JP6664172B2 - Heat exchanger and air conditioner using the same - Google Patents

Heat exchanger and air conditioner using the same Download PDF

Info

Publication number
JP6664172B2
JP6664172B2 JP2015175428A JP2015175428A JP6664172B2 JP 6664172 B2 JP6664172 B2 JP 6664172B2 JP 2015175428 A JP2015175428 A JP 2015175428A JP 2015175428 A JP2015175428 A JP 2015175428A JP 6664172 B2 JP6664172 B2 JP 6664172B2
Authority
JP
Japan
Prior art keywords
path
refrigerant
heat exchanger
parallel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175428A
Other languages
Japanese (ja)
Other versions
JP2017053498A (en
Inventor
高藤 亮一
亮一 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2015175428A priority Critical patent/JP6664172B2/en
Publication of JP2017053498A publication Critical patent/JP2017053498A/en
Application granted granted Critical
Publication of JP6664172B2 publication Critical patent/JP6664172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器及びそれを用いた空気調和機に関する。   The present invention relates to a heat exchanger and an air conditioner using the same.

室内の空気の温度、湿度、清浄度などを調節する空気調和機において、熱交換器の熱交換効率(以下、単に「効率」という場合もある。)を向上させるためには、特に蒸発器に関し、冷媒の蒸発にともなう圧力損失の増大を抑制することが効果的である。そのため、従来から、例えば、熱交換器入口において冷媒を複数の流路に分割して流入させる構成が多く採られている。   In an air conditioner that adjusts the temperature, humidity, cleanliness, and the like of indoor air, in order to improve the heat exchange efficiency of a heat exchanger (hereinafter, sometimes simply referred to as “efficiency”), it is particularly necessary to use an evaporator. It is effective to suppress an increase in pressure loss due to the evaporation of the refrigerant. For this reason, conventionally, for example, a configuration in which a refrigerant is divided into a plurality of flow paths at a heat exchanger inlet and flows therein has been adopted in many cases.

蒸発器内の冷媒は液とガス(気体)の二相状態であるため、複数の流路の各々に、液とガスを同じ比率で流入させることは困難である。つまり、複数の流路ごとに液とガスの比率が異なる、いわゆる「偏流」と呼ばれる状態が発生し、それが効率低下の原因となっている。   Since the refrigerant in the evaporator is in a two-phase state of liquid and gas (gas), it is difficult to make the liquid and gas flow into each of the plurality of flow paths at the same ratio. That is, a state called so-called "drift" occurs in which the ratio of the liquid to the gas is different for each of the plurality of flow paths, which causes a reduction in efficiency.

例えば、特許文献1では、多パス型熱交換器に関し、複数の冷媒管を流れる冷媒を経路途中で一旦合流させ、その直後に再び分流させることで、偏流を可及的に防止し、効率低下を抑制する構成が開示されている。   For example, Patent Literature 1 relates to a multi-pass heat exchanger, in which refrigerant flowing through a plurality of refrigerant pipes is once merged in the middle of a path and then re-divided immediately thereafter, thereby preventing drift as much as possible and lowering efficiency. Is disclosed.

特開平8−313115号公報JP-A-8-313115

しかしながら、特許文献1の技術では、特許文献1の図1等からわかるように、並列に蛇行配置された複数(2本)の冷媒管の途中部分に水平な合流部を設けた構成となっているので、各冷媒管を流れる冷媒の直進性等により、冷媒の合流による偏流低減が充分とは言えない。   However, in the technique of Patent Document 1, as can be seen from FIG. 1 and the like of Patent Document 1, a horizontal merging portion is provided at an intermediate portion of a plurality (two) of refrigerant pipes arranged in a meandering manner in parallel. Therefore, due to the rectilinearity of the refrigerant flowing through each refrigerant tube, it is not sufficient to reduce the drift due to the merging of the refrigerant.

そこで、本発明は、熱交換器において、複数の並列した冷媒管を用いた場合に、偏流を低減することで熱交換効率を向上させることを課題とする。   Therefore, an object of the present invention is to improve the heat exchange efficiency by reducing the drift when using a plurality of parallel refrigerant tubes in a heat exchanger.

前記課題を解決するために、本発明は、熱交換を行うために冷媒を流通させる冷媒管として、複数の冷媒管が並列されている第1の並列経路と、複数の冷媒管が並列されている第2の並列経路と、前記第1の並列経路と接続され、冷媒を合流させる合流部と、前記合流部と第1の経路部材を介して接続され、冷媒の流路方向を水平方向から垂直方向に変更する流路方向変更手段と、前記流路方向変更手段と第2経路部材を介して接続され、前記流路方向変更手段から、前記第2経路部材が垂直方向に受け入れた冷媒を前記第2の並列経路に分流させる分流部と、を備えることを特徴とする熱交換器である。その他の手段については後記する。 In order to solve the above-described problems, the present invention provides a refrigerant pipe through which a refrigerant flows for performing heat exchange, a first parallel path in which a plurality of refrigerant pipes are arranged in parallel, and a plurality of refrigerant pipes arranged in parallel. A second parallel path, which is connected to the first parallel path, and a merging section for merging the refrigerant, and which is connected to the merging section via a first path member , and sets the refrigerant flow direction from a horizontal direction. A flow direction changing means for changing the flow direction in the vertical direction, the flow direction changing means and the second path member are connected via a second path member, from the flow direction change means, the refrigerant received by the second path member in the vertical direction. A flow dividing unit that divides the flow into the second parallel path. Other means will be described later.

本発明によれば、熱交換器において、複数の並列した冷媒管を用いた場合に、偏流を低減することで熱交換効率を向上させることができる。   According to the present invention, when a plurality of parallel refrigerant pipes are used in the heat exchanger, the heat exchange efficiency can be improved by reducing the drift.

本発明の実施形態に係る空気調和機の全体構成図である。1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る空気調和機における室内熱交換器の冷媒経路を説明するための概略図である。It is a schematic diagram for explaining a refrigerant course of an indoor heat exchanger in an air conditioner concerning an embodiment of the present invention. 図2の冷媒経路内における合流部の具体的な構成例を示す図である。FIG. 3 is a diagram illustrating a specific configuration example of a junction in the refrigerant path in FIG. 2. 図2の冷媒経路内における流路方向変更手段の具体的な構成例を示す図である。FIG. 3 is a diagram illustrating a specific configuration example of a flow path direction changing unit in the refrigerant path in FIG. 2. 図2の冷媒経路内における分流部の具体的な構成例を示す図である。FIG. 3 is a diagram illustrating a specific configuration example of a branch portion in the refrigerant path in FIG. 2. 本発明の実施形態に係る室内熱交換器の仕様A、仕様Bに関し、冷媒管位置と圧力との関係を示すグラフである。It is a graph which shows specification A and specification B of the indoor heat exchanger concerning an embodiment of the present invention, and shows a relation between a refrigerant pipe position and pressure. 本発明の実施形態に係る室内熱交換器の仕様A、仕様Bに関し、圧縮機回転数と能力との関係を示すグラフである。It is a graph which shows the relation between the number of rotations of a compressor and the capacity about specification A and specification B of the indoor heat exchanger concerning an embodiment of the present invention. 本発明の実施形態に係る室内熱交換器の仕様A、仕様Bに関し、冷媒管内の二相流を均質流と仮定した場合の冷媒循環量と圧力損失との関係を示すグラフである。4 is a graph showing a relationship between a refrigerant circulation amount and a pressure loss when a two-phase flow in a refrigerant pipe is assumed to be a homogeneous flow with respect to specifications A and B of the indoor heat exchanger according to the embodiment of the present invention.

以下、本発明の実施形態に係る空気調和機の構成、機能及び動作について、図1〜図8を用いて説明する。   Hereinafter, the configuration, function, and operation of the air conditioner according to the embodiment of the present invention will be described with reference to FIGS.

図1に示すように、空気調和機100は、圧縮機1、四方弁2(流路切替手段)、室外に設置される室外熱交換器3、流量制御弁4(冷暖房運転用の絞り装置)、及び、室内に設置される室内熱交換器5を備え、それらが冷媒管8を介して環状に接続されており、冷房及び暖房が可能な冷凍サイクル装置を構成する。   As shown in FIG. 1, the air conditioner 100 includes a compressor 1, a four-way valve 2 (flow path switching means), an outdoor heat exchanger 3 installed outdoors, and a flow control valve 4 (throttle device for cooling and heating operation). And an indoor heat exchanger 5 installed indoors, which are connected in a ring through a refrigerant pipe 8 to constitute a refrigeration cycle device capable of cooling and heating.

室外熱交換器3にはプロペラファン等の室外送風手段6が設けられ、室外熱交換器3に空気を流通させることで冷媒と熱交換させる。
また、室内熱交換器5には貫流ファン等の室内送風手段7が設けられ、室内熱交換器5に空気を流通させることで冷媒と熱交換させる。
The outdoor heat exchanger 3 is provided with an outdoor blower 6 such as a propeller fan, and the air is passed through the outdoor heat exchanger 3 to exchange heat with the refrigerant.
Further, the indoor heat exchanger 5 is provided with an indoor blowing means 7 such as a once-through fan, and the air is circulated through the indoor heat exchanger 5 to exchange heat with the refrigerant.

次に、図2を参照して、室内熱交換器5の冷媒経路について説明する。室内熱交換器5を流れる冷媒経路は、単一の経路50、複数(例えば4本)の経路からなる第1の並列経路52、合流部53、単一の経路54、流路方向変更手段55、単一の経路56、分流部57、及び、複数(例えば8本)の経路からなる第2の並列経路58を備える。なお、熱交換位置51は、第1の並列経路52における熱交換を行う部分である。また、熱交換位置59は、第2の並列経路58における熱交換を行う部分である。   Next, the refrigerant path of the indoor heat exchanger 5 will be described with reference to FIG. The refrigerant path flowing through the indoor heat exchanger 5 includes a single path 50, a first parallel path 52 including a plurality of (for example, four) paths, a junction 53, a single path 54, and a flow direction changing unit 55. , A single path 56, a branching section 57, and a second parallel path 58 composed of a plurality of (for example, eight) paths. Note that the heat exchange position 51 is a portion where the first parallel path 52 performs heat exchange. The heat exchange position 59 is a portion where heat exchange is performed in the second parallel path 58.

合流部53は、第1の並列経路52と経路54を接続するもので、例えば、図3に示すように、経路54と接続される主管53aと、第1の並列経路52それぞれと接続される複数(例えば4本)の枝管53bとを備えるヘッダ管として構成される。   The junction 53 connects the first parallel path 52 and the path 54, and is connected to, for example, a main pipe 53 a connected to the path 54 and the first parallel path 52, as shown in FIG. 3. It is configured as a header pipe including a plurality (for example, four) of branch pipes 53b.

流路方向変更手段55は、経路54と経路56を接続するもので、例えば、図4に示すように、水平方向の経路54と、垂直方向(鉛直上下方向)の経路56とが直角に接続される。   The flow path direction changing means 55 connects the path 54 and the path 56. For example, as shown in FIG. 4, the horizontal path 54 and the vertical (vertical vertical direction) path 56 are connected at a right angle. Is done.

分流部57は、経路56と第2の並列経路58を接続するもので、例えば、図5に示すように、経路56と接続される入口管57a、ディストリビュータ57b、及び、第2の並列経路58それぞれと接続される分岐管57cを備える分流器で構成される。   The branching section 57 connects the path 56 and the second parallel path 58. For example, as shown in FIG. 5, an inlet pipe 57a connected to the path 56, a distributor 57b, and a second parallel path 58 It is composed of a flow divider having a branch pipe 57c connected to each.

次に、本実施形態における空気調和機100の冷凍サイクルの動作について説明する。図1に示すように、冷房運転時は四方弁2を、冷媒が破線部分を流れるように切替える。   Next, the operation of the refrigeration cycle of the air conditioner 100 according to the present embodiment will be described. As shown in FIG. 1, during the cooling operation, the four-way valve 2 is switched so that the refrigerant flows through a portion indicated by a broken line.

このとき、冷媒は、図1の破線矢印方向に進み、圧縮機1、四方弁2、室外熱交換器3、流量制御弁4、室内熱交換器5の順に流れる。流量制御弁4は空調負荷に応じた適度な開度に調整され、凝縮器として機能する室外熱交換器3で凝縮して液化した冷媒は流量制御弁4で気液二相流となって、室内熱交換器5へ流入する。その後、冷媒は、蒸発器として機能する室内熱交換器5で蒸発した後、圧縮機1へ戻る。   At this time, the refrigerant proceeds in the direction of the dashed arrow in FIG. 1 and flows through the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow control valve 4, and the indoor heat exchanger 5 in this order. The flow control valve 4 is adjusted to an appropriate opening degree according to the air conditioning load, and the refrigerant condensed and liquefied in the outdoor heat exchanger 3 functioning as a condenser becomes a gas-liquid two-phase flow at the flow control valve 4, It flows into the indoor heat exchanger 5. Thereafter, the refrigerant evaporates in the indoor heat exchanger 5 functioning as an evaporator, and then returns to the compressor 1.

その冷房運転時、冷媒は、図2の破線矢印方向に流れ、経路50から第1の並列経路52それぞれに分かれて流入する。このとき、経路50での冷媒の総流量に対するガスの質量流量比(乾き度)は0.2程度である。第1の並列経路52における熱交換位置51で、冷媒は空気と熱交換するため、乾き度は増加し0.6程度となる。   During the cooling operation, the refrigerant flows in the direction of the dashed arrow in FIG. 2 and flows from the path 50 into the first parallel paths 52 separately. At this time, the mass flow rate ratio (dryness) of the gas to the total flow rate of the refrigerant in the passage 50 is about 0.2. Since the refrigerant exchanges heat with air at the heat exchange position 51 in the first parallel path 52, the dryness increases to about 0.6.

冷媒は、第1の並列経路52を通過後、合流部53で合流して単一の経路54に流入し(図3参照)、流路方向変更手段55で流れ方向を水平方向から垂直方向に変更されて単一の経路56に流入し(図4参照)、分流部57で第2の並列経路58それぞれに再び分かれて流入する(図5参照)。分流された冷媒は第2の並列経路58における熱交換位置59で空気と熱交換して、乾き度がさらに増加して1.0以上となって、経路60を経由して圧縮機1へ戻る。   After passing through the first parallel path 52, the refrigerant joins at the junction 53 and flows into the single path 54 (see FIG. 3), and the flow direction is changed from the horizontal direction to the vertical direction by the flow path direction changing means 55. The flow is changed and flows into a single path 56 (see FIG. 4), and is split again and flows into each of the second parallel paths 58 at the branching section 57 (see FIG. 5). The diverted refrigerant exchanges heat with air at the heat exchange position 59 in the second parallel path 58, and the dryness further increases to 1.0 or more, and returns to the compressor 1 via the path 60. .

第1の並列経路52で分流した冷媒を合流部53で1つの経路に合流させることで、第1の並列経路52で生じた偏流はキャンセルされる。
その後、乾き度が比較的高い冷媒を分流して第2の並列経路58へ流入させる際、分流部57では分流後の第2の並列経路58それぞれにおける熱交換位置59での交換熱量に合わせた気液比率で分流される。
By causing the refrigerant diverted in the first parallel path 52 to join one path in the junction 53, the drift generated in the first parallel path 52 is canceled.
Thereafter, when the refrigerant having a relatively high degree of dryness is diverted to flow into the second parallel path 58, the diverter 57 adjusts the heat exchange amount at the heat exchange position 59 in each of the divided second parallel paths 58. The gas is separated at a gas-liquid ratio.

また、乾き度が高く液冷媒が少ない二相冷媒は管壁に薄い液膜が張り付いている環状流となっており、経路の方向などによってその後の分流時の偏流の度合いが変わりやすい。そこで、流路方向変更手段55を設けて、冷媒の流れ方向を水平方向から垂直方向に変更することで(図4参照)、管壁の薄い液膜を壊し、均質流に近い状態にすることで、分流部57において安定した(偏流の度合いが小さい)分流ができる。   Further, the two-phase refrigerant having a high degree of dryness and a small amount of liquid refrigerant has an annular flow in which a thin liquid film is stuck to the pipe wall, and the degree of drift at the time of subsequent branching is likely to change depending on the direction of the path. Therefore, by providing the flow direction changing means 55 to change the flow direction of the refrigerant from the horizontal direction to the vertical direction (see FIG. 4), the thin liquid film on the tube wall is broken, and a state close to a homogeneous flow is obtained. Thus, a stable branching (with a small degree of drift) can be performed in the branching section 57.

このとき、合流部53の上流側にある第1の並列経路52の管の流路断面積の総和と比較して、合流部53の管の流路断面積が小さすぎると、圧力損失の増大が懸念される。圧力損失の増大により、高い冷房能力(以下、単に「能力」という場合もある。)を得たいときに、冷媒循環量を増やすために圧縮機1を増速しても、冷媒循環量が増えずに、能力が頭打ちになってしまう。   At this time, if the flow path cross-sectional area of the pipe of the junction 53 is too small compared to the sum of the flow path cross-sections of the pipes of the first parallel path 52 on the upstream side of the junction 53, the pressure loss increases. Is concerned. When it is desired to obtain a high cooling capacity (hereinafter sometimes simply referred to as “capacity”) due to an increase in the pressure loss, even if the compressor 1 is accelerated to increase the refrigerant circulation amount, the refrigerant circulation amount increases. Instead, their abilities peak off.

このことを、具体的な例を挙げ、図6〜図8を用いて説明する。図6は、室内熱交換器5の管内圧力分布の実測値を示したものである。また、図7は、圧縮機1を増速し、冷媒循環量を増やした際の冷房能力の変化を示したものである。   This will be described using a specific example with reference to FIGS. FIG. 6 shows measured values of the pressure distribution in the pipe of the indoor heat exchanger 5. FIG. 7 shows a change in the cooling capacity when the speed of the compressor 1 is increased and the amount of circulating refrigerant is increased.

例えば、合流部53の上流側にある第1の並列経路52それぞれの管内径をDI0、分流数(管の数)をN、合流部53の管内径をDI1とし、DI0=5.75mm、N=4、DI1=7.2mmとする。これを仕様Aとする。   For example, the inside diameter of each of the first parallel paths 52 upstream of the junction 53 is DI0, the number of branches (the number of tubes) is N, the inside diameter of the junction 53 is DI1, and DI0 = 5.75 mm, N = 4, DI1 = 7.2 mm. This is designated as specification A.

図6に示すとおり、仕様Aでは、合流部53から分流部57までの短い区間(経路54〜経路56)で圧力損失により圧力が急激に低下し、全体の圧力損失の増加の原因となっている。
このため、図7に示すように、仕様Aでは、圧縮機1を増速しても、冷媒循環量が増えず、能力は9kW(近年要求される能力の目安値)を超えずに頭打ちになってしまう。
As shown in FIG. 6, in the specification A, the pressure drops rapidly due to the pressure loss in a short section (path 54 to path 56) from the junction 53 to the branch 57, causing an increase in the overall pressure loss. I have.
For this reason, as shown in FIG. 7, in the specification A, even if the compressor 1 is accelerated, the amount of circulating refrigerant does not increase, and the capacity does not exceed 9 kW (a standard value of the capacity required in recent years). turn into.

続いて、DI0=5.75mm、N=4、DI1=8.72mmとする。これを仕様Bとする。図6に示すとおり、仕様Bでは、合流部53から分流部57までの区間(経路54〜経路56)の圧力損失が仕様Aに比べて大幅に小さいために、全体の圧力損失も減少している。この仕様Bでは、圧力損失が小さいので、冷媒循環量を増やすことができ、図7に示すとおり、仕様Aでは頭打ちになってしまった圧縮機1の回転数においても冷房能力を直線的に増加でき、9kWを実現できる。   Subsequently, DI0 = 5.75 mm, N = 4, and DI1 = 8.72 mm. This is designated as specification B. As shown in FIG. 6, in the specification B, since the pressure loss in the section (paths 54 to 56) from the junction 53 to the branching part 57 is significantly smaller than that in the specification A, the overall pressure loss also decreases. I have. In this specification B, since the pressure loss is small, the amount of circulating refrigerant can be increased. As shown in FIG. 7, the cooling capacity is linearly increased even at the rotation speed of the compressor 1 which has reached a plateau in specification A. And 9 kW can be realized.

図8は、仕様Aと仕様Bにおいて、管内の二相流を均質流と仮定した際の圧力損失と冷媒循環量の関係を示したものである。つまり、少なくとも、圧力損失が仕様Bの場合以下であれば、冷媒循環量を増やして9kwといった高い冷房能力を実現できる(図7参照)。   FIG. 8 shows the relationship between the pressure loss and the refrigerant circulation amount when the two-phase flow in the pipe is assumed to be a homogeneous flow in the specifications A and B. That is, at least when the pressure loss is equal to or less than the case of the specification B, a high cooling capacity such as 9 kW can be realized by increasing the refrigerant circulation amount (see FIG. 7).

ここで、仕様Aと仕様Bにおける合流部53の上流側にある第1の並列経路52の管の流路断面積の総和と、合流部53の管の流路断面積を比較する。
管の断面積Sは、その直径をDとすると、円周率πを使って、次の式(1)で表すことができる。
S=πD/4 ・・・式(1)
Here, the sum of the cross-sectional areas of the pipes of the first parallel path 52 upstream of the merging section 53 in the specifications A and B is compared with the cross-sectional area of the pipe of the merging section 53.
The cross-sectional area S of the tube can be expressed by the following equation (1) using the pi, where D is the diameter.
S = πD 2/4 ··· formula (1)

また、第1の並列経路52の管の流路断面積の総和S0は、経路数Nも用いて、次の式(2)で表すことができる。
S0=(πDI0/4)×N ・・・式(2)
Further, the total sum S0 of the flow path cross-sectional areas of the tubes of the first parallel path 52 can be expressed by the following equation (2) using the number of paths N.
S0 = (πDI0 2/4) × N ··· formula (2)

また、合流部53の管の流路断面積S1は、次の式(3)で表すことができる。
S1=πDI1/4 ・・・式(3)
Further, the flow path cross-sectional area S1 of the pipe of the junction 53 can be expressed by the following equation (3).
S1 = πDI1 2/4 ··· (3)

したがって、第1の並列経路52の管の流路断面積の総和と、合流部53の管の流路断面積の比(S1/S0)は、次の式(4)で表すことができる。
S1/S0=DI1/(DI0×N) ・・・式(4)
Therefore, the ratio (S1 / S0) of the sum of the cross-sectional areas of the pipes of the first parallel path 52 to the cross-sectional area of the pipe of the junction 53 can be expressed by the following equation (4).
S1 / S0 = DI1 2 / (DI0 2 × N) Equation (4)

この式(4)を用いて計算すると、仕様Aでの比率S1/S0は約0.39、仕様Bでの比率S1/S0は約0.57となり、仕様Bのほうが大きい。   When calculated using this equation (4), the ratio S1 / S0 in the specification A is about 0.39, the ratio S1 / S0 in the specification B is about 0.57, and the specification B is larger.

したがって、合流部53から分流部57までの圧力損失を仕様Bと同程度またはそれよりも小さくするためには、DI0(第1の並列経路52それぞれの管内径)、DI1(合流部53の管内径)を、次の式(5)を満たすように設計すればよい。
DI1/(DI0×N)≧0.57 ・・・式(5)
Therefore, in order to make the pressure loss from the junction 53 to the branch 57 equal to or smaller than the specification B, DI0 (the pipe inner diameter of each of the first parallel paths 52) and DI1 (the pipe of the junction 53) (Inner diameter) may be designed to satisfy the following expression (5).
DI1 2 / (DI0 2 × N) ≧ 0.57 Expression (5)

このように、本発明によれば、室内熱交換器5において、冷房運転時に冷媒の流路方向を水平方向から垂直方向に変更する流路方向変更手段55を備えることで、偏流を低減し、熱交換効率を向上させることができる。   As described above, according to the present invention, in the indoor heat exchanger 5, the flow direction of the refrigerant is changed from the horizontal direction to the vertical direction during the cooling operation by providing the flow path direction changing unit 55, thereby reducing the drift. Heat exchange efficiency can be improved.

また、式(5)を満たすように室内熱交換器5を設計することで、合流部53から分流部57までの圧力損失を仕様Bと同程度またはそれよりも小さくすることができ、圧縮機1を増速した場合に、能力が頭打ちにならず(図7参照)、熱交換効率を向上させることができる。   In addition, by designing the indoor heat exchanger 5 so as to satisfy the expression (5), the pressure loss from the junction 53 to the branch 57 can be made equal to or smaller than the specification B, and When the speed is increased, the capacity does not reach its peak (see FIG. 7), and the heat exchange efficiency can be improved.

また、空気調和機100は、このような室内熱交換器5を備えることで、高い冷房能力を実現することができる。   In addition, the air conditioner 100 includes such an indoor heat exchanger 5 and can achieve high cooling capacity.

以上で本実施形態の説明を終えるが、本発明の態様はこれらに限定されるものではない。例えば、第1の並列経路52や第2の並列経路58における並列経路数は、前記実施形態で示した例に限定されず、他の数であってもよい。
その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
This concludes the description of the present embodiment, but aspects of the present invention are not limited thereto. For example, the number of parallel paths in the first parallel path 52 and the second parallel path 58 is not limited to the example shown in the embodiment, and may be another number.
In addition, the specific configuration can be appropriately changed without departing from the gist of the present invention.

1 圧縮機
2 四方弁(流路切替手段)
3 室外熱交換器
4 流量制御弁(冷暖房運転用の絞り装置)
5 室内熱交換器
6 室外送風手段
7 室内送風手段
8 冷媒管
50、54、56、60 経路
51 熱交換位置
52 第1の並列経路
53 合流部
55 流路方向変更手段
57 分流部
58 第2の並列経路
59 熱交換位置
100 空気調和機
1 Compressor 2 Four-way valve (channel switching means)
3 Outdoor heat exchanger 4 Flow control valve (throttle device for cooling and heating operation)
Reference Signs List 5 indoor heat exchanger 6 outdoor blowing means 7 indoor blowing means 8 refrigerant pipe 50, 54, 56, 60 path 51 heat exchange position 52 first parallel path 53 junction section 55 flow direction changing means 57 branching section 58 second Parallel path 59 Heat exchange position 100 Air conditioner

Claims (3)

熱交換を行うために冷媒を流通させる冷媒管として、
複数の冷媒管が並列されている第1の並列経路と、
複数の冷媒管が並列されている第2の並列経路と、
前記第1の並列経路と接続され、冷媒を合流させる合流部と、
前記合流部と第1の経路部材を介して接続され、冷媒の流路方向を水平方向から垂直方向に変更する流路方向変更手段と、
前記流路方向変更手段と第2経路部材を介して接続され、前記流路方向変更手段から、前記第2経路部材が垂直方向に受け入れた冷媒を前記第2の並列経路に分流させる分流部と、
を備えることを特徴とする熱交換器。
As a refrigerant pipe through which a refrigerant flows to perform heat exchange,
A first parallel path in which a plurality of refrigerant pipes are arranged in parallel,
A second parallel path in which the plurality of refrigerant tubes are arranged in parallel,
A merging section connected to the first parallel path and merging a refrigerant;
Flow path direction changing means connected through the junction and the first path member to change a flow direction of the refrigerant from a horizontal direction to a vertical direction;
A flow dividing unit connected to the flow path direction changing means and a second path member, and from the flow path direction changing means, for dividing the refrigerant vertically received by the second path member into the second parallel path; ,
A heat exchanger comprising:
請求項1に記載の熱交換器において、
蒸発器として動作するときに、冷媒は、前記第1の並列経路から前記第2の並列経路に向かって流れ、
前記第1の並列経路のそれぞれの管内径をDI0、並列経路数をN、前記合流部の管内径をDI1としたとき、
DI12/(DI02×N)≧0.57
を満たすように構成されていることを特徴とする熱交換器。
The heat exchanger according to claim 1,
When operating as an evaporator, refrigerant flows from the first parallel path toward the second parallel path,
When the pipe inner diameter of each of the first parallel paths is DI0, the number of parallel paths is N, and the pipe inner diameter of the junction is DI1,
DI12 / (DI02 × N) ≧ 0.57
A heat exchanger characterized by satisfying the following.
圧縮機、流路切替手段、室外熱交換器、冷暖房運転用の絞り装置、及び室内熱交換器が冷媒管により接続された冷凍サイクル装置を備え、
前記室内熱交換器は請求項1または請求項2に記載の熱交換器であることを特徴とする空気調和機。
A compressor, a flow path switching means, an outdoor heat exchanger, a throttle device for cooling and heating operation, and a refrigeration cycle device in which the indoor heat exchanger is connected by a refrigerant pipe,
The air conditioner, wherein the indoor heat exchanger is the heat exchanger according to claim 1 or 2.
JP2015175428A 2015-09-07 2015-09-07 Heat exchanger and air conditioner using the same Active JP6664172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175428A JP6664172B2 (en) 2015-09-07 2015-09-07 Heat exchanger and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175428A JP6664172B2 (en) 2015-09-07 2015-09-07 Heat exchanger and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2017053498A JP2017053498A (en) 2017-03-16
JP6664172B2 true JP6664172B2 (en) 2020-03-13

Family

ID=58317588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175428A Active JP6664172B2 (en) 2015-09-07 2015-09-07 Heat exchanger and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP6664172B2 (en)

Also Published As

Publication number Publication date
JP2017053498A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
CN109328287B (en) Refrigeration cycle device
JP5020298B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
WO2015063853A1 (en) Refrigeration cycle and air conditioner
JP2014070840A (en) Air conditioner
AU2014408468A1 (en) Heat exchanger and air-conditioning apparatus
JP7102686B2 (en) Heat exchanger
EP2568247B1 (en) Air conditioner
JP5962045B2 (en) Heat exchanger
JP2016142457A (en) Air conditioner
JP2017083115A (en) Indoor unit of air conditioner
JP6664172B2 (en) Heat exchanger and air conditioner using the same
US10429109B2 (en) Refrigerant circuit and air-conditioning apparatus
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP2016084970A (en) Heat exchanger
JP6420166B2 (en) Air conditioner
JP7414845B2 (en) Refrigeration cycle equipment
JP2015124992A (en) Heat exchanger
WO2017042940A1 (en) Heat exchanger
JP6910436B2 (en) Outdoor unit and refrigeration cycle device
JP6537868B2 (en) Heat exchanger
WO2018180934A1 (en) Heat exchanger and refrigeration device
JP2019105402A (en) Air conditioner
WO2022172359A1 (en) Outdoor heat exchanger and air conditioner
JP6974720B2 (en) Heat exchanger and refrigeration equipment
JP5896876B2 (en) Refrigerant distributor and refrigeration cycle apparatus equipped with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150