JP6420166B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6420166B2
JP6420166B2 JP2015022782A JP2015022782A JP6420166B2 JP 6420166 B2 JP6420166 B2 JP 6420166B2 JP 2015022782 A JP2015022782 A JP 2015022782A JP 2015022782 A JP2015022782 A JP 2015022782A JP 6420166 B2 JP6420166 B2 JP 6420166B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
air conditioner
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022782A
Other languages
Japanese (ja)
Other versions
JP2016145676A (en
JP2016145676A5 (en
Inventor
智弘 小松
智弘 小松
久保田 淳
淳 久保田
広 米田
広 米田
羽生 博之
博之 羽生
吉田 和正
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2015022782A priority Critical patent/JP6420166B2/en
Publication of JP2016145676A publication Critical patent/JP2016145676A/en
Publication of JP2016145676A5 publication Critical patent/JP2016145676A5/ja
Application granted granted Critical
Publication of JP6420166B2 publication Critical patent/JP6420166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機に関するものである。   The present invention relates to an air conditioner.

まず空気調和機の基本的構成について説明する。   First, the basic configuration of the air conditioner will be described.

図4は、冷房運転、暖房運転、除湿運転の運転モードを備える空気調和機に用いられる一般的な冷凍サイクルの構成図である。   FIG. 4 is a configuration diagram of a general refrigeration cycle used in an air conditioner having operation modes of cooling operation, heating operation, and dehumidifying operation.

空気調和機は、室外機1と室内機5とが、接続配管7および8によって接続されることで機能する。室内機5は、第1の室内熱交換器21と、第2の室内熱交換器22と、第1の絞り装置31、送風ファン6とを備えており、第1の絞り装置31は、第1の室内熱交換器21と、第2の室内熱交換器22とを結ぶ冷媒流路上に設けられている。   The air conditioner functions when the outdoor unit 1 and the indoor unit 5 are connected by connection pipes 7 and 8. The indoor unit 5 includes a first indoor heat exchanger 21, a second indoor heat exchanger 22, a first expansion device 31, and a blower fan 6. It is provided on the refrigerant flow path connecting the one indoor heat exchanger 21 and the second indoor heat exchanger 22.

室外機1は、圧縮機2と、四方弁3と、室外熱交換器10と、第2の絞り装置32と、送風ファン4とを備えている。なお、通常、送風ファン4にはプロペラファンが、送風ファン6には、貫流ファンが用いられる。   The outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 10, a second expansion device 32, and a blower fan 4. In general, a propeller fan is used for the blower fan 4 and a cross-flow fan is used for the blower fan 6.

図5に、空気調和機の熱交換器に用いられているのと同じ形式の、一般的なクロスフィンチューブ型の熱交換器の要素の構造を示す。図5に示すように、本形式の熱交換器では、多数のアルミニウム製のフィン101を、U字状に曲げられた銅製の伝熱管102が貫く構造となっている。フィン101と伝熱管102とは、フィン101に挿入された伝熱管102を液圧、あるいは機械的に拡管することにより密着している。また、伝熱管102の端部には、継手部品103が溶接され、冷媒の流路を構成している。   FIG. 5 shows the structure of an element of a general cross fin tube type heat exchanger of the same type as that used in a heat exchanger of an air conditioner. As shown in FIG. 5, the heat exchanger of this type has a structure in which a large number of aluminum fins 101 are penetrated by U-shaped copper heat transfer tubes 102. The fins 101 and the heat transfer tubes 102 are in close contact with each other by expanding the heat transfer tubes 102 inserted into the fins 101 by hydraulic pressure or mechanical expansion. Further, a joint component 103 is welded to the end of the heat transfer tube 102 to form a refrigerant flow path.

通常、空気調和機の熱交換器では、効率向上のため、図5に示す構成の熱交換器を空気流通方向に複数列並べて用いられており、また、熱交換器内の冷媒流路は管内を流れる冷媒流量に応じたパス数で構成される。   In general, in an air conditioner heat exchanger, a plurality of heat exchangers having the configuration shown in FIG. 5 are arranged in the air flow direction in order to improve efficiency, and the refrigerant flow path in the heat exchanger is provided in the pipe. The number of passes according to the flow rate of refrigerant flowing through

次に、冷房運転、暖房運転、除湿運転の各運転モードにおける各要素の作用について、図4を参照しながら説明する。   Next, the operation of each element in each operation mode of the cooling operation, the heating operation, and the dehumidifying operation will be described with reference to FIG.

まず冷房運転の場合、圧縮機2で圧縮された高圧のガス状冷媒は、室外熱交換器10で外気に放熱することで凝縮し、高圧の液状冷媒となる。液状冷媒は第2の絞り装置32の作用で減圧され、低温低圧の気液二相状態となり、接続配管8を通じて室内機5へ流れる。   First, in the case of the cooling operation, the high-pressure gaseous refrigerant compressed by the compressor 2 is condensed by releasing heat to the outside air in the outdoor heat exchanger 10 and becomes a high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the action of the second throttling device 32, enters a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 5 through the connection pipe 8.

室内機5に入った冷媒は、第1の室内熱交換器21および第2の室内熱交換器22で室内空気の熱を吸熱することで蒸発する。室内機5で蒸発した冷媒は、接続配管7を通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2で圧縮されることになる。このとき、第1の絞り装置31は全開状態である。   The refrigerant that has entered the indoor unit 5 evaporates by absorbing the heat of the indoor air in the first indoor heat exchanger 21 and the second indoor heat exchanger 22. The refrigerant evaporated in the indoor unit 5 returns to the outdoor unit 1 through the connection pipe 7 and is compressed again by the compressor 2 through the four-way valve 3. At this time, the first aperture device 31 is fully open.

暖房運転モードの場合は、四方弁3により、冷媒流路が切り替えられ、圧縮機2で圧縮された高圧のガス状冷媒は、四方弁3および接続配管7を通って室内機5に流れる。室内機5に入った冷媒は、第2の室内熱交換器22および第1の室内熱交換器21で室内空気に放熱することで凝縮し、高圧の液状冷媒となる。高圧の液状冷媒は、接続配管8を通って室外機1に流れる。   In the heating operation mode, the refrigerant flow path is switched by the four-way valve 3, and the high-pressure gaseous refrigerant compressed by the compressor 2 flows to the indoor unit 5 through the four-way valve 3 and the connection pipe 7. The refrigerant that has entered the indoor unit 5 is condensed by dissipating heat to the indoor air in the second indoor heat exchanger 22 and the first indoor heat exchanger 21, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows to the outdoor unit 1 through the connection pipe 8.

室外機1に入った高圧の液状冷媒は、第2の絞り装置32の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器10に流れ、室外空気の熱を吸熱することで蒸発し、ガス状冷媒となる。室外熱交換器10でガス状となった冷媒は、四方弁3を通って再び圧縮機2で圧縮される。暖房運転モードの場合も、冷房運転モードと同様に、第1の絞り装置31は全開状態である。   The high-pressure liquid refrigerant that has entered the outdoor unit 1 is depressurized by the action of the second throttling device 32, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 10, and absorbs heat of outdoor air. It evaporates and becomes a gaseous refrigerant. The refrigerant that has become gaseous in the outdoor heat exchanger 10 passes through the four-way valve 3 and is compressed again by the compressor 2. Also in the heating operation mode, the first expansion device 31 is in a fully open state, similarly to the cooling operation mode.

次に、除湿運転モードでの、各要素の作用を説明する。本除湿運転モードでは、冷媒の流れ方向は、冷房運転モードと同様である。すなわち、圧縮機2で圧縮された高圧のガス状冷媒は、室外熱交換器10、第2の絞り装置32、接続配管8を通り、室内機5へ流れる。室内機5に入った冷媒は、第1の室内熱交換器21、第1の絞り装置31、第2の室内熱交換器22を通り、接続配管7を通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2へと流れる。   Next, the operation of each element in the dehumidifying operation mode will be described. In this dehumidifying operation mode, the flow direction of the refrigerant is the same as in the cooling operation mode. That is, the high-pressure gaseous refrigerant compressed by the compressor 2 flows to the indoor unit 5 through the outdoor heat exchanger 10, the second expansion device 32, and the connection pipe 8. The refrigerant that has entered the indoor unit 5 passes through the first indoor heat exchanger 21, the first expansion device 31, and the second indoor heat exchanger 22, returns to the outdoor unit 1 through the connection pipe 7, and the four-way valve 3. Flows again through the compressor 2.

除湿運転モードでは、第2の室内熱交換器22を通過する空気を冷却除湿し、第1の室内熱交換器21を通過する空気を加熱することで、室内空気温度の変化を抑えつつ湿度を下げるように制御される。   In the dehumidifying operation mode, the air passing through the second indoor heat exchanger 22 is cooled and dehumidified, and the air passing through the first indoor heat exchanger 21 is heated, thereby reducing the humidity while suppressing the change in the indoor air temperature. Controlled to lower.

第1の室内熱交換器21を通過する空気を加熱するため、圧縮機2で圧縮された高圧のガス状冷媒を、室外熱交換器10で液状冷媒までには凝縮させず、高温高圧の気液二相の状態のまま、接続配管8を介して室内機5へ流す必要がある。このため、第2の絞り装置32は、冷房運転モードに比べて開側あるいは全開の状態に制御される。第1の室内熱交換器21での加熱量は、第2の絞り装置32の開度制御に加えて、送風ファン4の回転数を制御して、室外熱交換器10で外気に放熱する量を制御する。   In order to heat the air passing through the first indoor heat exchanger 21, the high-pressure gaseous refrigerant compressed by the compressor 2 is not condensed into the liquid refrigerant by the outdoor heat exchanger 10, and the high-temperature and high-pressure air is not condensed. It is necessary to flow into the indoor unit 5 through the connection pipe 8 while maintaining the liquid two-phase state. For this reason, the second expansion device 32 is controlled to be in the open side or fully open state as compared with the cooling operation mode. The amount of heating in the first indoor heat exchanger 21 is the amount of heat radiated to the outside air by the outdoor heat exchanger 10 by controlling the rotational speed of the blower fan 4 in addition to the opening degree control of the second expansion device 32. To control.

なお、送風ファン4は、図示されていないが、圧縮機1や送風ファン4を制御する電気品の冷却にも用いられるため、低回転あるいは間欠的に動作することはあっても、完全に停止することはない。   Although the blower fan 4 is not shown in the figure, it is used for cooling the electrical equipment that controls the compressor 1 and the blower fan 4, so it completely stops even if it operates at low speed or intermittently. Never do.

上記制御により、高温高圧の気液二相状態のまま、室内機5に入った冷媒は、第1の室内熱交換器21において、送風ファン6の動作により第1の室内熱交換器21を通過する室内空気に放熱することで凝縮し、液状冷媒となる。これにより、第1の室内熱交換器21を通過する空気は加熱され、温度上昇する。   With the above control, the refrigerant that has entered the indoor unit 5 while passing through the high-temperature and high-pressure gas-liquid two-phase state passes through the first indoor heat exchanger 21 in the first indoor heat exchanger 21 by the operation of the blower fan 6. It is condensed by dissipating heat to the indoor air, and becomes a liquid refrigerant. Thereby, the air which passes the 1st indoor heat exchanger 21 is heated, and temperature rises.

次に、液状冷媒は第1の絞り装置31へと流れる。本除湿運転モードでは、第1の絞り装置31は流路抵抗を持つように閉側に制御されており、第1の絞り装置31の作用で減圧され、低温低圧の気液二相状態となり、第2の室内熱交換器22へと流れる。低温低圧の気液二相の冷媒は、第2の室内熱交換器22において、送風ファン6の動作により第2の室内熱交換器22を通過する空気から熱を吸熱することで蒸発する。このとき、第2の室内熱交換器22を通過する空気は冷却除湿される。このように、第1の室内熱交換器21において空気を加熱し、第2の室内熱交換器22において空気を冷却除湿することで、本運転モードは室内空気の温度変化を抑えつつ、除湿することを可能としている。   Next, the liquid refrigerant flows to the first throttling device 31. In this dehumidifying operation mode, the first throttle device 31 is controlled to be closed so as to have a flow path resistance, and is depressurized by the action of the first throttle device 31 to be in a low-temperature low-pressure gas-liquid two-phase state. It flows to the second indoor heat exchanger 22. The low-temperature low-pressure gas-liquid two-phase refrigerant evaporates in the second indoor heat exchanger 22 by absorbing heat from the air passing through the second indoor heat exchanger 22 by the operation of the blower fan 6. At this time, the air passing through the second indoor heat exchanger 22 is cooled and dehumidified. In this manner, the air is heated in the first indoor heat exchanger 21 and the air is cooled and dehumidified in the second indoor heat exchanger 22, so that the present operation mode is dehumidified while suppressing the temperature change of the indoor air. Making it possible.

以上、説明したように冷房運転モードでは室外熱交換器10において高温高圧の冷媒を液化するが、除湿運転モードでは高温高圧の気液二相状態となり、除湿運転モードでは冷房運転モードに比べて余剰な冷媒が存在することになる。一般的に冷凍サイクルにおいて、冷媒量が過剰に存在する場合、主にサイクル高圧側の圧力が上昇することになり、圧縮機の所要動力の増加を招く。そのため、余剰冷媒を貯留することが除湿運転モードでの省エネルギ性向上にとって有効である。   As described above, in the cooling operation mode, the high-temperature and high-pressure refrigerant is liquefied in the outdoor heat exchanger 10, but in the dehumidification operation mode, a high-temperature and high-pressure gas-liquid two-phase state is obtained, and in the dehumidification operation mode, surplus as compared with the cooling operation mode. There will be a new refrigerant. Generally, in the refrigeration cycle, when the refrigerant amount is excessive, the pressure on the cycle high pressure side mainly increases, leading to an increase in the required power of the compressor. Therefore, storing excess refrigerant is effective for improving energy saving in the dehumidifying operation mode.

なお、余剰冷媒をレシーバや室外熱交換器に貯留することで、冷房、暖房、除湿の何れの運転モードでも、余剰冷媒によるトラブルを防止し、かつ室内の湿度を適正に維持して運転する空気調和機の従来例として、例えば特許文献1に示されるものがある。   In addition, by storing surplus refrigerant in the receiver or outdoor heat exchanger, it is possible to prevent troubles caused by surplus refrigerant in any of the cooling, heating, and dehumidifying operation modes, and to maintain the indoor humidity properly. As a conventional example of a harmony machine, there is one disclosed in Patent Document 1, for example.

特許文献1の従来例では、圧縮機の吐出冷媒の一部を導く迂回回路を室外熱交換器と膨張弁に対して並列に設け、迂回回路の経路上に流量調整弁を設けた構成となっている。本構成では、迂回回路を流れて圧縮機から吐出される高温高圧のガス状冷媒の流量と、室外熱交換器において外気に放熱した冷媒の流量を制御することで、室内機における加熱量を確保することを可能としており、さらに室外熱交換器出口に設けられた絞り装置の開度を制御することで、余剰冷媒を貯留することを可能としている。   In the conventional example of Patent Document 1, a bypass circuit that guides a part of the refrigerant discharged from the compressor is provided in parallel to the outdoor heat exchanger and the expansion valve, and a flow rate adjusting valve is provided on the path of the bypass circuit. ing. In this configuration, the amount of heating in the indoor unit is secured by controlling the flow rate of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor through the bypass circuit and the flow rate of the refrigerant radiated to the outside air in the outdoor heat exchanger. In addition, it is possible to store excess refrigerant by controlling the opening degree of the expansion device provided at the outlet of the outdoor heat exchanger.

特開2002−357353号公報JP 2002-357353 A

しかしながら、特許文献1の従来例は、除湿運転時に圧縮機から吐出される高温のガス状冷媒の一部を室内に直接流すことで室内空気の加熱量を確保しつつ、余剰冷媒を貯留することを目的としたものであり、圧縮機の吐出冷媒の一部を導く迂回回路を室外熱交換器と膨張弁に対して並列に設けている。   However, the conventional example of Patent Document 1 stores excess refrigerant while ensuring the heating amount of room air by directly flowing a part of high-temperature gaseous refrigerant discharged from the compressor during dehumidification operation into the room. The bypass circuit which guides a part of refrigerant discharged from the compressor is provided in parallel with the outdoor heat exchanger and the expansion valve.

本構成の場合、冷房運転時には、高温高圧の冷媒ガスの流れる部位と、膨張弁の作用により減圧した低温低圧の二相状態の冷媒が流れる膨張弁出口部とが迂回回路を介して熱的に接することになる。   In the case of this configuration, during cooling operation, the portion through which the high-temperature and high-pressure refrigerant gas flows and the expansion valve outlet portion through which the low-temperature and low-pressure two-phase refrigerant decompressed by the action of the expansion valve flows thermally via a bypass circuit. Will be in touch.

このため、冷房運転時に室内機へと流れる低温低圧の冷媒と、圧縮機吐出近傍の高温高圧のガス状冷媒との間の温度差から、迂回回路を経由して熱が伝わり、低温低圧の二相状態の冷媒の一部が蒸発してしまい、室内熱交換器で室内空気からの吸熱量が低下し、効率低下を生じるおそれが考えられる。   For this reason, heat is transferred via the bypass circuit from the temperature difference between the low-temperature and low-pressure refrigerant flowing to the indoor unit during cooling operation and the high-temperature and high-pressure gaseous refrigerant near the compressor discharge, and the low-temperature and low-pressure refrigerant There is a possibility that part of the refrigerant in the phase state evaporates, the amount of heat absorbed from the indoor air is reduced by the indoor heat exchanger, and the efficiency is lowered.

以上のことから本発明においては、効率低下を防止可能な空気調和器を提供することを目的としている。   From the above, an object of the present invention is to provide an air conditioner capable of preventing a decrease in efficiency.

上記課題を解決するため、本発明の請求項1に係る空気調和機は、少なくとも圧縮機、室外熱交換器、室内熱交換器を冷媒配管で接続して冷凍サイクルを形成した空気調和機であって、室内熱交換器は、第1の室内熱交換器と第2の室内熱交換器とをつなぐ冷媒流路上に、絞り装置を備え、室外熱交換器は、圧縮機と室内熱交換器との間に複数の冷媒流路を形成し、各冷媒流路にそれぞれ絞り装置を備えるとともに、圧縮機から室内熱交換器に至る各冷媒流路には、少なくとも1つの室外熱交換器を含むことを特徴とするものである。   In order to solve the above problems, an air conditioner according to claim 1 of the present invention is an air conditioner in which at least a compressor, an outdoor heat exchanger, and an indoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle. The indoor heat exchanger includes a throttling device on the refrigerant flow path connecting the first indoor heat exchanger and the second indoor heat exchanger, and the outdoor heat exchanger includes a compressor, an indoor heat exchanger, A plurality of refrigerant flow paths are formed between the refrigerant flow paths, and each refrigerant flow path is provided with an expansion device, and each refrigerant flow path from the compressor to the indoor heat exchanger includes at least one outdoor heat exchanger. It is characterized by.

また請求項2に記載の空気調和機においては、室外熱交換器は、圧縮機と室内熱交換器との間に複数の冷媒流路を形成し、各冷媒流路の室内熱交換器側にそれぞれ絞り装置を備えるとともに、各冷媒流路の圧縮機側にそれぞれ室外熱交換器を含むことを特徴とするものである。   Moreover, in the air conditioner according to claim 2, the outdoor heat exchanger forms a plurality of refrigerant flow paths between the compressor and the indoor heat exchanger, and the refrigerant flow paths are arranged on the indoor heat exchanger side. Each is provided with an expansion device and includes an outdoor heat exchanger on the compressor side of each refrigerant flow path.

また請求項3に記載の空気調和機においては、室外熱交換器は、圧縮機と複数の冷媒流路との間に室外熱交換器を配置していることを特徴とするものである。   In the air conditioner according to claim 3, the outdoor heat exchanger is characterized in that the outdoor heat exchanger is disposed between the compressor and the plurality of refrigerant flow paths.

また請求項4に記載の空気調和機においては、室外熱交換器は、圧縮機と室内熱交換器との間に、熱交換器を介して複数の冷媒流路を形成し、各冷媒流路にそれぞれ絞り装置を備えるとともに、室外熱交換器を含む冷媒流路と、室外熱交換器を含まない冷媒流路で構成されていることを特徴とするものである。   Moreover, in the air conditioner according to claim 4, the outdoor heat exchanger forms a plurality of refrigerant channels through the heat exchanger between the compressor and the indoor heat exchanger, and each refrigerant channel Each is provided with an expansion device, and is constituted by a refrigerant flow path including an outdoor heat exchanger and a refrigerant flow path not including an outdoor heat exchanger.

また請求項5に記載の空気調和機においては、複数の冷媒流路にそれぞれ備えられた室外熱交換器を第1の室外熱交換器と、第2の室外熱交換器とするとき、第1の室外熱交換器と第2の室外熱交換器とは、空気流れ方向に対して並列に設置されたことを特徴とするものである。   In the air conditioner according to claim 5, when the outdoor heat exchanger provided in each of the plurality of refrigerant flow paths is a first outdoor heat exchanger and a second outdoor heat exchanger, The outdoor heat exchanger and the second outdoor heat exchanger are installed in parallel to the air flow direction.

また請求項6に記載の空気調和機においては、複数の冷媒流路の容積が、略等しいことを特徴とするものである。   The air conditioner according to claim 6 is characterized in that the volumes of the plurality of refrigerant flow paths are substantially equal.

また請求項7に記載の空気調和機においては、室内熱交換器の一方を蒸発器、他方を凝縮器とする除湿運転モードを有し、除湿運転モードにおいて、複数の冷媒流路の絞り装置の一部を全開とし、他の冷媒流路の絞り装置の絞り量を制御することを特徴とするものである。   The air conditioner according to claim 7 has a dehumidifying operation mode in which one of the indoor heat exchangers is an evaporator and the other is a condenser. It is characterized in that a part thereof is fully opened and the throttle amount of the throttle device of another refrigerant flow path is controlled.

また請求項8に記載の空気調和機においては、絞り量を制御する側の絞り装置の開度を第1の室内熱交換器における冷媒温度に応じて制御することを特徴とするものである。   In an air conditioner according to an eighth aspect of the present invention, the opening degree of the expansion device that controls the amount of expansion is controlled in accordance with the refrigerant temperature in the first indoor heat exchanger.

また請求項9に記載の空気調和機においては、複数の冷媒流路について、全開とした絞り装置につながる室外熱交換器最下流側の冷媒温度が、絞り量を制御する側につながる室外熱交換器最下流側の冷媒温度に比べて低くなるように制御することを特徴とするものである。   Further, in the air conditioner according to claim 9, outdoor heat exchange in which the refrigerant temperature on the most downstream side of the outdoor heat exchanger connected to the fully-opened expansion device is connected to the control side of the expansion amount for the plurality of refrigerant flow paths. The temperature is controlled to be lower than the refrigerant temperature on the most downstream side of the vessel.

また請求項10に記載の空気調和機においては、複数の冷媒流路について、絞り装置の室内機に遠い側に接続された配管に、温度を計測する手段を有することを特徴とするものである。   The air conditioner according to claim 10 is characterized in that, for the plurality of refrigerant flow paths, a pipe connected to the side farther from the indoor unit of the expansion device has a means for measuring the temperature. .

また請求項11に記載の空気調和機においては、絞り装置は、絞り量を連続的に変化できることを特徴とするものである。   In the air conditioner according to claim 11, the throttle device is characterized in that the throttle amount can be continuously changed.

また請求項12に記載の空気調和機においては、絞り装置の絞り量を、圧縮機吐出の冷媒ガス温度に応じて制御することを特徴とするものである。   In an air conditioner according to a twelfth aspect of the present invention, the throttle amount of the throttle device is controlled in accordance with the refrigerant gas temperature discharged from the compressor.

本発明によれば、冷房運転時の効率を低下させることなく、除湿運転時において余剰冷媒を室外熱交換器の一部に貯留することが可能な構成となっており、除湿運転時の圧力上昇を抑制することできるため、省エネルギ性の高い空気調和機を提供することができる。   According to the present invention, the excess refrigerant can be stored in a part of the outdoor heat exchanger during the dehumidifying operation without reducing the efficiency during the cooling operation, and the pressure rise during the dehumidifying operation Therefore, an air conditioner with high energy saving can be provided.

本発明の実施例1に係る冷凍サイクル構成を備えた空気調和器の例を示す図。The figure which shows the example of the air conditioner provided with the refrigerating-cycle structure which concerns on Example 1 of this invention. 本発明の実施例2に係る冷凍サイクル構成を備えた空気調和器の例を示す図。The figure which shows the example of the air conditioner provided with the refrigerating-cycle structure which concerns on Example 2 of this invention. 実施例2の室外熱交換器10を、伝熱管の軸に垂直な断面方向から見た模式を示した図。The figure which showed the model which looked at the outdoor heat exchanger 10 of Example 2 from the cross-sectional direction perpendicular | vertical to the axis | shaft of a heat exchanger tube. 冷房運転、暖房運転、除湿運転の運転モードを備える空気調和機に用いられる一般的な冷凍サイクルの構成を示す図。The figure which shows the structure of the general refrigerating cycle used for an air conditioner provided with the operation mode of air_conditionaing | cooling operation, heating operation, and dehumidification operation. 冷凍サイクルに用いられる熱交換器の構成の一例を示す図。The figure which shows an example of a structure of the heat exchanger used for a refrigerating cycle. 本発明の実施例3に係る室外機構成を示す図。The figure which shows the outdoor unit structure which concerns on Example 3 of this invention. 本発明の実施例4に係る室外機構成を示す図。The figure which shows the outdoor unit structure which concerns on Example 4 of this invention.

以下、図面を用いて本発明の実施例について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施例1に係る冷凍サイクル構成を、図1を用いて説明する。   A refrigeration cycle configuration according to Embodiment 1 of the present invention will be described with reference to FIG.

図1は、実施例1の冷凍サイクル構成を備えた空気調和器の例を示したものである。本構成では、図4に示した一般的な空気調和機に用いられる冷凍サイクルにおける室外熱交換器10が、第1の室外熱交換器10Aと第2の室外熱交換器10Bとに分割され、冷媒流れ方向からみて並列となるように、また空気流れ方向に対しても並列となるように設置されている。   FIG. 1 shows an example of an air conditioner having the refrigeration cycle configuration of the first embodiment. In this configuration, the outdoor heat exchanger 10 in the refrigeration cycle used in the general air conditioner shown in FIG. 4 is divided into a first outdoor heat exchanger 10A and a second outdoor heat exchanger 10B. It is installed so as to be parallel when viewed from the refrigerant flow direction and also parallel to the air flow direction.

さらに、室外熱交換器10Aの冷媒流れ方向から見て圧縮機2の遠い側に第2の絞り装置32Aが、室外熱交換器10Aを流れる冷媒流量を制御するように設けられている。また、室外熱交換器10Bの冷媒流れ方向から見て圧縮機2の遠い側に第3の絞り装置32Bが、室外熱交換器10Bを流れる冷媒流量を制御するように設けられている。   Further, a second expansion device 32A is provided on the far side of the compressor 2 as viewed from the refrigerant flow direction of the outdoor heat exchanger 10A so as to control the flow rate of the refrigerant flowing through the outdoor heat exchanger 10A. A third expansion device 32B is provided on the far side of the compressor 2 as viewed from the refrigerant flow direction of the outdoor heat exchanger 10B so as to control the flow rate of the refrigerant flowing through the outdoor heat exchanger 10B.

図1に示すように、実施例1の構成は図4の従来構成に比較して室外機1の構成が相違しており、室内機5の構成に変更はない。また室外機1における構成として、四方弁3から接続配管8に至る冷媒流路Pが複数あり、各冷媒流路Pにそれぞれ絞り装置32A、32Bを備えたものということができる。実施例1の場合には、第1の冷媒流路P1には第1の室外熱交換器10Aと第2の絞り装置32Aが配置され、第2の冷媒流路P2には第2の室外熱交換器10Bと第3の絞り装置32Bが配置されたものである。   As shown in FIG. 1, the configuration of the first embodiment is different from the conventional configuration of FIG. 4 in the configuration of the outdoor unit 1, and the configuration of the indoor unit 5 is not changed. Further, as the configuration of the outdoor unit 1, it can be said that there are a plurality of refrigerant flow paths P extending from the four-way valve 3 to the connection pipe 8, and each of the refrigerant flow paths P is provided with expansion devices 32A and 32B. In the case of the first embodiment, the first outdoor heat exchanger 10A and the second expansion device 32A are disposed in the first refrigerant flow path P1, and the second outdoor heat is provided in the second refrigerant flow path P2. The exchanger 10B and the third diaphragm device 32B are arranged.

次に、実施例1の冷凍サイクルの構成を、冷房運転、暖房運転、除湿運転の各運転モードで用いた際の、各要素の作用について、図1を参照して説明する。なお、以降の実施例1の説明において冷房運転と暖房運転における各要素の作用は従来例におけるものと基本的に同じであり、本発明の実施例1では除湿運転における各要素の作用が従来例とは相違している。   Next, the operation of each element when the configuration of the refrigeration cycle of Example 1 is used in each operation mode of cooling operation, heating operation, and dehumidification operation will be described with reference to FIG. In the following description of the first embodiment, the operation of each element in the cooling operation and the heating operation is basically the same as that in the conventional example. Is different.

まず冷房運転モードでは、圧縮機2で圧縮された高圧のガス状冷媒は、第1の室外熱交換器10Aおよび第2の室外熱交換器10Bで外気に放熱することで凝縮し、高圧の液状冷媒となる。第1の室外熱交換器10Aから出る液状冷媒は第2の絞り装置32Aの作用で、また、第2の室外熱交換器10Bから出る液状冷媒は第3の絞り装置32Bの作用で、減圧されて低温低圧の気液二相状態となり、接続配管8を通じて室内機5へ流れる。   First, in the cooling operation mode, the high-pressure gaseous refrigerant compressed by the compressor 2 is condensed by dissipating heat to the outside air in the first outdoor heat exchanger 10A and the second outdoor heat exchanger 10B, and the high-pressure liquid refrigerant Becomes a refrigerant. The liquid refrigerant exiting from the first outdoor heat exchanger 10A is decompressed by the action of the second expansion device 32A, and the liquid refrigerant exiting from the second outdoor heat exchanger 10B is decompressed by the action of the third expansion device 32B. Thus, a low-temperature and low-pressure gas-liquid two-phase state is established and flows to the indoor unit 5 through the connection pipe 8.

室内機5に入った冷媒は、第1の室内熱交換器21および第2の室内熱交換器22で室内空気の熱を吸熱することで蒸発する。室内機5で蒸発した冷媒は、接続配管7を通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2で圧縮されることになる。このとき、第1の絞り装置31は全開状態である。   The refrigerant that has entered the indoor unit 5 evaporates by absorbing the heat of the indoor air in the first indoor heat exchanger 21 and the second indoor heat exchanger 22. The refrigerant evaporated in the indoor unit 5 returns to the outdoor unit 1 through the connection pipe 7 and is compressed again by the compressor 2 through the four-way valve 3. At this time, the first aperture device 31 is fully open.

暖房運転モードの場合は、四方弁3により、冷媒流路が切り替えられ、圧縮機2で圧縮された高圧のガス状冷媒は、四方弁3および接続配管7を通って室内機5に流れる。室内機5に入った冷媒は、第2の室内熱交換器22および第1の室内熱交換器21で室内空気に放熱することで凝縮し、高圧の液状冷媒となる。高圧の液状冷媒は、接続配管8を通って室外機1に流れる。   In the heating operation mode, the refrigerant flow path is switched by the four-way valve 3, and the high-pressure gaseous refrigerant compressed by the compressor 2 flows to the indoor unit 5 through the four-way valve 3 and the connection pipe 7. The refrigerant that has entered the indoor unit 5 is condensed by dissipating heat to the indoor air in the second indoor heat exchanger 22 and the first indoor heat exchanger 21, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows to the outdoor unit 1 through the connection pipe 8.

室外機1に入った高圧の液状冷媒は、第2の絞り装置32Aおよび第3の絞り装置32Bの作用で減圧され、低温低圧の気液二相状態となる。第2の絞り装置32Aで減圧された二相状態の冷媒は、第1の室外熱交換器10Aに流れ、第3の絞り装置32Bで減圧された二相状態の冷媒は、第2の室外熱交換器10Bに流れ、室外空気の熱を吸熱することで蒸発し、ガス状冷媒となる。第1の室外熱交換器10Aおよび第2の室外熱交換器10Bにおいて、ガス状となった冷媒は、四方弁3を通って再び圧縮機2で圧縮される。本暖房運転モードの場合も、冷房運転モードと同様に、第1の絞り装置31は全開状態である。   The high-pressure liquid refrigerant that has entered the outdoor unit 1 is decompressed by the action of the second throttling device 32A and the third throttling device 32B, and enters a low-temperature low-pressure gas-liquid two-phase state. The two-phase refrigerant decompressed by the second expansion device 32A flows into the first outdoor heat exchanger 10A, and the two-phase refrigerant decompressed by the third expansion device 32B is the second outdoor heat. It flows into the exchanger 10B, evaporates by absorbing the heat of the outdoor air, and becomes a gaseous refrigerant. In the first outdoor heat exchanger 10 </ b> A and the second outdoor heat exchanger 10 </ b> B, the gaseous refrigerant passes through the four-way valve 3 and is compressed again by the compressor 2. Also in the case of the main heating operation mode, the first expansion device 31 is in a fully opened state as in the cooling operation mode.

次に、除湿運転モードでの、各要素の作用を説明する。本除湿運転モードでは、冷媒の流れ方向は、冷房運転モードと同様である。すなわち、圧縮機2で圧縮された高圧のガス状冷媒は、第1の室外熱交換器10Aおよび第2の絞り装置32A、あるいは第2の室外熱交換器10Bおよび第3の絞り装置32Bを通った後、接続配管8を経て、室内機5へ流れる。   Next, the operation of each element in the dehumidifying operation mode will be described. In this dehumidifying operation mode, the flow direction of the refrigerant is the same as in the cooling operation mode. That is, the high-pressure gaseous refrigerant compressed by the compressor 2 passes through the first outdoor heat exchanger 10A and the second expansion device 32A, or the second outdoor heat exchanger 10B and the third expansion device 32B. After that, it flows to the indoor unit 5 through the connection pipe 8.

室内機5に入った冷媒は、第1の室内熱交換器21において室内空気に放熱することで凝縮し、高圧の液状冷媒となる。第1の室内熱交換器21から出る液冷媒は第1の絞り装置31の作用で、減圧されて低温低圧の気液二相状態となり、第2の室内熱交換器22において室内空気の熱を吸熱することで蒸発する。第2の室内熱交換器22において蒸発した冷媒は、接続配管7を通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2へと流れる。   The refrigerant that has entered the indoor unit 5 is condensed by dissipating heat to the indoor air in the first indoor heat exchanger 21, and becomes a high-pressure liquid refrigerant. The liquid refrigerant coming out of the first indoor heat exchanger 21 is reduced in pressure by the action of the first throttling device 31 to become a low-temperature and low-pressure gas-liquid two-phase state, and the second indoor heat exchanger 22 Evaporates by absorbing heat. The refrigerant evaporated in the second indoor heat exchanger 22 returns to the outdoor unit 1 through the connection pipe 7 and flows again to the compressor 2 through the four-way valve 3.

この除湿運転モードにおいて、第1の室内熱交換器21における冷媒の温度が、外気温度、室内空気温度より算出される所定の温度より高い温度にある場合、冷媒が過剰にあると推定できる。この場合、第2の絞り装置32Aまたは第3の絞り装置32Bの一方の絞り装置の開度を、第1の室内熱交換器21の温度を所望の温度に保つように制御し、他方の絞り装置の開度は全開とする。   In the dehumidifying operation mode, when the temperature of the refrigerant in the first indoor heat exchanger 21 is higher than a predetermined temperature calculated from the outside air temperature and the room air temperature, it can be estimated that the refrigerant is excessive. In this case, the opening of one of the second expansion device 32A or the third expansion device 32B is controlled so that the temperature of the first indoor heat exchanger 21 is maintained at a desired temperature, and the other expansion device is controlled. The opening of the device is fully open.

ここでは、第2の絞り装置32Aの開度を制御し、第3の絞り装置32Bを全開とする場合を例にとり、説明する。第2の絞り装置32Aの開度を制御する場合、第2の絞り装置32Aの冷媒流れ方向上流にある第1の室外熱交換器10Aにおいて、圧縮機2より流入する高温高圧のガス状冷媒は、外気により冷却され液化する。これにより、過剰であった冷媒の一部が、第1の室外熱交換器10A内に液状態で保有されることとなり、サイクルの高圧側すなわち圧縮機吐出圧力は低下する。   Here, the case where the opening degree of the second expansion device 32A is controlled and the third expansion device 32B is fully opened will be described as an example. When controlling the opening degree of the second expansion device 32A, in the first outdoor heat exchanger 10A located upstream of the second expansion device 32A in the refrigerant flow direction, the high-temperature and high-pressure gaseous refrigerant flowing from the compressor 2 is Then, it is cooled and liquefied by the outside air. As a result, a part of the excessive refrigerant is held in a liquid state in the first outdoor heat exchanger 10A, and the high-pressure side of the cycle, that is, the compressor discharge pressure is lowered.

一方、第3の絞り装置32Bは全開であるので、圧縮機を出る高温高圧のガス状冷媒の大部分は、第2の室外熱交換器10Bを通り、外気により冷却はされるものの、高温高圧のガス状冷媒または二相状態のまま、第3の絞り装置32Bを出る。このとき、第2の絞り装置32Aが全閉でなければ、第1の室外熱交換器10Aにおいて液化した液状冷媒と混合した後、室内機5へと流れる。   On the other hand, since the third expansion device 32B is fully open, most of the high-temperature and high-pressure gaseous refrigerant that exits the compressor passes through the second outdoor heat exchanger 10B and is cooled by the outside air. The third expansion device 32B is left in the gaseous refrigerant or the two-phase state. At this time, if the second expansion device 32A is not fully closed, it is mixed with the liquid refrigerant liquefied in the first outdoor heat exchanger 10A and then flows to the indoor unit 5.

このように、第1の室外熱交換器10Aに冷媒を液状態として貯留する場合、第2の絞り装置32Aに第1の室外熱交換器10Aから流入する冷媒の温度、または、第1の室外熱交換器10Aの第2の絞り装置32Aに近い出口部分では、冷媒が液化しているため、第2の室外熱交換器10Bを経て第3の絞り装置32Bへと流れるガス状または二相状態の冷媒の温度に比べて、低い温度に制御される。   Thus, when storing the refrigerant in the first outdoor heat exchanger 10A as a liquid state, the temperature of the refrigerant flowing into the second expansion device 32A from the first outdoor heat exchanger 10A, or the first outdoor Since the refrigerant is liquefied at the outlet portion of the heat exchanger 10A close to the second expansion device 32A, the gaseous or two-phase state flows to the third expansion device 32B via the second outdoor heat exchanger 10B. The temperature is controlled to be lower than the temperature of the refrigerant.

なお、実施例1では第2の絞り装置32Aの開度を制御する場合を例に説明をしたが、第3の絞り装置32Bの開度を制御した場合でも同様の効果を得られる。第2の絞り装置32Aまたは第3の絞り装置32Bのいずれを制御するかは、各々の絞り装置が冷媒の流れを制御する第1の室外熱交換器10Aまたは第2の室外熱交換器10Bの配置や冷媒流路の容積などに応じて決めれば良い。   In the first embodiment, the case where the opening degree of the second expansion device 32A is controlled has been described as an example. However, the same effect can be obtained even when the opening amount of the third expansion device 32B is controlled. Which of the second expansion device 32A and the third expansion device 32B is controlled depends on the first outdoor heat exchanger 10A or the second outdoor heat exchanger 10B in which each expansion device controls the flow of the refrigerant. What is necessary is just to determine according to arrangement | positioning, the volume of a refrigerant flow path, etc.

例えば、第1の室外熱交換器10Aと第2の室外熱交換器10Bが鉛直方向に上下並べて設置された場合、重力の作用を考慮すると下側の熱交換器に冷媒液を貯留する方が、冷媒液の貯留を行いやすいため、鉛直方向下側に配置された熱交換器を流れる冷媒を制御可能な絞り装置の開度を制御すれば良い。   For example, when the first outdoor heat exchanger 10A and the second outdoor heat exchanger 10B are installed in the vertical direction, it is better to store the refrigerant liquid in the lower heat exchanger in consideration of the action of gravity. Since the refrigerant liquid can be easily stored, the opening degree of the expansion device that can control the refrigerant flowing through the heat exchanger arranged on the lower side in the vertical direction may be controlled.

また、第1の室外熱交換器10Aと第2の室外熱交換器10Bとで、冷媒流路Pの容積に差異がある場合、貯留すべき冷媒量が多いと判断される場合には、冷媒流路Pの容積の多い側の室外熱交換器を流れる冷媒を制御可能な絞り装置の開度を制御すれば良い。このとき、貯留すべき冷媒量の判定は、前述の第1の室内熱交換器21における冷媒の温度と、外気温度、室内空気温度より算出される所定の温度との温度差により判断すれば良い。   Further, when there is a difference in the volume of the refrigerant flow path P between the first outdoor heat exchanger 10A and the second outdoor heat exchanger 10B, when it is determined that the amount of refrigerant to be stored is large, the refrigerant What is necessary is just to control the opening degree of the expansion | swelling apparatus which can control the refrigerant | coolant which flows through the outdoor heat exchanger by the side with much volume of the flow path P. FIG. At this time, the amount of refrigerant to be stored may be determined based on the temperature difference between the refrigerant temperature in the first indoor heat exchanger 21 described above and a predetermined temperature calculated from the outside air temperature and the room air temperature. .

室内機5に入った冷媒は、第1の室内熱交換器21において室内空気に放熱することで凝縮し、高圧の液状冷媒となる。第1の室内熱交換器21から出る液冷媒は第1の絞り装置31の作用で、減圧されて低温低圧の気液二相状態となり、第2の室内熱交換器22において室内空気の熱を吸熱することで蒸発する。第2の室内熱交換器22において蒸発した冷媒は、接続配管7を通じて、室外機1へ戻り、四方弁3を通って再び圧縮機2へと流れる。   The refrigerant that has entered the indoor unit 5 is condensed by dissipating heat to the indoor air in the first indoor heat exchanger 21, and becomes a high-pressure liquid refrigerant. The liquid refrigerant coming out of the first indoor heat exchanger 21 is reduced in pressure by the action of the first throttling device 31 to become a low-temperature and low-pressure gas-liquid two-phase state, and the second indoor heat exchanger 22 Evaporates by absorbing heat. The refrigerant evaporated in the second indoor heat exchanger 22 returns to the outdoor unit 1 through the connection pipe 7 and flows again to the compressor 2 through the four-way valve 3.

図1の室外機1の構成において、第1の室外熱交換器10Aおよび第2の室外熱交換器10Bは、空気流れ方向に対して並列に設置する構成とした場合、冷房運転モードや暖房運転モードにおいて、第1の室外熱交換器10Aおよび第2の室外熱交換器10Bに流入する空気温度を等しくでき、熱交換器を効率良く使えることとなり、除湿運転モードだけでなく冷房運転および暖房運転モードでも効率の良い運転が可能となる。   In the configuration of the outdoor unit 1 in FIG. 1, when the first outdoor heat exchanger 10 </ b> A and the second outdoor heat exchanger 10 </ b> B are installed in parallel to the air flow direction, the cooling operation mode and the heating operation are performed. In the mode, the temperature of the air flowing into the first outdoor heat exchanger 10A and the second outdoor heat exchanger 10B can be made equal, and the heat exchanger can be used efficiently. Not only the dehumidifying operation mode but also the cooling operation and the heating operation Efficient operation is possible even in the mode.

さらに、第1の室外熱交換器10Aおよび第2の室外熱交換器10Bの流路長を、ほぼ同等にしておけば、暖房運転モードの冷媒流れにおいて考えると、室内機5から流入する液状冷媒を、第2の絞り装置32Aおよび第3の絞り装置32Bの前で配分することになり、冷媒の流量配分を調整するために管路上に抵抗をつける必要がない。このように、冷媒の流量配分を調整するための抵抗を付加する必要がないため、各運転モードにおいて損失の少ない運転が可能となる。   Further, if the flow path lengths of the first outdoor heat exchanger 10A and the second outdoor heat exchanger 10B are substantially equal, the liquid refrigerant flowing from the indoor unit 5 is considered in the refrigerant flow in the heating operation mode. Is distributed in front of the second throttling device 32A and the third throttling device 32B, and it is not necessary to provide resistance on the pipeline in order to adjust the flow rate distribution of the refrigerant. Thus, since it is not necessary to add a resistance for adjusting the flow rate distribution of the refrigerant, it is possible to perform an operation with little loss in each operation mode.

また、図1の室内機5の構成において、第1の絞り装置31が絞り量を連続的に変化できる構成とすれば、室内負荷の状態に適した制御が可能となり、より高い省エネルギ性が得られる。具体的には、第1の絞り装置31が絞り量を連続的に変化できる構成とした場合、室内負荷の状態に応じて圧縮機の回転数を可変とした場合、第2の室内熱交換器22における冷媒の蒸発圧力をきめ細かく制御することができ、高い省エネルギ性を実現できる。   Further, in the configuration of the indoor unit 5 in FIG. 1, if the first throttle device 31 is configured to be able to continuously change the throttle amount, control suitable for the state of the indoor load is possible, and higher energy saving performance is achieved. can get. Specifically, when the first throttling device 31 is configured to be able to continuously change the throttling amount, when the rotation speed of the compressor is variable according to the state of the indoor load, the second indoor heat exchanger The evaporating pressure of the refrigerant in 22 can be finely controlled, and high energy saving can be realized.

このとき、第1の絞り装置31の絞り量は、外気温度、室内空気温度、圧縮機の回転数から決まる目標とする圧縮機吐出の冷媒ガス温度、あるいは圧縮機吐出の冷媒ガス温度を代表する物理量が目標値となるように制御すれば良い。   At this time, the throttle amount of the first throttling device 31 represents the target refrigerant gas temperature discharged from the compressor or the refrigerant gas temperature discharged from the compressor, which is determined from the outside air temperature, the room air temperature, and the rotation speed of the compressor. What is necessary is just to control so that a physical quantity becomes a target value.

以上述べたように、実施例1の冷凍サイクルを用いることで、除湿運転モードにおいて余剰な冷媒を室外熱交換器の一部に液冷媒として貯留することができ、さらに、冷房運転のモードにおいて、圧縮機から吐出される高温高圧の冷媒ガスが流れる部位と、第2あるいは第3の絞り装置を出た低温低圧の二相状態の冷媒が流れる部位とが、配管などで熱的に接する構成では無いため、冷房運転モードにおける省エネルギ性を確保することができる。   As described above, by using the refrigeration cycle of Example 1, surplus refrigerant can be stored as liquid refrigerant in a part of the outdoor heat exchanger in the dehumidifying operation mode, and further, in the cooling operation mode, In a configuration in which the portion where the high-temperature and high-pressure refrigerant gas discharged from the compressor flows and the portion where the low-temperature and low-pressure two-phase refrigerant flowing out of the second or third expansion device flows are in thermal contact with each other through a pipe or the like Therefore, it is possible to ensure energy saving in the cooling operation mode.

本発明に係る実施例2を、図2と図3を用いて説明する。なお、実施例2における冷凍サイクルの基本的構成については実施例1の場合と同様であるため、ここでは相違点のみを説明する。   A second embodiment according to the present invention will be described with reference to FIGS. The basic configuration of the refrigeration cycle in the second embodiment is the same as that in the first embodiment, and only the differences will be described here.

図2は、実施例2の冷凍サイクルの構成を示したものである。実施例2では、冷房運転あるいは除湿運転モードでの冷媒流れ方向から見た場合、四方弁3と室外熱交換器10をつなぐ配管が分岐点201において2つの管路に分岐し、分岐された状態で室外熱交換器10を通り、各々の管路上に設けられた第2の絞り装置32Aおよび第3の絞り装置32Bを通ったのち、合流点202にて合流する構成となっている。   FIG. 2 shows the configuration of the refrigeration cycle of Example 2. In Example 2, when viewed from the refrigerant flow direction in the cooling operation or the dehumidifying operation mode, the pipe connecting the four-way valve 3 and the outdoor heat exchanger 10 branches into two pipes at the branch point 201 and is branched Then, after passing through the outdoor heat exchanger 10 and passing through the second expansion device 32A and the third expansion device 32B provided on the respective pipelines, the flow is merged at the merge point 202.

図3は、実施例2の室外熱交換器10を、伝熱管の軸に垂直な断面方向から見た模式図を示したものである。図中の破線は、室外熱交換器10における冷媒の流路を示している。   FIG. 3 is a schematic view of the outdoor heat exchanger 10 according to the second embodiment as viewed from the cross-sectional direction perpendicular to the axis of the heat transfer tube. The broken line in the figure indicates the refrigerant flow path in the outdoor heat exchanger 10.

実施例2では、室外熱交換器10は空気流通方向に対して2列で構成されおり、冷媒流路Pの構成は、冷房運転および除湿運転モードでの冷媒流れ方向から見た場合、分岐点201で分岐した後、各々の流路P1,P2がさらに2つに分岐されて空気流通方向の下流側の伝熱管を通過した後に合流し、空気流通方向の上流側では2つの流路で流れる構成となっている。   In Example 2, the outdoor heat exchanger 10 is configured in two rows with respect to the air flow direction, and the configuration of the refrigerant flow path P is a branch point when viewed from the refrigerant flow direction in the cooling operation and the dehumidifying operation mode. After branching at 201, each of the flow paths P1 and P2 is further split into two and merges after passing through the heat transfer pipe on the downstream side in the air flow direction, and flows in the two flow paths on the upstream side in the air flow direction. It has a configuration.

室外熱交換器10を出た2つの冷媒流路P1,P2には、各々第2の絞り装置32Aおよび第3の絞り装置32Bが設けられており、その後、合流点202にて合流する構成となっている。   The two refrigerant flow paths P1 and P2 exiting the outdoor heat exchanger 10 are respectively provided with a second expansion device 32A and a third expansion device 32B, and then merge at the junction 202. It has become.

このように熱交換器10を流れる冷媒流路Pを複数で構成し、冷房運転および除湿運転モードの出口側に複数の絞り装置32を設けて、各々の絞り装置32の開度を適切に制御することで熱交換器を分割することなく、除湿運転モードにおいて室外熱交換器の一部流路に余剰冷媒を液で貯留することが可能となる。   As described above, a plurality of refrigerant flow paths P flowing through the heat exchanger 10 are configured, and a plurality of expansion devices 32 are provided on the outlet side in the cooling operation and the dehumidification operation mode, and the opening degree of each expansion device 32 is appropriately controlled. By doing so, it becomes possible to store excess refrigerant in the partial flow path of the outdoor heat exchanger in the dehumidifying operation mode without dividing the heat exchanger.

また、各冷媒流路P1,P2を構成する流路長さを同等となるようにすれば、冷房運転や暖房運転モードにおいて熱交換器全体を効率良く使うことが可能である。   Further, if the flow path lengths constituting the refrigerant flow paths P1 and P2 are made equal, the entire heat exchanger can be used efficiently in the cooling operation or heating operation mode.

この実施例2においても、室外機1における構成として、四方弁3から接続配管8に至る冷媒流路Pが複数あり、各冷媒流路Pにそれぞれ絞り装置32A、32Bを備えたものということができる。実施例2の場合にも、第1の冷媒流路P1には第1の室外熱交換器10Aと第2の絞り装置32Aが配置され、第2の冷媒流路P2には第2の室外熱交換器10Bと第3の絞り装置32Bが配置されたものである。   Also in the second embodiment, as the configuration in the outdoor unit 1, there are a plurality of refrigerant flow paths P extending from the four-way valve 3 to the connection pipe 8, and each refrigerant flow path P is provided with expansion devices 32A and 32B, respectively. it can. Also in the case of the second embodiment, the first outdoor heat exchanger 10A and the second expansion device 32A are disposed in the first refrigerant flow path P1, and the second outdoor heat is provided in the second refrigerant flow path P2. The exchanger 10B and the third diaphragm device 32B are arranged.

なお、図3の冷媒流路の構成はあくまで一例であり、冷媒流路の構成数は能力や冷媒循環量に応じて適切に設計すればよく、冷媒流路数によらず同様の効果を得ることができるが、絞り装置数を増やすことはコストの増加につながるため、コスト増加を抑えることを考えると絞り装置数は2個程度とすることが望ましい。   The configuration of the refrigerant flow path in FIG. 3 is merely an example, and the number of refrigerant flow paths may be appropriately designed according to the capacity and the amount of refrigerant circulation, and the same effect is obtained regardless of the number of refrigerant flow paths. However, since increasing the number of aperture devices leads to an increase in cost, considering the suppression of the increase in cost, it is desirable that the number of aperture devices be about two.

実施例3では、本発明の上記思想を実現可能な複数冷媒流路の形成事例について図6を用いて説明する。   In Example 3, an example of forming a plurality of refrigerant flow paths capable of realizing the above concept of the present invention will be described with reference to FIG.

図6は、2つの直列接続された熱交換器10C,10Dの中間と他方端間にバイパス配管を設けた構成である。熱交換器10Dと直列に第3の絞り装置32Bが配置されて第2の冷媒流路P2を形成し、バイパス配管に第2の絞り装置32Aが配置されて第1の冷媒流路P1を形成している。第2、第3の絞り装置32A,32Bの配置位置は、冷房運転あるいは除湿運転モードでの冷媒流れ方向から見た場合、後流側とされる。   FIG. 6 shows a configuration in which a bypass pipe is provided between the middle and the other end of the two heat exchangers 10C and 10D connected in series. The third expansion device 32B is arranged in series with the heat exchanger 10D to form the second refrigerant flow path P2, and the second expansion device 32A is arranged in the bypass pipe to form the first refrigerant flow path P1. doing. The arrangement positions of the second and third expansion devices 32A and 32B are on the downstream side when viewed from the refrigerant flow direction in the cooling operation or the dehumidifying operation mode.

この実施例3の配置構成の場合には、バイパス配管側の第2の絞り装置32Aが全開とされ、熱交換器10Dと直列に配置された第3の絞り装置32Bが制御側とされるのがよい。   In the arrangement of the third embodiment, the second expansion device 32A on the bypass piping side is fully opened, and the third expansion device 32B disposed in series with the heat exchanger 10D is on the control side. Is good.

この実施例3においても、室外機1における構成として、四方弁3から接続配管8に至る冷媒流路Pが複数あり、各冷媒流路Pにそれぞれ絞り装置32A、32Bを備えたものということができる。但し実施例3の場合には、第1の冷媒流路P1には第2の絞り装置32Aのみが配置され、第2の冷媒流路P2には室外熱交換器10Dと第3の絞り装置32Bが配置されたものである。   Also in the third embodiment, as a configuration in the outdoor unit 1, there are a plurality of refrigerant flow paths P extending from the four-way valve 3 to the connection pipe 8, and each refrigerant flow path P is provided with expansion devices 32A and 32B, respectively. it can. However, in the case of Example 3, only the second expansion device 32A is disposed in the first refrigerant flow path P1, and the outdoor heat exchanger 10D and the third expansion device 32B are disposed in the second refrigerant flow path P2. Are arranged.

実施例4では、本発明の上記思想を実現可能な複数冷媒流路の形成事例について図7を用いて説明する。   In Example 4, an example of forming a plurality of refrigerant flow paths capable of realizing the above concept of the present invention will be described with reference to FIG.

図7は、2つの直列接続された熱交換器10C,10Dの中間と他方端間にバイパス配管を設けた構成である。熱交換器10Dと直列に第3の絞り装置32Bが配置されて第2の冷媒流路P2を形成し、バイパス配管に熱交換器10Eと第2の絞り装置32Aが配置されて第1の冷媒流路を形成している。第2、第3の絞り装置32A,32Bの配置位置は、冷房運転あるいは除湿運転モードでの冷媒流れ方向から見た場合、後流側とされる。   FIG. 7 shows a configuration in which a bypass pipe is provided between the middle and the other end of the two heat exchangers 10C and 10D connected in series. The third expansion device 32B is arranged in series with the heat exchanger 10D to form the second refrigerant flow path P2, and the heat exchanger 10E and the second expansion device 32A are arranged in the bypass pipe to form the first refrigerant. A flow path is formed. The arrangement positions of the second and third expansion devices 32A and 32B are on the downstream side when viewed from the refrigerant flow direction in the cooling operation or the dehumidifying operation mode.

この実施例4の配置構成の場合には、第2の絞り装置32Aと第3の絞り装置32Bのいずれが制御側とされてもよい。   In the arrangement of the fourth embodiment, either the second diaphragm device 32A or the third diaphragm device 32B may be the control side.

この実施例4においても、室外機1における構成として、四方弁3から接続配管8に至る冷媒流路Pが複数あり、各冷媒流路Pにそれぞれ絞り装置32A、32Bを備えたものということができる。但し実施例4の場合には、第1の冷媒流路P1には室外熱交換器10Eと第2の絞り装置32Aが配置され、第2の冷媒流路P2には室外熱交換器10Dと第3の絞り装置32Bが配置されたものである。   Also in the fourth embodiment, as the configuration in the outdoor unit 1, there are a plurality of refrigerant flow paths P extending from the four-way valve 3 to the connection pipe 8, and each refrigerant flow path P is provided with expansion devices 32A and 32B, respectively. it can. However, in the case of Example 4, the outdoor heat exchanger 10E and the second expansion device 32A are arranged in the first refrigerant flow path P1, and the outdoor heat exchanger 10D and the second heat expansion apparatus 32A are arranged in the second refrigerant flow path P2. 3 throttling devices 32B are arranged.

1:室外機
2:圧縮機
3:四方弁
4:プロペラファン
5:室内機
6:貫流ファン
10A:第1の室外熱交換器
10B:第2の室外熱交換器
21:第1の室内熱交換器
22:第2の室内熱交換器
31:第1の絞り装置
32A:第2の絞り装置
32B:第3の絞り装置
1: Outdoor unit 2: Compressor 3: Four-way valve 4: Propeller fan 5: Indoor unit 6: Cross-flow fan 10A: First outdoor heat exchanger 10B: Second outdoor heat exchanger 21: First indoor heat exchange Unit 22: Second indoor heat exchanger 31: First expansion device 32A: Second expansion device 32B: Third expansion device

Claims (9)

少なくとも圧縮機、室外熱交換器、室内熱交換器を冷媒配管で接続して冷凍サイクルを形成した空気調和機であって、
前記室内熱交換器は、第1の室内熱交換器と第2の室内熱交換器とをつなぐ冷媒流路上に絞り装置を備え、
前記圧縮機と前記室内熱交換器との間の冷媒流路には、室外熱交換器と、当該室外熱交換器の前記室内熱交換器側に設けられ、前記室外熱交換器に流れる冷媒流量の絞り装置を直列に配置した組が、少なくとも2組並列配置されていることを特徴とする空気調和機。
An air conditioner in which at least a compressor, an outdoor heat exchanger, and an indoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle,
The indoor heat exchanger includes a throttle device on a refrigerant flow path connecting the first indoor heat exchanger and the second indoor heat exchanger,
The refrigerant flow path between the compressor and the indoor heat exchanger is provided on the indoor heat exchanger side of the outdoor heat exchanger and the outdoor heat exchanger, and the refrigerant flow rate that flows to the outdoor heat exchanger An air conditioner characterized in that at least two sets of the throttle devices arranged in series are arranged in parallel.
請求項1に記載の空気調和機であって、
前記圧縮機と前記室内熱交換器との間の冷媒流路には、第1の室外熱交換器と第2の室外熱交換器と絞り装置がこの順序で直列に配置され、かつ前記第1の室外熱交換器と第2の室外熱交換器の接続部から分岐して第3の室外熱交換器と絞り装置がこの順序で直列に配置されていることを特徴とする空気調和機。
The air conditioner according to claim 1,
In the refrigerant flow path between the compressor and the indoor heat exchanger, a first outdoor heat exchanger, a second outdoor heat exchanger, and a throttle device are arranged in series in this order, and the first An air conditioner characterized in that the third outdoor heat exchanger and the expansion device are arranged in series in this order by branching from a connection portion between the outdoor heat exchanger and the second outdoor heat exchanger.
請求項1に記載の空気調和機であって、
前記室外熱交換器と前記絞り装置が直列に配置された組について、各組の室外熱交換器を第1の室外熱交換器と、第2の室外熱交換器とするとき、前記第1の室外熱交換器と前記第2の室外熱交換器は、空気流れ方向に対して並列に設置されたことを特徴とする空気調和機。
The air conditioner according to claim 1,
For a set in which the outdoor heat exchanger and the expansion device are arranged in series, when each of the outdoor heat exchangers is a first outdoor heat exchanger and a second outdoor heat exchanger, the first heat exchanger The outdoor heat exchanger and the second outdoor heat exchanger are installed in parallel to the air flow direction.
請求項1乃至請求項3のいずれか1項に記載の空気調和機であって、
前記室外熱交換器と前記絞り装置が直列に配置された組について、各組の冷媒流路の容積が、略等しいことを特徴とする空気調和機。
An air conditioner according to any one of claims 1 to 3 ,
The air conditioner characterized in that the volume of the refrigerant flow path of each set is substantially equal for the set in which the outdoor heat exchanger and the expansion device are arranged in series.
請求項1乃至請求項4のいずれか1項に記載の空気調和機であって、
前記室内熱交換器の一方を蒸発器、他方を凝縮器とする除湿運転モードを有し、
前記除湿運転モードにおいて、前記室外熱交換器側の絞り装置の一部を全開とし、前記室外熱交換器側の他の絞り装置の絞り量を制御することを特徴とする空気調和機。
An air conditioner according to any one of claims 1 to 4 ,
A dehumidifying operation mode in which one of the indoor heat exchangers is an evaporator and the other is a condenser;
In the dehumidifying operation mode, an air conditioner characterized in that a part of the expansion device on the outdoor heat exchanger side is fully opened and the amount of expansion of another expansion device on the outdoor heat exchanger side is controlled.
請求項5に記載の空気調和機であって、
前記絞り量を制御する側の絞り装置の開度を前記第1の室内熱交換器における冷媒温度に応じて制御することを特徴とする空気調和機。
The air conditioner according to claim 5 ,
An air conditioner that controls an opening degree of a throttle device on a side that controls the throttle amount in accordance with a refrigerant temperature in the first indoor heat exchanger.
請求項5または請求項6に記載の空気調和機であって、
前記室外熱交換器側について、全開とした前記絞り装置につながる前記室外熱交換器の最下流側の冷媒温度が、前記絞り量を制御する側につながる前記室外熱交換器の最下流側の冷媒温度に比べて低くなるように制御することを特徴とする空気調和機。
The air conditioner according to claim 5 or 6 ,
On the outdoor heat exchanger side, the refrigerant temperature on the most downstream side of the outdoor heat exchanger connected to the expansion device that is fully opened leads to the refrigerant on the most downstream side of the outdoor heat exchanger connected to the side that controls the amount of expansion. An air conditioner that is controlled to be lower than the temperature.
請求項1乃至請求項7のいずれか1項に記載の空気調和機であって、
前記絞り装置は、絞り量を連続的に変化できることを特徴とする空気調和機。
An air conditioner according to any one of claims 1 to 7 ,
The air conditioner characterized in that the aperture device can continuously change the aperture amount.
請求項8に記載の空気調和機であって、
前記絞り装置の絞り量を、圧縮機吐出の冷媒ガス温度に応じて制御することを特徴とする空気調和機。
The air conditioner according to claim 8 ,
An air conditioner characterized in that the throttle amount of the throttle device is controlled according to the refrigerant gas temperature discharged from the compressor.
JP2015022782A 2015-02-09 2015-02-09 Air conditioner Active JP6420166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022782A JP6420166B2 (en) 2015-02-09 2015-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022782A JP6420166B2 (en) 2015-02-09 2015-02-09 Air conditioner

Publications (3)

Publication Number Publication Date
JP2016145676A JP2016145676A (en) 2016-08-12
JP2016145676A5 JP2016145676A5 (en) 2017-08-03
JP6420166B2 true JP6420166B2 (en) 2018-11-07

Family

ID=56685494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022782A Active JP6420166B2 (en) 2015-02-09 2015-02-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP6420166B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126331B (en) * 2020-08-26 2023-06-02 广东美的暖通设备有限公司 Air conditioner and electric control box
CN112178758A (en) * 2020-09-17 2021-01-05 珠海格力电器股份有限公司 Air conditioner and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169959U (en) * 1981-04-17 1982-10-26
JP3794339B2 (en) * 2001-03-30 2006-07-05 三菱電機株式会社 Air conditioner
JP4647512B2 (en) * 2006-02-13 2011-03-09 東芝キヤリア株式会社 Air conditioner
JP2010270946A (en) * 2009-05-20 2010-12-02 Hitachi Appliances Inc Air conditioner

Also Published As

Publication number Publication date
JP2016145676A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP7175985B2 (en) air conditioner system
JP6685409B2 (en) Air conditioner
JP6644154B2 (en) Air conditioner
WO2015063853A1 (en) Refrigeration cycle and air conditioner
JPWO2018002983A1 (en) Refrigeration cycle equipment
WO2018051408A1 (en) Air conditioner
JP6715929B2 (en) Refrigeration cycle device and air conditioner including the same
WO2012077275A1 (en) Air-conditioner
JP2007163013A (en) Refrigerating cycle device
EP2771627B1 (en) Regenerative air-conditioning apparatus
JP6339945B2 (en) Air conditioner
JP6420166B2 (en) Air conditioner
JPWO2018051409A1 (en) Refrigeration cycle device
JP2015010816A (en) Refrigerant circuit and air conditioning equipment
JP5968540B2 (en) Refrigerant circuit and air conditioner
JP6242289B2 (en) Refrigeration cycle equipment
JP6846915B2 (en) Multi-chamber air conditioner
EP3165849A1 (en) Heat source device and heat source system provided with heat source device
CN113646597B (en) Refrigeration cycle device
JP6984048B2 (en) Air conditioner
JP2015124992A (en) Heat exchanger
JP6005024B2 (en) Refrigeration cycle equipment
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2017048953A (en) Air conditioner
JP6413692B2 (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181011

R150 Certificate of patent or registration of utility model

Ref document number: 6420166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150