less than 1 × 10 12 Ω / □) without contaminating half mirrors in optical system parts. The purpose is to do.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the present inventors have found that the above problems can be solved by using a specific fatty acid glycerin ester, and have completed the present invention.
[0008]
That is, the present invention comprises a polyethylene resin pre-foaming characterized by containing a fatty acid glycerin ester having an HLB value of 3 or more and less than 4 and a melting point of 35 ° C. or more and 75 ° C. or less of 0.3% by weight or more and 3% by weight or less. grain child (claim 1), wherein the fatty acid glycerol ester is a mixture of glyceryl monostearate ester and glyceryl distearate ester, according to claim 1 the polyethylene resin pre-expanded particles child described (claim 2), And it is related with the polyethylene-type resin in-mold expansion molding (Claim 3) characterized by being obtained from the polyethylene-type resin pre-expanded particle of Claim 1 or 2 .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a fatty acid glycerin ester having an HLB value of 3 or more and less than 4 and a melting point of 35 ° C. or more and 75 ° C. or less is used as the antistatic agent. Fatty acid glycerin ester is an ester of fatty acid and glycerin. Examples of such fatty acids include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, succinic acid, citric acid and the like. The fatty acid glycerin ester is an ester of one or more of these fatty acids and glycerin, and is a monoester, diester, triester or a mixture thereof. Among them, glycerol stearic acid ester that is industrially produced and easily available from monoester to triester is preferred.
[0010]
By using these fatty acid glycerin esters, it is possible to prevent contamination of the half mirror in the optical system component.
[0011]
The present inventors have found that when a nitrogen-containing compound such as alkyldiethanolamine is used as an antistatic agent, the optical system component is often contaminated. This is because optical parts are often surface-treated with titanium, chromium, nickel or a compound thereof, and in the case of a nitrogen-containing antistatic agent having an unpaired electron pair, it is easy to coordinate with the metal or metal compound. There seems to be a lot of contamination. That is, in the case of the fatty acid glycerin ester, it is considered that the optical system component is hardly contaminated because the coordination tendency to the metal or metal compound is low.
[0012]
The HLB value of the antistatic agent used in the present invention is 3 or more and less than 4. Here, the HLB value means that the saponification value of the fatty acid glycerin ester is S and the neutralization value A of the fatty acid constituting the fatty acid glycerin ester is determined by the Griffin method.
Calculated from HLB value = 20 (1-S / A). When the fatty acid glycerin ester is composed of the same fatty acid, the HLB value decreases as the number of fatty acid bonds to glycerin increases. When the fatty acid bond number is the same, the HLB value decreases as the alkyl chain length of the fatty acid increases. Become. That is, even when the fatty acid glycerin ester is composed of the same fatty acid, the HLB value varies depending on the mixing ratio of monoester, diester, and triester, and when the number of fatty acid bonds is the same, the type of fatty acid and its The HLB value changes depending on the composition ratio.
[0013]
When the HLB value is less than 3, the antistatic agent that has been bleed out does not have sufficient hydrophilicity, and therefore does not exhibit good antistatic performance. When the HLB value is 4 or more, there is no problem in the antistatic performance, but there is a problem that the amount of the adhering dispersant on the surface of the pre-foamed particles is increased. In general, polyethylene resin pre-expanded particles are dispersed in an aqueous dispersion medium in a sealed container, heated with stirring and mixing, impregnated with a foaming agent, and then released under an atmosphere lower than the pressure in the sealed container. (Pre-foaming step) Manufactured by the method. In order to prevent the resin particles from being fused to each other, a water-insoluble inorganic compound such as tribasic calcium phosphate, basic magnesium carbonate, or calcium carbonate is added to the aqueous dispersion medium. If much adheres to the surface, problems such as poor fusion occur in the subsequent molding process.
[0014]
As described above, the HLB value of the fatty acid glycerin ester is calculated by the Griffin method. In many cases, it takes a value of 4 to 7 for the monoester, 1 to 4 for the diester, and about 0.5 to 2 for the triester. . By mixing these, it can be used by adjusting to a desired HLB value.
[0015]
Further, even if the antistatic agent used has an HLB value of 3 or more and less than 4, it is not sufficient, and its melting point needs to be 35 ° C. or more and 75 ° C. or less, more preferably 40 ° C. or more and 70 ° C. or less. If the melting point is 35 ° C. or lower, stickiness is likely to occur during use, and dust or the like may adhere to the surface of the foamed molded product and impair the appearance, and may reduce the antistatic performance. When the melting point exceeds 75 ° C., the antistatic performance may be remarkably lowered or a long time may be required until the antistatic performance is exhibited. This is because the foamed molded product is cured to recover the shrinkage after molding and for drying, but it takes a long time to recover the shrinkage when the curing temperature is lower than 70 ° C. Is usually cured at 70 ° C. to 80 ° C., and it is considered that the antistatic agent bleeds out in such a curing process and exhibits antistatic performance. That is, it seems that when the melting point of the antistatic agent is higher than the curing temperature, the antistatic agent necessary for exhibiting the antistatic performance cannot sufficiently bleed out.
[0016]
Here, the melting point of the antistatic agent is the peak of the endothermic peak in the DSC curve obtained when the temperature is raised from 0 ° C. to 120 ° C. at a rate of temperature increase of 10 ° C./min by a differential scanning calorimeter. Measured as temperature.
[0017]
In the present invention, the addition amount of the antistatic agent is 0.3 to 3% by weight, preferably 0.5 to 2% by weight. If it is less than 0.3% by weight, sufficient antistatic performance cannot be exhibited. If it exceeds 3% by weight, it is not preferable because poor dispersion may occur in the preliminary foaming step and the amount of adhering dispersant may increase.
[0018]
Examples of the polyethylene resin used in the present invention include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate copolymer. These may be used alone or in combination of two or more. Can be used. Among these resins, linear low-density polyethylene is preferable, in particular, the density is 0.920 to 0.935 g / cm 3 , the melt index is 0.5 to 3 g / 10 minutes, the comonomer is hexene, 4-methylpentene or A linear low density polyethylene which is octene is preferable for obtaining good moldability. Coloring pigments, cell nucleating agents, antioxidants, weathering agents, lubricants, crystal nucleating agents, and the like can be added to these polyethylene resins. The addition amount is 3% by weight or less, more preferably 1% by weight or less so that the cell diameter of the pre-expanded particles is not reduced and non-uniformized.
[0019]
These polyethylene-based resins are melted in advance using an extruder, kneader, Banbury mixer, roll, etc., and in a desired particle shape such as a cylindrical shape, an elliptical column shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. It is processed into resin particles having a particle weight of 0.2 to 10 mg, preferably 0.5 to 6 mg. At this time, an antistatic agent is added. Usually, a master batch having an antistatic agent concentration of 5 to 20% by weight is added so that the antistatic agent has a desired concentration.
[0020]
In the present invention, a conventionally known method, that is, an aqueous dispersion medium containing resin particles, a dispersing agent and a dispersing aid and a volatile foaming agent are charged in a sealed container, and the temperature is increased while stirring to a constant pressure. Then, after the resin particles are impregnated with a foaming agent at a constant temperature, the prefoamed particles are produced by a method in which the resin particles are discharged under a pressure lower than the internal pressure of the sealed container (prefoaming step). The airtight container to be used is not particularly limited and may be any one that can withstand the pressure and temperature in the preliminary foaming step. For example, an autoclave-type pressure resistant container may be used.
[0021]
Examples of the dispersing agent include poorly water-soluble inorganic compounds such as tribasic calcium phosphate, basic magnesium carbonate, and calcium carbonate. Examples of the dispersing aid include dodecylbenzene sulfonic acid soda, n-paraffin sulfonic acid soda, and α-olefin sulfonic acid soda. Anionic surfactants are used. Among these, the use of tricalcium phosphate and sodium n-paraffin sulfonate is preferable for obtaining good dispersibility. The amount of these dispersants and dispersion aids used varies depending on the type and the type and amount of the polyethylene-based resin to be used, but usually 0.2 to 3 parts by weight of the inorganic dispersant and 100% by weight of the dispersion aid are used. 0.0005 to 0.1 part by weight of the agent.
[0022]
Examples of the volatile foaming agent include, for example, isobutane, normal butane, normal pentane, propane, carbon dioxide, nitrogen and the like, but are not limited thereto. 5 to 50 parts by weight with respect to parts by weight.
[0023]
In addition, the temperature and pressure in the preliminary foaming process vary depending on the type of polyethylene resin used and the target foaming ratio, but the temperature is usually above the softening point of the polyethylene resin used. It is about 1 to 3 MPa, and the prefoaming ratio is about 5 to 40 times.
[0024]
In order to make the pre-expanded particles obtained as described above into an in-mold expanded molded article, for example, (a) pressurizing the pre-expanded particles with an inorganic gas, impregnating the pre-expanded particles with the inorganic gas, and applying a predetermined internal pressure. After being applied, the mold is filled and heated and fused with steam, etc. (b) The pre-expanded particles are compressed by gas pressure and filled into the mold, and the recovery power of the pre-expanded particles is used to make steam, etc. (C) The method of (c) heating and fusing, and (c) The method of filling the mold without pretreatment and fusing with steam or the like can be used, but no special equipment is required (c) Is preferred.
[0025]
Preferred embodiments of the present invention include a linear low density polyethylene containing an antioxidant and a cell nucleating agent, and a master of fatty acid glycerin ester having an HLB value of 3 or more and less than 4 and a melting point of 35 ° C. or more and 75 ° C. or less. The batch is mixed so that the final concentration of the fatty acid glycerin ester is 0.3% by weight or more and 3% by weight or less, extruded into a strand form from an extruder, and after cooling, the strand is cut to 1-5 mg of cylindrical resin particles. To do. In an autoclave pressure-resistant container, with respect to 100 parts by weight of the resin particles (melting point Tm ° C.), 150 to 500 parts by weight of water, 0.08 to 2.5 parts by weight of tertiary calcium phosphate as a dispersant, and n-paraffin as a dispersion aid Sodium sulfonate 0.0005 to 0.01 parts by weight and 5 to 30 parts by weight of isobutane as a volatile foaming agent are charged, and the temperature is raised (Tm-10) to (Tm + 10) ° C., constant temperature of 1 to 3 MPa, constant After the resin particles are impregnated with a foaming agent as pressure, they are discharged under atmospheric pressure to obtain pre-expanded particles. A method of filling the pre-expanded particles in a mold, heat-sealing with 0.09 to 0.12 MPa steam to form a foamed molded article, and curing in a drying chamber at 70 to 80 ° C. for 18 to 24 hours is given. It is done.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Examples 1-6 and Comparative Examples 1-9
Antistatic agent (glyceryl monostearate) having an HLB value and a melting point shown in Table 1 for linear low density polyethylene having a melt flow index of 2 g / 10 min, a melting point of 122.4 ° C. and a comonomer of 4-methylpentene. A mixture of ester and glyceryl ester of distearate) was mixed in a master batch so as to have the concentration shown in Table 1, and kneaded with an extruder to prepare a pellet having a weight of 1.3 mg. In an autoclave having a capacity of about 0.2 m 3 , 100 parts by weight (50 Kg) of this pellet, 300 parts by weight of water, 2 parts by weight of calcium triphosphate, 0.001 part by weight of sodium n-paraffin sulfonate, and 20 parts by weight of isobutane. After the temperature was raised to 114.0 ° C., isobutane was injected and the autoclave internal pressure was maintained at 1.82 MPa for 10 minutes, and then released under atmospheric pressure through a 4.0 mm orifice while maintaining the autoclave internal pressure with isobutane vapor. Pre-expanded particles were obtained. The obtained pre-expanded particles were washed with an aqueous solution of sodium metaphosphate having a concentration of 30 ppm (manufactured by Taihei Chemical Industries) immediately after foaming and dried with hot air at 60 ° C. The pre-expanded particles were filled in a 300 × 300 × 60 mm plank mold, molded at a heating steam pressure of 0.1 MPa, and cured under an atmosphere of 75 ° C. for 24 hours.
The properties of the pre-expanded particles and the foamed molded product were evaluated by the following methods. The results are shown in Table 1.
(Agglomerate particle amount) 5 L of the pre-expanded particles were sieved into a mesh having an opening of 4 mm, and the weight fraction of the pre-expanded particles remaining on the mesh was measured and evaluated according to the following criteria.
○: Less than 0.2% Δ: 0.2% or more and less than 1.0% ×: 1.0% or more (attachment dispersant) 0.022% by weight of ammonium metavanadate, 0.54% by weight of ammonium molybdate, nitric acid 50.0 mL of an aqueous solution (colorimetric solution) containing 3% by weight and pre-expanded particles (usually about 0.5 g) of W (g) were placed in a conical beaker and stirred for 1 minute, and then allowed to stand for 10 minutes. The obtained liquid phase was put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A at 410 nm was measured with a spectrophotometer.
[0027]
For the same colorimetric liquid, using the absorbance coefficient ε (g / L · cm) of tricalcium phosphate measured at 410 nm in advance, the amount of adhering dispersant (ppm) was determined from the following formula, and the following criteria It was evaluated with.
[0028]
[Expression 1]
Figure 0005021857
○: Less than 2000 ppm ×: 2000 ppm or more (solid) The plank mold was allowed to stand at room temperature for 30 minutes after completion of curing, and evaluated according to the following criteria by touch.
○: No sticky or slimy feeling ×: Sticky or slimy (fusion) After leaving the plank mold molded body at room temperature for at least 24 hours after curing, a knife is formed on the surface of the foam molded body. Then, a crack having a depth of about 5 mm was inserted, the molded body was divided along the crack, and the fracture surface was observed and evaluated according to the following criteria.
○: The rate at which the particles are broken is 60% or more. X: The rate at which the particles are broken is less than 60% (surface resistivity). After the curing of the plank mold, the temperature is 23 ° C. and the humidity is 50% RH. After leaving in a constant temperature and humidity room for 24 hours, the surface resistivity was measured using a super insulation resistance meter (TR8601 manufactured by Advantest) at 500 V for 1 minute, and evaluated according to the following criteria.
○: Less than 1 × 10 12 Ω / □ Δ: 1 × 10 12 Ω / □ or more and less than 1 × 10 13 Ω / □ ×: 1 × 10 13 Ω / □ or more (contamination) Outer dimensions than the above-mentioned plank mold A box of 200 mm × 200 mm × 150 mm and a wall thickness of 15 mm and its lid were prepared. A half mirror coated with titanium oxide on one side is placed inside the box so that the coated surface does not touch the wall surface, covered, and left in a constant temperature and humidity chamber at a temperature of 60 ° C. and a humidity of 90% RH for 90 hours. . The titanium oxide coat surface before and after this contamination test was observed with a microscope and evaluated according to the following criteria.
○: No noticeable deposits are observed Δ: Small spot-like deposits are observed locally X: Large spot-like deposits are observed on the entire surface As shown in Examples 1 to 6, as antistatic agents By containing a fatty acid glycerin ester having an HLB value of 3 or more and less than 4 and a melting point of 35 ° C. or more and 75 ° C. or less in an amount of 0.3% by weight or more and 3% by weight or less, there are few agglomerates and adhering dispersant in the pre-foamed particles Good antistatic performance (surface resistivity of 1 × 10) without causing problems in stickiness and fusing property, surface resistivity, and contamination in the molded product, that is, without contaminating half mirrors in optical parts. It is possible to obtain a polyethylene-based resin-in-mold foam-molded article having less than 12 Ω / □.
[0029]
As in Comparative Examples 1 to 3, the nitrogen-containing antistatic agent is likely to cause a problem with contamination.
[0030]
From comparison between Examples 1 to 4 and Comparative Examples 4 to 7, even if the same fatty acid glycerin ester is used, if the HLB value is less than 3 (the content of diester or triester is large), good antistatic performance cannot be obtained (comparison). Example 4) When the HLB value exceeds 4, problems occur in the adhesion dispersant and the fusing property (Comparative Example 5). Further, even if the HLB value is in a desirable range, sufficient antistatic performance cannot be obtained if the addition amount is less than 0.3% by weight (Comparative Example 6), and if it exceeds 3% by weight, poor dispersion occurs in the preliminary foaming step. The resulting agglomerate particles were generated (Comparative Example 7).
[0031]
As shown in Comparative Examples 8 to 10, when the melting point of the antistatic agent is less than 35 ° C., the surface of the foamed molded product tends to be sticky, and when it exceeds 75 ° C., sufficient antistatic performance cannot be obtained.
[0032]
[Table 1]
Figure 0005021857
[0033]
【Effect of the invention】
When a polyethylene resin pre-expanded particle containing 0.3 to 3% by weight of a fatty acid glycerin ester having an HLB value of 3 or more and less than 4 and a melting point of 35 to 75 ° C. is used as an antistatic agent, an optical system A polyethylene resin in-mold foam molded article having good antistatic performance (surface specific resistance is less than 1 × 10 12 Ω / □) can be obtained without contaminating the half mirror in the part. When the antistatic agent is used, the amount of agglomerate particles and the amount of adhering dispersant in the pre-expanded particles are small, and there is no problem in the stickiness and fusion property in the foamed molded product. Therefore, the foam molded article formed from the polyethylene resin pre-expanded particles having antistatic performance of the present invention can be suitably used as a buffer packaging material for electronic parts, particularly electronic parts incorporating optical parts. In particular, it can be suitably used as a buffer packaging material for an optical component having a metal compound layer such as titanium oxide or an electronic component incorporating the same by a vacuum processing method such as vapor deposition or sputtering. Of course, it can be used not only as a part of a CD-ROM drive, a liquid crystal display device, a personal computer, etc. but also as a cushioning packaging material of a finished product.

Claims (3)

HLB値が3以上4未満かつ融点が35℃以上75℃以下の脂肪酸グリセリンエステルを0.3重量%以上3重量%以下含有することを特徴とするポリエチレン系樹脂予備発泡粒Wherein the HLB value of 3 or more 4 below and a melting point containing 35 ° C. or higher 75 ° C. or less fatty acid glycerol ester or less 3 wt% 0.3 wt% or more, the polyethylene resin pre-expanded particles child. 脂肪酸グリセリンエステルがモノステアリン酸グリセリンエステルとジステアリン酸グリセリンエステルの混合物であることを特徴とする、請求項1記載のポリエチレン系樹脂予備発泡粒 Wherein the fatty acid glycerol ester is a mixture of glyceryl monostearate ester and glyceryl distearate ester, according to claim 1 the polyethylene resin pre-expanded particles children according. 請求項1または2に記載のポリエチレン系樹脂予備発泡粒子より得られることを特徴とする、ポリエチレン系樹脂型内発泡成形体。  A polyethylene resin in-mold foam-molded article obtained from the polyethylene resin pre-expanded particles according to claim 1 or 2.
JP2000343516A 2000-11-10 2000-11-10 Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof Expired - Fee Related JP5021857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343516A JP5021857B2 (en) 2000-11-10 2000-11-10 Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343516A JP5021857B2 (en) 2000-11-10 2000-11-10 Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof

Publications (2)

Publication Number Publication Date
JP2002146082A JP2002146082A (en) 2002-05-22
JP5021857B2 true JP5021857B2 (en) 2012-09-12

Family

ID=18817872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343516A Expired - Fee Related JP5021857B2 (en) 2000-11-10 2000-11-10 Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof

Country Status (1)

Country Link
JP (1) JP5021857B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566634B2 (en) * 2008-09-30 2014-08-06 株式会社カネカ Polyolefin resin multistage expanded particles with excellent mold filling
JP5165521B2 (en) * 2008-10-07 2013-03-21 株式会社カネカ Process for producing expanded polyolefin resin particles with excellent mold filling
WO2010146871A1 (en) 2009-06-18 2010-12-23 株式会社カネカ Pre-expanded polypropylene resin beads and process for producing same
JP2011127018A (en) * 2009-12-18 2011-06-30 Sumitomo Chemical Co Ltd Polymer composition and molded article comprising the same
JP6225707B2 (en) 2011-07-15 2017-11-08 株式会社カネカ Non-crosslinked polyethylene resin foam particles having antistatic properties and non-crosslinked polyethylene resin foam moldings
WO2016158686A1 (en) * 2015-03-27 2016-10-06 株式会社カネカ Method for manufacturing polyethylene resin foam molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586829A (en) * 1978-12-25 1980-07-01 Kuraray Co Ltd Resin composition for molding and laminate molding
JPS56129235A (en) * 1980-03-14 1981-10-09 Asahi Chem Ind Co Ltd Expandable synthetic resin composition
JPS62153326A (en) * 1985-12-27 1987-07-08 Sanwa Kako Kk Crosslinkable expandable polyolefin resin composition having antistatic property
JP3135238B2 (en) * 1989-06-26 2001-02-13 株式会社ジェイ エス ピー Olefin resin pre-expanded particles
JP3599436B2 (en) * 1994-08-24 2004-12-08 株式会社ジェイエスピー Linear low-density polyethylene resin foam molded article and method for producing the same
AU753587B2 (en) * 1997-11-14 2002-10-24 Johnson & Johnson Consumer Companies, Inc. Highly flavored dental floss

Also Published As

Publication number Publication date
JP2002146082A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
CA2078107C (en) Polymer foams containing blocking agents
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
EP0517748B1 (en) Polyolefin polymer compositions comprising glycerol monoesters of c 20-24 fatty acids and foamed articles prepared therefrom
KR101356839B1 (en) Expandable polystyrene resin particles and method for producing the same
JP5410803B2 (en) Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP5021857B2 (en) Polyethylene resin pre-expanded particles having antistatic properties and in-mold expanded molded articles thereof
EP0933389B1 (en) Polypropylene resin pre-expanded particles
JP5577332B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
FI74294C (en) FOERFARANDE FOER FRAMSTAELLNING AV FOERBAETTRADE FORMMASSOR AV FINFOERDELADE EXPANDERBARA STYRENPOLYMERISAT GENOM BESTRYKNING OCH ANVAENDNING AV DEN BESTRUKNA PRODUKTEN.
JP2009242635A (en) Antistatic styrenic resin foamed molding and its manufacturing method
JP3530333B2 (en) Method for producing pre-expanded polypropylene resin particles having antistatic properties
KR102265547B1 (en) Method for preparing semi-conductive polypropylene resin expanded beads and molded body thereof
JP2000327825A (en) Polypropylenic resin pre-expanded particle, and preparation of the pre-expanded particle and in-mold expanded molded product
JP3358868B2 (en) Expanded polypropylene resin particles and method for producing the same
JP3966521B2 (en) Method for producing conductive polypropylene resin expanded particles
EP0924244B1 (en) Non-crosslinked linear low density polyethylene preexpanded particles
EP1055700B1 (en) Expansion-molded product of electrically conductive polypropylene-based resin
EP3190150B1 (en) Conductive polypropylene-based foamed resin particles exhibiting excellent moldability and contamination resistance, method for producing polypropylene-based foamed resin particles, and polypropylene-based foamed resin molded body
JP3135238B2 (en) Olefin resin pre-expanded particles
JP3456758B2 (en) Pre-expanded polyolefin resin particles having antistatic properties and method for producing the same
JP5290027B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2010254894A (en) Manufacturing method of polyolefin resin particles and polyolefin resin foam particles
JPS5991125A (en) Production of spherical polyolefin resin particle
JP2022095530A (en) Method for producing foamable thermoplastic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5021857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees