JP5020298B2 - Refrigerant distributor and heat pump device using the refrigerant distributor - Google Patents

Refrigerant distributor and heat pump device using the refrigerant distributor Download PDF

Info

Publication number
JP5020298B2
JP5020298B2 JP2009238569A JP2009238569A JP5020298B2 JP 5020298 B2 JP5020298 B2 JP 5020298B2 JP 2009238569 A JP2009238569 A JP 2009238569A JP 2009238569 A JP2009238569 A JP 2009238569A JP 5020298 B2 JP5020298 B2 JP 5020298B2
Authority
JP
Japan
Prior art keywords
header
refrigerant
loop
flow path
shaped flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009238569A
Other languages
Japanese (ja)
Other versions
JP2011085324A (en
Inventor
哲二 七種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009238569A priority Critical patent/JP5020298B2/en
Publication of JP2011085324A publication Critical patent/JP2011085324A/en
Application granted granted Critical
Publication of JP5020298B2 publication Critical patent/JP5020298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば空気調和機等のヒートポンプ装置に用いられる熱交換器に取り付けられ、冷媒を分配する冷媒分配器に関する。   The present invention relates to a refrigerant distributor that is attached to a heat exchanger used in a heat pump device such as an air conditioner and distributes refrigerant.

従来より、熱交換器の複数冷媒経路に対して分流管を介して冷媒を分配する冷媒分配器は知られている。また、このようなものにおいて、ヘッダー内部をループ状流路で構成し、冷媒を強制的に循環させるために、ループ状流路の入口の絞り部で流入冷媒を減圧させ、ループ状流路の一部の冷媒を絞り部に吸引するエジェクタを有している(例えば、特許文献1参照)。   Conventionally, a refrigerant distributor that distributes refrigerant to a plurality of refrigerant paths of a heat exchanger via a branch pipe is known. Further, in such a structure, the header is configured with a loop-shaped flow path, and in order to forcibly circulate the refrigerant, the inflowing refrigerant is depressurized at the throttle portion at the entrance of the loop-shaped flow path, and the loop-shaped flow path It has an ejector that sucks a part of the refrigerant into the throttle portion (see, for example, Patent Document 1).

国際公開第WO2007/094422号パンフレット(図2)International Publication No. WO2007 / 094422 Pamphlet (Figure 2)

しかしながら、前述のようにヘッダー内部をループ状流路で構成し、冷媒を強制的に循環させるために、ループ状流路の入口の絞り部で流入冷媒を減圧させ、ループ状流路の一部の冷媒を絞り部に吸引するエジェクタを有しているものにあっては、二相冷媒を流入させ各分流管に分配する場合、以下のような問題が発生する。すなわち、ループ状流路の内部の冷媒を強制循環させるために、冷媒分配器に流入する冷媒をエジェクタの絞り部に通し減圧加速させて静圧を下げ、ループ状流路内の冷媒の一部を吸引させることが必要である。しかし、例えば再熱除湿機能を有するルームエアコンの室内熱交換器のように、2分割された熱交換器を直列に接続する構成で、下流側の熱交換器に従来のエジェクタによる強制循環方式の冷媒分配器を適用すると、共に蒸発器で使用される冷房運転の場合に、上流側の熱交換器を流出した二相冷媒が下流側の熱交換器に流入すると、絞り部で圧力損失が発生し、熱交換器の伝熱性能を悪化させるという難点があった。   However, as described above, the inside of the header is configured with a loop-shaped flow path, and in order to forcibly circulate the refrigerant, the inflowing refrigerant is decompressed at the throttle portion at the entrance of the loop-shaped flow path, and a part of the loop-shaped flow path is formed. In the case of having an ejector that sucks the refrigerant into the throttle portion, the following problem occurs when the two-phase refrigerant is introduced and distributed to the respective branch pipes. That is, in order to forcibly circulate the refrigerant inside the loop-shaped flow path, the refrigerant flowing into the refrigerant distributor is accelerated by reducing the pressure by passing through the throttle part of the ejector, and a part of the refrigerant in the loop-shaped flow path is reduced. Must be aspirated. However, for example, in a configuration in which a heat exchanger divided into two parts is connected in series like an indoor heat exchanger of a room air conditioner having a reheat dehumidification function, a forced circulation system using a conventional ejector is connected to a downstream heat exchanger. When a refrigerant distributor is used, both of the two-phase refrigerant that flows out of the upstream heat exchanger flows into the downstream heat exchanger in the cooling operation that is used in the evaporator. However, there is a problem that the heat transfer performance of the heat exchanger is deteriorated.

本発明の技術的課題は、ヘッダー内部のループ状流路に流入する二相冷媒を減圧させることなくループ状流路内に循環流を形成でき、熱交換器の伝熱性能を損なうことなく良好な二相冷媒の分配を実現できるようにすることにある。   The technical problem of the present invention is that it is possible to form a circulation flow in the loop-shaped flow path without reducing the pressure of the two-phase refrigerant flowing into the loop-shaped flow path inside the header, and it is good without impairing the heat transfer performance of the heat exchanger It is to be able to realize distribution of two-phase refrigerant.

本発明に係る冷媒分配器は、内部にループ状流路が形成されたヘッダーと、ヘッダーのループ状流路の少なくとも一部に接続された複数の冷媒分流管と、ジョイントを介し分岐されてヘッダーのループ状流路内にそれぞれ挿入接合され、それぞれの噴出流によってループ状流路内に同じ方向の循環流を発生させる複数のヘッダー流入管と、を備えるものである。   A refrigerant distributor according to the present invention includes a header having a loop-shaped flow passage formed therein, a plurality of refrigerant distribution pipes connected to at least a part of the loop-shaped flow passage of the header, and a header branched through a joint. And a plurality of header inflow pipes that are inserted and joined into the loop-shaped flow path, and generate a circulation flow in the same direction in the loop-shaped flow path by the respective jet flows.

本発明の冷媒分配器によれば、複数のヘッダー流入管を、これらの噴出流によってループ状流路内に同じ方向の循環流を発生させ得るように、ヘッダーのループ状流路内に挿入接合しているので、例えば再熱除湿機能を有するルームエアコンの室内熱交換器のような2分割された熱交換器を直列に接続する構成において、下流側の熱交換器に本発明の冷媒分配器を適用すると、共に蒸発器で使用される冷房運転の場合においても、上流側の熱交換器を流出した二相冷媒が、下流側の熱交換器に流入する際、減圧されることなく気液分離器内部で循環流を形成し、均一分配を実現できる。このため、圧力損失による熱交換器の伝熱性能の悪化を防止することが可能となり、ヒートポンプ装置の効率を低下させず、高効率な運転を実現することができる。   According to the refrigerant distributor of the present invention, the plurality of header inflow pipes are inserted and joined into the header loop-shaped flow path so that the circulated flow in the same direction can be generated in the loop-shaped flow path by the jet flow. Therefore, for example, in a configuration in which two divided heat exchangers such as an indoor heat exchanger of a room air conditioner having a reheat dehumidifying function are connected in series, the refrigerant distributor of the present invention is connected to the downstream heat exchanger. When the two-phase refrigerant that has flowed out of the heat exchanger on the upstream side flows into the heat exchanger on the downstream side even in the cooling operation that is used in the evaporator, the gas-liquid is not decompressed. A circulating flow can be formed inside the separator to achieve uniform distribution. For this reason, it becomes possible to prevent the heat transfer performance of the heat exchanger from deteriorating due to pressure loss, and a highly efficient operation can be realized without reducing the efficiency of the heat pump device.

本発明の実施の形態1に係る冷媒分配器を示す正面断面図およびA−A線矢視断面図である。It is front sectional drawing and AA arrow directional cross-sectional view which show the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒分配器を用いた熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger using the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒分配器を用いた熱交換器を有するヒートポンプ装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the heat pump apparatus which has a heat exchanger using the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷媒分配器を示す正面断面図である。It is front sectional drawing which shows the refrigerant distributor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷媒分配器を示す正面断面図である。It is front sectional drawing which shows the refrigerant distributor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷媒分配器を示す正面断面図である。It is front sectional drawing which shows the refrigerant distributor which concerns on Embodiment 4 of this invention.

実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態1に係る冷媒分配器を示す正面断面図およびA−A線矢視断面図、図2は本実施の形態に係る冷媒分配器を用いた熱交換器を示す斜視図、図3は本実施の形態に係る冷媒分配器を用いた熱交換器を有するヒートポンプ装置を示す冷媒回路図であり、ルームエアコンで一般的に用いられている再熱除湿機能を有するものである。
Embodiment 1 FIG.
The present invention will be described below with reference to illustrated embodiments.
1 is a front cross-sectional view and a cross-sectional view taken along line AA showing a refrigerant distributor according to Embodiment 1 of the present invention, and FIG. 2 shows a heat exchanger using the refrigerant distributor according to this embodiment. FIG. 3 is a refrigerant circuit diagram showing a heat pump apparatus having a heat exchanger using the refrigerant distributor according to the present embodiment, and has a reheat dehumidification function generally used in room air conditioners. It is.

本実施の形態に係る冷媒分配器すなわち二相冷媒を分配する冷媒分配器1は、図1のように冷媒流入口11と、ヘッダー15と、2分岐の分岐ジョイント12と、分岐ジョイント12で分岐した冷媒をヘッダー15の上部に流入させるヘッダー流入管(以下「上部ヘッダー流入管」という)13と、分岐ジョイント12で分岐した冷媒をヘッダー15の下部に流入させるヘッダー流入管(以下「下部ヘッダー流入管」という)14と、ヘッダー15の内部に縦長のループ状流路19を形成する隔壁16と、各パスに冷媒を分岐する冷媒分流管17とを備えている。   The refrigerant distributor 1 according to the present embodiment, that is, the refrigerant distributor 1 that distributes the two-phase refrigerant, branches at the refrigerant inlet 11, the header 15, the two-branch branch joint 12, and the branch joint 12 as shown in FIG. Header inflow pipe (hereinafter referred to as “upper header inflow pipe”) 13 for allowing the refrigerant to flow into the upper portion of the header 15 and header inflow pipe (hereinafter referred to as “lower header inflow” for inflowing the refrigerant branched by the branch joint 12 into the lower portion of the header 15 14) 14, a partition 16 that forms a long loop-shaped flow path 19 inside the header 15, and a refrigerant distribution pipe 17 that branches the refrigerant into each path.

これを更に詳述すると、ヘッダー15は、その内部の上下両端に、ループ状流路19の折返し部を有している。そして、分岐ジョイント12により分岐された2本のヘッダー流入管のうち、上部ヘッダー流入管13が、ヘッダー15のループ状流路19の上端折返し部19aに挿入接合され、下部ヘッダー流入管14が、ヘッダー15のループ状流路19の下端折返し部19bに挿入接合されており、これらヘッダー流入管13,14の噴出流によってループ状流路19内に同じ方向(図1の正面断面図で見て時計回り方向)の冷媒循環流を発生させることができるように構成されている。   More specifically, the header 15 has a folded portion of the loop-shaped flow path 19 at both upper and lower ends thereof. Of the two header inflow pipes branched by the branch joint 12, the upper header inflow pipe 13 is inserted and joined to the upper end turning portion 19a of the loop-shaped flow path 19 of the header 15, and the lower header inflow pipe 14 is Inserted and joined to the lower end folded portion 19b of the loop-shaped flow path 19 of the header 15, and the jet flow of these header inflow pipes 13 and 14 causes the same direction in the loop-shaped flow path 19 (see the front sectional view of FIG. 1). (Clockwise direction) refrigerant circulation flow can be generated.

なお、分岐ジョイント12の2つの流出口の合計面積は冷媒流入口11の面積に対し同等以上としている。また、上部ヘッダー流入管13と下部ヘッダー流入管14の合計管内面積は冷媒流入口11の管内面積に対し同等以上としている。   The total area of the two outlets of the branch joint 12 is equal to or larger than the area of the refrigerant inlet 11. The total pipe area of the upper header inlet pipe 13 and the lower header inlet pipe 14 is equal to or greater than the pipe inner area of the refrigerant inlet 11.

熱交換器3は、図2のように流入する二相冷媒を分配する冷媒分配器1と、ガス冷媒が合流し流出するガス合流管2と、熱交換部となる伝熱管すなわち冷媒分流管17およびアルミフィン20とで構成される。図2中の矢印4は熱交換器3に流入する気流の方向を示す。   As shown in FIG. 2, the heat exchanger 3 includes a refrigerant distributor 1 that distributes the two-phase refrigerant that flows in, a gas merging pipe 2 through which the gas refrigerant merges and flows out, and a heat transfer pipe that serves as a heat exchange section, that is, a refrigerant distribution pipe 17 And aluminum fins 20. An arrow 4 in FIG. 2 indicates the direction of the airflow flowing into the heat exchanger 3.

ヒートポンプ装置は、図3のように圧縮機5と、凝縮器6と、膨張弁7と、上流側熱交換器8と、再熱除湿弁9と、バイパス弁10と、下流側熱交換器となる熱交換器3とを備えている。   As shown in FIG. 3, the heat pump device includes a compressor 5, a condenser 6, an expansion valve 7, an upstream heat exchanger 8, a reheat dehumidifying valve 9, a bypass valve 10, and a downstream heat exchanger. The heat exchanger 3 is provided.

次に、動作について説明する。まず、図3を用いてヒートポンプ装置の再熱除湿運転動作について説明する。圧縮機1から吐出された高温高圧のガス冷媒は凝縮器6を流れ、凝縮器6を通過する空気と熱交換して高圧二相状態となって流出する。凝縮器6を流出した高圧二相冷媒はほぼ全開の膨張弁7を通過した後、上流側熱交換器8に流入する。上流側熱交換器8に流入した高圧二相冷媒は上流側熱交換器8を通過する室内空気と熱交換し、高圧液冷媒となって再熱除湿弁9に流入する。このときバイパス弁10は閉止された状態である。再熱除湿弁9に流入した高圧液冷媒は、減圧されて低圧二相冷媒となり、熱交換器3に流入する。熱交換器3に流入した低圧二相冷媒は、熱交換器3を通過する室内空気と熱交換し、低圧ガス冷媒となり、圧縮機5に吸入される。   Next, the operation will be described. First, the reheat dehumidifying operation of the heat pump apparatus will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the condenser 6, exchanges heat with the air passing through the condenser 6, and flows out in a high-pressure two-phase state. The high-pressure two-phase refrigerant that has flowed out of the condenser 6 passes through the substantially fully opened expansion valve 7 and then flows into the upstream heat exchanger 8. The high-pressure two-phase refrigerant that has flowed into the upstream heat exchanger 8 exchanges heat with room air that passes through the upstream heat exchanger 8, and becomes high-pressure liquid refrigerant that flows into the reheat dehumidification valve 9. At this time, the bypass valve 10 is in a closed state. The high-pressure liquid refrigerant that has flowed into the reheat dehumidification valve 9 is decompressed to become a low-pressure two-phase refrigerant, and flows into the heat exchanger 3. The low-pressure two-phase refrigerant that has flowed into the heat exchanger 3 exchanges heat with the indoor air that passes through the heat exchanger 3, becomes low-pressure gas refrigerant, and is sucked into the compressor 5.

次に、冷房運転の動作について図3を用いて説明する。圧縮機1から吐出された高温高圧のガス冷媒は凝縮器6を流れ、凝縮器6を通過する空気と熱交換して高圧液状態となって流出する。凝縮器6を流出した高圧液冷媒は膨張弁7で減圧されて低圧二相冷媒となり、上流側熱交換器8に流入する。上流側熱交換器8に流入した低圧二相冷媒は上流側熱交換器8を通過する室内空気と熱交換し、乾き度の高い低圧二相冷媒となって、全開のバイパス弁10を介し熱交換器3に流入する。熱交換器3に流入した乾き度の高い低圧二相冷媒は、熱交換器3を通過する室内空気と熱交換し、低圧ガス冷媒となり、圧縮機5に吸入される。   Next, the operation of the cooling operation will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the condenser 6, exchanges heat with the air passing through the condenser 6, and flows out as a high-pressure liquid state. The high-pressure liquid refrigerant that has flowed out of the condenser 6 is decompressed by the expansion valve 7 to become a low-pressure two-phase refrigerant, and flows into the upstream heat exchanger 8. The low-pressure two-phase refrigerant that has flowed into the upstream heat exchanger 8 exchanges heat with the indoor air that passes through the upstream heat exchanger 8, becomes a low-pressure two-phase refrigerant with high dryness, and heats through the fully-open bypass valve 10. It flows into the exchanger 3. The low-pressure two-phase refrigerant having a high dryness flowing into the heat exchanger 3 exchanges heat with the indoor air passing through the heat exchanger 3, becomes a low-pressure gas refrigerant, and is sucked into the compressor 5.

次に、図1及び図2を用いて、冷房運転時の熱交換器および冷媒分配器の動作について説明する。前述のように乾き度の高い二相冷媒は、冷媒流入口11より熱交換器3に流入する。冷媒流入口11より流入した二相冷媒は、分岐ジョイント12で分配され、一方は上部ヘッダー流入管13に、他方は下部ヘッダー流入管14に流れる。上部ヘッダー流入管13に流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の上端折返し部19aより流入し、また下部ヘッダー流入管14に流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の下端折返し部19bより流入することで、ループ状流路19の中で冷媒循環流を生成する。これにより、二相冷媒は、ループ状流路19の中でガス冷媒と液冷媒が均質状態で流動し、高さ方向に複数配置された冷媒分流管17からは、位置にかかわらず同じボイド率の二相冷媒が分流され、熱交換器3の各パスを構成する伝熱管すなわち冷媒分流管17に均等分配される。冷媒分流管17に流入した二相冷媒は、冷媒分流管17と一体化したアルミフィン20を介して、熱交換器3を通過する空気4と熱交換し、ガス冷媒となって各パス出口よりガス合流管2内部に流出し、合流して冷媒流出口21より流出する。   Next, operations of the heat exchanger and the refrigerant distributor during the cooling operation will be described with reference to FIGS. 1 and 2. As described above, the two-phase refrigerant having a high dryness flows into the heat exchanger 3 from the refrigerant inlet 11. The two-phase refrigerant that flows in from the refrigerant inlet 11 is distributed by the branch joint 12, and one flows to the upper header inflow pipe 13 and the other flows to the lower header inflow pipe 14. The two-phase refrigerant that has flowed into the upper header inflow pipe 13 flows from the upper end turning portion 19a of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16 inside the header 15, and also flows into the lower header inflow pipe 14. The two-phase refrigerant flows in from the lower end folded portion 19b of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16 inside the header 15, thereby generating a refrigerant circulation flow in the loop-shaped flow path 19. As a result, the two-phase refrigerant flows in the loop-shaped flow path 19 in a state where the gas refrigerant and the liquid refrigerant are in a homogeneous state, and from the refrigerant distribution pipes 17 arranged in the height direction, the same void rate regardless of the position. The two-phase refrigerant is divided and is evenly distributed to the heat transfer tubes constituting the respective paths of the heat exchanger 3, that is, the refrigerant distribution tubes 17. The two-phase refrigerant flowing into the refrigerant distribution pipe 17 exchanges heat with the air 4 passing through the heat exchanger 3 via the aluminum fins 20 integrated with the refrigerant distribution pipe 17 and becomes a gas refrigerant from each path outlet. The gas flows out into the gas merge pipe 2, merges, and flows out from the refrigerant outlet 21.

以上のように、本実施の形態によれば、ヘッダー15内部に絞り部を有することなく、流入した二相冷媒をヘッダー15内部で循環させて均質化し、複数配置された冷媒分流管17より流出する二相冷媒を均質に分配することができる。このため、再熱除湿機能を有するルームエアコンの室内熱交換器のような2分割された熱交換器8,3を直列に接続する構成において、下流側の熱交換器3に適用し、共に蒸発器で使用される冷房運転の場合においても、上流側の熱交換器8を流出した二相冷媒が、下流側の熱交換器3に流入する際、減圧されることなく、均一分配を実現できる。そして、圧力損失による熱交換器の伝熱性能の悪化を防止することが可能となり、ヒートポンプ装置の効率を低下させることなく、高効率な運転を実現することができる。   As described above, according to the present embodiment, the two-phase refrigerant that has flowed in is circulated inside the header 15 to be homogenized without flowing out from the plurality of refrigerant distribution pipes 17 without having a throttle portion inside the header 15. The two-phase refrigerant can be uniformly distributed. For this reason, in a configuration in which the heat exchangers 8 and 3 divided in two, such as an indoor heat exchanger of a room air conditioner having a reheat dehumidifying function, are connected in series, the heat exchanger 3 is applied to the downstream heat exchanger 3 and both are evaporated. Even in the case of the cooling operation used in the cooler, when the two-phase refrigerant that has flowed out of the upstream heat exchanger 8 flows into the downstream heat exchanger 3, uniform distribution can be realized without being reduced in pressure. . And it becomes possible to prevent the heat transfer performance of the heat exchanger from deteriorating due to pressure loss, and high efficiency operation can be realized without reducing the efficiency of the heat pump device.

実施の形態2.
図4は本発明の実施の形態2に係る冷媒分配器を示す正面断面図であり、図中、前述の実施の形態1と同一部分には、同一符号を付してある。なお、説明に当っては前述の図2及び図3を参照するものとする。
Embodiment 2. FIG.
FIG. 4 is a front sectional view showing a refrigerant distributor according to Embodiment 2 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. In the description, reference is made to FIG. 2 and FIG. 3 described above.

本発明の実施の形態に係る冷媒分配器1Aは、ヘッダー15のループ状流路19の下端折返し部19bに挿入接合される下部ヘッダー流入管14Aの管径を、ヘッダー15のループ状流路19の上端折返し部19aに挿入接合される上部ヘッダー流入管13Aの管径よりも小さくなるように構成したものである。なお、上部ヘッダー流入管13Aと下部ヘッダー流入管14Aの合計管内面積は冷媒流入口11の管内面積に対し同等以上としている。それ以外の構成は前述の実施の形態1と同様である。   In the refrigerant distributor 1A according to the embodiment of the present invention, the diameter of the lower header inflow pipe 14A inserted and joined to the lower end folded portion 19b of the loop-shaped flow path 19 of the header 15 is set to the loop-shaped flow path 19 of the header 15. The upper header inflow pipe 13A is inserted into and joined to the upper end folded portion 19a so as to be smaller than the pipe diameter. The total pipe area of the upper header inlet pipe 13A and the lower header inlet pipe 14A is equal to or greater than the pipe inner area of the refrigerant inlet 11. Other configurations are the same as those of the first embodiment.

次に、本実施の形態に係る冷媒分配器の冷房運転時の冷媒分配器の動作について図4に基づき図2及び図3を参照しながら説明する。乾き度の高い二相冷媒は、冷媒流入口11より流入する。冷媒流入口11より流入した二相冷媒は、分岐ジョイント12で分配され、一方は上部ヘッダー流入管13Aに、他方は下部ヘッダー流入管14Aに流れる。上部ヘッダー流入管13Aに流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の上端折返し部19aより流入し、また下部ヘッダー流入管14Aに流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の下端折返し部19bより流入することで、ループ状流路19の中で冷媒循環流を生成する。   Next, the operation of the refrigerant distributor during the cooling operation of the refrigerant distributor according to the present embodiment will be described with reference to FIGS. 2 and 3 based on FIG. The two-phase refrigerant having a high degree of dryness flows from the refrigerant inlet 11. The two-phase refrigerant that has flowed in from the refrigerant inlet 11 is distributed by the branch joint 12, and one flows to the upper header inlet pipe 13A and the other flows to the lower header inlet pipe 14A. The two-phase refrigerant that has flowed into the upper header inflow pipe 13A flows from the upper end turning portion 19a of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16 inside the header 15, and also flows into the lower header inflow pipe 14A. The two-phase refrigerant flows in from the lower end folded portion 19b of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16 inside the header 15, thereby generating a refrigerant circulation flow in the loop-shaped flow path 19.

本実施の形態においては、下部ヘッダー流入管14Aの管径が、上部ヘッダー流入管13Aの管径よりも小さくなるように構成されているため、下部ヘッダー流入管14Aよりループ状流路19内に流入する二相冷媒101の流速は、上部ヘッダー流入管13Aよりループ状流路19内に流入する二相冷媒102の流速よりも速く、下部ヘッダー流入管14Aの流入部の静圧は低下し、隔壁16を挟む一方(右側)の流路内の冷媒の一部103を下端折返し部19bを介して他方(左側)の流路内に吸引する効果が促進される。これにより、ループ状流路19内の循環が促進され、ループ状流路19内の二相冷媒はより均質化され、高さ方向に複数配置された冷媒分流管17からは、位置にかかわらず同じボイド率の二相冷媒が分流され、熱交換器3の各パスを構成する伝熱管(冷媒分流管17)に均等分配することができる。これにより熱交換器3の効率が向上し、延いてはヒートポンプ装置の高効率な運転を実現することができる。   In the present embodiment, since the pipe diameter of the lower header inflow pipe 14A is configured to be smaller than the pipe diameter of the upper header inflow pipe 13A, the lower header inflow pipe 14A enters the loop-shaped flow path 19 from the lower header inflow pipe 14A. The flow rate of the inflowing two-phase refrigerant 101 is faster than the flow rate of the two-phase refrigerant 102 flowing into the loop-shaped flow path 19 from the upper header inflow pipe 13A, and the static pressure at the inflow portion of the lower header inflow pipe 14A decreases. The effect of sucking a part of the refrigerant 103 in one (right side) flow channel sandwiching the partition wall 16 into the other (left side) flow channel via the lower end folding portion 19b is promoted. Thereby, the circulation in the loop-shaped flow path 19 is promoted, the two-phase refrigerant in the loop-shaped flow path 19 is more homogenized, and a plurality of refrigerant distribution pipes 17 arranged in the height direction are independent of the position. The two-phase refrigerant having the same void ratio is divided and can be evenly distributed to the heat transfer tubes (refrigerant distribution tubes 17) constituting each path of the heat exchanger 3. As a result, the efficiency of the heat exchanger 3 is improved, and as a result, a highly efficient operation of the heat pump device can be realized.

実施の形態3.
図5は本発明の実施の形態3に係る冷媒分配器を示す正面断面図であり、図中、前述の実施の形態1と同一部分には、同一符号を付してある。なお、説明に当っては前述の図2及び図3を参照するものとする。
Embodiment 3 FIG.
FIG. 5 is a front sectional view showing a refrigerant distributor according to Embodiment 3 of the present invention. In the figure, the same parts as those of Embodiment 1 are given the same reference numerals. In the description, reference is made to FIG. 2 and FIG. 3 described above.

本発明の実施の形態に係る冷媒分配器1Bは、ヘッダー15の内部の隔壁16Aの上部を上部折返し部19aの下流側に屈曲させ、ループ状流路19の上部折り返し後の流路面積が次第に拡大する面積拡大部19cとして構成することで、冷媒循環を促進させ、各パスを構成する伝熱管(冷媒分流管17)に二相冷媒を均質に分配できるようにしたものである。それ以外の構成は前述の実施の形態1と同様である。   In the refrigerant distributor 1B according to the embodiment of the present invention, the upper part of the partition wall 16A inside the header 15 is bent to the downstream side of the upper folded part 19a, and the channel area after the upper part of the loop-shaped channel 19 is gradually turned up. By constituting as the area expanding portion 19c that expands, the refrigerant circulation is promoted, and the two-phase refrigerant can be uniformly distributed to the heat transfer pipes (refrigerant distribution pipes 17) constituting each path. Other configurations are the same as those of the first embodiment.

次に、本実施の形態に係る冷媒分配器の冷房運転時の冷媒分配器の動作について図5に基づき図2及び図3を参照しながら説明する。乾き度の高い二相冷媒は、冷媒流入口11より流入する。冷媒流入口11より流入した二相冷媒は、分岐ジョイント12で分配され、一方は上部ヘッダー流入管13に、他方は下部ヘッダー流入管14に流れる。上部ヘッダー流入管13に流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16Aにより形成されたループ状流路19の上端折返し部19aより流入し、また下部ヘッダー流入管14に流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の下端折返し部19bより流入することで、ループ状流路19の中で冷媒循環流を生成する。   Next, the operation of the refrigerant distributor during the cooling operation of the refrigerant distributor according to the present embodiment will be described with reference to FIGS. 2 and 3 based on FIG. The two-phase refrigerant having a high degree of dryness flows from the refrigerant inlet 11. The two-phase refrigerant that flows in from the refrigerant inlet 11 is distributed by the branch joint 12, and one flows to the upper header inflow pipe 13 and the other flows to the lower header inflow pipe 14. The two-phase refrigerant that has flowed into the upper header inflow pipe 13 flows from the upper end folded portion 19a of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16A inside the header 15, and also flows into the lower header inflow pipe 14 The two-phase refrigerant flows in from the lower end folded portion 19b of the loop-shaped flow path 19 formed by the header 15 and the partition wall 16 inside the header 15, thereby generating a refrigerant circulation flow in the loop-shaped flow path 19.

本実施の形態においては、ヘッダー15の内部の隔壁16Aの上部を上部折返し部19aの下流側に屈曲させて、ループ状流路19の上部折り返し後の流路面積が次第に拡大するように構成しているので、上部ヘッダー流入管13よりループ状流路19内に流入する二相冷媒102は、下部ヘッダー流入管14より流入しループ状流路19を上昇する二相冷媒104と合流し下降するが、隔壁16Aの屈曲形状により形成されたループ状流路19の面積拡大部19cを通過することにより、二相冷媒の流速が低減する。流速が低減すると、静圧が上昇するため、下部ヘッダー流入管14の流入部との差圧が拡大し、二相冷媒の循環が促進される。   In the present embodiment, the upper portion of the partition wall 16A inside the header 15 is bent to the downstream side of the upper folded portion 19a so that the flow passage area after the upper turn of the loop-shaped flow passage 19 gradually increases. Therefore, the two-phase refrigerant 102 that flows into the loop-shaped flow path 19 from the upper header inflow pipe 13 merges with the two-phase refrigerant 104 that flows in from the lower header inflow pipe 14 and rises in the loop-shaped flow path 19 and descends. However, the flow rate of the two-phase refrigerant is reduced by passing through the area enlarged portion 19c of the loop-shaped flow path 19 formed by the bent shape of the partition wall 16A. When the flow velocity is reduced, the static pressure increases, so that the differential pressure with the inflow portion of the lower header inflow pipe 14 increases, and the circulation of the two-phase refrigerant is promoted.

このように、本実施の形態においては、隔壁16aの屈曲形状により形成されたループ状流路19の面積拡大部19cにより、ループ状流路19の上部折り返し後の二相冷媒の流速を低減することができて、静圧を上昇させることができるため、下部ヘッダー流入管14の流入部との差圧が拡大し、二相冷媒の循環を促進することができる。このため、ループ状流路19内の二相冷媒は、より均質化され、高さ方向に複数配置された冷媒分流管17からは、位置にかかわらず同じボイド率の二相冷媒が分流され、熱交換器3の各パスを構成する伝熱管に均等分配される。これにより、熱交換器3の効率が向上し、延いてはヒートポンプ装置の高効率な運転を実現することができる。   As described above, in the present embodiment, the flow rate of the two-phase refrigerant after the upper part of the loop-shaped flow path 19 is reduced by the area enlargement portion 19c of the loop-shaped flow path 19 formed by the bent shape of the partition wall 16a. In addition, since the static pressure can be increased, the differential pressure with the inflow portion of the lower header inflow pipe 14 is increased, and the circulation of the two-phase refrigerant can be promoted. For this reason, the two-phase refrigerant in the loop-shaped flow path 19 is more homogenized, and the two-phase refrigerant having the same void ratio is diverted from the refrigerant distribution pipes 17 arranged in the height direction regardless of the position. Evenly distributed to the heat transfer tubes constituting each path of the heat exchanger 3. As a result, the efficiency of the heat exchanger 3 is improved, and as a result, a highly efficient operation of the heat pump device can be realized.

実施の形態4.
図6は本発明の実施の形態4に係る冷媒分配器を示す正面断面図であり、図中、前述の実施の形態1と同一部分には、同一符号を付してある。なお、説明に当っては前述の図2及び図3を参照するものとする。
Embodiment 4 FIG.
FIG. 6 is a front sectional view showing a refrigerant distributor according to Embodiment 4 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. In the description, reference is made to FIG. 2 and FIG. 3 described above.

本発明の実施の形態に係る冷媒分配器1Cは、上部ヘッダー流入管13Bの先端の噴出口部を、ループ状流路19の内部で末広がり状に拡径するディフューザー18として構成することで、冷媒循環を促進させ、各パスを構成する伝熱管(冷媒分流管17)に二相冷媒を均質に分配できるようにしたものである。それ以外の構成は前述の実施の形態1と同様である。   The refrigerant distributor 1C according to the embodiment of the present invention is configured such that the jet outlet at the tip of the upper header inflow pipe 13B is configured as a diffuser 18 that expands in a divergent shape inside the loop-shaped channel 19. Circulation is promoted so that the two-phase refrigerant can be uniformly distributed to the heat transfer tubes (refrigerant distribution tubes 17) constituting each path. Other configurations are the same as those of the first embodiment.

次に、本実施の形態に係る冷媒分配器の冷房運転時の冷媒分配器の動作について図5に基づき図2及び図3を参照しながら説明する。乾き度の高い二相冷媒は冷媒流入口11より流入する。冷媒流入口11より流入した二相冷媒は分岐ジョイント12で分配され、一方は上部ヘッダー流入管13Bに、他方は下部ヘッダー流入管14に流れる。上部ヘッダー流入管13Bに流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の上部より流入し、また下部ヘッダー流入管14に流入した二相冷媒は、ヘッダー15とヘッダー15の内部の隔壁16により形成されたループ状流路19の下部より流入することで、ループ状流路19の中で循環流を生成する。   Next, the operation of the refrigerant distributor during the cooling operation of the refrigerant distributor according to the present embodiment will be described with reference to FIGS. 2 and 3 based on FIG. The two-phase refrigerant having a high degree of dryness flows from the refrigerant inlet 11. The two-phase refrigerant that has flowed from the refrigerant inlet 11 is distributed by the branch joint 12, and one flows to the upper header inlet pipe 13 </ b> B and the other flows to the lower header inlet pipe 14. The two-phase refrigerant that has flowed into the upper header inflow pipe 13B flows from the upper part of the loop-shaped flow path 19 formed by the header 15 and the partition 16 inside the header 15, and the two-phase refrigerant that has flowed into the lower header inflow pipe 14 Flows from the lower part of the loop-shaped flow path 19 formed by the header 15 and the partition 16 inside the header 15, thereby generating a circulating flow in the loop-shaped flow path 19.

このように、本実施の形態においては、上部ヘッダー流入管13Bの先端に形成されたディフューザー18により、二相冷媒の流速を低減することができて、静圧を上昇させることができるため、下部ヘッダー流入管14の流入部との差圧が拡大し、二相冷媒の循環を促進することができる。このため、ループ状流路19内の二相冷媒は、より均質化され、高さ方向に複数配置された冷媒分流管17からは、位置にかかわらず同じボイド率の二相冷媒が分流され、熱交換器3の各パスを構成する伝熱管に均等分配される。これにより、熱交換器3の効率が向上し、延いてはヒートポンプ装置の高効率な運転を実現することができる。   Thus, in the present embodiment, the diffuser 18 formed at the tip of the upper header inflow pipe 13B can reduce the flow rate of the two-phase refrigerant and increase the static pressure. The differential pressure with the inflow portion of the header inflow pipe 14 is increased, and the circulation of the two-phase refrigerant can be promoted. For this reason, the two-phase refrigerant in the loop-shaped flow path 19 is more homogenized, and the two-phase refrigerant having the same void ratio is diverted from the refrigerant distribution pipes 17 arranged in the height direction regardless of the position. Evenly distributed to the heat transfer tubes constituting each path of the heat exchanger 3. As a result, the efficiency of the heat exchanger 3 is improved, and as a result, a highly efficient operation of the heat pump device can be realized.

1,1A,1B,1C 冷媒分配器、3 熱交換器、12 分岐ジョイント、13,13A,13B 上部ヘッダー流入管、14,14A 下部ヘッダー流入管、15 ヘッダー、17 冷媒分流管、18 ディフューザー(噴出口)、19 ループ状流路、19a 上端折返し部、19b 下端折返し部、19c ループ状流路の面積拡大部。   1, 1A, 1B, 1C Refrigerant distributor, 3 Heat exchanger, 12 Branch joint, 13, 13A, 13B Upper header inlet pipe, 14, 14A Lower header inlet pipe, 15 header, 17 Refrigerant branch pipe, 18 Diffuser (jet Outlet), 19 loop-shaped channel, 19a upper end folded portion, 19b lower end folded portion, 19c area enlarged portion of loop-shaped channel.

Claims (6)

内部にループ状流路が形成されたヘッダーと、
前記ヘッダーの前記ループ状流路の少なくとも一部に接続された複数の冷媒分流管と、
分岐ジョイントを介し複数本に分岐されて前記ヘッダーの前記ループ状流路内にそれぞれ挿入接合され、それぞれの噴出流によって該ループ状流路内に同じ方向の冷媒循環流を発生させる複数のヘッダー流入管と、
を備えることを特徴とする冷媒分配器。
A header with a loop-shaped channel formed inside,
A plurality of refrigerant distribution pipes connected to at least a part of the loop-shaped flow path of the header;
A plurality of header inflows that are branched into a plurality of branches via a branch joint and inserted and joined into the loop-shaped flow path of the header, respectively, and generate a refrigerant circulation flow in the same direction in the loop-shaped flow path by each jet flow Tube,
A refrigerant distributor comprising:
前記ヘッダーは、その内部の上下両端に前記ループ状流路の折返し部を有する縦長に形成され、
前記分岐ジョイントは、2分岐の分岐ジョイントであり、この2分岐の分岐ジョイントにより分岐された2本の前記ヘッダー流入管のうちの1本は、前記ヘッダーの前記ループ状流路の上端折返し部に挿入接合され、他の1本は、前記ヘッダーの前記ループ状流路の下端折返し部に挿入接合されていることを特徴とする請求項1記載の冷媒分配器。
The header is formed in a vertically long shape having folded portions of the loop-shaped flow path at both upper and lower ends inside the header,
The branch joint is a two-branch branch joint, and one of the two header inflow pipes branched by the two-branch joint is connected to an upper end turning portion of the loop-shaped flow path of the header. The refrigerant distributor according to claim 1, wherein the other one is inserted and joined to a lower end folded portion of the loop-shaped flow path of the header.
前記ヘッダーの前記ループ状流路の下端折返し部に挿入接合されるヘッダー流入管の管径は、前記ヘッダーの前記ループ状流路の上端折返し部に挿入接合されるヘッダー流入管の管径よりも小さいことを特徴とする請求項2記載の冷媒分配器。   The pipe diameter of the header inflow pipe inserted and joined to the lower end folded portion of the loop flow path of the header is larger than the pipe diameter of the header inflow pipe inserted and joined to the upper end folded section of the loop flow path of the header. The refrigerant distributor according to claim 2, wherein the refrigerant distributor is small. 前記ヘッダーの前記ループ状流路の上端折返し部に挿入接合されるヘッダー流入管は、その噴出口が、該ループ状流路の内部で末広がり状に拡径して形成されていることを特徴とする請求項2又は請求項3記載の冷媒分配器。   The header inflow pipe inserted and joined to the upper-end folded portion of the loop-shaped flow path of the header is characterized in that the jet outlet is formed to expand in a divergent shape inside the loop-shaped flow path. The refrigerant distributor according to claim 2 or 3. 前記ループ状流路は、上端折返し部で折り返した後、流路面積が拡大するように構成されていることを特徴とする請求項2乃至請求項4のいずれかに記載の冷媒分配器。   The refrigerant distributor according to any one of claims 2 to 4, wherein the loop-shaped flow path is configured so that the flow path area is expanded after being folded at an upper end folding portion. 請求項1乃至請求項5のいずれかに記載の冷媒分配器を用いたヒートポンプ装置。   A heat pump device using the refrigerant distributor according to any one of claims 1 to 5.
JP2009238569A 2009-10-15 2009-10-15 Refrigerant distributor and heat pump device using the refrigerant distributor Active JP5020298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238569A JP5020298B2 (en) 2009-10-15 2009-10-15 Refrigerant distributor and heat pump device using the refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238569A JP5020298B2 (en) 2009-10-15 2009-10-15 Refrigerant distributor and heat pump device using the refrigerant distributor

Publications (2)

Publication Number Publication Date
JP2011085324A JP2011085324A (en) 2011-04-28
JP5020298B2 true JP5020298B2 (en) 2012-09-05

Family

ID=44078397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238569A Active JP5020298B2 (en) 2009-10-15 2009-10-15 Refrigerant distributor and heat pump device using the refrigerant distributor

Country Status (1)

Country Link
JP (1) JP5020298B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160956A1 (en) 2012-04-26 2013-10-31 三菱電機株式会社 Heat-exchanger header and heat exchanger provided therewith
US20150101363A1 (en) 2012-04-26 2015-04-16 Mitsubishi Electric Corporation Refrigerant distributing device and heat exchanger including the same
US9989283B2 (en) 2013-08-12 2018-06-05 Carrier Corporation Heat exchanger and flow distributor
US10712062B2 (en) * 2015-10-26 2020-07-14 Mitsubishi Electric Corporation Refrigerant distributor and air-conditioning apparatus using the same
CN109153100B (en) * 2016-10-25 2020-07-03 仲田涂覆株式会社 Door type tearing processing device
KR101996059B1 (en) * 2018-02-09 2019-07-03 엘지전자 주식회사 Heat exchanger for air conditioner
JP7108177B2 (en) * 2018-03-30 2022-07-28 ダイキン工業株式会社 heat exchangers and air conditioners
CN115111939A (en) * 2018-10-29 2022-09-27 三菱电机株式会社 Heat exchanger, outdoor unit, and refrigeration cycle device
JP7086264B2 (en) * 2018-10-29 2022-06-17 三菱電機株式会社 Heat exchanger, outdoor unit, and refrigeration cycle device
WO2021075024A1 (en) * 2019-10-17 2021-04-22 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP6915714B1 (en) * 2020-03-10 2021-08-04 株式会社富士通ゼネラル Heat exchanger
WO2023125014A1 (en) * 2021-12-31 2023-07-06 杭州三花微通道换热器有限公司 Micro-channel heat exchanger and heat exchange system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140569A (en) * 1988-10-20 1990-05-30 Matsushita Refrig Co Ltd Refrigerant branch device
JPH02282670A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Heat exchanger
JPH07280388A (en) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd Evaporator
JP2007309541A (en) * 2006-05-16 2007-11-29 Calsonic Kansei Corp Heat exchanger and its assembling method
JP5097472B2 (en) * 2007-08-10 2012-12-12 Gac株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2011085324A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5020298B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
JP6333401B2 (en) Heat exchanger and air conditioner
US9702637B2 (en) Heat exchanger, indoor unit, and refrigeration cycle apparatus
US10422566B2 (en) Air-Conditioning apparatus
EP3205968A1 (en) Heat exchanger and air conditioning device
JP2003254555A (en) Air conditioner
JPWO2019058540A1 (en) Refrigerant distributor and air conditioner
JP2005265263A (en) Heat-exchanger and air-conditioner
WO2016001957A1 (en) Air conditioner
EP2982924A1 (en) Heat exchanger
WO2017208493A1 (en) Air conditioner
EP2568247A2 (en) Air conditioner
JP6766723B2 (en) Heat exchanger or refrigeration equipment
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP6551251B2 (en) Header distributor, outdoor unit equipped with header distributor, and air conditioner
JP6678413B2 (en) Air conditioner
EP4083558A1 (en) Heat exchanger and refrigeration cycle device
JP6537868B2 (en) Heat exchanger
JP5229043B2 (en) Heat exchanger
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
WO2022172359A1 (en) Outdoor heat exchanger and air conditioner
JP2018162920A (en) Air conditioner
JP6961016B2 (en) Heat exchanger, outdoor unit and refrigeration cycle equipment
WO2019167312A1 (en) Heat exchanger
JP6664172B2 (en) Heat exchanger and air conditioner using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250